1
|
Rätze MAK, Enserink LNFL, Ishiyama N, van Kempen S, Veltman CHJ, Nijman IJ, Haakma WE, Caldas C, Bernards R, van Diest PJ, Christgen M, Koorman T, Derksen PWB. Afadin loss induces breast cancer metastasis through destabilisation of E-cadherin to F-actin linkage. J Pathol 2025; 266:26-39. [PMID: 40026293 PMCID: PMC11985701 DOI: 10.1002/path.6394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Afadin is a multimodal scaffolding protein with essential functions in cell-cell adhesion. Although its loss of expression has been linked to breast cancer invasion and metastasis, the underlying mechanisms driving tumour progression upon mutational Afadin (AFDN) loss in breast cancers remains unclear. In the current study we identified a somatic frameshift AFDN mutation (p.Lys630fs) in an invasive breast cancer sample that coincides with loss of Afadin protein expression. Functional studies in E-cadherin-expressing breast cancer cells show that Afadin loss leads to immature and aberrant adherens junction (AJ) formation. The lack of AJ maturation results in a noncohesive cellular phenotype accompanied by Actomyosin-dependent anoikis resistance, which are classical progression hallmarks of single-cell breast cancer invasion. Reconstitution experiments using Afadin truncates show that proper F-actin organisation and epithelial cell-cell adhesion critically depend on the Coiled-Coil domain of Afadin but not on the designated C-terminal F-actin binding domain. Mouse xenograft experiments based on cell lines and primary patient-derived breast cancer organoids demonstrate that Afadin loss induces single-cell lobular-type invasion phenotypes and overt dissemination to the lungs and the peritoneum. In short, Afadin is a metastasis suppressor for breast cancer through stabilisation and maturation of a mechanical E-cadherin to F-actin outside-in link. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Max AK Rätze
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Lotte NFL Enserink
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Sven van Kempen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Isaac J Nijman
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Wisse E Haakma
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of OncologyUniversity of CambridgeCambridgeUK
| | - René Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics CentreThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Thijs Koorman
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lechuga S, Marino-Melendez A, Davis A, Zalavadia A, Khan A, Longworth MS, Ivanov AI. Coactosin-like protein 1 regulates integrity and repair of model intestinal epithelial barriers via actin binding dependent and independent mechanisms. Front Cell Dev Biol 2024; 12:1405454. [PMID: 39040043 PMCID: PMC11260685 DOI: 10.3389/fcell.2024.1405454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The actin cytoskeleton regulates the integrity and repair of epithelial barriers by mediating the assembly of tight junctions (TJs), and adherens junctions (AJs), and driving epithelial wound healing. Actin filaments undergo a constant turnover guided by numerous actin-binding proteins, however, the roles of actin filament dynamics in regulating intestinal epithelial barrier integrity and repair remain poorly understood. Coactosin-like protein 1 (COTL1) is a member of the ADF/cofilin homology domain protein superfamily that binds and stabilizes actin filaments. COTL1 is essential for neuronal and cancer cell migration, however, its functions in epithelia remain unknown. The goal of this study is to investigate the roles of COTL1 in regulating the structure, permeability, and repair of the epithelial barrier in human intestinal epithelial cells (IEC). COTL1 was found to be enriched at apical junctions in polarized IEC monolayers in vitro. The knockdown of COTL1 in IEC significantly increased paracellular permeability, impaired the steady state TJ and AJ integrity, and attenuated junctional reassembly in a calcium-switch model. Consistently, downregulation of COTL1 expression in Drosophila melanogaster increased gut permeability. Loss of COTL1 attenuated collective IEC migration and decreased cell-matrix attachment. The observed junctional abnormalities in COTL1-depleted IEC were accompanied by the impaired assembly of the cortical actomyosin cytoskeleton. Overexpression of either wild-type COTL1 or its actin-binding deficient mutant tightened the paracellular barrier and activated junction-associated myosin II. Furthermore, the actin-uncoupled COTL1 mutant inhibited epithelial migration and matrix attachment. These findings highlight COTL1 as a novel regulator of the intestinal epithelial barrier integrity and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
4
|
Nguyen TP, Otani T, Tsutsumi M, Kinoshita N, Fujiwara S, Nemoto T, Fujimori T, Furuse M. Tight junction membrane proteins regulate the mechanical resistance of the apical junctional complex. J Cell Biol 2024; 223:e202307104. [PMID: 38517380 PMCID: PMC10959758 DOI: 10.1083/jcb.202307104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.
Collapse
Affiliation(s)
- Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Motosuke Tsutsumi
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Kinoshita
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Sachiko Fujiwara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tomomi Nemoto
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Fokin AI, Boutillon A, James J, Courtois L, Vacher S, Simanov G, Wang Y, Polesskaya A, Bièche I, David NB, Gautreau AM. Inactivating negative regulators of cortical branched actin enhances persistence of single cell migration. J Cell Sci 2024; 137:jcs261332. [PMID: 38059420 DOI: 10.1242/jcs.261332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The Rac1-WAVE-Arp2/3 pathway pushes the plasma membrane by polymerizing branched actin, thereby powering membrane protrusions that mediate cell migration. Here, using knockdown (KD) or knockout (KO), we combine the inactivation of the Arp2/3 inhibitory protein arpin, the Arp2/3 subunit ARPC1A and the WAVE complex subunit CYFIP2, all of which enhance the polymerization of cortical branched actin. Inactivation of the three negative regulators of cortical branched actin increases migration persistence of human breast MCF10A cells and of endodermal cells in the zebrafish embryo, significantly more than any single or double inactivation. In the triple KO cells, but not in triple KD cells, the 'super-migrator' phenotype was associated with a heterogenous downregulation of vimentin (VIM) expression and a lack of coordination in collective behaviors, such as wound healing and acinus morphogenesis. Re-expression of vimentin in triple KO cells largely restored normal persistence of single cell migration, suggesting that vimentin downregulation contributes to the maintenance of the super-migrator phenotype in triple KO cells. Constant excessive production of branched actin at the cell cortex thus commits cells into a motile state through changes in gene expression.
Collapse
Affiliation(s)
- Artem I Fokin
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Arthur Boutillon
- INSERM U1182, CNRS UMR7645, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - John James
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Laura Courtois
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Gleb Simanov
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Yanan Wang
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Anna Polesskaya
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Nicolas B David
- INSERM U1182, CNRS UMR7645, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
6
|
Zhang N, Häring M, Wolf F, Großhans J, Kong D. Dynamics and functions of E-cadherin complexes in epithelial cell and tissue morphogenesis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:585-601. [PMID: 38045551 PMCID: PMC10689684 DOI: 10.1007/s42995-023-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Cell-cell adhesion is at the center of structure and dynamics of epithelial tissue. E-cadherin-catenin complexes mediate Ca2+-dependent trans-homodimerization and constitute the kernel of adherens junctions. Beyond the basic function of cell-cell adhesion, recent progress sheds light the dynamics and interwind interactions of individual E-cadherin-catenin complex with E-cadherin superclusters, contractile actomyosin and mechanics of the cortex and adhesion. The nanoscale architecture of E-cadherin complexes together with cis-interactions and interactions with cortical actomyosin adjust to junctional tension and mechano-transduction by reinforcement or weakening of specific features of the interactions. Although post-translational modifications such as phosphorylation and glycosylation have been implicated, their role for specific aspects of in E-cadherin function has remained unclear. Here, we provide an overview of the E-cadherin complex in epithelial cell and tissue morphogenesis focusing on nanoscale architectures by super-resolution approaches and post-translational modifications from recent, in particular in vivo, studies. Furthermore, we review the computational modelling in E-cadherin complexes and highlight how computational modelling has contributed to a deeper understanding of the E-cadherin complexes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
7
|
Nagendra K, Izzet A, Judd NB, Zakine R, Friedman L, Harrison OJ, Pontani LL, Shapiro L, Honig B, Brujic J. Push-pull mechanics of E-cadherin ectodomains in biomimetic adhesions. Biophys J 2023; 122:3506-3515. [PMID: 37528581 PMCID: PMC10502478 DOI: 10.1016/j.bpj.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
E-cadherin plays a central role in cell-cell adhesion. The ectodomains of wild-type cadherins form a crystalline-like two-dimensional lattice in cell-cell interfaces mediated by both trans (apposed cell) and cis (same cell) interactions. In addition to these extracellular forces, adhesive strength is further regulated by cytosolic phenomena involving α and β catenin-mediated interactions between cadherin and the actin cytoskeleton. Cell-cell adhesion can be further strengthened under tension through mechanisms that have not been definitively characterized in molecular detail. Here we quantitatively determine the role of the cadherin ectodomain in mechanosensing. To this end, we devise an E-cadherin-coated emulsion system, in which droplet surface tension is balanced by protein binding strength to give rise to stable areas of adhesion. To reach the honeycomb/cohesive limit, an initial emulsion compression by centrifugation facilitates E-cadherin trans binding, whereas a high protein surface concentration enables the cis-enhanced stabilization of the interface. We observe an abrupt concentration dependence on recruitment into adhesions of constant crystalline density, reminiscent of a first-order phase transition. Removing the lateral cis interaction with a "cis mutant" shifts this transition to higher surface densities leading to denser, yet weaker adhesions. In both proteins, the stabilization of progressively larger areas of deformation is consistent with single-molecule experiments that show a force-dependent lifetime enhancement in the cadherin ectodomain, which may be attributed to the "X-dimer" bond.
Collapse
Affiliation(s)
- Kartikeya Nagendra
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Molecular Biophysics and Biochemistry Training Program, NYU Grossman School of Medicine, New York, New York
| | - Adrien Izzet
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Nicolas B Judd
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Ruben Zakine
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Leah Friedman
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Département de Physique, École Normale Supérieure, PSL University, Paris, France
| | - Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | - Léa-Laetitia Pontani
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York; Department of Medicine, Division of Nephrology, Columbia University, New York, New York; Department of Systems Biology, Columbia University, New York, New York
| | - Jasna Brujic
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Laboratoire de Physique et Mécanique de Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
8
|
Yu-Kemp HC, Szymanski RA, Cortes DB, Gadda NC, Lillich ML, Maddox AS, Peifer M. Micron-scale supramolecular myosin arrays help mediate cytoskeletal assembly at mature adherens junctions. J Cell Biol 2022; 221:212872. [PMID: 34812842 PMCID: PMC8614156 DOI: 10.1083/jcb.202103074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Epithelial cells assemble specialized actomyosin structures at E-Cadherin–based cell–cell junctions, and the force exerted drives cell shape change during morphogenesis. The mechanisms that build this supramolecular actomyosin structure remain unclear. We used ZO-knockdown MDCK cells, which assemble a robust, polarized, and highly organized actomyosin cytoskeleton at the zonula adherens, combining genetic and pharmacologic approaches with superresolution microscopy to define molecular machines required. To our surprise, inhibiting individual actin assembly pathways (Arp2/3, formins, or Ena/VASP) did not prevent or delay assembly of this polarized actomyosin structure. Instead, as junctions matured, micron-scale supramolecular myosin arrays assembled, with aligned stacks of myosin filaments adjacent to the apical membrane, overlying disorganized actin filaments. This suggested that myosin arrays might bundle actin at mature junctions. Consistent with this idea, inhibiting ROCK or myosin ATPase disrupted myosin localization/organization and prevented actin bundling and polarization. We obtained similar results in Caco-2 cells. These results suggest a novel role for myosin self-assembly, helping drive actin organization to facilitate cell shape change.
Collapse
Affiliation(s)
- Hui-Chia Yu-Kemp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rachel A Szymanski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nicole C Gadda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Madeline L Lillich
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amy S Maddox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
9
|
Cadherin puncta are interdigitated dynamic actin protrusions necessary for stable cadherin adhesion. Proc Natl Acad Sci U S A 2021; 118:2023510118. [PMID: 34099568 DOI: 10.1073/pnas.2023510118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherins harness the actin cytoskeleton to build cohesive sheets of cells using paradoxically weak bonds, but the molecular mechanisms are poorly understood. In one popular model, actin organizes cadherins into large, micrometer-sized clusters known as puncta. Myosin is thought to pull on these puncta to generate strong adhesion. Here, however, we show that cadherin puncta are actually interdigitated actin microspikes generated by actin polymerization mediated by three factors (Arp2/3, EVL, and CRMP-1). The convoluted membranes in these regions give the impression of cadherin clustering by fluorescence microscopy, but the ratio of cadherin to membrane is constant. Nevertheless, these interlocking fingers of membrane are important for adhesion because perturbing their formation disrupts cell adhesion. In contrast, blocking myosin-dependent contractility does not disrupt either the interdigitated microspikes or lateral membrane adhesion. "Puncta" are zones of strong cell-cell adhesion not due to cadherin clustering but that occur because the interdigitated microspikes expand the surface area available for adhesive bond formation and increase the asperity of the cell surface to promote friction between cells.
Collapse
|
10
|
Chánez-Paredes S, Montoya-García A, Castro-Ochoa KF, García-Cordero J, Cedillo-Barrón L, Shibayama M, Nava P, Flemming S, Schlegel N, Gautreau AM, Vargas-Robles H, Mondragón-Flores R, Schnoor M. The Arp2/3 Inhibitory Protein Arpin Is Required for Intestinal Epithelial Barrier Integrity. Front Cell Dev Biol 2021; 9:625719. [PMID: 34012961 PMCID: PMC8128147 DOI: 10.3389/fcell.2021.625719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | - Sven Flemming
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
11
|
Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y, Takeichi M. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol 2021; 219:152072. [PMID: 32886101 PMCID: PMC7659716 DOI: 10.1083/jcb.202006196] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial cells plays crucial roles in various biological processes such as cancer invasion. In migrating epithelial sheets, leader cells form lamellipodia to advance, and follower cells also form similar motile apparatus at cell-cell boundaries, which are called cryptic lamellipodia (c-lamellipodia). Using adenocarcinoma-derived epithelial cells, we investigated how c-lamellipodia form and found that they sporadically grew from around E-cadherin-based adherens junctions (AJs). WAVE and Arp2/3 complexes were localized along the AJs, and silencing them not only interfered with c-lamellipodia formation but also prevented follower cells from trailing the leaders. Disruption of AJs by removing αE-catenin resulted in uncontrolled c-lamellipodia growth, and this was brought about by myosin II activation and the resultant contraction of AJ-associated actomyosin cables. Additional observations indicated that c-lamellipodia tended to grow at mechanically weak sites of the junction. We conclude that AJs not only tie cells together but also support c-lamellipodia formation by recruiting actin regulators, enabling epithelial cells to undergo ordered collective migration.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Sylvain Hiver
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
12
|
Indra I, Troyanovsky RB, Shapiro L, Honig B, Troyanovsky SM. Sensing Actin Dynamics through Adherens Junctions. Cell Rep 2021; 30:2820-2833.e3. [PMID: 32101754 DOI: 10.1016/j.celrep.2020.01.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/23/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
We study punctate adherens junctions (pAJs) to determine how short-lived cadherin clusters and relatively stable actin bundles interact despite differences in dynamics. We show that pAJ-linked bundles consist of two distinct regions-the bundle stalk (AJ-BS) and a tip (AJ-BT) positioned between cadherin clusters and the stalk. The tip differs from the stalk in a number of ways: it is devoid of the actin-bundling protein calponin, and exhibits a much faster F-actin turnover rate. While F-actin in the stalk displays centripetal movement, the F-actin in the tip is immobile. The F-actin turnover in both the tip and stalk is dependent on cadherin cluster stability, which in turn is regulated by F-actin. The close bidirectional coupling between the stability of cadherin and associated F-actin shows how pAJs, and perhaps other AJs, allow cells to sense and coordinate the dynamics of the actin cytoskeleton in neighboring cells-a mechanism we term "dynasensing."
Collapse
Affiliation(s)
- Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00214-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Padmanabhan K, Grobe H, Cohen J, Soffer A, Mahly A, Adir O, Zaidel-Bar R, Luxenburg C. Thymosin β4 is essential for adherens junction stability and epidermal planar cell polarity. Development 2020; 147:dev.193425. [PMID: 33310787 PMCID: PMC7758630 DOI: 10.1242/dev.193425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/27/2020] [Indexed: 01/19/2023]
Abstract
Planar cell polarity (PCP) is essential for tissue morphogenesis and homeostasis; however, the mechanisms that orchestrate the cell shape and packing dynamics required to establish PCP are poorly understood. Here, we identified a major role for the globular (G)-actin-binding protein thymosin-β4 (TMSB4X) in PCP establishment and cell adhesion in the developing epidermis. Depletion of Tmsb4x in mouse embryos hindered eyelid closure and hair-follicle angling owing to PCP defects. Tmsb4x depletion did not preclude epidermal cell adhesion in vivo or in vitro; however, it resulted in abnormal structural organization and stability of adherens junction (AJ) due to defects in filamentous (F)-actin and G-actin distribution. In cultured keratinocytes, TMSB4X depletion increased the perijunctional G/F-actin ratio and decreased G-actin incorporation into junctional actin networks, but it did not change the overall actin expression level or cellular F-actin content. A pharmacological treatment that increased the G/F-actin ratio and decreased actin polymerization mimicked the effects of Tmsb4x depletion on both AJs and PCP. Our results provide insights into the regulation of the actin pool and its involvement in AJ function and PCP establishment. Highlighted Article: By regulating actin pool distribution and incorporation into junctional actin networks, thymosin β4 regulates cell–cell adhesion, planar cell polarity and epidermal morphogenesis.
Collapse
Affiliation(s)
- Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Hanna Grobe
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Adnan Mahly
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR, Espinosa HD, Janmey PA, Green KJ. Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network. J Cell Sci 2020; 133:jcs228031. [PMID: 32179593 PMCID: PMC7097224 DOI: 10.1242/jcs.228031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.
Collapse
Affiliation(s)
- Joshua A Broussard
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Avinash Jaiganesh
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hoda Zarkoob
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen J Green
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
16
|
The Arp2/3 complex and the formin, Diaphanous, are both required to regulate the size of germline ring canals in the developing egg chamber. Dev Biol 2020; 461:75-85. [PMID: 31945342 DOI: 10.1016/j.ydbio.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/30/2023]
Abstract
Intercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and growth of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold growth that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and growth. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and growth throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain stability. Our data suggest that nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.
Collapse
|
17
|
Actin protrusions push at apical junctions to maintain E-cadherin adhesion. Proc Natl Acad Sci U S A 2019; 117:432-438. [PMID: 31871203 DOI: 10.1073/pnas.1908654117] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cadherin-mediated cell-cell adhesion is actin-dependent, but the precise role of actin in maintaining cell-cell adhesion is not fully understood. Actin polymerization-dependent protrusive activity is required to push distally separated cells close enough to initiate contact. Whether protrusive activity is required to maintain adhesion in confluent sheets of epithelial cells is not known. By electron microscopy as well as live cell imaging, we have identified a population of protruding actin microspikes that operate continuously near apical junctions of polarized Madin-Darby canine kidney (MDCK) cells. Live imaging shows that microspikes containing E-cadherin extend into gaps between E-cadherin clusters on neighboring cells, while reformation of cadherin clusters across the cell-cell boundary correlates with microspike withdrawal. We identify Arp2/3, EVL, and CRMP-1 as 3 actin assembly factors necessary for microspike formation. Depleting these factors from cells using RNA interference (RNAi) results in myosin II-dependent unzipping of cadherin adhesive bonds. Therefore, actin polymerization-dependent protrusive activity operates continuously at cadherin cell-cell junctions to keep them shut and to prevent myosin II-dependent contractility from tearing cadherin adhesive contacts apart.
Collapse
|
18
|
Faust JJ, Millis BA, Tyska MJ. Profilin-Mediated Actin Allocation Regulates the Growth of Epithelial Microvilli. Curr Biol 2019; 29:3457-3465.e3. [PMID: 31607529 DOI: 10.1016/j.cub.2019.08.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 01/18/2023]
Abstract
Transporting epithelial cells, like those that line the intestinal tract, are specialized for solute processing and uptake. One defining feature is the brush border, an array of microvilli that serves to amplify apical membrane surface area and increase functional capacity. During differentiation, upon exit from stem-cell-containing crypts, enterocytes build thousands of microvilli, each supported by a parallel bundle of actin filaments several microns in length. Given the high concentration of actin residing in mature brush borders, we sought to determine whether enterocytes were resource (i.e., actin monomer) limited in assembling this domain. To examine this possibility, we inhibited Arp2/3, the ubiquitous branched actin nucleator, to increase G-actin availability during brush border assembly. In native intestinal tissues, Arp2/3 inhibition led to increased microvilli length on the surface of crypt, but not villus, enterocytes. In a cell culture model of brush border assembly, Arp2/3 inhibition accelerated the growth and increased the length of microvilli; it also led to a redistribution of F-actin from cortical lateral networks into the brush border. Effects on brush border growth were rescued by treatment with the G-actin sequestering drug, latrunculin A. G-actin binding protein, profilin-1, colocalized in the terminal web with G-actin, and knockdown of this factor compromised brush border growth in a concentration-dependent manner. Finally, the acceleration in brush border assembly induced by Arp2/3 inhibition was abrogated by profilin-1 knockdown. Thus, brush border assembly is limited by G-actin availability, and profilin-1 directs unallocated actin monomers into microvillar core bundles during enterocyte differentiation.
Collapse
Affiliation(s)
- James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA; Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
20
|
Sulistomo HW, Nemoto T, Yanagita T, Takeya R. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction. J Biol Chem 2018; 294:2924-2934. [PMID: 30573686 DOI: 10.1074/jbc.ra118.005471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
Neural tube closure requires apical constriction during which contraction of the apical F-actin network forces the cell into a wedged shape, facilitating the folding of the neural plate into a tube. However, how F-actin assembly at the apical surface is regulated in mammalian neurulation remains largely unknown. We report here that formin homology 2 domain-containing 3 (Fhod3), a formin protein that mediates F-actin assembly, is essential for cranial neural tube closure in mouse embryos. We found that Fhod3 is expressed in the lateral neural plate but not in the floor region of the closing neural plate at the hindbrain. Consistently, in Fhod3-null embryos, neural plate bending at the midline occurred normally, but lateral plates seemed floppy and failed to flex dorsomedially. Because the apical accumulation of F-actin and constriction were impaired specifically at the lateral plates in Fhod3-null embryos, we concluded that Fhod3-mediated actin assembly contributes to lateral plate-specific apical constriction to advance closure. Intriguingly, Fhod3 expression at the hindbrain was restricted to neuromeric segments called rhombomeres. The rhombomere-specific accumulation of apical F-actin induced by the rhombomere-restricted expression of Fhod3 was responsible for the outward bulging of rhombomeres involving apical constriction along the anteroposterior axis, as rhombomeric bulging was less prominent in Fhod3-null embryos than in the wild type. Fhod3 thus plays a crucial role in the morphological changes associated with neural tube closure at the hindbrain by mediating apical constriction not only in the mediolateral but also in the anteroposterior direction, thereby contributing to tube closure and rhombomere segmentation, respectively.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Takayuki Nemoto
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Toshihiko Yanagita
- the Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Ryu Takeya
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| |
Collapse
|
21
|
Liu X, Liu K, Shan B, Wei S, Li D, Han H, Wei W, Chen J, Liu H, Zhang L. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. J Anim Sci Biotechnol 2018; 9:76. [PMID: 30410752 PMCID: PMC6211446 DOI: 10.1186/s40104-018-0292-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Background Preadipocyte differentiation plays a critical role in subcutaneous fat deposition in pigs. However, the roles of different RNAs, such as messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differentiation process of subcutaneous preadipocytes, are still largely unclear. In the present study, a transcriptome analysis, including the analysis of mRNAs, lncRNAs, and circRNAs, during different differentiation stages, namely, day 0 (D0), day 2 (D2), day 4 (D4), and day 8 (D8), of subcutaneous preadipocytes from Chinese Erhualian pigs was performed. Results A total of 1554, 470, 1344, 1777, and 676 differentially expressed (DE) mRNAs, 112, 58, 95, 136, and 93 DE lncRNAs, and 902, 787, 710, 932, and 850 DE circRNAs were identified between D2 and D0, between D4 and D2, between D8 and D4, between D4 and D0, and between D8 and D0, respectively. Furthermore, functional enrichment analysis showed that the common DE mRNAs during the entire differentiation process were mainly involved in lipid metabolic and cell differentiation processes. Additionally, co-expression network analysis identified the potential lncRNAs related to adipogenesis, e.g., MSTRG.131380 and MSTRG.62128. Conclusions Our study provides new insights of the expression changes of RNAs during adipogenic differentiation, which might contribute to the phenotype of subcutaneous adipogenesis. These results greatly improve our understanding of the molecular mechanisms regulating subcutaneous fat deposition in pigs. Electronic supplementary material The online version of this article (10.1186/s40104-018-0292-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Liu
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaiqing Liu
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Baosen Shan
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengjuan Wei
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongfeng Li
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haiyin Han
- 2College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038 China
| | - Wei Wei
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jie Chen
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Honglin Liu
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lifan Zhang
- 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
22
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
23
|
Efimova N, Svitkina TM. Branched actin networks push against each other at adherens junctions to maintain cell-cell adhesion. J Cell Biol 2018; 217:1827-1845. [PMID: 29507127 PMCID: PMC5940301 DOI: 10.1083/jcb.201708103] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adherens junctions (AJs) are mechanosensitive cadherin-based intercellular adhesions that interact with the actin cytoskeleton and carry most of the mechanical load at cell-cell junctions. Both Arp2/3 complex-dependent actin polymerization generating pushing force and nonmuscle myosin II (NMII)-dependent contraction producing pulling force are necessary for AJ morphogenesis. Which actin system directly interacts with AJs is unknown. Using platinum replica electron microscopy of endothelial cells, we show that vascular endothelial (VE)-cadherin colocalizes with Arp2/3 complex-positive actin networks at different AJ types and is positioned at the interface between two oppositely oriented branched networks from adjacent cells. In contrast, actin-NMII bundles are located more distally from the VE-cadherin-rich zone. After Arp2/3 complex inhibition, linear AJs split, leaving gaps between cells with detergent-insoluble VE-cadherin transiently associated with the gap edges. After NMII inhibition, VE-cadherin is lost from gap edges. We propose that the actin cytoskeleton at AJs acts as a dynamic push-pull system, wherein pushing forces maintain extracellular VE-cadherin transinteraction and pulling forces stabilize intracellular adhesion complexes.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
24
|
The WAVE Regulatory Complex and Branched F-Actin Counterbalance Contractile Force to Control Cell Shape and Packing in the Drosophila Eye. Dev Cell 2018; 44:471-483.e4. [PMID: 29396116 DOI: 10.1016/j.devcel.2017.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 09/14/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
Contractile forces eliminate cell contacts in many morphogenetic processes. However, mechanisms that balance contractile forces to promote subtler remodeling remain unknown. To address this gap, we investigated remodeling of Drosophila eye lattice cells (LCs), which preserve cell contacts as they narrow to form the edges of a multicellular hexagonal lattice. We found that during narrowing, LC-LC contacts dynamically constrict and expand. Similar to other systems, actomyosin-based contractile forces promote pulses of constriction. Conversely, we found that WAVE-dependent branched F-actin accumulates at LC-LC contacts during expansion and functions to expand the cell apical area, promote shape changes, and prevent elimination of LC-LC contacts. Finally, we found that small Rho GTPases regulate the balance of contractile and protrusive dynamics. These data suggest a mechanism by which WAVE regulatory complex-based F-actin dynamics antagonize contractile forces to regulate cell shape and tissue topology during remodeling and thus contribute to the robustness and precision of the process.
Collapse
|
25
|
Logan CM, Bowen CJ, Menko AS. Functional role for stable microtubules in lens fiber cell elongation. Exp Cell Res 2017; 362:477-488. [PMID: 29253534 DOI: 10.1016/j.yexcr.2017.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
The process of tissue morphogenesis, especially for tissues reliant on the establishment of a specific cytoarchitecture for their functionality, depends a balanced interplay between cytoskeletal elements and their interactions with cell adhesion molecules. The microtubule cytoskeleton, which has many roles in the cell, is a determinant of directional cell migration, a process that underlies many aspects of development. We investigated the role of microtubules in development of the lens, a tissue where cell elongation underlies morphogenesis. Our studies with the microtubule depolymerizing agent nocodazole revealed an essential function for the acetylated population of stable microtubules in the elongation of lens fiber cells, which was linked to their regulation of the activation state of myosin. Suppressing myosin activation with the inhibitor blebbistatin could attenuate the loss of acetylated microtubules by nocodazole and rescue the effect of this microtubule depolymerization agent on both fiber cell elongation and lens integrity. Our results also suggest that acetylated microtubules impact lens morphogenesis through their interaction with N-cadherin junctions, with which they specifically associate in the region where lens fiber cell elongate. Disruption of the stable microtubule network increased N-cadherin junctional organization along lateral borders of differentiating lens fiber cells, which was prevented by suppression of myosin activity. These results reveal a role for the stable microtubule population in lens fiber cell elongation, acting in tandem with N-cadherin cell-cell junctions and the actomyosin network, giving insight into the cooperative role these systems play in tissue morphogenesis.
Collapse
Affiliation(s)
- Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Caitlin J Bowen
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
26
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
27
|
Yonemura S. Actin filament association at adherens junctions. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 64:14-19. [PMID: 28373611 DOI: 10.2152/jmi.64.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The adherens junction (AJ) is a cadherin-based and actin filament associated cell-to-cell junction. AJs can contribute to tissue morphogenesis and homeostasis and their association with actin filaments is crucial for the functions. There are three types of AJs in terms of the mode of actin filament/AJ association. Among many actin-binding proteins associated with AJs, α-catenin is one of the most important actin filament/AJ linkers that functions in all types of AJs. Although α-catenin in cadherin-catenin complex appears to bind to actin filaments within cells, it fails to bind to actin filaments in vitro mysteriously. Recent report revealed that α-catenin in the complex can bind to actin filaments in vitro when forces are applied to the filament. In addition to force-sensitive vinculin binding, α-catenin has another force-sensitive property of actin filament-binding. Elucidation of its significance and the molecular mechanism is indispensable for understanding AJ formation and maintenance during tissue morphogenesis, function and repair. J. Med. Invest. 64: 14-19, February, 2017.
Collapse
Affiliation(s)
- Shigenobu Yonemura
- Department of Cell Biology, Tokushima University Graduate School of Medical Science, Ultrastructural Research Team, RIKEN Center for Life Science Technologies
| |
Collapse
|
28
|
Gloushankova NA, Rubtsova SN, Zhitnyak IY. Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers 2017; 5:e1356900. [PMID: 28783415 DOI: 10.1080/21688370.2017.1356900] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adherens junctions (AJs) are molecular complexes that mediate cell-cell adhesive interactions and play pivotal roles in maintenance of tissue organization in adult organisms and at various stages of development. AJs consist of cadherin adhesion receptors, providing homophilic ligation with cadherins on adjacent cells, and members of the catenin protein family: p120, β- and α-catenin. α-catenin's linkage with the actin cytoskeleton defines the linear or punctate organization of AJs in different cell types. Myosin II-dependent tension drives vinculin recruitment by α-catenin and stabilizes the linkage of the cadherin/catenin complex to F-actin. Neoplastic transformation leads to prominent changes in the organization, regulation and stability of AJs. Epithelial-mesenchymal transition (EMT) whereby epithelial cells lose stable cell-cell adhesion, and reorganize their cytoskeleton to acquire migratory activity, plays the central role in cancer cell invasion and metastasis. Recent data demonstrated that a partial EMT resulting in a hybrid epithelial/mesenchymal phenotype with retention of E-cadherin is essential for cancer cell dissemination. E-cadherin and E-cadherin-based AJs are required for collective invasion and migration, survival in circulation, and metastatic outgrowth.
Collapse
Affiliation(s)
- Natalya A Gloushankova
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Svetlana N Rubtsova
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Irina Y Zhitnyak
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| |
Collapse
|
29
|
Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 2017; 9:9/7/a023234. [PMID: 28679638 DOI: 10.1101/cshperspect.a023234] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites.
Collapse
Affiliation(s)
- Alexia I Bachir
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - Alan Rick Horwitz
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - W James Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Julie M Bianchini
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
30
|
Yu-Kemp HC, Kemp JP, Brieher WM. CRMP-1 enhances EVL-mediated actin elongation to build lamellipodia and the actin cortex. J Cell Biol 2017. [PMID: 28630144 PMCID: PMC5551698 DOI: 10.1083/jcb.201606084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CRMP proteins regulate the cytoskeleton, but the underlying mechanisms are poorly understood. Yu-Kemp et al. show that CRMP-1 helps Ena/VASP proteins elongate actin filaments to assemble actin networks that are necessary for the integrity of epithelial sheets. Cells can control actin polymerization by nucleating new filaments or elongating existing ones. We recently identified CRMP-1 as a factor that stimulates the formation of Listeria monocytogenes actin comet tails, thereby implicating it in actin assembly. We now show that CRMP-1 is a major contributor to actin assembly in epithelial cells, where it works with the Ena/VASP family member EVL to assemble the actin cytoskeleton in the apical cortex and in protruding lamellipodia. CRMP-1 and EVL bind to one another and together accelerate actin filament barbed-end elongation. CRMP-1 also stimulates actin assembly in the presence of VASP and Mena in vitro, but CRMP-1–dependent actin assembly in MDCK cells is EVL specific. Our results identify CRMP-1 as a novel regulator of actin filament elongation and reveal a surprisingly important role for CRMP-1, EVL, and actin polymerization in maintaining the structural integrity of epithelial sheets.
Collapse
Affiliation(s)
- Hui-Chia Yu-Kemp
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - James P Kemp
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
31
|
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells. Invest Ophthalmol Vis Sci 2017; 57:4084-99. [PMID: 27537257 PMCID: PMC4986768 DOI: 10.1167/iovs.16-19949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Roberta B Nowak
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Velia M Fowler
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
32
|
Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: Partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; 358:20-30. [PMID: 28363828 DOI: 10.1016/j.yexcr.2017.03.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/11/2023]
Abstract
Epithelial tissues are defined by polarized epithelial cells that are integrated into tissues and exhibit barrier function in order to regulate what is allowed to pass between cells. Cell-cell junctions must be stable enough to promote barrier function and tissue integrity, yet plastic enough to remodel when necessary. This remarkable ability to dynamically sense and respond to changes in cell shape and tissue tension allows cell-cell junctions to remain functional during events that disrupt epithelial homeostasis including morphogenesis, wound healing, and cell division. In order to achieve this plasticity, both tight junctions and adherens junctions are coupled to the underlying actomyosin cytoskeleton. Here, we discuss the importance of the junctional linkage to actomyosin and how a localized zone of active RhoA along with other Rho GTPases work together to orchestrate junctional actomyosin dynamics. We focus on how scaffold proteins help coordinate Rho GTPases, their upstream regulators, and their downstream effectors for efficient, localized Rho GTPase signaling output. Additionally, we highlight important roles junctional actin-binding proteins play in addition to their traditional roles in organizing actin. Together, Rho GTPases, their regulators, and effectors form compartmentalized signaling modules that regulate actomyosin structure and contractility to achieve proper cell-cell adhesion and tissue barriers.
Collapse
Affiliation(s)
- Torey R Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
33
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
35
|
Nishimura T, Ito S, Saito H, Hiver S, Shigetomi K, Ikenouchi J, Takeichi M. DAAM1 stabilizes epithelial junctions by restraining WAVE complex-dependent lateral membrane motility. J Cell Biol 2016; 215:559-573. [PMID: 27807130 PMCID: PMC5119936 DOI: 10.1083/jcb.201603107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/13/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Nishimura et al. show that DAAM1, a formin family actin polymerization regulator, stabilizes epithelial cell junctions by counteracting the WAVE complex, another actin regulator. Loss of DAAM1 promotes the motility of junctional membranes and thereby enhances their invasion of neighboring environments. Epithelial junctions comprise two subdomains, the apical junctional complex (AJC) and the adjacent lateral membrane contacts (LCs), that span the majority of the junction. The AJC is lined with circumferential actin cables, whereas the LCs are associated with less-organized actin filaments whose roles are elusive. We found that DAAM1, a formin family actin regulator, accumulated at the LCs, and its depletion caused dispersion of actin filaments at these sites while hardly affecting circumferential actin cables. DAAM1 loss enhanced the motility of LC-forming membranes, leading to their invasion of neighboring cell layers, as well as disruption of polarized epithelial layers. We found that components of the WAVE complex and its downstream targets were required for the elevation of LC motility caused by DAAM1 loss. These findings suggest that the LC membranes are motile by nature because of the WAVE complex, but DAAM1-mediated actin regulation normally restrains this motility, thereby stabilizing epithelial architecture, and that DAAM1 loss evokes invasive abilities of epithelial cells.
Collapse
Affiliation(s)
- Tamako Nishimura
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Shoko Ito
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroko Saito
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Sylvain Hiver
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | | |
Collapse
|
36
|
Firmino J, Rocancourt D, Saadaoui M, Moreau C, Gros J. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick. Dev Cell 2016; 36:249-61. [PMID: 26859350 DOI: 10.1016/j.devcel.2016.01.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/19/2015] [Accepted: 01/09/2016] [Indexed: 12/25/2022]
Abstract
During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.
Collapse
Affiliation(s)
- Joao Firmino
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Didier Rocancourt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Mehdi Saadaoui
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France
| | - Chloe Moreau
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France; University Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS URA2578, rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
37
|
Rao MV, Zaidel-Bar R. Formin-mediated actin polymerization at cell-cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair. Mol Biol Cell 2016; 27:2844-56. [PMID: 27440924 PMCID: PMC5025271 DOI: 10.1091/mbc.e16-06-0429] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/12/2016] [Indexed: 02/05/2023] Open
Abstract
Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. Fmnl3 and mDia1 cooperate in stabilizing E-cadherin at cell–cell junctions and facilitate strong cell adhesion and monolayer cohesion during collective cell migration. Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.
Collapse
Affiliation(s)
- Megha Vaman Rao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
38
|
Lee NK, Fok KW, White A, Wilson NH, O'Leary CJ, Cox HL, Michael M, Yap AS, Cooper HM. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat Commun 2016; 7:11082. [PMID: 27029596 PMCID: PMC4821876 DOI: 10.1038/ncomms11082] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023] Open
Abstract
To maintain tissue integrity during epithelial morphogenesis, adherens junctions (AJs) must resist the mechanical stresses exerted by dynamic tissue movements. Junctional stability is dependent on actomyosin contractility within the actin ring. Here we describe a novel function for the axon guidance receptor, Neogenin, as a key component of the actin nucleation machinery governing junctional stability. Loss of Neogenin perturbs AJs and attenuates junctional tension. Neogenin promotes actin nucleation at AJs by recruiting the Wave regulatory complex (WRC) and Arp2/3. A direct interaction between the Neogenin WIRS domain and the WRC is crucial for the spatially restricted recruitment of the WRC to the junction. Thus, we provide the first example of a functional WIRS–WRC interaction in epithelia. We further show that Neogenin regulates cadherin recycling at the AJ. In summary, we identify Neogenin as a pivotal component of the AJ, where it influences both cadherin dynamics and junctional tension. The stability of epithelial adherens junctions depends on tension generated by actomyosin contractility. Here Lee et al. describe a novel role for the axon guidance receptor Neogenin in maintaining junctional stability by recruiting actin nucleation machinery to adherens junctions.
Collapse
Affiliation(s)
- Natalie K Lee
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ka Wai Fok
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda White
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole H Wilson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Conor J O'Leary
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hayley L Cox
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Magdalene Michael
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
39
|
Skau CT, Waterman CM. Specification of Architecture and Function of Actin Structures by Actin Nucleation Factors. Annu Rev Biophys 2016; 44:285-310. [PMID: 26098516 DOI: 10.1146/annurev-biophys-060414-034308] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The actin cytoskeleton is essential for diverse processes in mammalian cells; these processes range from establishing cell polarity to powering cell migration to driving cytokinesis to positioning intracellular organelles. How these many functions are carried out in a spatiotemporally regulated manner in a single cytoplasm has been the subject of much study in the cytoskeleton field. Recent work has identified a host of actin nucleation factors that can build architecturally diverse actin structures. The biochemical properties of these factors, coupled with their cellular location, likely define the functional properties of actin structures. In this article, we describe how recent advances in cell biology and biochemistry have begun to elucidate the role of individual actin nucleation factors in generating distinct cellular structures. We also consider how the localization and orientation of actin nucleation factors, in addition to their kinetic properties, are critical to their ability to build a functional actin cytoskeleton.
Collapse
Affiliation(s)
- Colleen T Skau
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892; ,
| | | |
Collapse
|
40
|
Formins at the Junction. Trends Biochem Sci 2015; 41:148-159. [PMID: 26732401 DOI: 10.1016/j.tibs.2015.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
The actin cytoskeleton and adhesion junctions are physically and functionally coupled at the cell-cell interface between epithelial cells. The actin regulatory complex Arp2/3 has an established role in the turnover of junctional actin; however, the role of formins, the largest group of actin regulators, is less clear. Formins dynamically shape the actin cytoskeleton and have various functions within cells. In this review we describe recent progress on how formins regulate actin dynamics at cell-cell contacts and highlight formin functions during polarized protein traffic necessary for epithelialization.
Collapse
|
41
|
Timmerman I, Heemskerk N, Kroon J, Schaefer A, van Rijssel J, Hoogenboezem M, van Unen J, Goedhart J, Gadella TWJ, Yin T, Wu Y, Huveneers S, van Buul JD. A local VE-cadherin and Trio-based signaling complex stabilizes endothelial junctions through Rac1. J Cell Sci 2015; 128:3041-54. [PMID: 26116572 DOI: 10.1242/jcs.168674] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023] Open
Abstract
Endothelial cell-cell junctions maintain a restrictive barrier that is tightly regulated to allow dynamic responses to permeability-inducing angiogenic factors, as well as to inflammatory agents and adherent leukocytes. The ability of these stimuli to transiently remodel adherens junctions depends on Rho-GTPase-controlled cytoskeletal rearrangements. How the activity of Rho-GTPases is spatio-temporally controlled at endothelial adherens junctions by guanine-nucleotide exchange factors (GEFs) is incompletely understood. Here, we identify a crucial role for the Rho-GEF Trio in stabilizing junctions based around vascular endothelial (VE)-cadherin (also known as CDH5). Trio interacts with VE-cadherin and locally activates Rac1 at adherens junctions during the formation of nascent contacts, as assessed using a novel FRET-based Rac1 biosensor and biochemical assays. The Rac-GEF domain of Trio is responsible for the remodeling of junctional actin from radial into cortical actin bundles, a crucial step for junction stabilization. This promotes the formation of linear adherens junctions and increases endothelial monolayer resistance. Collectively, our data show the importance of spatio-temporal regulation of the actin cytoskeleton through Trio and Rac1 at VE-cadherin-based cell-cell junctions in the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Niels Heemskerk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Antje Schaefer
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jakobus van Unen
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Taofei Yin
- Center for Cell Analysis and Modelling, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Yi Wu
- Center for Cell Analysis and Modelling, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephan Huveneers
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
42
|
Zhou K, Sumigray KD, Lechler T. The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Mol Biol Cell 2015; 26:1995-2004. [PMID: 25833710 PMCID: PMC4472011 DOI: 10.1091/mbc.e14-10-1481] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 12/23/2022] Open
Abstract
The Arp2/3 complex has essential functions in the intestinal epithelium. Loss of ArpC3 results in vesicle-trafficking defects that prevent transcytosis of immunoglobulins and efficient absorption of lipids but does not affect levels of cortical F-actin. The Arp2/3 complex is the only known nucleator of branched F-actin filaments. Work in cultured cells has established a wide array of functions for this complex in controlling cell migration, shape, and adhesion. However, loss of Arp2/3 complex function in tissues has yielded cell type–specific phenotypes. Here we report essential functions of the Arp2/3 complex in the intestinal epithelium. The Arp2/3 complex was dispensable for intestinal development, generation of cortical F-actin, and cell polarity. However, it played essential roles in vesicle trafficking. We found that in the absence of ArpC3, enterocytes had defects in the organization of the endolysosomal system. These defects were physiologically relevant, as transcytosis of IgG was disrupted, lipid absorption was perturbed, and neonatal mice died within days of birth. These data highlight the important roles of the Arp2/3 complex in vesicle trafficking in enterocytes and suggest that defects in cytoplasmic F-actin assembly by the Arp2/3 complex, rather than cortical pools, underlie many of the phenotypes seen in the mutant small intestine.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Kaelyn D Sumigray
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
43
|
Caldwell BJ, Lucas C, Kee AJ, Gaus K, Gunning PW, Hardeman EC, Yap AS, Gomez GA. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken) 2015; 71:663-76. [PMID: 25545457 DOI: 10.1002/cm.21202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023]
Abstract
Epithelial cells generate contractile forces at their cell-cell contacts. These are concentrated at the specialized apical junction of the zonula adherens (ZA), where a ring of stabilized E-cadherin lies adjacent to prominent actomyosin bundles. Coupling of adhesion and actomyosin contractility yields tension in the junction. The biogenesis of junctional contractility requires actin assembly at the ZA as well as the recruitment of nonmuscle myosin II, but the molecular regulators of these processes are not yet fully understood. We now report a role for tropomyosins 5NM1 (Tm5NM1) and 5NM2 (Tm5NM2) in their generation. Both these tropomyosin isoforms were found at the ZA and their depletion by RNAi or pharmacological inhibition reduced both F-actin and myosin II content at the junction. Photoactivation analysis revealed that the loss of F-actin was attributable to a decrease in filament stability. These changes were accompanied by a decrease in E-cadherin content at junctions. Ultimately, both long-term depletion of Tm5NM1/2 and acute inhibition with drugs caused junctional tension to be reduced. Thus these tropomyosin isoforms are novel contributors to junctional contractility and integrity.
Collapse
Affiliation(s)
- Benjamin J Caldwell
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
An exciting frontier in biology is understanding the functions of basic cell biological machinery in complex tissues. This approach is expected to uncover novel modes of regulation as well as reveal how core machinery is repurposed by different tissues to accomplish different physiological outputs. F-actin plays roles in cell shape, adhesion, migration and signaling – diverse functions that require a specific organization established by a myriad of regulators. Here, we discuss the role of the actin nucleating Arp2/3 complex and the unexpected roles that it plays in a stratified epithelial tissue, the epidermis. While many expected phenotypes such as defects in architecture and cell adhesion were lacking, loss of the Arp2/3 complex activity resulted in epidermal barrier and differentiation defects. This teaches us that, while informative, cell culture approaches are limiting and that studies of the Arp2/3 complex in diverse tissues are expected to yield many more surprises.
Collapse
Affiliation(s)
- Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University ; Durham, NC USA
| |
Collapse
|
45
|
Leerberg JM, Gomez GA, Verma S, Moussa EJ, Wu SK, Priya R, Hoffman BD, Grashoff C, Schwartz MA, Yap AS. Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Curr Biol 2014; 24:1689-99. [PMID: 25065757 DOI: 10.1016/j.cub.2014.06.028] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Actomyosin-based contractility acts on cadherin junctions to support tissue integrity and morphogenesis. The actomyosin apparatus of the epithelial zonula adherens (ZA) is built by coordinating junctional actin assembly with Myosin II activation. However, the physical interaction between Myosin and actin filaments that is necessary for contractility can induce actin filament turnover, potentially compromising the contractile apparatus itself. RESULTS We now identify tension-sensitive actin assembly as one cellular solution to this design paradox. We show that junctional actin assembly is maintained by contractility in established junctions and increases when contractility is stimulated. The underlying mechanism entails the tension-sensitive recruitment of vinculin to the ZA. Vinculin, in turn, directly recruits Mena/VASP proteins to support junctional actin assembly. By combining strategies that uncouple Mena/VASP from vinculin or ectopically target Mena/VASP to junctions, we show that tension-sensitive actin assembly is necessary for junctional integrity and effective contractility at the ZA. CONCLUSIONS We conclude that tension-sensitive regulation of actin assembly represents a mechanism for epithelial cells to resolve potential design contradictions that are inherent in the way that the junctional actomyosin system is assembled. This emphasizes that maintenance and regulation of the actin scaffolds themselves influence how cells generate contractile tension.
Collapse
Affiliation(s)
- Joanne M Leerberg
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | - Guillermo A Gomez
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | - Suzie Verma
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | - Elliott J Moussa
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | - Selwin K Wu
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | - Rashmi Priya
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Martin A Schwartz
- Yale Cardiovascular Research Center and Departments of Cardiovascular Medicine, Cell Biology, and Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
46
|
Tang VW, Brieher WM. FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions. ACTA ACUST UNITED AC 2014; 203:815-33. [PMID: 24322428 PMCID: PMC3857477 DOI: 10.1083/jcb.201304143] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By combining in vitro reconstitution biochemistry with a cross-linking approach, we have identified focal segmental glomerulosclerosis 3/CD2-associated protein (FSGS3/CD2AP) as a novel actin barbed-end capping protein responsible for actin stability at the adherens junction. FSGS3/CD2AP colocalizes with E-cadherin and α-actinin-4 at the apical junction in polarized Madin-Darby canine kidney (MDCK) cells. Knockdown of FSGS3/CD2AP compromised actin stability and decreased actin accumulation at the adherens junction. Using a novel apparatus to apply mechanical stress to cell-cell junctions, we showed that knockdown of FSGS3/CD2AP compromised adhesive strength, resulting in tearing between cells and disruption of barrier function. Our results reveal a novel function of FSGS3/CD2AP and a previously unrecognized role of barbed-end capping in junctional actin dynamics. Our study underscores the complexity of actin regulation at cell-cell contacts that involves actin activators, inhibitors, and stabilizers to control adhesive strength, epithelial behavior, and permeability barrier integrity.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61820
| | | |
Collapse
|
47
|
Wu SK, Yap AS. Patterns in space: coordinating adhesion and actomyosin contractility at E-cadherin junctions. ACTA ACUST UNITED AC 2013; 20:201-12. [PMID: 24205985 DOI: 10.3109/15419061.2013.856889] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cadherin adhesion receptors are fundamental determinants of tissue organization in health and disease. Increasingly, we have come to appreciate that classical cadherins exert their biological actions through active cooperation with the contractile actin cytoskeleton. Rather than being passive resistors of detachment forces, cadherins can regulate the assembly and mechanics of the contractile apparatus itself. Moreover, coordinate spatial patterning of adhesion and contractility is emerging as a determinant of morphogenesis. Here we review recent developments in cadherins and actin cytoskeleton cooperativity, by focusing on E-cadherin adhesive patterning in the epithelia. Next, we discuss the underlying principles of cellular rearrangement during Drosophila germband extension and epithelial cell extrusion, as models of how planar and apical-lateral patterns of contractility organize tissue architecture.
Collapse
Affiliation(s)
- Selwin Kaixiang Wu
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Queensland , Australia
| | | |
Collapse
|
48
|
Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation. Proc Natl Acad Sci U S A 2013; 110:E3820-9. [PMID: 24043783 DOI: 10.1073/pnas.1308419110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The epidermis provides an essential seal from the external environment and retains fluids within the body. To form an effective barrier, cells in the epidermis must form tight junctions and terminally differentiate into cornified envelopes. Here, we demonstrate that the branched actin nucleator, the actin-related protein (Arp)2/3 complex, is unexpectedly required for both these activities. Loss of the ArpC3 subunit of the Arp2/3 complex resulted in minimal changes in the morphogenesis and architecture of this stratified squamous epithelium, but resulted in profound defects in its physiology. Mutant embryos did not develop an effective barrier to the external environment and died within hours of birth. We discovered two underlying causes for these effects. First, ArpC3 was essential for robust assembly and function of tight junctions, specialized cell-cell adhesions that restrict water loss in the epidermis. Second, there were defects in differentiation of the epidermis and the production of cornified envelopes, structures essential for barrier activity. Underlying this defect, we found that YAP was inappropriately active not only in the ArpC3 mutant tissue, but also in cultured cells. Inhibition of YAP activity rescued the differentiation and barrier defects caused by loss of ArpC3. These results demonstrate previously unappreciated roles for the Arp2/3 complex and highlight the functions of branched actin networks in a complex tissue.
Collapse
|
49
|
Leerberg JM, Yap AS. Vinculin, cadherin mechanotransduction and homeostasis of cell-cell junctions. PROTOPLASMA 2013; 250:817-829. [PMID: 23274283 DOI: 10.1007/s00709-012-0475-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
Cell adhesion junctions characteristically arise from the cooperative integration of adhesion receptors, cell signalling pathways and the cytoskeleton. This is exemplified by cell-cell interactions mediated by classical cadherin adhesion receptors. These junctions are sites where cadherin adhesion systems functionally couple to the dynamic actin cytoskeleton, a process that entails physical interactions with many actin regulators and regulation by cell signalling pathways. Such integration implies a potential role for molecules that may stand at the interface between adhesion, signalling and the cytoskeleton. One such candidate is the cortical scaffolding protein, vinculin, which is a component of both cell-cell and cell-matrix adhesions. While its contribution to integrin-based adhesions has been extensively studied, less is known about how vinculin contributes to cell-cell adhesions. A major recent advance has come with the realisation that cadherin adhesions are active mechanical structures, where cadherin serves as part of a mechanotransduction pathway by which junctions sense and elicit cellular responses to mechanical stimuli. Vinculin has emerged as an important element in cadherin mechanotransduction, a perspective that illuminates its role in cell-cell interactions. We now review its role as a cortical scaffold and its role in cadherin mechanotransduction.
Collapse
Affiliation(s)
- Joanne M Leerberg
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | | |
Collapse
|
50
|
Morais-de-Sá E, Sunkel C. Adherens junctions determine the apical position of the midbody during follicular epithelial cell division. EMBO Rep 2013; 14:696-703. [PMID: 23774295 DOI: 10.1038/embor.2013.85] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022] Open
Abstract
Cytokinesis is asymmetric along the apical-basal axis of epithelial cells, positioning the midbody near the apical domain. However, little is known about the mechanism and purpose of this asymmetry. We use live imaging of Drosophila follicle cell division to show that asymmetric cytokinesis does not result from intrinsic polarization of the main contractile ring components. We show that adherens junctions (AJs) maintain close contact with the apical side of the contractile ring during cytokinesis. Asymmetric distribution of AJ components within follicle cells and in the otherwise unpolarized S2 cells is sufficient to recruit the midbody, revealing that asymmetric cytokinesis is determined by apical AJs in the epithelia. We further show that ectopic midbody localization induces epithelial invaginations, shifting the position of the apical interface between daughter cells relative to the AB axis of the tissue. Thus, apical midbody localization is essential to maintain epithelial tissue architecture during proliferation.
Collapse
Affiliation(s)
- Eurico Morais-de-Sá
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, Porto P-4150-180, Portugal
| | | |
Collapse
|