1
|
Wang J, Zhang L, Fu L, Pang Z. Kaempferol Mitigates Pseudomonas aeruginosa-Induced Acute Lung Inflammation Through Suppressing GSK3β/JNK/c-Jun Signaling Pathway and NF-κB Activation. Pharmaceuticals (Basel) 2025; 18:322. [PMID: 40143103 PMCID: PMC11944347 DOI: 10.3390/ph18030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Pseudomonas aeruginosa, one of the common bacterial pathogens causing nosocomial pneumonia, is characterized as highly pathogenic and multidrug-resistant. Kaempferol (KP), a natural flavonoid, has been shown to exhibit effectiveness in treating infection-induced lung injury. Methods: We applied network pharmacology to explore the underlying mechanisms of KP in treating P. aeruginosa pneumonia and further validated them through a mouse model of acute bacterial lung infection and an in vitro macrophage infection model. Results: The in vivo studies demonstrated that treatment with KP suppressed the production of proinflammatory cytokines, including TNF, IL-1β, IL-6, and MIP-2, and attenuated the neutrophil infiltration and lesions in lungs, leading to an increased survival rate of mice. Further studies revealed that KP treatment enhanced the phosphorylation of GSK3β at Ser9 and diminished the phosphorylation of JNK, c-Jun, and NF-κB p65 in lungs in comparison to the mice without drug treatment. Consistently, the in vitro studies showed that pretreatment with KP reduced the activation of GSK3β, JNK, c-Jun, and NF-κB p65 and decreased the levels of the proinflammatory cytokines in macrophages during P. aeruginosa infection. Conclusions: KP reduced the production of proinflammatory cytokines by inhibiting GSK3β/JNK/c-Jun signaling pathways and NF-κB activation, which effectively mitigated the P. aeruginosa-induced acute lung inflammation and injury, and elevated the survival rates of mice.
Collapse
Affiliation(s)
- Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Linlin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lu Fu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
2
|
Li C, Zhang L, Li X, Hu Q, Mao L, Shao Y, Han M, Zhang S, Ejaz I, Mesbah L, Tang Q, Shang F. Sulforaphane suppresses Aβ accumulation and tau hyperphosphorylation in vascular cognitive impairment(VCI). J Nutr Biochem 2025; 136:109803. [PMID: 39551165 DOI: 10.1016/j.jnutbio.2024.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Sulforaphane (Sfn) is a compound naturally found in cruciferous vegetables such as broccoli, Brussels sprouts, cabbage, and kale. It is well-known for its antioxidative and anti-inflammatory effects. Sfn has attracted attention for its potential health benefits, particularly its role in brain health and the potential prevention of dementia and neurodegeneration. Alzheimer's disease (AD) and vascular cognitive impairment (VCI) are the top two causes of dementia. Cerebral vascular lesions give rise to VCI and predispose neurons to degeneration and Alzheimer's disease (AD) by Aβ accumulation and tau hyperphosphorylation. In a rat model of VCI by permanent bilateral common carotid artery occlusion (2VO), we tested the protective effect of the phase II enzyme inducer sulforaphane (Sfn). Sfn ameliorates vascular cognitive deficits by reducing the typical white matter injury and neural atrophy pathological changes in VCI. Moreover, for the first time, we demonstrated that it effectively reduced Aβ and toxic p-tau accumulation in VCI. The protective mechanisms of Sfn involve the induction of HO-1 expression, activation of the Akt/GSK3β pathway, and modulation of amyloid precursor protein (APP) expression levels. Our data suggest that Sfn is a promising therapeutic compound to treat VCI and AD. It inhibits short-term neuron and white matter injuries as well as long-term Aβ and p-tau accumulation caused by cerebral vascular lesions.
Collapse
Affiliation(s)
- Cong Li
- School of Medical Information Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lei Zhang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xin Li
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Neurology, Liaocheng No.4 People's Hospital, Liaocheng, Shandong, China
| | - Quan Hu
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Leilei Mao
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yanxin Shao
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Mei Han
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Shihao Zhang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Irum Ejaz
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lina Mesbah
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Qin Tang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| | - Feifei Shang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Physiology and Neurobiology, School of Basic Medical Sciences & Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
3
|
Grayck MR, McCarthy WC, Solar M, Golden E, Balasubramaniyan N, Zheng L, Sherlock LG, Wright CJ. GSK3β/NF-κB -dependent transcriptional regulation of homeostatic hepatocyte Tnf production. Am J Physiol Gastrointest Liver Physiol 2024; 326:G374-G384. [PMID: 38193163 PMCID: PMC11211040 DOI: 10.1152/ajpgi.00229.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Maintenance of hepatocyte homeostasis plays an important role in mediating the pathogenesis of many diseases. A growing body of literature has established a critical role played by tumor necrosis factor-α (TNFα) in maintaining hepatocyte homeostasis; however, the transcriptional mechanisms underlying constitutive Tnf expression are unknown. Whole liver fractions and primary hepatocytes from adult control C57BL/6 mice and the murine hepatocyte cell line AML12 were assessed for constitutive Tnf expression. Impacts of glycogen synthase kinase-3 β (GSK3β) and nuclear factor κB (NF-κB) inhibition on constitutive Tnf expression were assessed in AML12 cells. Finally, AML12 cell proliferation following GSK3β and NF-κB inhibition was evaluated. Constitutive Tnf gene expression is present in whole liver, primary hepatocytes, and cultured AML12 hepatocytes. Cytokine-induced Tnf gene expression is regulated by NF-κB activation. Pharmacological inhibition of GSK3β resulted in a time- and dose-dependent inhibition of Tnf gene expression. GSK3β inhibition decreased nuclear levels of the NF-κB subunits p65 and p50. We determined that NF-κB transcription factor subunit p65 binds to consensus sequence elements present in the murine TNFα promoter and inhibition of GSK3β decreases binding and subsequent Tnf expression. Finally, AML12 cell growth was significantly reduced following GSK3β and NF-κB inhibition. These results demonstrate that GSK3β and NF-κB are essential for mediating Tnf expression and constitutive hepatocyte cell growth. These findings add to a growing body of literature on TNFα mediated hepatocyte homeostasis and identify novel molecular mechanisms involved in mediating response to various disease states in the liver.NEW & NOTEWORTHY Maintenance of hepatocyte homeostasis plays an important role in controlling the pathogenesis of many diseases. Our findings add to a growing body of literature on tumor necrosis factor-α (TNFα)-mediated hepatocyte homeostasis and identify novel molecular mechanisms involved in regulating this response.
Collapse
Affiliation(s)
- Maya R Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Emma Golden
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Natarajan Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
4
|
Gao L, Lu Y, Chen HN, Li Z, Hu M, Zhang R, Wang X, Xu Z, Gong Y, Wang R, Du D, Hai S, Li S, Su D, Li Y, Xu H, Zhou ZG, Dai L. Deciphering the Clinical Significance and Kinase Functions of GSK3α in Colon Cancer by Proteomics and Phosphoproteomics. Mol Cell Proteomics 2023; 22:100545. [PMID: 37031867 PMCID: PMC10196724 DOI: 10.1016/j.mcpro.2023.100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
GSK3α and GSK3β are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3β plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3β. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3β, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3β. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Gao
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China; Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Yang Z, Li T, Xian J, Chen J, Huang Y, Zhang Q, Lin X, Lu H, Lin Y. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2α signaling pathway in arrhythmogenic cardiomyopathy. FASEB J 2022; 36:e22410. [PMID: 35713937 DOI: 10.1096/fj.202200243r] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022]
Abstract
Excessive cardiac fibrosis and inflammation aberrantly contribute to the progressive pathogenesis of arrhythmogenic cardiomyopathy (ACM). Whether sodium-glucose cotransporter-2 inhibitor (SGLT2i), as a new hypoglycemic drug, benefits ACM remains unclear. Cardiomyocyte-specific Dsg2 exon-11 knockout and wild-type (WT) littermate mice were used as the animal model of ACM and controls, respectively. Mice were administered by gavage with either SGLT2i dapagliflozin (DAPA, 1 mg/kg/day) or vehicle alone for 8 weeks. HL-1 cells were treated with DAPA to identify the molecular mechanism in vitro. All mice presented normal glucose homeostasis. DAPA not only significantly ameliorated cardiac dysfunction, adverse remodeling, and ventricular dilation in ACM but also attenuated ACM-associated cardiac fibrofatty replacement, as demonstrated by the echocardiography and histopathological examination. The protein expressions of HIF-2α and HIF-1α were decreased and increased respectively in cardiac tissue of ACM, which were compromised after DAPA treatment. Additionally, NF-κB P65 and IκB phosphorylation, as well as fibrosis indicators (including TGF-β, α-SMA, Collagen I, and Collagen III) were increased in ACM. However, these trends were markedly suppressed by DAPA treatment. Consistent with these results in vitro, DAPA alleviated the IκB phosphorylation and NF-κB p65 transcriptional activity in DSG2-knockdown HL-1 cells. Interestingly, the elective HIF-2α inhibitor PT2399 almost completely blunted the DAPA-mediated downregulation of indicators concerning cardiac fibrosis and inflammation. SGLT2i attenuated the ACM-associated cardiac dysfunction and adverse remodeling in a glucose-independent manner by suppressing cardiac fibrosis and inflammation via reverting the HIF-2α signaling pathway, suggesting that SGLT2i is a novel and available therapy for ACM.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, China.,The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Tengling Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jianzhong Xian
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jia Chen
- The Second Department of Cardiology, The Second People's Hospital of Guangdong Province, Guangzhou, China
| | - Yin Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qin Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiufang Lin
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, China
| | - Yubi Lin
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
6
|
Chen CL, Tseng PC, Satria RD, Nguyen TT, Tsai CC, Lin CF. Role of Glycogen Synthase Kinase-3 in Interferon-γ-Mediated Immune Hepatitis. Int J Mol Sci 2022; 23:ijms23094669. [PMID: 35563060 PMCID: PMC9101719 DOI: 10.3390/ijms23094669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase, is a vital glycogen synthase regulator controlling glycogen synthesis, glucose metabolism, and insulin signaling. GSK-3 is widely expressed in different types of cells, and its abundant roles in cellular bioregulation have been speculated. Abnormal GSK-3 activation and inactivation may affect its original bioactivity. Moreover, active and inactive GSK-3 can regulate several cytosolic factors and modulate their diverse cellular functional roles. Studies in experimental liver disease models have illustrated the possible pathological role of GSK-3 in facilitating acute hepatic injury. Pharmacologically targeting GSK-3 is therefore suggested as a therapeutic strategy for liver protection. Furthermore, while the signaling transduction of GSK-3 facilitates proinflammatory interferon (IFN)-γ in vitro and in vivo, the blockade of GSK-3 can be protective, as shown by an IFN-γ-induced immune hepatitis model. In this study, we explored the possible regulation of GSK-3 and the potential relevance of GSK-3 blockade in IFN-γ-mediated immune hepatitis.
Collapse
Affiliation(s)
- Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Po-Chun Tseng
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan;
| | - Rahmat Dani Satria
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Thi Thuy Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Oncology, Hue University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 703, Taiwan
- Department of Long Term Care Management, Chung Hwa University of Medical Technology, Tainan 703, Taiwan
- Correspondence: (C.-C.T.); (C.-F.L.)
| | - Chiou-Feng Lin
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan;
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-C.T.); (C.-F.L.)
| |
Collapse
|
7
|
Meraviglia V, Alcalde M, Campuzano O, Bellin M. Inflammation in the Pathogenesis of Arrhythmogenic Cardiomyopathy: Secondary Event or Active Driver? Front Cardiovasc Med 2021; 8:784715. [PMID: 34988129 PMCID: PMC8720743 DOI: 10.3389/fcvm.2021.784715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare inherited cardiac disease characterized by arrhythmia and progressive fibro-fatty replacement of the myocardium, which leads to heart failure and sudden cardiac death. Inflammation contributes to disease progression, and it is characterized by inflammatory cell infiltrates in the damaged myocardium and inflammatory mediators in the blood of ACM patients. However, the molecular basis of inflammatory process in ACM remains under investigated and it is unclear whether inflammation is a primary event leading to arrhythmia and myocardial damage or it is a secondary response triggered by cardiomyocyte death. Here, we provide an overview of the proposed players and triggers involved in inflammation in ACM, focusing on those studied using in vivo and in vitro models. Deepening current knowledge of inflammation-related mechanisms in ACM could help identifying novel therapeutic perspectives, such as anti-inflammatory therapy.
Collapse
Affiliation(s)
- Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Mireia Alcalde
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
- Centro Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
- Centro Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
8
|
Glibo M, Serman A, Karin-Kujundzic V, Bekavac Vlatkovic I, Miskovic B, Vranic S, Serman L. The role of glycogen synthase kinase 3 (GSK3) in cancer with emphasis on ovarian cancer development and progression: A comprehensive review. Bosn J Basic Med Sci 2021; 21:5-18. [PMID: 32767962 PMCID: PMC7861620 DOI: 10.17305/bjbms.2020.5036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a monomeric serine-threonine kinase discovered in 1980 in a rat skeletal muscle. It has been involved in various cellular processes including embryogenesis, immune response, inflammation, apoptosis, autophagy, wound healing, neurodegeneration, and carcinogenesis. GSK3 exists in two different isoforms, GSK3α and GSK3β, both containing seven antiparallel beta-plates, a short linking part and an alpha helix, but coded by different genes and variously expressed in human tissues. In the current review, we comprehensively appraise the current literature on the role of GSK3 in various cancers with emphasis on ovarian carcinoma. Our findings indicate that the role of GSK3 in ovarian cancer development cannot be decisively determined as the currently available data support both prooncogenic and tumor-suppressive effects. Likewise, the clinical impact of GSK3 expression on ovarian cancer patients and its potential therapeutic implications are also limited. Further studies are needed to fully elucidate the pathophysiological and clinical implications of GSK3 activity in ovarian cancer.
Collapse
Affiliation(s)
- Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Bekavac Vlatkovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Berivoj Miskovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
MiR-155/GSK-3β mediates anti-inflammatory effect of Chikusetsusaponin IVa by inhibiting NF-κB signaling pathway in LPS-induced RAW264.7 cell. Sci Rep 2020; 10:18303. [PMID: 33110183 PMCID: PMC7591521 DOI: 10.1038/s41598-020-75358-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
It has been demonstrated that Chikusetsusaponin IVa (CsIVa) possesses abundant biological activities. Herein, using LPS to establish acute inflammation model of mouse liver and cell line inflammation model, we investigated whether miR-155/GSK-3β regulated NF-κB signaling pathway, and CsIVa exerted anti-inflammatory effects by regulating miR-155/GSK-3β signaling pathway. Our results showed that LPS induced high expression of miR-155 and miR-155 promoted macrophage activation through GSK-3β. In addition, CsIVa inhibited inflammatory responses in LPS-induced mouse liver and RAW264.7 cells. Furthermore, we demonstrated that CsIVa improved the inflammatory response in LPS-induced RAW264.7 cells by inhibiting miR-155, increasing GSK-3β expression, and inhibiting NF-κB signaling pathway. In conclusion, our study reveals that CsIVa suppresses LPS-triggered immune response by miR-155/GSK-3β-NF-κB signaling pathway.
Collapse
|
10
|
Noori MS, Courreges MC, Bergmeier SC, McCall KD, Goetz DJ. Modulation of LPS-induced inflammatory cytokine production by a novel glycogen synthase kinase-3 inhibitor. Eur J Pharmacol 2020; 883:173340. [PMID: 32634441 PMCID: PMC7334664 DOI: 10.1016/j.ejphar.2020.173340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Sepsis is a serious condition that can lead to long-term organ damage and death. At the molecular level, the hallmark of sepsis is the elevated expression of a multitude of potent cytokines, i.e. a cytokine storm. For sepsis involving gram-negative bacteria, macrophages recognize lipopolysaccharide (LPS) shed from the bacteria, activating Toll-like-receptor 4 (TLR4), and triggering a cytokine storm. Glycogen synthase kinase-3 (GSK-3) is a highly active kinase that has been implicated in LPS-induced cytokine production. Thus, compounds that inhibit GSK-3 could be potential therapeutics for sepsis. Our group has recently described a novel and highly selective inhibitor of GSK-3 termed COB-187. In the present study, using THP-1 macrophages, we evaluated the ability of COB-187 to attenuate LPS-induced cytokine production. We found that COB-187 significantly reduced, at the protein and mRNA levels, cytokines induced by LPS (e.g. IL-6, TNF-α, IL-1β, CXCL10, and IFN-β). Further, the data suggest that the inhibition could be due, at least in part, to COB-187 reducing NF-κB (p65/p50) DNA binding activity as well as reducing IRF-3 phosphorylation at Serine 396. Thus, COB-187 appears to be a potent inhibitor of the cytokine storm induced by LPS.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA.
| | - Maria C Courreges
- Department of Specialty Medicine, Ohio University, Athens, OH, 45701, USA
| | - Stephen C Bergmeier
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Kelly D McCall
- Department of Specialty Medicine, Ohio University, Athens, OH, 45701, USA; Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA; The Diabetes Institute, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA; Translational Biomedical Science Program, Ohio University, Athens, OH, 45701, USA
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA; Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
11
|
Arrhythmogenic cardiomyopathy: An in-depth look at molecular mechanisms and clinical correlates. Trends Cardiovasc Med 2020; 31:395-402. [PMID: 32738304 DOI: 10.1016/j.tcm.2020.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial disease, with approximately 60% of patients displaying a pathogenic variant. The majority of genes linked to ACM code for components of the desmosome: plakophilin-2 (PKP2), desmoglein-2 (DSG2) and desmocollin-2 (DSC2), plakoglobin (JUP) and desmoplakin (DSP). Genetic variants involving the desmosomes are known to cause dysfunction of cell-to-cell adhesions and intercellular gap junctions. In turn, this may result in failure to mechanically hold together the cardiomyocytes, fibrofatty myocardial replacement, cardiac conduction delay and ventricular arrhythmias. It is becoming clearer that pathogenic variants in desmosomal genes such as PKP2 are not only responsible for a mechanical dysfunction of the intercalated disc (ID), but are also the cause of various pro-arrhythmic mechanisms. In this review, we discuss in detail the different molecular interactions associated with desmosomal pathogenic variants, and their contribution to various ACM phenotypes.
Collapse
|
12
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Griffith CM, Macklin LN, Cai Y, Sharp AA, Yan XX, Reagan LP, Strader AD, Rose GM, Patrylo PR. Impaired Glucose Tolerance and Reduced Plasma Insulin Precede Decreased AKT Phosphorylation and GLUT3 Translocation in the Hippocampus of Old 3xTg-AD Mice. J Alzheimers Dis 2020; 68:809-837. [PMID: 30775979 DOI: 10.3233/jad-180707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have demonstrated that mouse models of Alzheimer's disease (AD) can exhibit impaired peripheral glucose tolerance. Further, in the APP/PS1 mouse model, this is observed prior to the appearance of AD-related neuropathology (e.g., amyloid-β plaques; Aβ) or cognitive impairment. In the current study, we examined whether impaired glucose tolerance also preceded AD-like changes in the triple transgenic model of AD (3xTg-AD). Glucose tolerance testing (GTT), insulin ELISAs, and insulin tolerance testing (ITT) were performed at ages prior to (1-3 months and 6-8 months old) and post-pathology (16-18 months old). Additionally, we examined for altered insulin signaling in the hippocampus. Western blots were used to evaluate the two-primary insulin signaling pathways: PI3K/AKT and MAPK/ERK. Since the PI3K/AKT pathway affects several downstream targets associated with metabolism (e.g., GSK3, glucose transporters), western blots were used to examine possible alterations in the expression, translocation, or activation of these targets. We found that 3xTg-AD mice display impaired glucose tolerance as early as 1 month of age, concomitant with a decrease in plasma insulin levels well prior to the detection of plaques (∼14 months old), aggregates of hyperphosphorylated tau (∼18 months old), and cognitive decline (≥18 months old). These alterations in peripheral metabolism were seen at all time points examined. In comparison, PI3K/AKT, but not MAPK/ERK, signaling was altered in the hippocampus only in 18-20-month-old 3xTg-AD mice, a time point at which there was a reduction in GLUT3 translocation to the plasma membrane. Taken together, our results provide further evidence that disruptions in energy metabolism may represent a foundational step in the development of AD.
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lauren N Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Andrew A Sharp
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - April D Strader
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
14
|
Piazzi M, Bavelloni A, Faenza I, Blalock W. Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118769. [PMID: 32512016 PMCID: PMC7273171 DOI: 10.1016/j.bbamcr.2020.118769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase (GSK)-3α/β and the double-stranded RNA-dependent kinase PKR are two sentinel kinases that carry-out multiple similar yet distinct functions in both the cytosol and the nucleus. While these kinases belong to separate signal transduction cascades, they demonstrate an uncanny propensity to regulate many of the same proteins either through direct phosphorylation or by altering transcription/translation, including: c-MYC, NF-κB, p53 and TAU, as well as each another. A significant number of studies centered on the GSK3 kinases have led to the identification of the GSK3 interactome and a number of substrates, which link GSK3 activity to metabolic control, translation, RNA splicing, ribosome biogenesis, cellular division, DNA repair and stress/inflammatory signaling. Interestingly, many of these same pathways and processes are controlled by PKR, but unlike the GSK3 kinases, a clear picture of proteins interacting with PKR and a complete listing of its substrates is still missing. In this review, we take a detailed look at what is known about the PKR and GSK3 kinases, how these kinases interact to influence common cellular processes (innate immunity, alternative splicing, translation, glucose metabolism) and how aberrant activation of these kinases leads to diseases such as Alzheimer's disease (AD), diabetes mellitus (DM) and cancer. GSK3α/β and PKR are major regulators of cellular homeostasis and the response to stress/inflammation and infection. GSK3α/β and PKR interact with and/or modify many of the same proteins and affect the expression of similar genes. A balance between AKT and PKR nuclear signaling may be responsible for regulating the activation of nuclear GSK3β. GSK3α/β- and PKR-dependent signaling influence major molecular mechanisms of the cell through similar intermediates. Aberrant activation of GSK3α/β and PKR is highly involved in cancer, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bavelloni
- Laboratoria di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - William Blalock
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
15
|
Chelko SP, Asimaki A, Lowenthal J, Bueno-Beti C, Bedja D, Scalco A, Amat-Alarcon N, Andersen P, Judge DP, Tung L, Saffitz JE. Therapeutic Modulation of the Immune Response in Arrhythmogenic Cardiomyopathy. Circulation 2019; 140:1491-1505. [PMID: 31533459 DOI: 10.1161/circulationaha.119.040676] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inflammation is a prominent feature of arrhythmogenic cardiomyopathy (ACM), but whether it contributes to the disease phenotype is not known. METHODS To define the role of inflammation in the pathogenesis of ACM, we characterized nuclear factor-κB signaling in ACM models in vitro and in vivo and in cardiac myocytes from patient induced pluripotent stem cells. RESULTS Activation of nuclear factor-κB signaling, indicated by increased expression and nuclear accumulation of phospho-RelA/p65, occurred in both an in vitro model of ACM (expression of JUP2157del2 in neonatal rat ventricular myocytes) and a robust murine model of ACM (homozygous knock-in of mutant desmoglein-2 [Dsg2mut/mut]) that recapitulates the cardiac manifestations seen in patients with ACM. Bay 11-7082, a small-molecule inhibitor of nuclear factor-κB signaling, prevented the development of ACM disease features in vitro (abnormal redistribution of intercalated disk proteins, myocyte apoptosis, release of inflammatory cytokines) and in vivo (myocardial necrosis and fibrosis, left ventricular contractile dysfunction, electrocardiographic abnormalities). Hearts of Dsg2mut/mut mice expressed markedly increased levels of inflammatory cytokines and chemotactic molecules that were attenuated by Bay 11-7082. Salutary effects of Bay 11-7082 correlated with the extent to which production of selected cytokines had been blocked. Nuclear factor-κB signaling was also activated in cardiac myocytes derived from a patient with ACM. These cells produced and secreted abundant inflammatory cytokines under basal conditions, and this was also greatly reduced by Bay 11-7082. CONCLUSIONS Inflammatory signaling is activated in ACM and drives key features of the disease. Targeting inflammatory pathways may be an effective new mechanism-based therapy for ACM.
Collapse
Affiliation(s)
- Stephen P Chelko
- Departments of Medicine (S.P.C., D.B., N.A.-A., P.A.), Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Justin Lowenthal
- Biomedical Engineering (J.L., L.T.), Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Djahida Bedja
- Departments of Medicine (S.P.C., D.B., N.A.-A., P.A.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Italy (A.S.)
| | - Nuria Amat-Alarcon
- Departments of Medicine (S.P.C., D.B., N.A.-A., P.A.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Peter Andersen
- Departments of Medicine (S.P.C., D.B., N.A.-A., P.A.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Daniel P Judge
- Department of Medicine, Medical University of South Carolina, Charleston (D.P.J.)
| | - Leslie Tung
- Biomedical Engineering (J.L., L.T.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA (J.E.S.)
| |
Collapse
|
16
|
Umemura Y, Ogura H, Matsuura H, Ebihara T, Shimizu K, Shimazu T. Bone marrow-derived mononuclear cell therapy can attenuate systemic inflammation in rat heatstroke. Scand J Trauma Resusc Emerg Med 2018; 26:97. [PMID: 30445981 PMCID: PMC6240199 DOI: 10.1186/s13049-018-0566-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
Background This study was performed to gain insights into novel therapeutic approaches for acute systemic inflammation in heatstroke. Bone marrow-derived mononuclear cells (BMMNCs) secrete anti-inflammatory proteins and have protective effects against acute inflammation. Recent evidence suggested that transplantation of BMMNCs can reduce the acute tissue injury caused by regional myocardial reperfusion and the lung dysfunction induced by lipopolysaccharides. We evaluated whether BMMNCs attenuate systemic inflammatory response induced by severe heatstroke. Material and methods Anesthetized 12-week-old male Wistar rats were subjected to heat stress (41.8 °C for 30 min) with/without transplantation of BMMNCs. Bone marrow cells were harvested from the femur and tibia of other Wistar rats. BMMNCs were separated by density centrifugation, dissolved in phosphate-buffered saline (PBS), and injected intravenously immediately after heat stress (HS-BMMNCs group). The control group was administered an equal volume of PBS, and the sham group underwent the same procedure without heat stress. Results Seven-day survival improved significantly in the HS-BMMNCs group versus control group (83.3% vs 41.7%). Transplantation of BMMNCs significantly suppressed serum levels of pro-inflammatory mediators, such as tumor necrosis factor-alpha, interleukin-6 and histone H3 at 3, 6, and 12 h after heat stress. Besides, the elevation of serum syndecan-1, a main component of the vascular endothelial glycocalyx layer, in the BMMNCs group was significantly suppressed compared to that in the control group at 6 and 12 h after heat stress. Histological analysis revealed that edema of the alveolar septum and vascular endothelial injury in the lung were evident in the control group 6 h after heat stress, whereas the morphological alteration was ameliorated in the HS-BMMNCs group. Also, histological analysis using BMMNCs derived from green fluorescent protein transgenic rats showed that the transplanted BMMNCs migrated into lung, kidney, and spleen at 24 h after heat stress but did not engraft to host tissues. Conclusion Transplantation of BMMNCs attenuated acute systemic inflammation and vascular endothelial injury, reduced organ dysfunction, and improved survival in a rat heatstroke model. These findings provide a possible therapeutic strategy against critical heatstroke.
Collapse
Affiliation(s)
- Yutaka Umemura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Matsuura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Gao Y, Mi J, Chen F, Liao Z, Feng X, Lv M, He H, Cao Y, Yan Y, Zhu Z, Fan Y, Hong H. Detection of GSK-3β activation index in pediatric chronic tonsillitis is an indicator for chronic recurrent inflammation. Am J Otolaryngol 2018. [PMID: 29530430 DOI: 10.1016/j.amjoto.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Chronic tonsillitis (TC) is among the most common bacterial diseases in pediatric otolaryngology. We aimed to evaluate the expression of glycogen synthase kinase 3β (GSK-3β) in a cohort of children with chronic tonsillitis (TC), and the correlation between GSK-3β activity index and inflammatory profiles of TC. MATERIALS AND METHODS The expression of GSK-3β was comparably evaluated between children with TC (n = 26) and tonsillar hypertrophy (TH, n = 26). GSK-3β expression was detected by immunohistochemistry, RT-qPCR, and Western blot. The inflammatory profiles between the TC and TH groups were also evaluated. RESULTS We found that while GSK-3β was highly expressed in both TC and TH groups, no significant difference were detected at mRNA and protein levels between groups. The protein level of p-GSK-3β was significantly lower in the TC group as compared to the TH group. Additionally, the inflammatory markers, including NF-κB, T-bet, and IFN-γ were higher in the TC group compared to TH group. The GSK-3β activation index was positively correlated with the levels of NF-κB, T-bet, and IFN-γ in the TC group. CONCLUSIONS Our findings suggested that GSK-3β activation index was demonstrated to be a clinically applicable indicator for chronic recurrent inflammation in pediatric TC.
Collapse
Affiliation(s)
- Yunfei Gao
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiaoping Mi
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Fenghong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenpeng Liao
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Xiaoshan Feng
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Minghui Lv
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Haixin He
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yujie Cao
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Yan
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yunping Fan
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Haiyu Hong
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat-Sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
18
|
Protective effects of evodiamine in experimental paradigm of Alzheimer's disease. Cogn Neurodyn 2018; 12:303-313. [PMID: 29765479 DOI: 10.1007/s11571-017-9471-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/23/2017] [Accepted: 12/29/2017] [Indexed: 01/07/2023] Open
Abstract
Evodiamine, a major component of Evodia rutaecarpa, has been reported to possess various pharmacological activities, including anti-inflammatory, antioxidative stress, and neuroprotective effects. Our previous study has shown that the potential effects of evodiamine on the learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). The present study was designed to investigate neuroprotective mechanism and therapeutic potential of evodiamine against intracerebroventricular streptozotocin (ICV-STZ)-induced experimental sporadic Alzheimer's disease in mice. STZ was injected twice intracerebroventrically (3 mg/kg ICV) on alternate days (day 1 and day 3) in mice. Daily oral administration with evodiamine (50 or 100 mg/kg per day) starting from the first dose of STZ for 21 days showed an improvement in STZ induced cognitive deficits as assessed by novel object recognition and Morris water maze test. Evodiamine significantly decreased STZ induced elevation in acetylcholinesterase activity and malondialdehyde level, and significantly increased STZ induced reduction in glutathione activities and superoxide dismutase activities in the hippocampus compared to control. Furthermore, evodiamine inhibited significantly glial cell activation and neuroinflammation (TNF-α, IL-1β, and IL-6 levels) in the hippocampus. Moreover, evodiamine increased the activity of AKT/GSK-3β signalling pathway and inhibited the activity of nuclear factor κB. In summary, our study suggests that evodiamine can be a novel therapeutic agent for the management of sporadic AD.
Collapse
|
19
|
Benetti E, Mastrocola R, Chiazza F, Nigro D, D'Antona G, Bordano V, Fantozzi R, Aragno M, Collino M, Minetto MA. Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice. PLoS One 2018; 13:e0189707. [PMID: 29342166 PMCID: PMC5771572 DOI: 10.1371/journal.pone.0189707] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Epidemiological studies pointed out to a strong association between vitamin D deficiency and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skeletal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of vitamin D supplementation in a murine model of diet-induced insulin resistance with particular attention to the effects evoked on the skeletal muscle. Male C57BL/6J mice (n = 40) were fed with a control or a High Fat-High Sugar (HFHS) diet for 4 months. Subsets of animals were treated for 2 months with vitamin D (7 μg·kg-1, i.p. three times/week). HFHS diet induced body weight increase, hyperglycemia and impaired glucose tolerance. HFHS animals showed an impaired insulin signaling and a marked fat accumulation in the skeletal muscle. Vitamin D reduced body weight and improved systemic glucose tolerance. In addition, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis evoked by the diet. These effects were associated to decreased activation of NF-κB and lower levels of TNF-alpha. Consistently, a significantly decreased activation of the SCAP/SREBP lipogenic pathway and lower levels of CML protein adducts and RAGE expression were observed in skeletal muscle of animals treated with vitamin D. Collectively, these data indicate that vitamin D-induced selective inhibition of signaling pathways (including NF-κB, SCAP/SREBP and CML/RAGE cascades) within the skeletal muscle significantly contributed to the beneficial effects of vitamin D supplementation against diet-induced metabolic derangements.
Collapse
Affiliation(s)
- Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Fausto Chiazza
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Debora Nigro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe D'Antona
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Roberto Fantozzi
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Massimo Collino
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Marco Alessandro Minetto
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.,Division of Physical Medicine and Rehabilitation, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Liu W, Yang Z, Sun Q, Yang X, Hu Y, Xie H, Gao H, Guo L, Yi J, Liu M, Tang H. miR‐377‐3p drives malignancy characteristics via upregulating GSK‐3β expression and activating NF‐κB pathway in hCRC cells. J Cell Biochem 2017; 119:2124-2134. [DOI: 10.1002/jcb.26374] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Wei‐Ying Liu
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Qi Sun
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xi Yang
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yang Hu
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hong Xie
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hui‐Jie Gao
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Li‐Ming Guo
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jian‐Ying Yi
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
21
|
Koopmans T, Eilers R, Menzen M, Halayko A, Gosens R. β-Catenin Directs Nuclear Factor-κB p65 Output via CREB-Binding Protein/p300 in Human Airway Smooth Muscle. Front Immunol 2017; 8:1086. [PMID: 28943877 PMCID: PMC5596077 DOI: 10.3389/fimmu.2017.01086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023] Open
Abstract
β-Catenin is a multifunctional protein that apart from its role in proliferative and differentiation events, also acts upon inflammatory processes, mainly via interaction with nuclear factor-κB (NF-κB). However, there is still controversy as to whether β-catenin facilitates or represses NF-κB output. Insights into the molecular mechanisms underlying the interaction between β-catenin and NF-κB have highlighted the cofactors CREB-binding protein (CBP) and p300 as important candidates. Here, we hypothesized that the interaction of β-catenin with CBP/p300 directs NF-κB output. Using human airway smooth muscle (ASM) cells, we found that β-catenin is essential in interleukin -1β (IL-1β)-mediated expression of interleukin-6 (IL-6) by promoting nuclear translocation of the p65 subunit of NF-κB. These effects were independent from WNT pathway activation or other factors that promote β-catenin signaling. In the nucleus, inhibition of either the CBP- or p300-β-catenin interaction could regulate NF-κB output, by enhancing (CBP inhibition) or inhibiting (p300 inhibition) IL-1β-induced expression of IL-6, respectively. Acetylation of p65 by p300 likely underlies these events, as inhibition of the p300-β-catenin interaction diminished levels of acetylated p65 at lysine 310, thereby reducing p65 transcriptional activity. In conclusion, β-catenin is a critical component of NF-κB-mediated inflammation in human ASM, affecting transcriptional output by interacting with the nuclear cofactors CBP and p300. Targeting β-catenin may be an alternative strategy to treat airway inflammation in patients with airway disease, such as asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Roos Eilers
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Mark Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Andrew Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
23
|
Shen X, Hu B, Xu G, Chen F, Ma R, Zhang N, Liu J, Ma X, Zhu J, Wu Y, Shen R. Activation of Nrf2/HO-1 Pathway by Glycogen Synthase Kinase-3β Inhibition Attenuates Renal Ischemia/Reperfusion Injury in Diabetic Rats. Kidney Blood Press Res 2017. [PMID: 28624830 DOI: 10.1159/000477947] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Diabetes mellitus can exacerbate renal ischemia-reperfusion (I/R) injury (RI/RI). The aim of the present study was to evaluate the protective effect of GSK-3β inhibition (TDZD-8) on I/R-induced renal injury through the Nrf2/HO-1 pathway in a streptozocin (STZ)-induced diabetic rat model. METHODS STZ-induced diabetic rats preconditioned with TDZD-8 and ZnPP were subjected to renal I/R. The extent of renal morphologic lesions. Renal function was assessed from blood urea nitrogen (BUN) and serum creatinine (Scr), as determined utlizing commercial kits. Oxidative stress and inflammatory activity in the kidney tissue was estimated from levels of malondialdehyde (MDA), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), as well as the activities of superoxide dismutase (SOD) and glutathione (GSH) using qRT-PCR and ELISA. The expressions of Nrf2, HO-1, Bcl-2 and NF-κB in the renal tissue were measured by qRT-PCR and western blotting. RESULTS I/R-induced renal inflammation was reduced significantly by TDZD-8 pretreatment. Preconditioning with TDZD-8 suppressed NF-κB expression and enhanced Bcl-2 expression in the renal tissue. The upregulated level of malondialdehyde (MDA), and reduced activities of superoxide dismutase (SOD) and glutathione (GSH) in I/R-shocked rats were markedly restored by TDZD-8 pretreatment. Furthermore, pretreatment with TDZD-8 enhanced activation of the Nrf2/HO-1 pathway in the renal tissue of diabetic RI/RI rats. CONCLUSION These findings suggest that preconditioning with TDZD-8 may protect the kidney from I/R-induced damage via the activation of the Nrf2/HO-1 pathway in STZ-induced diabetic rats. Further detailed studies are needed to further clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaohua Shen
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China
| | - Bo Hu
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China.,Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guangtao Xu
- Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.,Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Fengjuan Chen
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China
| | - Ruifen Ma
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China
| | - Nenghua Zhang
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China
| | - Jie Liu
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China.,Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xiaoqin Ma
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China
| | - Jia Zhu
- Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China
| | - Yuhong Wu
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China.,Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Ruilin Shen
- Department of Chemical Pathology, Urinary Surgery, Nephrology, Gynecology and Intensive Care Unit, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University Affiliated TCM Hospital, Jiaxing, China.,Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| |
Collapse
|
24
|
Tantray MA, Khan I, Hamid H, Alam MS, Dhulap A, Ganai AA. Oxazolo[4,5-b]pyridine-Based Piperazinamides as GSK-3β Inhibitors with Potential for Attenuating Inflammation and Suppression of Pro-Inflammatory Mediators. Arch Pharm (Weinheim) 2017; 350. [PMID: 28543747 DOI: 10.1002/ardp.201700022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Abstract
Recent studies reveal that glycogen synthase kinase-3β (GSK-3β) acts as a pro-inflammatory enzyme, and by inhibiting this kinase, inflammation can be controlled. In this regard, a series of 17 piperazine-linked oxazolo[4,5-b]pyridine-based derivatives was synthesized and evaluated for in vitro GSK-3β inhibitory and in vivo anti-inflammatory activity. The compounds 7d, 7e, 7g, and 7c displayed the best GSK-3β inhibitory activity among all the synthesized compounds, with corresponding IC50 values of 0.34, 0.39, 0.47, and 0.53 µM. Among the compounds 7d, 7e, 7g, and 7c examined for in vivo anti-inflammatory activity in the rat paw edema model, compound 7d exhibited maximum inhibition, reducing the paw volume by 62.79 and 65.91% at 3 and 5 h post-carrageenan administration, respectively, in comparison to indomethacin (76.74% at 3 h and 79.54% at 5 h after carrageenan administration). Furthermore, these compounds (7d, 7e, 7g, and 7c) were also found to substantially inhibit pro-inflammatory mediators, i.e., TNF-α, IL-1β, and IL-6, ex vivo in comparison to indomethacin and did not pose any gastric ulceration risk, indicating the potential of this oxazolopyridine scaffold for the development of GSK-3β inhibitors and their application as anti-inflammatory agents.
Collapse
Affiliation(s)
- Mushtaq A Tantray
- Faculty of Science, Department of Chemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Imran Khan
- Faculty of Science, Department of Chemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Hinna Hamid
- Faculty of Science, Department of Chemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mohammad Sarwar Alam
- Faculty of Science, Department of Chemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Abhijeet Dhulap
- CSIR - Unit for Research and Development of Information Products (URDIP), Pune, India
| | - Ajaz Ahmad Ganai
- Molecular Virology Lab., Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
25
|
Suber T, Wei J, Jacko AM, Nikolli I, Zhao Y, Zhao J, Mallampalli RK. SCF FBXO17 E3 ligase modulates inflammation by regulating proteasomal degradation of glycogen synthase kinase-3β in lung epithelia. J Biol Chem 2017; 292:7452-7461. [PMID: 28298444 DOI: 10.1074/jbc.m116.771667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/10/2017] [Indexed: 01/25/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) has diverse biological roles including effects on cellular differentiation, migration, and inflammation. GSK3β phosphorylates proteins to generate phosphodegrons necessary for recognition by Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligases leading to subsequent proteasomal degradation of these substrates. However, little is known regarding how GSK3β protein stability itself is regulated and how its stability may influence inflammation. Here we show that GSK3β is degraded by the ubiquitin-proteasome pathway in murine lung epithelial cells through lysine 183 as an acceptor site for K48 polyubiquitination. We have identified FBXO17 as an F-box protein subunit that recognizes and mediates GSK3β polyubiquitination. Both endogenous and ectopically expressed FBXO17 associate with GSK3β, and its overexpression leads to decreased protein levels of GSK3β. Silencing FBXO17 gene expression increased the half-life of GSK3β in cells. Furthermore, overexpression of FBXO17 inhibits agonist-induced release of keratinocyte-derived cytokine (KC) and interleukin-6 (IL-6) production by cells. Thus, the SCFFBXO17 E3 ubiquitin ligase complex negatively regulates inflammation by targeting GSK3β in lung epithelia.
Collapse
Affiliation(s)
- Tomeka Suber
- From the Departments of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Jianxin Wei
- From the Departments of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Anastasia M Jacko
- From the Departments of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Ina Nikolli
- From the Departments of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Yutong Zhao
- From the Departments of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Jing Zhao
- From the Departments of Medicine, the Acute Lung Injury Center of Excellence, and
| | - Rama K Mallampalli
- From the Departments of Medicine, the Acute Lung Injury Center of Excellence, and .,Cell Biology, Physiology, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 and.,the Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| |
Collapse
|
26
|
Rescue therapy with Tanshinone IIA hinders transition of acute kidney injury to chronic kidney disease via targeting GSK3β. Sci Rep 2016; 6:36698. [PMID: 27857162 PMCID: PMC5114614 DOI: 10.1038/srep36698] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) remains challenging for clinical practice and poses a risk of developing progressive chronic kidney disease (CKD) with no definitive treatment available yet. Tanshinone IIA, an active ingredient of Chinese herbal Salvia miltiorrhiza, has been widely used in Asia for the remarkable organoprotective activities. Its effect on established AKI, however, remains unknown. In mice with folic acid-induced AKI, delayed treatment with Tanshinone IIA, commenced early or late after injury, diminished renal expression of kidney injury markers, reduced apoptosis and improved kidney dysfunction, concomitant with mitigated histologic signs of AKI to CKD transition, including interstitial fibrosis and tubular atrophy, and with an ameliorated inflammatory infiltration in tubulointerstitium and a favored M2-skewed macrophage polarization. Mechanistically, Tanshinone IIA blunted glycogen synthase kinase (GSK)3β overactivity and hyperactivation of its downstream mitogen-activated protein kinases that are centrally implicated in renal fibrogenesis and inflammation. Inhibition of GSK3β is likely a key mechanism mediating the therapeutic activity of Tanshinone IIA, because sodium nitroprusside, a GSK3β activator, largely offset its renoprotective effect. In confirmatory studies, rescue treatment with Tanshinone IIA likewise ameliorated ischemia/reperfusion-induced kidney destruction in mice. Our data suggest that Tanshinone IIA represents a valuable treatment that improves post-AKI kidney salvage via targeting GSK3β.
Collapse
|
27
|
Gao X, Xu F, Zhang HT, Chen M, Huang W, Zhang Q, Zeng Q, Liu L. PKCα-GSK3β-NF-κB signaling pathway and the possible involvement of TRIM21 in TRAIL-induced apoptosis. Biochem Cell Biol 2016; 94:256-64. [PMID: 27219672 DOI: 10.1139/bcb-2016-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is a highly promising therapeutic agent for cancer treatment, owing to its ability to selectively target tumor cells for cell death while having little effect on most normal cells. However, recent research has found that many cancers, including non-small cell lung cancer (NSCLC), display resistance to TRAIL. Therefore, it is important to elucidate the molecular mechanisms governing the resistance of tumor cells to TRAIL treatment. In this study, we show that GSK3β antagonized TRAIL-induced apoptosis in H1299 NSCLC cells, and determined that the PKCα isozyme is an upstream regulator of GSK3β that phosphorylates and inactivates GSK3β, thereby sensitizing cancer cells to TRAIL-induced apoptosis. Furthermore, we demonstrated that the anti-apoptotic effect of GSK3β is mediated by the NF-κB pathway, whereas the tripartite motif 21 (TRIM21) was able to inhibit the activation of NF-κB by GSK3β, and leads to the promotion of cell apoptosis. Taken together, our study further delineated the underpinning mechanism of resistance to TRAIL-induced apoptosis in H1299 cells, and provided new clues for sensitizing NSCLC cells to TRAIL therapy.
Collapse
Affiliation(s)
- Xuejuan Gao
- a Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Fengmei Xu
- a Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Huan-Tian Zhang
- b Institute of Orthopedic Diseases and Department of Orthopedics, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Miaojuan Chen
- c Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Wensi Huang
- a Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- d Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Qingzhong Zeng
- a Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- a Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Tantray MA, Khan I, Hamid H, Alam MS, Umar S, Ali Y, Sharma K, Hussain F. Synthesis of Novel Oxazolo[4,5-b]pyridine-2-one based 1,2,3-triazoles as Glycogen Synthase Kinase-3βInhibitors with Anti-inflammatory Potential. Chem Biol Drug Des 2016; 87:918-26. [DOI: 10.1111/cbdd.12724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/06/2016] [Accepted: 01/16/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Mushtaq A. Tantray
- Department of Chemistry; Faculty of Science; Hamdard University (Jamia Hamdard); New Delhi 110 062 India
| | - Imran Khan
- Department of Chemistry; Faculty of Science; Hamdard University (Jamia Hamdard); New Delhi 110 062 India
| | - Hinna Hamid
- Department of Chemistry; Faculty of Science; Hamdard University (Jamia Hamdard); New Delhi 110 062 India
| | - Mohammad Sarwar Alam
- Department of Chemistry; Faculty of Science; Hamdard University (Jamia Hamdard); New Delhi 110 062 India
| | - Sadiq Umar
- Department of Pharmaceutical Sciences; College of Pharmacy; Washington State University; Spokane WA 99202 USA
| | - Yakub Ali
- Department of Chemistry; Faculty of Science; Hamdard University (Jamia Hamdard); New Delhi 110 062 India
| | - Kalicharan Sharma
- Drug Design and Medicinal Chemistry Lab; Department of Pharmaceutical Chemistry; Hamdard University (Jamia Hamdard); New Delhi 110 062 India
| | - Firasat Hussain
- Department of Chemistry; University of Delhi; New Delhi 110 007 India
| |
Collapse
|
29
|
Hemocompatible curcumin–dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohydr Polym 2016; 137:497-507. [DOI: 10.1016/j.carbpol.2015.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022]
|
30
|
Saghiri MA, Orangi J, Asatourian A, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb). Crit Rev Oncol Hematol 2015; 98:290-301. [PMID: 26638864 DOI: 10.1016/j.critrevonc.2015.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 02/02/2023] Open
Abstract
Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran.
| | - Jafar Orangi
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Armen Asatourian
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
31
|
Wang Y, Tong K. Glycogen synthase kinase-3β inhibitor ameliorates imbalance of connexin 43 in an acute kidney injury model. Toxicol Rep 2015; 2:1391-1395. [PMID: 28962480 PMCID: PMC5598357 DOI: 10.1016/j.toxrep.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/10/2015] [Accepted: 10/11/2015] [Indexed: 01/14/2023] Open
Abstract
This study was designed to evaluate whether glycogen synthase kinase-3β (GSK-3β) inhibitor, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) induced the the expression of connexin 43 (Cx43) to protect against renal ischemia–reperfusion (I/R) injury (RI/RI) in rats. Rats were subjected to 45 min ischemia followed 2 h reperfusion with TDZD-8 (1 mg/kg) for 5 min prior to reperfusion. The results indicated that TDZD-8 improved the recovery of renal function, reduced oxidative stress and inflammation injury, and upregulated the expression of (Cx43) as compared to I/R group. Therefore, our study demonstrated that TDZD-8 provided a protection to the kidney against I/R injury in rats through inducing the expression of (Cx43).
Collapse
Affiliation(s)
- Yini Wang
- Department of Nursing, Medical College, Shantou University, 26 Xinling Road, Shantou 515041, PR China.,Southwest University of Science and Technology, College of Life Science and Engineering, Mianyang, Sichuan 621010, PR China
| | - Ke Tong
- Department of Nursing, Medical College, Shantou University, 26 Xinling Road, Shantou 515041, PR China.,Southwest University of Science and Technology, College of Life Science and Engineering, Mianyang, Sichuan 621010, PR China
| |
Collapse
|
32
|
The ORF61 Protein Encoded by Simian Varicella Virus and Varicella-Zoster Virus Inhibits NF-κB Signaling by Interfering with IκBα Degradation. J Virol 2015; 89:8687-700. [PMID: 26085158 DOI: 10.1128/jvi.01149-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) causes chickenpox upon primary infection and establishes latency in ganglia. Reactivation from latency causes herpes zoster, which may be complicated by postherpetic neuralgia. Innate immunity mediated by interferon and proinflammatory cytokines represents the first line of immune defense upon infection and reactivation. VZV is known to interfere with multiple innate immune signaling pathways, including the central transcription factor NF-κB. However, the role of these inhibitory mechanisms in vivo is unknown. Simian varicella virus (SVV) infection of rhesus macaques recapitulates key aspects of VZV pathogenesis, and this model thus permits examination of the role of immune evasion mechanisms in vivo. Here, we compare SVV and VZV with respect to interference with NF-κB activation. We demonstrate that both viruses prevent ubiquitination of the NF-κB inhibitor IκBα, whereas SVV additionally prevents IκBα phosphorylation. We show that the ORF61 proteins of VZV and SVV are sufficient to prevent IκBα ubiquitination upon ectopic expression. We further demonstrate that SVV ORF61 interacts with β-TrCP, a subunit of the SCF ubiquitin ligase complex that mediates the degradation of IκBα. This interaction seems to inactivate SCF-mediated protein degradation in general, since the unrelated β-TrCP target Snail is also stabilized by ORF61. In addition to ORF61, SVV seems to encode additional inhibitors of the NF-κB pathway, since SVV with ORF61 deleted still prevented IκBα phosphorylation and degradation. Taken together, our data demonstrate that SVV interferes with tumor necrosis factor alpha (TNF-α)-induced NF-κB activation at multiple levels, which is consistent with the importance of these countermechanisms for varicella virus infection. IMPORTANCE The role of innate immunity during the establishment of primary infection, latency, and reactivation by varicella-zoster virus (VZV) is incompletely understood. Since infection of rhesus macaques by simian varicella virus (SVV) is used as an animal model of VZV infection, we characterized the molecular mechanism by which SVV interferes with innate immune activation. Specifically, we studied how SVV prevents activation of the transcription factor NF-κB, a central factor in eliciting proinflammatory responses. The identification of molecular mechanisms that counteract innate immunity might ultimately lead to better vaccines and treatments for VZV, since overcoming these mechanisms, either by small-molecule inhibition or by genetic modification of vaccine strains, is expected to reduce the pathogenic potential of VZV. Moreover, using SVV infection of rhesus macaques, it will be possible to study how increasing the vulnerability of varicella viruses to innate immunity will impact viral pathogenesis.
Collapse
|
33
|
Zhang HR, Peng JH, Cheng XB, Shi BZ, Zhang MY, Xu RX. Paeoniflorin Atttenuates Amyloidogenesis and the Inflammatory Responses in a Transgenic Mouse Model of Alzheimer's Disease. Neurochem Res 2015; 40:1583-92. [PMID: 26068144 DOI: 10.1007/s11064-015-1632-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is associated with the inflammatory response in response to amyloid β-peptide (Aβ). Previous studies have suggested that paeoniflorin (PF) shows anti-inflammatory and neuroprotective effects in inflammation-related diseases. However, the impacts of PF on AD have not been investigated. In the present study, we showed that a 4-week treatment with PF could significantly inhibit Aβ burden, Aβ-induced over activation of astrocytes and microglia, downregulation of proinflammatory cytokines, and upregulation of anti-inflammatory cytokines in the brain. In addition, we demonstrated that chronic treatment with PF inhibited the activation of glycogen synthase kinase 3β (GSK-3β) and reversed neuroinflammtory-induced activation of nuclear factor-kappa B (NF-κB) signaling pathways. Moreover, PF exerted inhibitory effects on NALP3 inflammasome, caspase-1, and IL-1β. Collectively, in the present study, we demonstrated that PF exhibits neuroprotective effects in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice via inhibiting neuroinflammation mediated by the GSK-3β and NF-κB signaling pathways and nucleotide-binding domain-like receptor protein 3 inflammasome. Thus, these results suggest that PF might be useful to intervene in development or progression of neurodegeneration in AD through its anti-inflammatory and anti-amyloidogenic effects.
Collapse
Affiliation(s)
- Hong-Ri Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471003, Henan, China
| | | | | | | | | | | |
Collapse
|
34
|
van Dijk G, van Heijningen S, Reijne AC, Nyakas C, van der Zee EA, Eisel ULM. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration. Front Neurosci 2015; 9:173. [PMID: 26041981 PMCID: PMC4434977 DOI: 10.3389/fnins.2015.00173] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework.
Collapse
Affiliation(s)
- Gertjan van Dijk
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Steffen van Heijningen
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Aaffien C Reijne
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands ; Systems Biology Centre for Energy Metabolism and Ageing, University Medical Center, University of Groningen Groningen, Netherlands
| | - Csaba Nyakas
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Eddy A van der Zee
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Ulrich L M Eisel
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands ; University Centre of Psychiatry, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
35
|
Lim R, Lappas M. A novel role for GSK3 in the regulation of the processes of human labour. Reproduction 2015; 149:189-202. [DOI: 10.1530/rep-14-0493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Preterm birth remains the largest single cause of neonatal death and morbidity. Infection and/or inflammation are strongly associated with preterm delivery. Glycogen synthase kinase 3 (GSK3) is known to be a crucial mediator of inflammation homeostasis. The aims of this study were to determine the effect of spontaneous human labour in foetal membranes and myometrium on GSK3α/β expression, and the effect of inhibition of GSK3α/β on pro-labour mediators in foetal membranes and myometrium stimulated with Toll-like receptor (TLR) ligands and pro-inflammatory cytokines. Term and preterm labour in foetal membranes was associated with significantly decreased serine phosphorylated GSK3α and β expression, and thus increased GSK3 activity. There was no effect of term labour on serine phosphorylated GSK3β expression in myometrium. The specific GSK3α/β inhibitor CHIR99021 significantly decreased lipopolysaccharide (ligand to TLR4)-stimulated pro-inflammatory cytokine gene expression and release;COX2gene expression and prostaglandin release; andMMP9gene expression and pro MMP9 release in foetal membranes and/or myometrium. CHIR99021 also decreased FSL1 (TLR2 ligand) and flagellin (TLR5 ligand)-induced pro-inflammatory cytokine gene expression and release andCOX2mRNA expression and prostaglandin release.GSK3βsiRNA knockdown in primary myometrial cells was associated with a significant decrease in IL1β and TNFα-induced pro-inflammatory cytokine and prostaglandin release. In conclusion, GSK3α/β activity is increased in foetal membranes after term and preterm labour. Pharmacological blockade of the kinase GSK3 markedly reduced pro-inflammatory and pro-labour mediators in human foetal membranes and myometrium, providing a possible therapeutics for the management of preterm labour.
Collapse
|
36
|
Lakshmanan J, Zhang B, Nweze IC, Du Y, Harbrecht BG. Glycogen Synthase Kinase 3 Regulates IL-1β Mediated iNOS Expression in Hepatocytes by Down-Regulating c-Jun. J Cell Biochem 2014; 116:133-41. [DOI: 10.1002/jcb.24951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 08/22/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jaganathan Lakshmanan
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Baochun Zhang
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Ikenna C. Nweze
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Yibo Du
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Brian G. Harbrecht
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| |
Collapse
|
37
|
Verstrepen L, Beyaert R. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol 2014; 92:519-29. [PMID: 25449604 DOI: 10.1016/j.bcp.2014.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 01/12/2023]
Abstract
Many signaling pathways leading to activation of transcription factors and gene expression are characterized by phosphorylation events mediated by specific kinases. The transcription factor NF-κB plays a key role in multiple cellular processes, including immune signaling, inflammation, development, proliferation and survival. Dysregulated NF-κB activation is associated with autoimmunity, chronic inflammation and cancer. Activation of NF-κB requires IκB kinase (IKK)α or β, the activity of which is regulated via phosphorylation by specific IKK kinases and by autophosphorylation. Receptor specificity is further obtained by the use of multiple upstream receptor proximal kinases. We review the identities of several IKK regulatory kinases as well as the proposed molecular mechanisms. In addition, we discuss the potential for therapeutic targeting of some of these kinases in the context of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Lynn Verstrepen
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
38
|
Inhibition of glycogen synthase kinase-3β attenuates acute kidney injury in sodium taurocholate‑induced severe acute pancreatitis in rats. Mol Med Rep 2014; 10:3185-92. [PMID: 25323773 DOI: 10.3892/mmr.2014.2650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/11/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the efficacy of 4‑benzyl‑2‑methyl‑1,2,4‑thiadiazolidine‑3,5‑dione (TDZD‑8), the selective inhibitor of glycogen synthase kinase‑3β (GSK‑3β), on the development of acute kidney injury in an experimental model of sodium taurocholate‑induced severe acute pancreatitis (SAP) in rats. The serum amylase, lipase, interleukin‑1β and interleukin‑6 levels, and the pancreatic pathological score were examined to determine the magnitude of pancreatitis injury. The serum creatinine and blood urea nitrogen levels, myeloperoxidase (MPO) activity and renal histological grading were measured to assess the magnitude of SAP‑induced acute kidney injury. The activation of nuclear factor‑κB (NF‑κB) was examined using an immunohistochemistry assay. The expression of GSK‑3β, phospho‑GSK‑3β (Ser9), tumour necrosis factor‑α (TNF‑α), intercellular adhesion molecule‑1 (ICAM‑1) and inducible nitric oxide synthase (iNOS) protein in the kidney was characterised using western blot analysis. TDZD‑8 attenuated (i) serum amylase, lipase and renal dysfunction; (ii) the serum concentrations of proinflammatory cytokines; (iii) pancreatic and renal pathological injury; (iv) renal MPO activity and (v) NF‑κB activation and TNF‑α, ICAM‑1 and iNOS protein expression in the kidney. The results obtained in the present study suggest that the inhibition of GSK‑3β attenuates renal disorders associated with SAP through the inhibition of NF‑κB activation and the downregulation of the expression of proinflammatory cytokines, TNF‑α, ICAM‑1 and iNOS in rats. Blocking GSK‑3β protein kinase activity may be a novel approach to the treatment of this inflammatory condition.
Collapse
|
39
|
Zhu S, Wang H, Shi R, Zhang R, Wang J, Kong L, Sun Y, He J, Kong J, Wang JF, Li XM. Chronic phencyclidine induces inflammatory responses and activates GSK3β in mice. Neurochem Res 2014; 39:2385-93. [PMID: 25270429 DOI: 10.1007/s11064-014-1441-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 11/26/2022]
Abstract
Use of phencyclidine (PCP) in rodents can mimic some aspects of schizophrenia. However, the underlying mechanism is still unclear. Growing evidence indicates that neuroinflammation plays a significant role in the pathophysiology of schizophrenia. In this study, we focused on inflammatory responses as target of PCP for inducing schizophrenia-like symptoms. 3-month-old C57BL/6J mice received daily injections of PCP (20 mg/kg, i.p.) or saline for one week. PCP-injected mice produced schizophrenia-like behaviours including impaired spatial short-term memory assessed by the Y-maze task and sensorimotor gating deficits in a prepulse inhibition task. Simultaneously, chronic PCP administration induced astrocyte and microglial activation in both the cortex and hippocampus. Additionally, the proinflammatory cytokine interleukin-1β was significantly up-regulated in PCP administrated mice. Furthermore, PCP treatment decreased ratio of the phospho-Ser9 epitope of glycogen synthase kinase-3β (GSK3β) over total GSK3β, which is indicative of increased GSK3β activity. These data demonstrate that chronic PCP in mouse produces inflammatory responses and GSK3β activation.
Collapse
Affiliation(s)
- Shenghua Zhu
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang JS, Herreros-Vilanueva M, Koenig A, Deng Z, de Narvajas AAM, Gomez TS, Meng X, Bujanda L, Ellenrieder V, Li XK, Kaufmann SH, Billadeau DD. Differential activity of GSK-3 isoforms regulates NF-κB and TRAIL- or TNFα induced apoptosis in pancreatic cancer cells. Cell Death Dis 2014; 5:e1142. [PMID: 24675460 PMCID: PMC4067531 DOI: 10.1038/cddis.2014.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 01/31/2014] [Accepted: 02/13/2014] [Indexed: 01/06/2023]
Abstract
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3β. In contrast, depletion of GSK-3β, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3β-deficient MEFs. Nonetheless, inhibition of GSK-3β function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3β targeted to the nucleus but not GSK-3β targeted to the cytoplasm, suggesting that GSK-3β regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3β overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.
Collapse
Affiliation(s)
- J-S Zhang
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
- School of Pharmaceutical Sciences and Key
Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical
University, Wenzhou, Zhejiang, PR China
| | - M Herreros-Vilanueva
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
- Department of Gastroenterology, Centro de
Investigación Biomédica en Red de Enfermedades Hepáticas y
Digestivas (CIBERehd), Hospital Donostia/Instituto Biodonostia, Universidad del
País Vasco UPV/EHU, San Sebastián,
Spain
| | - A Koenig
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
- Department of Gastroenterology and
Endocrinology, Philipps University of Marburg, Marburg,
Germany
| | - Z Deng
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
- Department of Pathophysiology, Qiqihar
Medical University, Qiqihar, PR China
| | - A A-M de Narvajas
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
| | - T S Gomez
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
| | - X Meng
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
| | - L Bujanda
- Department of Gastroenterology, Centro de
Investigación Biomédica en Red de Enfermedades Hepáticas y
Digestivas (CIBERehd), Hospital Donostia/Instituto Biodonostia, Universidad del
País Vasco UPV/EHU, San Sebastián,
Spain
| | - V Ellenrieder
- Department of Gastroenterology and
Endocrinology, Philipps University of Marburg, Marburg,
Germany
| | - X K Li
- School of Pharmaceutical Sciences and Key
Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical
University, Wenzhou, Zhejiang, PR China
| | - S H Kaufmann
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
| | - D D Billadeau
- Division of Oncology Research and Schulze
Center for Novel Therapeutics, Mayo Clinic College of Medicine,
Rochester, MN, USA
| |
Collapse
|
41
|
Zhang JS, Herreros-Villanueva M, Koenig A, Deng Z, de Narvajas AAM, Gomez TS, Meng X, Bujanda L, Ellenrieder V, Li XK, Kaufmann SH, Billadeau DD. Differential activity of GSK-3 isoforms regulates NF-κB and TRAIL- or TNFα induced apoptosis in pancreatic cancer cells. Cell Death Dis 2014; 5:e1142. [PMID: 24675460 PMCID: PMC4454316 DOI: 10.1038/cddis.2014.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 01/31/2014] [Accepted: 02/13/2014] [Indexed: 01/16/2023]
Abstract
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3β. In contrast, depletion of GSK-3β, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3β-deficient MEFs. Nonetheless, inhibition of GSK-3β function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3β targeted to the nucleus but not GSK-3β targeted to the cytoplasm, suggesting that GSK-3β regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3β overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.
Collapse
Affiliation(s)
- J-S Zhang
- 1] Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA [2] School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | | | - A Koenig
- 1] Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA [2] Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - Z Deng
- 1] Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA [2] Department of Pathophysiology, Qiqihar Medical University, Qiqihar, PR China
| | - A A-M de Narvajas
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - T S Gomez
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - X Meng
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - L Bujanda
- Department of Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - V Ellenrieder
- Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - X K Li
- School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - S H Kaufmann
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - D D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
42
|
Kretzschmar C, Roolf C, Langhammer TS, Sekora A, Pews-Davtyan A, Beller M, Frech MJ, Eisenlöffel C, Rolfs A, Junghanss C. The novel arylindolylmaleimide PDA-66 displays pronounced antiproliferative effects in acute lymphoblastic leukemia cells. BMC Cancer 2014; 14:71. [PMID: 24502201 PMCID: PMC3922486 DOI: 10.1186/1471-2407-14-71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/02/2014] [Indexed: 12/17/2022] Open
Abstract
Background Prognosis of adult patients suffering from acute lymphoblastic leukemia (ALL) is still unsatisfactory. Targeted therapy via inhibition of deregulated signaling pathways appears to be a promising therapeutic option for the treatment of ALL. Herein, we evaluated the influence of a novel arylindolylmaleimide (PDA-66), a potential GSK3β inhibitor, on several ALL cell lines. Methods ALL cell lines (SEM, RS4;11, Jurkat and MOLT4) were exposed to different concentrations of PDA-66. Subsequently, proliferation, metabolic activity, apoptosis and necrosis, cell cycle distribution and protein expression of Wnt and PI3K/Akt signaling pathways were analyzed at different time points. Results PDA-66 inhibited the proliferation of ALL cells significantly by reduction of metabolic activity. The 72 h IC50 values ranged between 0.41 to 1.28 μM PDA-66. Additionally, caspase activated induction of apoptosis could be detected in the analyzed cell lines. PDA-66 influenced the cell cycle distribution of ALL cell lines differently. While RS4;11 and MOLT4 cells were found to be arrested in G2 phase, SEM cells showed an increased cell cycle in G0/1 phase. Conclusion PDA-66 displays significant antileukemic activity in ALL cells and classifies as candidate for further evaluation as a potential drug in targeted therapy of ALL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Christian Junghanss
- Department of Hematology/Oncology/Palliative Medicine, Division of Medicine, University of Rostock, Ernst-Heydemann-Str, 6, Rostock 18057, Germany.
| |
Collapse
|
43
|
Bean C, Verma NK, Yamamoto DL, Chemello F, Cenni V, Filomena MC, Chen J, Bang ML, Lanfranchi G. Ankrd2 is a modulator of NF-κB-mediated inflammatory responses during muscle differentiation. Cell Death Dis 2014; 5:e1002. [PMID: 24434510 PMCID: PMC4040671 DOI: 10.1038/cddis.2013.525] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 12/29/2022]
Abstract
Adaptive responses of skeletal muscle regulate the nuclear shuttling of the sarcomeric protein Ankrd2 that can transduce different stimuli into specific adaptations by interacting with both structural and regulatory proteins. In a genome-wide expression study on Ankrd2-knockout or -overexpressing primary proliferating or differentiating myoblasts, we found an inverse correlation between Ankrd2 levels and the expression of proinflammatory genes and identified Ankrd2 as a potent repressor of inflammatory responses through direct interaction with the NF-κB repressor subunit p50. In particular, we identified Gsk3β as a novel direct target of the p50/Ankrd2 repressosome dimer and found that the recruitment of p50 by Ankrd2 is dependent on Akt2-mediated phosphorylation of Ankrd2 upon oxidative stress during myogenic differentiation. Surprisingly, the absence of Ankrd2 in slow muscle negatively affected the expression of cytokines and key calcineurin-dependent genes associated with the slow-twitch muscle program. Thus, our findings support a model in which alterations in Ankrd2 protein and phosphorylation levels modulate the balance between physiological and pathological inflammatory responses in muscle.
Collapse
Affiliation(s)
- C Bean
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| | - N K Verma
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| | - D L Yamamoto
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - F Chemello
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| | - V Cenni
- Institute of Molecular Genetics, National Research Council, Bologna Unit/IOR, Bologna, Italy
| | - M C Filomena
- 1] Department of Translational Medicine, University of Milan, Milan, Italy [2] Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - J Chen
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - M L Bang
- 1] Humanitas Clinical and Research Center, Rozzano, Milan, Italy [2] Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - G Lanfranchi
- Department of Biology, Innovative Biotechnologies Interdepartmental Research Center, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Inhibition of glycogen synthase kinase-3β suppresses inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes and collagen-induced arthritis. Joint Bone Spine 2013; 81:240-6. [PMID: 24176738 DOI: 10.1016/j.jbspin.2013.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Glycogen synthase kinase (GSK)-3β, a serine/threonine protein kinase, has been implicated as a regulator of the inflammatory response. This study was performed to evaluate the effect of selective GSK-3β inhibitors in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and collagen-induced arthritis (CIA). METHOD FLS from RA patients were treated with selective GSK-3β inhibitors, including lithium chloride, 6-bromoindirubin-3'-oxime (BIO), or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). The effects of GSK-3β inhibition on pro-inflammatory mediators were determined by real-time PCR and ELISA. The levels of NF-κB, phosphorylated JNK, c-jun, ATF-2 and p-38 proteins were evaluated by western blot analysis. The in vivo effects of GSK-3β inhibitors were examined in mice with CIA. RESULTS Treatment of RA FLS with GSK-3β inhibitors induced dose-dependent reductions in gene expression and the production of pro-inflammatory mediators. The levels of NF-κB, phosphorylated JNK, c-jun, ATF-2 and p-38 were decreased following treatment with GSK-3β inhibitors. GSK-3β inhibitors treatment attenuated clinical and histological severities of CIA in mice. Infiltration of T-cells, macrophages, and tartrate-resistant acid phosphatase positive cells was decreased in joint sections of CIA mice by GSK-3β inhibitors treatment. Serum levels of IL-1β, IL-6, TNF-α and IFN-γ in CIA mice were also significantly decreased in dose-dependent manners by treatment with GSK-3β inhibitors. CONCLUSION Treatment with GSK-3β inhibitors suppressed inflammatory responses in RA FLS and CIA mice. These findings suggest that the inhibition of GSK-3β can be used as an effective therapeutic agent for RA.
Collapse
|
45
|
Lee KH, Jeong J, Yoo CG. Long-term incubation with proteasome inhibitors (PIs) induces IκBα degradation via the lysosomal pathway in an IκB kinase (IKK)-dependent and IKK-independent manner. J Biol Chem 2013; 288:32777-32786. [PMID: 24085292 DOI: 10.1074/jbc.m113.480921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome inhibitors (PIs) have been reported to induce apoptosis in many types of tumor. Their apoptotic activities have been suggested to be associated with the up-regulation of molecules implicated in pro-apoptotic cascades such as p53, p21(Waf1), and p27(Kip1). Moreover, the blocking of NF-κB nuclear translocation via the stabilization of IκB is an important mechanism of PI-induced apoptosis. However, we found that long-term incubation with PIs (PS-341 or MG132) increased NF-κB-regulated gene expression such as COX-2, cIAP2, XIAP, and IL-8 in a dose- and time-dependent manner, which was mediated by phosphorylation of IκBα and its subsequent degradation via the alternative route, lysosome. Overexpression of the IκBα superrepressor (IκBα-SR) blocked PI-induced NF-κB activation. Treatment with lysosomal inhibitors (ammonium chloride or chloroquine) or inhibitors of cathepsins (Z-FF-FMK or Z-FA-FMK) or knock-down of LC3B expression by siRNAs suppressed PI-induced IκBα degradation. Furthermore, we found that both IKK-dependent and IKK-independent pathways were required for PI-induced IκBα degradation. Pretreatment with IKKβ specific inhibitor, SC-514, partially suppressed IκBα degradation and IL-8 production by PIs. Blockade of IKK activity using insolubilization by heat shock (HS) and knock-down by siRNAs for IKKβ only delayed IκBα degradation up to 8 h after treatment with PIs. In addition, PIs induced Akt-dependent inactivation of GSK-3β. Inactive GSK-3β accelerated PI-induced IκBα degradation. Overexpression of active GSK-3β (S9A) or knock-down of GSK-3β delayed PI-induced IκBα degradation. Collectively, our data demonstrate that long-term incubation with PIs activates NF-κB, which is mediated by IκBα degradation via the lysosome in an IKK-dependent and IKK-independent manner.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jiyeong Jeong
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Chul-Gyu Yoo
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea.
| |
Collapse
|
46
|
Koriyama Y, Nakayama Y, Matsugo S, Sugitani K, Ogai K, Takadera T, Kato S. Anti-inflammatory effects of lipoic acid through inhibition of GSK-3β in lipopolysaccharide-induced BV-2 microglial cells. Neurosci Res 2013; 77:87-96. [PMID: 23892131 DOI: 10.1016/j.neures.2013.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 12/28/2022]
Abstract
Activated microglial cells play an important role in immune and inflammatory responses in CNS and play a role in neurodegenerative diseases. We examined the effects of lipoic acid (LA) on inflammatory responses of BV-2 microglial cells activated by lipopolysaccharide (LPS), and explored the underlying mechanisms of action of LA. BV-2 cells treated with LPS showed an up-regulation of mRNA of the pro-inflammatory molecules, inducible nitric oxide synthase (iNOS). LA suppressed the expression of iNOS and furthermore, LPS-induced production of nitrite. Moreover, LA suppressed the nuclear translocation of RelA, a component of nuclear factor-kappa B (NF-κB) that contains transcriptional activator domain for LPS. The mechanisms of LA-mediated anti-inflammatory effects on microglia remain unknown, and we suggested an involvement of Akt/glycogen synthase kinase-3β (GSK-3β) phosphorylation. The results showed that inhibitor of phosphatidylinositol 3-kinase prevented LA-mediated suppression of LPS induction of RelA and expression of iNOS. Furthermore, these inflammatory actions were prevented by GSK-3β inhibitors. These data demonstrate a role for LA as a chemical modulator of inflammatory responses by microglia, and thus may be a therapeutic strategy for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kumar V, Sharma A. Innate Immunity in Sepsis Pathogenesis and Its Modulation: New Immunomodulatory Targets Revealed. J Chemother 2013; 20:672-83. [DOI: 10.1179/joc.2008.20.6.672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Inhibition of glycogen synthase kinase-3β by lithium chloride suppresses 6-hydroxydopamine-induced inflammatory response in primary cultured astrocytes. Neurochem Int 2013; 63:345-53. [PMID: 23871716 DOI: 10.1016/j.neuint.2013.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/29/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022]
Abstract
An increasing amount of evidence has emerged to suggest that neuroinflammatory process is involved in the pathogenesis of Parkinson's disease (PD). Activated microglia and astrocytes are found in the substantia nigra (SN) of Parkinson's disease brains as well as in animal models of Parkinson's disease. Although reactive astrocytes are involved in the progression of PD, the role of reactive astrocytes in neuroinflammation of PD has received limited attention to date. Recently, Glycogen synthase kinase-3β (GSK-3β) was identified as a crucial regulator of the inflammatory response. The purpose of this study was to explore the mechanism by which 6-hydroxydopamine (6-OHDA) induces inflammatory response in astrocytes and observe the anti-inflammatory effect of lithium chloride (LiCl) on 6-OHDA-treated astrocytes. In the present study, we found that glial fibrillary acidic protein (GFAP) was markedly upregulated in the presence of 6-OHDA. Moreover, our results revealed that proinflammatory molecules including inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase-2(COX-2), prostaglandins E2 (PGE2), and tumor necrosis factor-α (TNF-α) were obviously increased in astrocytes exposed to 6-OHDA. Western blot analysis revealed that 6-OHDA significantly increased dephosphorylation/activation of GSK-3β as well as the nuclear translocation of nuclear factor-κB (NF-κB) p65. Besides, GSK-3β inhibitor LiCl and SB415286 inhibited the GSK-3β/NF-κB signaling pathway, leading to the reduction of proinflammatory molecules in 6-OHDA-activated astrocytes. These results confirmed that GSK-3β inhibitor LiCl and SB415286 provide protection against neuroinflammation in 6-OHDA-treated astrocytes. Therefore, GSK-3β may be a potential therapeutic target for the treatment of PD.
Collapse
|
49
|
Baril M, Es-Saad S, Chatel-Chaix L, Fink K, Pham T, Raymond VA, Audette K, Guenier AS, Duchaine J, Servant M, Bilodeau M, Cohen É, Grandvaux N, Lamarre D. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses. PLoS Pathog 2013; 9:e1003416. [PMID: 23785285 PMCID: PMC3681753 DOI: 10.1371/journal.ppat.1003416] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/26/2013] [Indexed: 12/24/2022] Open
Abstract
To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.
Collapse
Affiliation(s)
- Martin Baril
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Salwa Es-Saad
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Laurent Chatel-Chaix
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Karin Fink
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
| | - Tram Pham
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Valérie-Ann Raymond
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
| | - Karine Audette
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Anne-Sophie Guenier
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Jean Duchaine
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Marc Servant
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | - Marc Bilodeau
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Éric Cohen
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
50
|
Lee KH, Yoo CG. Simultaneous inactivation of GSK-3β suppresses quercetin-induced apoptosis by inhibiting the JNK pathway. Am J Physiol Lung Cell Mol Physiol 2013; 304:L782-9. [DOI: 10.1152/ajplung.00348.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quercetin, a ubiquitous bioactive plant flavonoid, has shown to exert a broad range of activities, such as apoptotic, antioxidant, and anti-inflammatory effects. Thus, flavonoids can mediate both cell protection and cell injury. Recently, quercetin has been reported to prevent the progression of emphysema in animal models through antioxidant and anti-inflammatory actions. These findings suggest that quercetin could be a potential treatment option for chronic obstructive pulmonary disease. Its clinical application, however, could be limited by the cytotoxicity of quercetin, and understanding of the apoptotic mechanisms of quercetin is a prerequisite to develop a therapeutic strategy with minimal cytotoxicity. We evaluated the apoptotic effect of quercetin and its molecular mechanisms in normal bronchial epithelial cells (BEAS-2B cells). Quercetin decreased the viability of BEAS-2B cells via apoptosis in a dose- and time-dependent manner. Quercetin activated JNK and increased the expression levels of c-Jun and p53-dependent Bax. Blockade of JNK activation by overexpression of dominant negative JNK1 suppressed apoptosis by quercetin via inhibition of caspase-3 activation and reduction of p53 and Bax expression. Simultaneously, quercetin inactivated glycogen synthase kinase (GSK)-3β, which is phosphatidylinositol 3-kinase/Akt dependent. Overexpression of a constitutively active GSK-3β mutant enhanced quercetin-induced JNK activation. In contrast, overexpression of enzymatically inert GSK-3β inhibited JNK activation, resulting in a suppression of apoptosis by quercetin. Taken together, the JNK-p53 pathway is involved in quercetin-induced apoptosis, and simultaneous inactivation of GSK-3β can attenuate apoptosis in normal bronchial epithelial cells.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; and Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; and Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|