1
|
Slater AS, McDonald AG, Hickey RM, Davey GP. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing. Front Mol Biosci 2025; 12:1587602. [PMID: 40370521 PMCID: PMC12074965 DOI: 10.3389/fmolb.2025.1587602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of complex carbohydrates that play crucial roles in infant health, promoting a beneficial gut microbiota, modulating immune responses, and protecting against pathogens. Central to the synthesis of HMOs are glycosyltransferases, a specialized class of enzymes that catalyse the transfer of sugar moieties to form the complex glycan structures characteristic of HMOs. This review provides an in-depth analysis of glycosyltransferases, beginning with their classification based on structural and functional characteristics. The catalytic activity of these enzymes is explored, highlighting the mechanisms by which they facilitate the precise addition of monosaccharides in HMO biosynthesis. Structural insights into glycosyltransferases are also discussed, shedding light on how their conformational features enable specific glycosidic bond formations. This review maps out the key biosynthetic pathways involved in HMO production, including the synthesis of lactose, and subsequent fucosylation and sialylation processes, all of which are intricately regulated by glycosyltransferases. Industrial methods for HMO synthesis, including chemical, enzymatic, and microbial approaches, are examined, emphasizing the role of glycosyltransferases in these processes. Finally, the review discusses future directions in glycosyltransferase research, particularly in enhancing the efficiency of HMO synthesis and developing advanced analytical techniques to better understand the structural complexity and biological functions of HMOs.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Kadooka C, Yakabe S, Hira D, Futagami T, Goto M, Oka T. Functional redundancy and divergence of UDP-glucose 4-epimerases in galactose metabolism and cell wall biosynthesis in Aspergillus nidulans. Fungal Genet Biol 2025; 177:103972. [PMID: 39988081 DOI: 10.1016/j.fgb.2025.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Galactose-containing polysaccharides in the cell walls of filamentous fungi are vital for hyphal formation, mycelial aggregation, and adhesion. Uridine diphosphate (UDP)-glucose 4-epimerase, an enzyme capable of reversibly converting UDP-glucose to UDP-galactose, plays a key role in galactose metabolism. This study investigates the functional specialization and overlapping roles of UDP-glucose 4-epimerases, UgeA and UgeB, in Aspergillus nidulans. Enzyme activity assays revealed that UgeA catalyzes the interconversion of UDP-glucose and UDP-galactose, while UgeB facilitates both UDP-glucose/UDP-galactose and UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine interconversions. Both UgeA and UgeB successfully restored growth in a yeast gal10 disruptant, indicating their involvement in galactose metabolism in vivo. Additionally, the ugeB disruptant of A. nidulans exhibited growth retardation during galactose metabolism, a defect that was alleviated by complementation with ugeB or multiple-copy expression of ugeA. These findings elucidate the complex interplay between sugar metabolism and cell wall synthesis in filamentous fungi and offer insights for the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Shun Yakabe
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
3
|
Umezawa A, Matsumoto M, Handa H, Nakazawa K, Miyagawa M, Seifert GJ, Takahashi D, Fushinobu S, Kotake T. Cytosolic UDP-L-arabinose synthesis by bifunctional UDP-glucose 4-epimerases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:508-524. [PMID: 38678521 DOI: 10.1111/tpj.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.
Collapse
Affiliation(s)
- Akira Umezawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Mayuko Matsumoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Handa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Konatsu Nakazawa
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Megumi Miyagawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Georg J Seifert
- Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Science, Muthgasse 18, A-1190, Vienna, Austria
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
- Green Bioscience Research Center, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
4
|
Nagode A, Vanbeselaere J, Dutkiewicz Z, Kaltenbrunner S, Wilson IBH, Duchêne M. Molecular characterisation of Entamoeba histolytica UDP-glucose 4-epimerase, an enzyme able to provide building blocks for cyst wall formation. PLoS Negl Trop Dis 2023; 17:e0011574. [PMID: 37616327 PMCID: PMC10482301 DOI: 10.1371/journal.pntd.0011574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/06/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023] Open
Abstract
In the human host, the protozoan parasite Entamoeba histolytica is adapted to a non-invasive lifestyle in the colon as well as to an invasive lifestyle in the mesenterial blood vessels and the liver. This means to cope with bacteria and human cells as well as various metabolic challenges. Galactose and N-acetylgalactosamine (GalNAc) are sugars of great importance for the amoebae, they attach to the host mucus and enterocytes via their well-studied Gal/GalNAc specific lectin, they carry galactose residues in their surface glycans, and they cleave GalNAc from host mucins. The enzyme UDP-glucose 4-epimerase (GalE) works as a bridge between the galactose and glucose worlds, it can help to generate glucose for glycolysis from phagocytosis products containing galactose as well as providing UDP-galactose necessary for the biosynthesis of galactose-containing surface components. E. histolytica contains a single galE gene. We recombinantly expressed the enzyme in Escherichia coli and used a spectrophotometric assay to determine its temperature and pH dependency (37°C, pH 8.5), its kinetics for UDP-glucose (Km = 31.82 μM, Vmax = 4.31 U/mg) and substrate spectrum. As observed via RP-HPLC, the enzyme acts on UDP-Glc/Gal as well as UDP-GlcNAc/GalNAc. Previously, Trypanosoma brucei GalE and the bloodstream form of the parasite were shown to be susceptible to the three compounds ebselen, a selenoorganic drug with antioxidant properties, diethylstilbestrol, a mimic of oestrogen with anti-inflammatory properties, and ethacrynic acid, a loop diuretic used to treat oedema. In this study, the three compounds had cytotoxic activity against E. histolytica, but only ebselen inhibited the recombinant GalE with an IC50 of 1.79 μM (UDP-Gal) and 1.2 μM (UDP-GalNAc), suggesting that the two other compounds are active against other targets in the parasite. The importance of the ability of GalE to interconvert UDP-GalNAc and UDP-GlcNAc may be that the trophozoites can generate precursors for their own cyst wall from the sugar subunits cleaved from host mucins. This finding advances our understanding of the biochemical interactions of E. histolytica in its colonic environment.
Collapse
Affiliation(s)
- Anna Nagode
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Samantha Kaltenbrunner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Iain B. H. Wilson
- Department of Chemistry, Universität für Bodenkultur, Vienna, Austria
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: The CDP-Tyvelose 2-Epimerase from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion. Appl Environ Microbiol 2021; 87:AEM.02131-20. [PMID: 33277270 PMCID: PMC7851689 DOI: 10.1128/aem.02131-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Epimerization of sugar nucleotides is central to the structural diversification of monosaccharide building blocks for cellular biosynthesis. Epimerase applicability to carbohydrate synthesis can be limited, however, by the high degree of substrate specificity exhibited by most sugar nucleotide epimerases. Here, we discovered a promiscuous type of CDP-tyvelose 2-epimerase (TyvE)-like enzyme that promotes C2-epimerization in all nucleotide (CDP, UDP, GDP, ADP, TDP)-activated forms of d-glucose. This new epimerase, originating from Thermodesulfatator atlanticus, is a functional homodimer that contains one tightly bound NAD+/subunit and shows optimum activity at 70°C and pH 9.5. The enzyme exhibits a k cat with CDP-dglucose of ∼1.0 min-1 (pH 7.5, 60°C). To characterize the epimerase kinetically and probe its substrate specificity, we developed chemo-enzymatic syntheses for CDP-dmannose, CDP-6-deoxy-dglucose, CDP-3-deoxy-dglucose and CDP-6-deoxy-dxylo-hexopyranos-4-ulose. Attempts to obtain CDP-dparatose and CDP-dtyvelose were not successful. Using high-resolution carbohydrate analytics and in situ NMR to monitor the enzymatic conversions (60°C, pH 7.5), we show that the CDP-dmannose/CDP-dglucose ratio at equilibrium is 0.67 (± 0.1), determined from the kinetic Haldane relationship and directly from the reaction. We further show that deoxygenation at sugar C6 enhances the enzyme activity 5-fold compared to CDP-dglucose whereas deoxygenation at C3 renders the substrate inactive. Phylogenetic analysis places the T. atlanticus epimerase into a distinct subgroup within the sugar nucleotide epimerase family of SDR (short-chain dehydrogenases/reductases), for which the current study now provides the functional context. Collectively, our results expand an emerging toolbox of epimerase-catalyzed reactions for sugar nucleotide synthesis.IMPORTANCE Epimerases of the sugar nucleotide-modifying class of enzymes have attracted considerable interest in carbohydrate (bio)chemistry, for the mechanistic challenges and the opportunities for synthesis involved in the reactions catalyzed. Discovery of new epimerases with expanded scope of sugar nucleotide substrates used is important to promote the mechanistic inquiry and can facilitate the development of new enzyme applications. Here, a CDP-tyvelose 2-epimerase-like enzyme from Thermodesulfatator atlanticus is shown to catalyze sugar C2 epimerization in CDP-glucose and other nucleotide-activated forms of dglucose. The reactions are new to nature in the context of enzymatic sugar nucleotide modification. The current study explores the substrate scope of the discovered C2-epimerase and, based on modeling, suggests structure-function relationships that may be important for specificity and catalysis.
Collapse
|
6
|
Fushinobu S. Molecular evolution and functional divergence of UDP-hexose 4-epimerases. Curr Opin Chem Biol 2020; 61:53-62. [PMID: 33171387 DOI: 10.1016/j.cbpa.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
UDP-glucose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) and/or the interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) in sugar metabolism. GalEs belong to the short-chain dehydrogenase/reductase superfamily, use a conserved 'transient keto intermediate' mechanism and have variable substrate specificity. GalEs have been classified into three groups based on substrate specificity: group 1 prefers UDP-Glc/Gal, group 3 prefers UDP-GlcNAc/GalNAc, and group 2 has comparable activities for both types of the substrates. The phylogenetic relationship and structural basis for the specificities of GalEs revealed possible molecular evolution of UDP-hexose 4-epimerases in various organisms. Based on the recent advances in studies on GalEs and related enzymes, an updated view of their evolutional diversification is presented.
Collapse
Affiliation(s)
- Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
7
|
Febres-Aldana CA, Pelaez L, Wright MS, Maher OM, Febres-Aldana AJ, Sasaki J, Jayakar P, Jayakar A, Diaz-Barbosa M, Janvier M, Totapally B, Salyakina D, Galvez-Silva JR. A Case of UDP-Galactose 4'-Epimerase Deficiency Associated with Dyshematopoiesis and Atrioventricular Valve Malformations: An Exceptional Clinical Phenotype Explained by Altered N-Glycosylation with Relative Preservation of the Leloir Pathway. Mol Syndromol 2020; 11:320-329. [PMID: 33510604 DOI: 10.1159/000511343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
The generalized form of UDP-galactose-4'-epimerase (GALE) deficiency causes hypotonia, failure to thrive, cataracts, and liver failure. Individuals with non-generalized forms may remain asymptomatic with uncertain long-term outcomes. We report a 2-year-old child compound heterozygous for GALE p.R51W/p.G237D who never developed symptoms of classic galactosemia but has a history of congenital combined mitral and tricuspid valve malformation and pyloric stenosis, and presented with pancytopenia. Variant pathogenicity was supported by predictive computational tools and decreased GALE activity measured in erythrocytes. GALE function extends to the biosynthesis of glycans by epimerization of UDP-N-acetyl-galactosamine and -glucosamine. Interrogation of the Gene Ontology consortium database revealed several putative proteins involved in normal hematopoiesis and atrioventricular valve morphogenesis, requiring N-glycosylation for adequate functionality. We hypothesize that by limiting substrate supply due to GALE deficiency, alterations in N-linked protein glycosylation can explain the patient's phenotype.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- AM Rywlin, MD, Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA
| | - Liset Pelaez
- Department of Pathology and Clinical Laboratories, Nicklaus Children's Hospital, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Meredith S Wright
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Ossama M Maher
- Department of Pediatric Hematology/Oncology, Nicklaus Children's Hospital, Miami, Florida, USA
| | | | - Jun Sasaki
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Department of Cardiology, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, Florida, USA.,Personalized Medicine Initiative, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Anuj Jayakar
- Personalized Medicine Initiative, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Magaly Diaz-Barbosa
- Personalized Medicine Initiative, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Michelin Janvier
- Personalized Medicine Initiative, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Bala Totapally
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Personalized Medicine Initiative, Nicklaus Children's Hospital, Miami, Florida, USA.,Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Daria Salyakina
- Personalized Medicine Initiative, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Jorge R Galvez-Silva
- Department of Pediatric Hematology/Oncology, Nicklaus Children's Hospital, Miami, Florida, USA.,Bone Marrow Transplant Program, Nicklaus Children's Hospital, Miami, Florida, USA
| |
Collapse
|
8
|
Identification of the Pseudomonas aeruginosa O17 and O15 O-Specific Antigen Biosynthesis Loci Reveals an ABC Transporter-Dependent Synthesis Pathway and Mechanisms of Genetic Diversity. J Bacteriol 2020; 202:JB.00347-20. [PMID: 32690555 DOI: 10.1128/jb.00347-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes. In the opportunistic pathogen Pseudomonas aeruginosa, there are currently 20 known O-specific antigen (OSA) structures. The clusters of genes responsible for 18 of these O antigens have been identified, all of which follow the Wzx/Wzy-dependent pathway and are located at a common locus. In this study, we located the two unidentified O antigen biosynthesis clusters responsible for the synthesis of the O15 and the O17 OSA structures by analyzing published whole-genome sequence data. Intriguingly, these clusters were found outside the conserved OSA biosynthesis locus and were likely acquired through multiple horizontal gene transfer events. Based on data from knockout and overexpression studies, we determined that the synthesis of these O antigens follows an ABC transporter-dependent rather than a Wzx/Wzy-dependent pathway. In addition, we collected evidence to show that the O15 and O17 polysaccharide chain lengths are regulated by molecular rulers with distinct and variable domain architectures. The findings in this report are critical for a comprehensive understanding of O antigen biosynthesis in P. aeruginosa and provide a framework for future studies.IMPORTANCE P. aeruginosa is a problematic opportunistic pathogen that causes diseases in those with compromised host defenses, such as those suffering from cystic fibrosis. This bacterium produces a number of virulence factors, including a serotype-specific O antigen. Here, we identified and characterized the gene clusters that produce the O15 and O17 O antigens and show that they utilize a pathway for synthesis that is distinct from that of the 18 other known serotypes. We also provide evidence that these clusters have acquired mutations in specific biosynthesis genes and have undergone extensive horizontal gene transfer within the P. aeruginosa population. These findings expand on our understanding of O antigen biosynthesis in Gram-negative bacteria and the mechanisms that drive O antigen diversity.
Collapse
|
9
|
Van Overtveldt S, Da Costa M, Gevaert O, Joosten HJ, Beerens K, Desmet T. Determinants of the Nucleotide Specificity in the Carbohydrate Epimerase Family 1. Biotechnol J 2020; 15:e2000132. [PMID: 32761842 DOI: 10.1002/biot.202000132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Indexed: 11/09/2022]
Abstract
In recent years, carbohydrate epimerases have attracted increasing attention as promising biocatalysts for the production of specialty sugars and derivatives. The vast majority of these enzymes are active on nucleotide-activated sugars, rather than on their free counterparts. Although such epimerases are known to have a clear preference for a particular nucleotide (UDP, GDP, CDP, or ADP), very little is known about the determinants of the respective specificities. In this work, sequence motifs are identified that correlate with the different nucleotide specificities in one of the main epimerase superfamilies, carbohydrate epimerase 1 (CEP1). To confirm their relevance, GDP- and CDP-specific residues are introduced into the UDP-glucose 4-epimerase from Thermus thermophilus, resulting in a 3-fold and 13-fold reduction in KM for GDP-Glc and CDP-Glc, respectively. Moreover, several variants are severely crippled in UDP-Glc activity, which further underlines the crucial role of the identified positions. Hence, the analysis should prove to be valuable for the further exploration and application of epimerases involved in carbohydrate synthesis.
Collapse
Affiliation(s)
- Stevie Van Overtveldt
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Ophelia Gevaert
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Henk-Jan Joosten
- Bio-Prodict BV, Nieuwe Marktstraat 54E, Nijmegen, 6511 AA, The Netherlands
| | - Koen Beerens
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| |
Collapse
|
10
|
Schumann B, Malaker SA, Wisnovsky SP, Debets MF, Agbay AJ, Fernandez D, Wagner LJS, Lin L, Li Z, Choi J, Fox DM, Peh J, Gray MA, Pedram K, Kohler JJ, Mrksich M, Bertozzi CR. Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells. Mol Cell 2020; 78:824-834.e15. [PMID: 32325029 PMCID: PMC7276986 DOI: 10.1016/j.molcel.2020.03.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes.
Collapse
Affiliation(s)
- Benjamin Schumann
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom.
| | | | | | | | | | - Daniel Fernandez
- Stanford ChEM-H Macromolecular Structure Knowledge Center, Stanford, CA 94305, USA
| | | | - Liang Lin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhen Li
- Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Junwon Choi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Jessie Peh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Melissa Anne Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Jean Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Carolyn Ruth Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Xu Z, Ku X, Tomioka A, Xie W, Liang T, Zou X, Cui Y, Sato T, Kaji H, Narimatsu H, Yan W, Zhang Y. O-linked N-acetylgalactosamine modification is present on the tumor suppressor p53. Biochim Biophys Acta Gen Subj 2020; 1864:129635. [PMID: 32417172 DOI: 10.1016/j.bbagen.2020.129635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mucin-type O-glycosylation (referred to as O-GalNAc glycosylation) is the most abundant O-glycosylation on membrane and secretory proteins. Recently several evidences suggest that nuclear or cytoplasmic proteins might also have O-GalNAc glycosylation. However, what nucleocytoplasmic proteins are O-GalNAc glycosylated and what the biological function of this modification in cells are still poorly understood. Previously, we reported the tumor suppressor p53 could be O-GalNAc glycosylated in vitro. To investigate the existence and function of O-GalNAc glycosylation on nucleocytoplasmic proteins in cell, p53 as a representative nucleocytoplasmic protein was studied. METHODS Using lectin blotting with GalNAc specific lectins, enzymatic treatments with O-GlcNAcase, core 1 β1, 3-galactosyltransferase and O-glycosidase, and metabolic labeling with un-O-acetylated GalNAz in UDP-Gal/UDP-GalNAc 4-epimerase (GALE) knockout cells, we validated the O-GalNAc glycosylation on p53. Using mass spectrometry analysis and site-directed mutagenesis, we identified the glycosylated sites and studied the functions of O-GalNAc glycosylation on p53. RESULTS The p53 was O-GalNAc glycosylated in cells. Ser121 residue was one of the glycosylated sites on p53. The O-GalNAc glycosylation at Ser121 was associated with the stability and activity of p53. CONCLUSIONS These results revealed that the O-GalNAc glycosylation was a novel modification on p53. GENERAL SIGNIFICANCE Our study provided a pilot evidence that the O-GalNAc glycosylation existed on nucleocytoplasmic protein.
Collapse
Affiliation(s)
- Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Azusa Tomioka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Wenxian Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Liang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hiroyuki Kaji
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China.
| |
Collapse
|
12
|
Broussard A, Florwick A, Desbiens C, Nischan N, Robertson C, Guan Z, Kohler JJ, Wells L, Boyce M. Human UDP-galactose 4′-epimerase (GALE) is required for cell-surface glycome structure and function. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49882-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
Overexpression of UDP-Glucose 4-Epimerase Is Associated with Differentiation Grade of Gastric Cancer. DISEASE MARKERS 2019; 2019:6325326. [PMID: 31827638 PMCID: PMC6886318 DOI: 10.1155/2019/6325326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 11/20/2022]
Abstract
The UDP-glucose 4-epimerase (GALE) is a glycosyltransferase, which acts on protein and lipid glycosylation in normal and neoplastic cells. This study is aimed at investigating the differential tissue expression of GALE and its possible association with clinical-pathological parameters and the outcome of gastric adenocarcinoma patients. Seventy-one patients were evaluated in relation to GALE expression by immunohistochemistry. Our results showed that 48 (67.6%) patients were GALE positive and 23 (32.4%) negative. Positive staining was present on well-differentiated and moderate-differentiated histological grade of gastric adenocarcinomas (p < 0.0001). There was no significant association with outcome parameters (p > 0.05). Besides that, our results corroborated with the validation cohort analysis, where the expression of GALE mRNA was also associated with the histological grade (p < 0.001). These results suggest a possible use of this enzyme as a biomarker for well and moderately differentiated tumors.
Collapse
|
14
|
Broussard A, Florwick A, Desbiens C, Nischan N, Robertson C, Guan Z, Kohler JJ, Wells L, Boyce M. Human UDP-galactose 4'-epimerase (GALE) is required for cell-surface glycome structure and function. J Biol Chem 2019; 295:1225-1239. [PMID: 31819007 DOI: 10.1074/jbc.ra119.009271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Glycan biosynthesis relies on nucleotide sugars (NSs), abundant metabolites that serve as monosaccharide donors for glycosyltransferases. In vivo, signal-dependent fluctuations in NS levels are required to maintain normal cell physiology and are dysregulated in disease. However, how mammalian cells regulate NS levels and pathway flux remains largely uncharacterized. To address this knowledge gap, here we examined UDP-galactose 4'-epimerase (GALE), which interconverts two pairs of essential NSs. Using immunoblotting, flow cytometry, and LC-MS-based glycolipid and glycan profiling, we found that CRISPR/Cas9-mediated GALE deletion in human cells triggers major imbalances in NSs and dramatic changes in glycolipids and glycoproteins, including a subset of integrins and the cell-surface death receptor FS-7-associated surface antigen. In particular, we observed substantial decreases in total sialic acid, galactose, and GalNAc levels in glycans. These changes also directly impacted cell signaling, as GALE -/- cells exhibited FS-7-associated surface antigen ligand-induced apoptosis. Our results reveal a role of GALE-mediated NS regulation in death receptor signaling and may have implications for the molecular etiology of illnesses characterized by NS imbalances, including galactosemia and metabolic syndrome.
Collapse
Affiliation(s)
- Alex Broussard
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Alyssa Florwick
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Chelsea Desbiens
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Corrina Robertson
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lance Wells
- Department of Chemistry, University of Georgia, Athens, Georgia 30602.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Michael Boyce
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| |
Collapse
|
15
|
Ha E, Chun J, Kim M, Ryu S. Capsular Polysaccharide Is a Receptor of a Clostridium perfringens Bacteriophage CPS1. Viruses 2019; 11:v11111002. [PMID: 31683584 PMCID: PMC6893597 DOI: 10.3390/v11111002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Clostridium perfringens is a Gram-positive, anaerobic, and spore forming bacterium that is widely distributed in the environment and one of the most common causes of foodborne illnesses. Bacteriophages are regarded as one of the most promising alternatives to antibiotics in controlling antibiotic-resistant pathogenic bacteria. Here we isolated a virulent C. perfringens phage, CPS1, and analysis of its whole genome and morphology revealed a small genome (19 kbps) and a short noncontractile tail, suggesting that CPS1 can be classified as a member of Picovirinae, a subfamily of Podoviridae. To determine the host receptor of CPS1, the EZ-Tn5 random transposon mutant library of C. perfringens ATCC 13124 was constructed and screened for resistance to CPS1 infection. Analysis of the CPS1-resistant mutants revealed that the CPF_0486 was disrupted by Tn5. The CPF_0486 was annotated as galE, a gene encoding UDP-glucose 4-epimerase (GalE). However, biochemical analyses demonstrated that the encoded protein possessed dual activities of GalE and UDP-N-acetylglucosamine 4-epimerase (Gne). We found that the CPF_0486::Tn5 mutant produced a reduced amount of capsular polysaccharides (CPS) compared with the wild type. We also discovered that glucosamine and galactosamine could competitively inhibit host adsorption of CPS1. These results suggest that CPS acts as a receptor for this phage.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jihwan Chun
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
16
|
Structural basis for broad substrate specificity of UDP-glucose 4-epimerase in the human milk oligosaccharide catabolic pathway of Bifidobacterium longum. Sci Rep 2019; 9:11081. [PMID: 31366978 PMCID: PMC6668579 DOI: 10.1038/s41598-019-47591-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Infant gut-associated bifidobacteria has a metabolic pathway that specifically utilizes lacto-N-biose I (Gal-β1,3-GlcNAc) and galacto-N-biose (Gal-β1,3-GalNAc) from human milk and mucin glycans. UDP-glucose 4-epimerase (GalE) from Bifidobacterium longum (bGalE) catalyzes epimerization reactions of UDP-Gal into UDP-Glc and UDP-GalNAc into UDP-GlcNAc with the same level of activity that is required to send galacto-hexoses into glycolysis. Here, we determined the crystal structures of bGalE in three ternary complex forms: NAD+/UDP, NAD+/UDP-GlcNAc, and NAD+/UDP-Glc. The broad specificity of bGalE was explained by structural features of the binding pocket for the N-acetyl or C2 hydroxy group of the substrate. Asn200 is located in a pocket of the C2 group, and its side chain adopts different conformations in the complex structures with UDP-Glc and UDP-GlcNAc. On the other side, Cys299 forms a large pocket for the C5 sugar ring atom. The flexible C2 pocket and the large C5 pocket of bGalE are suitable for accommodating both the hydroxy and N-acetyl groups of the substrate during sugar ring rotation in the catalytic cycle. The substrate specificity and active site structure of bGalE were distinct from those of Esherichia coli GalE but similar to those of human GalE.
Collapse
|
17
|
Seo A, Gulsuner S, Pierce S, Ben-Harosh M, Shalev H, Walsh T, Krasnov T, Dgany O, Doulatov S, Tamary H, Shimamura A, King MC. Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Hum Mol Genet 2019; 28:133-142. [PMID: 30247636 DOI: 10.1093/hmg/ddy334] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Severe thrombocytopenia, characterized by dysplastic megakaryocytes and intracranial bleeding, was diagnosed in six individuals from a consanguineous kindred. Three of the individuals were successfully treated by bone marrow transplant. Whole-exome sequencing and homozygosity mapping of multiple family members, coupled with whole-genome sequencing to reveal shared non-coding variants, revealed one potentially functional variant segregating with thrombocytopenia under a recessive model: GALE p.R51W (c.C151T, NM_001127621). The mutation is extremely rare (allele frequency = 2.5 × 10-05), and the likelihood of the observed co-segregation occurring by chance is 1.2 × 10-06. GALE encodes UDP-galactose-4-epimerase, an enzyme of galactose metabolism and glycosylation responsible for two reversible reactions: interconversion of UDP-galactose with UDP-glucose and interconversion of UDP-N-acetylgalactosamine with UDP-N-acetylglucosamine. The mutation alters an amino acid residue that is conserved from yeast to humans. The variant protein has both significantly lower enzymatic activity for both interconversion reactions and highly significant thermal instability. Proper glycosylation is critical to normal hematopoiesis, in particular to megakaryocyte and platelet development, as reflected in the presence of thrombocytopenia in the context of congenital disorders of glycosylation. Mutations in GALE have not previously been associated with thrombocytopenia. Our results suggest that GALE p.R51W is inadequate for normal glycosylation and thereby may impair megakaryocyte and platelet development. If other mutations in GALE are shown to have similar consequences, this gene may be proven to play a critical role in hematopoiesis.
Collapse
Affiliation(s)
- Aaron Seo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Suleyman Gulsuner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Sarah Pierce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Miri Ben-Harosh
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Hanna Shalev
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Tom Walsh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Sergei Doulatov
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Hannah Tamary
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel.,Hematology Unit, Schneider Children's Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
A Bifunctional UDP-Sugar 4-Epimerase Supports Biosynthesis of Multiple Cell Surface Polysaccharides in Sinorhizobium meliloti. J Bacteriol 2019; 201:JB.00801-18. [PMID: 30833352 DOI: 10.1128/jb.00801-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/25/2019] [Indexed: 01/19/2023] Open
Abstract
Sinorhizobium meliloti produces multiple extracellular glycans, including among others, lipopolysaccharides (LPS), and the exopolysaccharides (EPS) succinoglycan (SG) and galactoglucan (GG). These polysaccharides serve cell protective roles. Furthermore, SG and GG promote the interaction of S. meliloti with its host Medicago sativa in root nodule symbiosis. ExoB has been suggested to be the sole enzyme catalyzing synthesis of UDP-galactose in S. meliloti (A. M. Buendia, B. Enenkel, R. Köplin, K. Niehaus, et al. Mol Microbiol 5:1519-1530, 1991, https://doi.org/10.1111/j.1365-2958.1991.tb00799.x). Accordingly, exoB mutants were previously found to be affected in the synthesis of the galactose-containing glycans LPS, SG, and GG and consequently, in symbiosis. Here, we report that the S. meliloti Rm2011 uxs1-uxe-apsS-apsH1-apsE-apsH2 (SMb20458-63) gene cluster directs biosynthesis of an arabinose-containing polysaccharide (APS), which contributes to biofilm formation, and is solely or mainly composed of arabinose. Uxe has previously been identified as UDP-xylose 4-epimerase. Collectively, our data from mutational and overexpression analyses of the APS biosynthesis genes and in vitro enzymatic assays indicate that Uxe functions as UDP-xylose 4- and UDP-glucose 4-epimerase catalyzing UDP-xylose/UDP-arabinose and UDP-glucose/UDP-galactose interconversions, respectively. Overexpression of uxe suppressed the phenotypes of an exoB mutant, evidencing that Uxe can functionally replace ExoB. We suggest that under conditions stimulating expression of the APS biosynthesis operon, Uxe contributes to the synthesis of multiple glycans and thereby to cell protection, biofilm formation, and symbiosis. Furthermore, we show that the C2H2 zinc finger transcriptional regulator MucR counteracts the previously reported CuxR-c-di-GMP-mediated activation of the APS biosynthesis operon. This integrates the c-di-GMP-dependent control of APS production into the opposing regulation of EPS biosynthesis and swimming motility in S. meliloti IMPORTANCE Bacterial extracellular polysaccharides serve important cell protective, structural, and signaling roles. They have particularly attracted attention as adhesives and matrix components promoting biofilm formation, which significantly contributes to resistance against antibiotics. In the root nodule symbiosis between rhizobia and leguminous plants, extracellular polysaccharides have a signaling function. UDP-sugar 4-epimerases are important enzymes in the synthesis of the activated sugar substrates, which are frequently shared between multiple polysaccharide biosynthesis pathways. Thus, these enzymes are potential targets to interfere with these pathways. Our finding of a bifunctional UDP-sugar 4-epimerase in Sinorhizobium meliloti generally advances the knowledge of substrate promiscuity of such enzymes and specifically of the biosynthesis of extracellular polysaccharides involved in biofilm formation and symbiosis in this alphaproteobacterium.
Collapse
|
19
|
Sharma S, Creuzenet C, Jarrell KF, Brockhausen I. Glycosyltransferase-Coupled Assays for 4-Epimerase WbpP from Pseudomonas aeruginosa. Methods Mol Biol 2019; 1954:255-268. [PMID: 30864138 DOI: 10.1007/978-1-4939-9154-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The donor substrates for the biosynthesis of bacterial polysaccharides include UDP-Glc/Gal and UDP-GlcNAc/GalNAc. The conversion of these nucleotide sugars is catalyzed by 4-epimerases. The wbpP gene of Pseudomonas aeruginosa encodes a 4-epimerase that has a preference for UDP-GlcNAc/GalNAc as substrates. Other 4-epimerases have broad specificities or preference for UDP-Glc/Gal. We have developed coupled assays where the 4-epimerase product is used as a donor substrate for glycosyltransferases that are highly specific for the nucleotide sugar structure. We describe here a method for the study of substrate specificity of WbpP, using coupled assays employing four different glycosyltransferases. These protocols can be applied to the identification and characterization of novel 4-epimerases and to determine their substrate specificities.
Collapse
Affiliation(s)
- Sulav Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Carole Creuzenet
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Kenneth F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
20
|
Sharma S, Ding Y, Jarrell KF, Brockhausen I. Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis. Glycoconj J 2018; 35:525-535. [PMID: 30293150 DOI: 10.1007/s10719-018-9845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitous single-cell microorganisms that have often adapted to harsh conditions and play important roles in biogeochemical cycles with potential applications in biotechnology. Methanococcus maripaludis, a methane-producing archaeon, is motile through multiple archaella on its cell surface. The major structural proteins (archaellins) of the archaellum are glycoproteins, modified with N-linked tetrasaccharides that are essential for the proper assembly and function of archaella. The aglW gene, encoding the putative 4-epimerase AglW, plays a key role in the synthesis of the tetrasaccharide. The goal of our work was to biochemically demonstrate the 4-epimerase activity of AglW, and to develop assays to determine its substrate specificity and properties. We carried out assays using UDP-Galactose, UDP-Glucose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and N-acetylglucosamine/N-acetylgalactosamine-diphosphate - lipid as substrates, coupled with specific glycosyltransferases. We showed that AglW has a broad specificity towards UDP-sugars and that Tyr151 within a conserved YxxxK sequon is essential for the 4-epimerase function of AglW. The glycosyltransferase-coupled assays are generally useful for the identification and specificity studies of novel 4-epimerases.
Collapse
Affiliation(s)
- Sulav Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
21
|
Carbone V, Schofield LR, Sang C, Sutherland-Smith AJ, Ronimus RS. Structural determination of archaeal UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with the bacterial cell wall intermediate UDP-N-acetylmuramic acid. Proteins 2018; 86:1306-1312. [PMID: 30242905 DOI: 10.1002/prot.25606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/01/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
The crystal structure of UDP-N-acetylglucosamine 4-epimerase (UDP-GlcNAc 4-epimerase; WbpP; EC 5.1.3.7), from the archaeal methanogen Methanobrevibacter ruminantium strain M1, was determined to a resolution of 1.65 Å. The structure, with a single monomer in the crystallographic asymmetric unit, contained a conserved N-terminal Rossmann-fold for nucleotide binding and an active site positioned in the C-terminus. UDP-GlcNAc 4-epimerase is a member of the short-chain dehydrogenases/reductases superfamily, sharing sequence motifs and structural elements characteristic of this family of oxidoreductases and bacterial 4-epimerases. The protein was co-crystallized with coenzyme NADH and UDP-N-acetylmuramic acid, the latter an unintended inclusion and well known product of the bacterial enzyme MurB and a critical intermediate for bacterial cell wall synthesis. This is a non-native UDP sugar amongst archaea and was most likely incorporated from the E. coli expression host during purification of the recombinant enzyme.
Collapse
Affiliation(s)
- Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Linley R Schofield
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carrie Sang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Ron S Ronimus
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
22
|
Song HB, He M, Cai ZP, Huang K, Flitsch SL, Liu L, Voglmeir J. UDP-Glucose 4-Epimerase and β-1,4-Galactosyltransferase from the Oyster Magallana gigas as Valuable Biocatalysts for the Production of Galactosylated Products. Int J Mol Sci 2018; 19:E1600. [PMID: 29844279 PMCID: PMC6032241 DOI: 10.3390/ijms19061600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022] Open
Abstract
Uridine diphosphate galactose (UDP-galactose) is a valuable building block in the enzymatic synthesis of galactose-containing glycoconjugates. UDP-glucose 4-epimerase (UGE) is an enzyme which catalyzes the reversible conversion of abundantly available UDP-glucose to UDP-galactose. Herein, we described the cloning, expression, purification, and biochemical characterization of an unstudied UGE from the oyster Magallana gigas (MgUGE). Activity tests of recombinantly expressed MgUGE, using HPLC (high-performance liquid chromatography), mass spectrometry, and photometric assays, showed an optimal temperature of 16 °C, and reasonable thermal stability up to 37 °C. No metal ions were required for enzymatic activity. The simple nickel-affinity-purification procedure makes MgUGE a valuable biocatalyst for the synthesis of UDP-galactose from UDP-glucose. The biosynthetic potential of MgUGE was further exemplified in a coupled enzymatic reaction with an oyster-derived β-1,4-galactosyltransferase (MgGalT7), allowing the galactosylation of the model substrate para-nitrophenol xylose (pNP-xylose) using UDP-glucose as the starting material.
Collapse
Affiliation(s)
- Hui-Bo Song
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Food Science, Zhejiang Pharmaceutical College, Ningbo 315100, China.
| | - Meng He
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhi-Peng Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun Huang
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Pardeshi P, Rao KK, Balaji PV. Rv3634c from Mycobacterium tuberculosis H37Rv encodes an enzyme with UDP-Gal/Glc and UDP-GalNAc 4-epimerase activities. PLoS One 2017; 12:e0175193. [PMID: 28403215 PMCID: PMC5389812 DOI: 10.1371/journal.pone.0175193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
A bioinformatics study revealed that Mycobacterium tuberculosis H37Rv (Mtb) contains sequence homologs of Campylobacter jejuni protein glycosylation enzymes. The ORF Rv3634c from Mtb was identified as a sequence homolog of C. jejuni UDP-Gal/GalNAc 4-epimerase. This study reports the cloning of Rv3634c and its expression as an N-terminal His-tagged protein. The recombinant protein was shown to have UDP-Gal/Glc 4-epimerase activity by GOD-POD assay and by reverse phase HPLC. This enzyme was shown to have UDP-GalNAc 4-epimerase activity also. Residues Ser121, Tyr146 and Lys150 were shown by site-directed mutagenesis to be important for enzyme activity. Mutation of Ser121 and Tyr146 to Ala and Phe, respectively, led to complete loss of activity whereas mutation of Lys150 to Arg led to partial loss of activity. There were no gross changes in the secondary structures of any of these three mutants. These results suggest that Ser121 and Tyr146 are essential for epimerase activity of Rv3634c. UDP-Gal/Glc 4-epimerases from other organisms also have a catalytic triad consisting of Ser, Tyr and Lys. The triad carries out proton transfer from nucleotide sugar to NAD+ and back, thus effecting the epimerization of the substrate. Addition of NAD+ to Lys150 significantly abrogates the loss of activity, suggesting that, as in other epimerases, NAD+ is associated with Rv3634c.
Collapse
Affiliation(s)
- Peehu Pardeshi
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
| | - K. Krishnamurthy Rao
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
- * E-mail: (KKR); (PVB)
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
- * E-mail: (KKR); (PVB)
| |
Collapse
|
24
|
Timson DJ. The molecular basis of galactosemia — Past, present and future. Gene 2016; 589:133-41. [DOI: 10.1016/j.gene.2015.06.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
|
25
|
Van Overtveldt S, Verhaeghe T, Joosten HJ, van den Bergh T, Beerens K, Desmet T. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications. Biotechnol Adv 2015; 33:1814-28. [DOI: 10.1016/j.biotechadv.2015.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022]
|
26
|
Shin SM, Choi JM, di Luccio E, Lee YJ, Lee SJ, Lee SJ, Lee SH, Lee DW. The structural basis of substrate promiscuity in UDP-hexose 4-epimerase from the hyperthermophilic Eubacterium Thermotoga maritima. Arch Biochem Biophys 2015; 585:39-51. [PMID: 26344854 DOI: 10.1016/j.abb.2015.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
UDP-galactose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal), which is a pivotal step in the Leloir pathway for d-galactose metabolism. Although GalE is widely distributed in prokaryotes and eukaryotes, little information is available regarding hyperthermophilic GalE. We overexpressed the TM0509 gene, encoding a putative GalE from Thermotoga maritima (TMGalE), in Escherichia coli and characterized the encoded protein. To further investigate the molecular basis of this enzyme's catalytic function, we determined the crystal structures of TMGalE and TMGalE bound to UDP-Glc at resolutions of 1.9 Å and 2.0 Å, respectively. The enzyme was determined to be a homodimer with a molecular mass of 70 kDa. The enzyme could reversibly catalyze the epimerization of UDP-GalNAc/UDP-GlcNAc as well as UDP-Gal/UDP-Glc at elevated temperatures, with an apparent optimal temperature and pH of 80 °C and 7.0, respectively. Our data showed that TM0509 is a UDP-galactosugar 4-epimerase involved in d-galactose metabolism; consequently, this study provides the first detailed characterization of a hyperthermophilic GalE. Moreover, the promiscuous substrate specificity of TMGalE, which is more similar to human GalE than E. coli GalE, supports the notion that TMGalE might exhibit the earliest form of sugar-epimerizing enzymes in the evolution of galactose metabolism.
Collapse
Affiliation(s)
- Sun-Mi Shin
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Jin Myung Choi
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 501-759, South Korea
| | - Eric di Luccio
- School of Food Sciences & Biotechnology, Kyungpook National University, Daegu 702-701, South Korea
| | - Yong-Jik Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Sang-Jae Lee
- Major in Food Biotechnology, Silla University, Busan 617-736, South Korea
| | - Sang Jun Lee
- Infection & Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 501-759, South Korea
| | - Dong-Woo Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
27
|
Beerens K, Soetaert W, Desmet T. UDP-hexose 4-epimerases: a view on structure, mechanism and substrate specificity. Carbohydr Res 2015; 414:8-14. [PMID: 26162744 DOI: 10.1016/j.carres.2015.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 12/19/2022]
Abstract
UDP-sugar 4-epimerase (GalE) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily of proteins and is one of enzymes in the Leloir pathway. They have been shown to be important virulence factors in a number of Gram-negative pathogens and to be involved in the biosynthesis of different polysaccharide structures. The metabolic disease type III galactosemia is caused by detrimental mutations in the human GalE. GalE and related enzymes display unusual enzymologic, chemical, and stereochemical properties; including irreversible binding of the cofactor NAD and uridine nucleotide-induced activation of this cofactor. These epimerases have been found active on UDP-hexoses, the N-acetylated and uronic acid forms thereof as well as UDP-pentoses. As they are involved in different pathways and functions, a deeper understanding of the enzymes, and their substrate promiscuity and/or selectivity, could lead to drug and vaccine design as well as antibiotic and probiotic development. This review summarizes the research performed on UDP-sugar 4-epimerases' structure, mechanism and substrate promiscuity.
Collapse
Affiliation(s)
- Koen Beerens
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
28
|
Brokate-Llanos AM, Monje JM, Murdoch PDS, Muñoz MJ. Developmental defects in a Caenorhabditis elegans model for type III galactosemia. Genetics 2014; 198:1559-69. [PMID: 25298520 PMCID: PMC4256771 DOI: 10.1534/genetics.114.170084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022] Open
Abstract
Type III galactosemia is a metabolic disorder caused by reduced activity of UDP-galactose-4-epimerase, which participates in galactose metabolism and the generation of various UDP-sugar species. We characterized gale-1 in Caenorhabditis elegans and found that a complete loss-of-function mutation is lethal, as has been hypothesized for humans, whereas a nonlethal partial loss-of-function allele causes a variety of developmental abnormalities, likely resulting from the impairment of the glycosylation process. We also observed that gale-1 mutants are hypersensitive to galactose as well as to infections. Interestingly, we found interactions between gale-1 and the unfolded protein response.
Collapse
Affiliation(s)
- Ana M Brokate-Llanos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - José M Monje
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Piedad Del Socorro Murdoch
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Manuel J Muñoz
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| |
Collapse
|
29
|
Dalrymple SA, Ko J, Sheoran I, Kaminskyj SGW, Sanders DAR. Elucidation of substrate specificity in Aspergillus nidulans UDP-galactose-4-epimerase. PLoS One 2013; 8:e76803. [PMID: 24116166 PMCID: PMC3792076 DOI: 10.1371/journal.pone.0076803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the Km and kcat for the enzyme were determined to be 0.11 mM and 12.8 s-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results.
Collapse
Affiliation(s)
- Sean A. Dalrymple
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Ko
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Inder Sheoran
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
30
|
Frey PA, Hegeman AD. Chemical and stereochemical actions of UDP-galactose 4-epimerase. Acc Chem Res 2013; 46:1417-26. [PMID: 23339688 DOI: 10.1021/ar300246k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uridine(5')diphospho(1)α-D-galactose (UDP-gal) provides all galactosyl units in biologically synthesized carbohydrates. All healthy cells produce UDP-gal from uridine(5')diphospho(1)α-D-glucose (UDP-glc) by the action of UDP-galactose 4-epimerase (GalE). This Account provides our recent results describing unusual mechanistic features of this enzyme. Fully active GalE is dimeric and contains one tightly bound nicotinamide adenine dinucleotide (NAD) per subunit. The NAD undergoes reversible reduction to NADH in the chemical mechanism. GalE displays unusual enzymological, chemical, and stereochemical properties. These include practically irreversible binding of NAD, nonstereospecific hydride transfer, uridine nucleotide-induced activation of NAD, Tyr149 as a base catalyst, and [GalE-NADH]-oxidation in one-electron steps by one-electron acceptors. Early studies revealed that uridine(5')diphospho(1)α-D-4-ketopyranose (UDP-4-ketopyranose) and NADH are reaction intermediates. Weak binding of the 4-ketopyranosyl moiety and strong binding of the UDP-moiety allowed either face of the 4-ketopyranosyl moiety to accept hydride from NADH. In crystal structures of GalE, NAD bound within a Rossmann-type fold and uridine nucleotides within a substrate domain. Structures of [GalE-NADH] in complex with UDP-glc show Lys153, Tyr149, and Ser124 in contact with NAD or glucosyl-C4(OH). Lys153 forms hydrogen bonds to the ribosyl-OH groups of NAD. The phenolate of Tyr149 is associated with both the nicotinamide ring of NAD and glucosyl-C4(OH). Ser124 is hydrogen-bonded to glucosyl-C4(OH). Spectrophotometry studies show a pH-dependent charge transfer (CT) complex between Tyr149 and NAD. The CT-complex has a pKa of 6.1, which results in bleaching of the CT-band. The CT-band also bleaches upon binding of a uridine nucleotide. Kinetic experiments with wild-type GalE and Ser124Ala-GalE show the same kinetic pKa values as the corresponding CT-band pKa, which point to Tyr149 as the base catalyst for hydride transfer. We used NMR studies to verify that uridine nucleotide binding polarizes nicotinamide π-electrons. The binding of uridine(5')-diphosphate (UDP) to GalE-[nicotinamide-1-¹⁵N]NAD shifts the ¹⁵N-signal upfield 3 ppm, whereas UDP-binding to GalE-[nicotinamide-4-¹³C]NAD shifts the ¹³C-signal downfield by 3.4 ppm. Electrochemical and ¹³C NMR data for a series of N-alkylnicotinamides show that the 3.4 ppm downfield ¹³C-perturbation in GalE corresponds to an elevation of the NAD reduction potential by 150 mV. These results account for the uridine nucleotide-dependence in the reduction of [GalE-NAD] by glucose or NaBH₃CN. Kinetics in the reduction of Tyr149Phe- and Lys153Met-GalE-NAD implicate Tyr149 and Lys153 in the nucleotide-dependent reduction of NAD. They further implicate electrostatic repulsion between N1 of NAD and the ε-aminium group of Lys153 in nucleotide-induced activation of NAD. In an O₂-dependent reaction, [GalE-NADH] reduces the stable radical UDP-TEMPO with production of superoxide radical. The reaction must proceed by way of a NAD-pyridinyl radical intermediate.
Collapse
Affiliation(s)
- Perry A. Frey
- Department of Biochemistry, University of Wisconsin—Madison, 1710 University Avenue, Madison, Wisconsin 53705, United States
| | - Adrian D. Hegeman
- Department of Biochemistry, University of Wisconsin—Madison, 1710 University Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
31
|
Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA involves three easily distinguished 4-epimerase enzymes, Gne, Gnu and GnaB. PLoS One 2013; 8:e67646. [PMID: 23799153 PMCID: PMC3682973 DOI: 10.1371/journal.pone.0067646] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/21/2013] [Indexed: 11/29/2022] Open
Abstract
We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation.
Collapse
|
32
|
Zou Y, Xue M, Wang W, Cai L, Chen L, Liu J, Wang PG, Shen J, Chen M. One-pot three-enzyme synthesis of UDP-Glc, UDP-Gal, and their derivatives. Carbohydr Res 2013; 373:76-81. [PMID: 23584237 DOI: 10.1016/j.carres.2013.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/26/2013] [Accepted: 03/06/2013] [Indexed: 12/14/2022]
Abstract
A UTP-glucose-1-phosphate uridylyltransferase (SpGalU) and a galactokinase (SpGalK) were cloned from Streptococcus pneumoniae TIGR4 and were successfully used to synthesize UDP-galactose (UDP-Gal), UDP-glucose (UDP-Glc), and their derivatives in an efficient one-pot reaction system. The reaction conditions for the one-pot multi-enzyme synthesis were optimized and nine UDP-Glc/Gal derivatives were synthesized. Using this system, six unnatural UDP-Gal derivatives, including UDP-2-deoxy-Galactose and UDP-GalN3 which were not accepted by other approach, can be synthesized efficiently in a one pot fashion. More interestingly, this is the first time it has been reported that UDP-Glc can be synthesized in a simpler one-pot three-enzyme synthesis reaction system.
Collapse
Affiliation(s)
- Yang Zou
- The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beerens K, Soetaert W, Desmet T. Characterization and mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis. Appl Microbiol Biotechnol 2012; 97:7733-40. [DOI: 10.1007/s00253-012-4635-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/15/2022]
|
34
|
Daenzer JMI, Sanders RD, Hang D, Fridovich-Keil JL. UDP-galactose 4'-epimerase activities toward UDP-Gal and UDP-GalNAc play different roles in the development of Drosophila melanogaster. PLoS Genet 2012; 8:e1002721. [PMID: 22654673 PMCID: PMC3359975 DOI: 10.1371/journal.pgen.1002721] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
In both humans and Drosophila melanogaster, UDP-galactose 4'-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans.
Collapse
Affiliation(s)
- Jennifer M. I. Daenzer
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Rebecca D. Sanders
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| | - Darwin Hang
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nat Chem 2012; 4:539-46. [DOI: 10.1038/nchem.1351] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 04/03/2012] [Indexed: 11/08/2022]
|
36
|
Chung SK, Ryu SI, Lee SB. Characterization of UDP-glucose 4-epimerase from Pyrococcus horikoshii: regeneration of UDP to produce UDP-galactose using two-enzyme system with trehalose. BIORESOURCE TECHNOLOGY 2012; 110:423-429. [PMID: 22342090 DOI: 10.1016/j.biortech.2012.01.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 05/31/2023]
Abstract
A gene encoding a putative UDP-glucose 4-epimerase (pGALE) in Pyrococcus horikoshii was cloned and expressed in Escherichia coli. The purified enzyme could reversibly catalyze both the synthesis of UDP-Gal and UDP-Glc but preferred the binding of UDP-Gal by approximately 10-fold. The optimum pH and temperature were 6.5 and 65°C. The enzyme acted effectively without the addition of nicotinamide adenine dinucleotide (NAD(+)), possibly due to the presence of tightly bound NAD(+). In particular, pGALE could be coupled with trehalose synthase (TreT) from P. horikoshii to regenerate UDP-Gal from UDP. The possible byproduct of glycosyltransferase, UDP, was capable of being converted to UDP-Glc with trehalose by TreT, and UDP-Glc was simultaneously converted to UDP-Gal by pGALE. Conclusively, the results suggest that pGALE and TreT with trehalose is an effective one-pot two-enzyme system for the regeneration of UDP-Gal, a high-cost substrate of galactosyltransferase, to complete a sugar nucleotide cycle.
Collapse
Affiliation(s)
- Seung-Kyung Chung
- Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | |
Collapse
|
37
|
Bhatt VS, Guo CY, Guan W, Zhao G, Yi W, Liu ZJ, Wang PG. Altered architecture of substrate binding region defines the unique specificity of UDP-GalNAc 4-epimerases. Protein Sci 2011; 20:856-66. [PMID: 21384454 DOI: 10.1002/pro.611] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/21/2011] [Indexed: 11/07/2022]
Abstract
UDP-hexose 4-epimerases play a pivotal role in lipopolysaccharide (LPS) biosynthesis and Leloir pathway. These epimerases are classified into three groups based on whether they recognize nonacetylated UDP-hexoses (Group 1), both N-acetylated and nonacetylated UDP-hexoses (Group 2) or only N-acetylated UDP-hexoses (Group 3). Although the catalysis has been investigated extensively, yet a definitive model rationalizing the substrate specificity of all the three groups on a common platform is largely lacking. In this work, we present the crystal structure of WbgU, a novel UDP-hexose 4-epimerase that belongs to the Group 3. WbgU is involved in biosynthetic pathway of the unusual glycan 2-deoxy-L-altruronic acid that is found in the LPS of the pathogen Pleisomonas shigelloides. A model that defines its substrate specificity is proposed on the basis of the active site architecture. Representatives from all the three groups are then compared to rationalize their substrate specificity. This investigation reveals that the Group 3 active site architecture is markedly different from the "conserved scaffold" of the Group 1 and the Group 2 epimerases and highlights the interactions potentially responsible for the origin of specificity of the Group 3 epimerases toward N-acetylated hexoses. This study provides a platform for further engineering of the UDP-hexose 4-epimerases, leads to a deeper understanding of the LPS biosynthesis and carbohydrate recognition by proteins. It may also have implications in development of novel antibiotics and more economic synthesis of UDP-GalNAc and downstream products such as carbohydrate based vaccines.
Collapse
Affiliation(s)
- Veer S Bhatt
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ko DH, Jun SH, Park HD, Song SH, Park KU, Kim JQ, Song YH, Song J. Multiplex Enzyme Assay for Galactosemia Using Ultraperformance Liquid Chromatography–Tandem Mass Spectrometry. Clin Chem 2010; 56:764-71. [DOI: 10.1373/clinchem.2009.139618] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Galactosemia is one of the most important inherited disorders detected by newborn screening tests. Abnormal results in screening tests should be confirmed by enzyme activity assays, but existing methods are time and labor intensive. We developed a novel multiplex enzyme assay for galactosemia using ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS).
Methods: [13C6]-galactose, [13C2]-galactose-1-phosphate, and UDP-glucose were used as substrates for 3 galactose-metabolizing enzymes. The end products from the combined reaction mixtures, [13C6]-galactose-1-phosphate, UDP-[13C2]-galactose, and UDP-galactose, were simultaneously measured using UPLC-MS/MS. Linearity, imprecision, ion suppression, and the effects of substrate were evaluated to determine assay performance. Enzyme activities from 35 healthy individuals, 8 patients with enzyme deficiency, and 18 mutant cells were analyzed.
Results: Substrates, products, and internal standards from the mixture of 3 enzyme reactions were clearly separated by using UPLC-MS/MS, with an injection cycle time of 10 min. Ion suppression was 0.1%–2.5%, the interassay imprecision of UPLC-MS/MS was 3.3%–10.6% CV, and the linearity of each system was good (R2 = 0.994–0.999). Patient samples and mutated cells showed consistently low enzyme activities compared with those of normal individuals and wild-type cells.
Conclusions: This method allows for a high-throughput and reproducible multiplex enzyme assay for galactosemia in erythrocytes.
Collapse
Affiliation(s)
- Dae-Hyun Ko
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sun-Hee Jun
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Q Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Han Song
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Targeted metabolic labeling of yeast N-glycans with unnatural sugars. Proc Natl Acad Sci U S A 2010; 107:3988-93. [PMID: 20142501 DOI: 10.1073/pnas.0911247107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Metabolic labeling of glycans with synthetic sugar analogs has emerged as an attractive means for introducing nonnatural chemical functionality into glycoproteins. However, the complexities of glycan biosynthesis prevent the installation of nonnatural moieties at defined, predictable locations within glycoproteins at high levels of incorporation. Here, we demonstrate that the conserved N-acetyglucosamine (GlcNAc) residues within chitobiose cores of N-glycans in the model organism Saccharomyces cerevisiae can be specifically targeted for metabolic replacement by unnatural sugars. We introduced an exogenous GlcNAc salvage pathway into yeast, allowing cells to metabolize GlcNAc provided as a supplement to the culture medium. We then rendered the yeast auxotrophic for production of the donor nucleotide-sugar uridine-diphosphate-GlcNAc (UDP-GlcNAc) by deletion of the essential gene GNA1. We demonstrate that gna1Delta strains require a GlcNAc supplement and that expression plasmids containing both exogenous components of the salvage pathway, GlcNAc transporter NGT1 from Candida albicans and GlcNAc kinase NAGK from Homo sapiens, are required for rescue in this context. Further, we show that cells successfully incorporate synthetic GlcNAc analogs N-azidoacetyglucosamine (GlcNAz) and N-(4-pentynoyl)-glucosamine (GlcNAl) into cell-surface glycans and secreted glycoproteins. To verify incorporation of the nonnatural sugars at N-glycan core positions, endoglycosidase H (endoH)-digested peptides from a purified secretory glycoprotein, Ygp1, were analyzed by mass spectrometry. Multiple Ygp1 N-glycosylation sites bearing GlcNAc, isotopically labeled GlcNAc, or GlcNAz were identified; these modifications were dependent on the supplement added to the culture medium. This system enables the production of glycoproteins that are functionalized for specific chemical modifications at their glycosylation sites.
Collapse
|
40
|
Kotake T, Takata R, Verma R, Takaba M, Yamaguchi D, Orita T, Kaneko S, Matsuoka K, Koyama T, Reiter WD, Tsumuraya Y. Bifunctional cytosolic UDP-glucose 4-epimerases catalyse the interconversion between UDP-D-xylose and UDP-L-arabinose in plants. Biochem J 2009; 424:169-77. [PMID: 19754426 DOI: 10.1042/bj20091025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UDP-sugars serve as substrates in the synthesis of cell wall polysaccharides and are themselves generated through sequential interconversion reactions from UDP-Glc (UDP-glucose) as the starting substrate in the cytosol and the Golgi apparatus. For the present study, a soluble enzyme with UDP-Xyl (UDP-xylose) 4-epimerase activity was purified approx. 300-fold from pea (Pisum sativum L.) sprouts by conventional chromatography. The N-terminal amino acid sequence of the enzyme revealed that it is encoded by a predicted UDP-Glc 4-epimerase gene, PsUGE1, and is distinct from the UDP-Xyl 4-epimerase localized in the Golgi apparatus. rPsUGE1 (recombinant P. sativum UGE1) expressed in Escherichia coli exhibited both UDP-Xyl 4-epimerase and UDP-Glc 4-epimerase activities with apparent Km values of 0.31, 0.29, 0.16 and 0.15 mM for UDP-Glc, UDP-Gal (UDP-galactose), UDP-Ara (UDP-L-arabinose) and UDP-Xyl respectively. The apparent equilibrium constant for UDP-Ara formation from UDP-Xyl was 0.89, whereas that for UDP-Gal formation from UDP-Glc was 0.24. Phylogenetic analysis revealed that PsUGE1 forms a group with Arabidopsis UDP-Glc 4-epimerases, AtUGE1 and AtUGE3, apart from a group including AtUGE2, AtUGE4 and AtUGE5. Similar to rPsUGE1, recombinant AtUGE1 and AtUGE3 expressed in E. coli showed high UDP-Xyl 4-epimerase activity in addition to their UDP-Glc 4-epimerase activity. Our results suggest that PsUGE1 and its close homologues catalyse the interconversion between UDP-Xyl and UDP-Ara as the last step in the cytosolic de novo pathway for UDP-Ara generation. Alternatively, the net flux of metabolites may be from UDP-Ara to UDP-Xyl as part of the salvage pathway for Ara.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2009; 65:3895-906. [PMID: 19011750 PMCID: PMC2792337 DOI: 10.1007/s00018-008-8588-y] [Citation(s) in RCA: 671] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) constitute a large family of NAD(P)(H)-dependent oxidoreductases, sharing sequence motifs and displaying similar mechanisms. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, cofactor, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. Sequence identities are low, and the most conserved feature is an α/β folding pattern with a central beta sheet flanked by 2–3 α-helices from each side, thus a classical Rossmannfold motif for nucleotide binding. The conservation of this element and an active site, often with an Asn-Ser-Tyr-Lys tetrad, provides a platform for enzymatic activities encompassing several EC classes, including oxidoreductases, epimerases and lyases. The common mechanism is an underlying hydride and proton transfer involving the nicotinamide and typically an active site tyrosine residue, whereas substrate specificity is determined by a variable C-terminal segment. Relationships exist with bacterial haloalcohol dehalogenases, which lack cofactor binding but have the active site architecture, emphasizing the versatility of the basic fold in also generating hydride transfer-independent lyases. The conserved fold and nucleotide binding emphasize the role of SDRs as scaffolds for an NAD(P)(H) redox sensor system, of importance to control metabolic routes, transcription and signalling.
Collapse
|
42
|
Mumma JO, Chhay JS, Ross KL, Eaton JS, Newell-Litwa KA, Fridovich-Keil JL. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE). Mol Genet Metab 2008; 93:160-71. [PMID: 17981065 PMCID: PMC2253667 DOI: 10.1016/j.ymgme.2007.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.
Collapse
Affiliation(s)
- Jane Odhiambo Mumma
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Juliet S. Chhay
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Kerry L. Ross
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Jana S. Eaton
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA
| | - Karen A. Newell-Litwa
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
43
|
Lopez AB, Sener K, Trosien J, Jarroll EL, van Keulen H. UDP-N-acetylglucosamine 4'-epimerase from the intestinal protozoan Giardia intestinalis lacks UDP-glucose 4'-epimerase activity. J Eukaryot Microbiol 2007; 54:154-60. [PMID: 17403156 DOI: 10.1111/j.1550-7408.2007.00246.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protozoan parasite Giardia intestinalis has a simple life cycle consisting of an intestinal trophozoite stage and an environmentally resistant cyst stage. The cyst is formed when a trophozoite encases itself within an external filamentous covering, the cyst wall, which is crucial to the cyst's survival outside of the host. The filaments in the cyst wall consist mainly of a beta (1-3) polymer of N-acetylgalactosamine. Its precursor, UDP-N-acetylgalactosamine, is synthesized from fructose 6-phosphate by a pathway of five inducible enzymes. The fifth, UDP-N-acetylglucosamine 4'-epimerase, epimerizes UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine reversibly. The epimerase of G. intestinalis lacks UDP-glucose/UDP-galactose 4'-epimerase activity and shows characteristic amino acyl residues to allow binding of only the larger UDP-N-acetylhexosamines. While the Giardia epimerase catalyzes the reversible epimerization of UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine, the reverse reaction apparently is favored. The enzyme has a higher Vmax and a smaller Km in this direction. Therefore, an excess of UDP-N-acetylglucosamine is required to drive the reaction towards the synthesis of UDP-N-acetylgalactosamine, when it is needed for cyst wall formation. This forms the ultimate regulatory step in cyst wall biosynthesis.
Collapse
Affiliation(s)
- Alex B Lopez
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | |
Collapse
|
44
|
Guo H, Yi W, Li L, Wang PG. Three UDP-hexose 4-epimerases with overlapping substrate specificity coexist in E. coli O86:B7. Biochem Biophys Res Commun 2007; 356:604-9. [PMID: 17368567 DOI: 10.1016/j.bbrc.2007.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/02/2007] [Indexed: 11/30/2022]
Abstract
The O-antigen gene cluster of Escherichia coli O86:B7 was sequenced previously in our lab. One UDP-hexose 4-epimerase gene (named gne2 in this paper) was found and later characterized to be able to catalyze the interconversion between UDP-GlcNAc/GalNAc and UDP-Glc/Gal with almost equal efficiency. However, sequencing of the flanking gene region upstream of the traditional O-antigen gene cluster revealed an open reading frame (gne1), sharing 100% identity with Gne from E. coli O55, previously identified as UDP-GlcNAc 4-epimerase. Furthermore, we also located the traditional galE gene in the gal operon of O86:B7, which can catalyze the interconversion of UDP-Glc to UDP-Gal. Thus, for the first time, three UDP-hexose 4-epimerases with overlapping substrate specificity were found to coexist in one bacterium. Deletion of gne1 and gne2 in O86:B7 produced two different LPS phenotypes: the gne1 mutant exhibited rough LPS, while the gne2 mutant showed semi-rough LPS phenotype. These findings provide new clues for understanding the mechanism of O-antigen biosynthesis.
Collapse
Affiliation(s)
- Hongjie Guo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
45
|
Guo H, Li L, Wang PG. Biochemical characterization of UDP-GlcNAc/Glc 4-epimerase from Escherichia coli O86:B7. Biochemistry 2007; 45:13760-8. [PMID: 17105195 DOI: 10.1021/bi0612770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The O-antigen of lipopolysaccharide in Gram-negative bacteria plays an important role in bacterium-host interactions. Escherichia coli O86:B7 O-unit contains five sugar residues: one fucose (Fuc) and two each of N-acetylgalactosamine (GalNAc) and galactose (Gal). The entire O-antigen gene cluster was previously sequenced: orf1 was assigned the gne gene for the biosynthesis of UDP-GalNAc. To confirm this annotation, overexpression, purification, and biochemical characterization of Gne were performed. By using capillary electrophoresis, we showed that Gne can catalyze the interconversion of both UDP-GlcNAc/GalNAc and UDP-Glc/Gal almost equally well. The Km values of Gne for UDP-Glc, UDP-Gal, UDP-GlcNAc, and UDP-GalNAc are 370, 295, 323, and 373 microM, respectively. The comparison of kinetic parameters of Gne from Escherichia coli O86:B7 to those of other characterized UDP-GlcNAc/Glc 4-epimerases indicated that it has relaxed specificity toward the four substrates, the first characterized enzyme to have this activity in the O-antigen biosynthesis. Moreover, the calculated kcat/Km values for UDP-GalNAc and UDP-Gal are approximately 2-4 times higher than those for UDP-GlcNAc and UDP-Glc, suggesting that Gne is slightly more efficient for the epimerization of UDP-GalNAc and UDP-Gal. One mutation (S306Y) resulted in a loss of epimerase activity for non-acetylated substrates by about 5-fold but totally abolished the activity for N-acetylated substrates, indicating that residue S306 plays an important role in the determination of substrate specificity.
Collapse
Affiliation(s)
- Hongjie Guo
- Department of Biochemistry and Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
46
|
He XZ, Wang X, Dixon RA. Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation. J Biol Chem 2006; 281:34441-7. [PMID: 16982612 DOI: 10.1074/jbc.m605767200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant glycosyltransferase UGT71G1 from the model legume barrel medic (Medicago truncatula) glycosylates flavonoids, isoflavonoids, and triterpenes. It can transfer glucose to each of the five hydroxyl groups of the flavonol quercetin, with the 3'-O-glucoside as the major product, and to the A-ring 7-hydroxyl of the isoflavone genistein. The sugar donor and acceptor binding pockets are located in the N and C termini, respectively, of the recently determined crystal structure of UGT71G1. The residues forming the binding pockets of UGT71G1 were systematically altered by site-directed mutagenesis. Mutation of Phe148 to Val, or Tyr202 to Ala, drastically changed the regioselectivity for quercetin glycosylation from predominantly the 3'-O-position of the B-ring to the 3-O-position of the C ring. The Y202A mutant exhibited comparable catalytic efficiency with quercetin to the wild-type enzyme, whereas efficiency was reduced 3-4-fold in the F148V mutant. The Y202A mutant gained the ability to glycosylate the 5-hydroxyl of genistein. Additional mutations affected the relative specificities for the sugar donors UDP-galactose and UDP-glucuronic acid, although UDP-glucose was always preferred. The results are discussed in relation to the design of novel biocatalysts for production of therapeutic flavonoids.
Collapse
Affiliation(s)
- Xian-Zhi He
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | |
Collapse
|
47
|
Zhang H, Zhou Y, Bao H, Liu HW. Vi antigen biosynthesis in Salmonella typhi: characterization of UDP-N-acetylglucosamine C-6 dehydrogenase (TviB) and UDP-N-acetylglucosaminuronic acid C-4 epimerase (TviC). Biochemistry 2006; 45:8163-73. [PMID: 16800641 PMCID: PMC2515272 DOI: 10.1021/bi060446d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vi antigen, the virulence factor of Salmonella typhi, has been used clinically as a molecular vaccine. TviB and TviC are two enzymes involved in the formation of Vi antigen, a linear polymer consisting of alpha-1,4-linked N-acetylgalactosaminuronate. Protein sequence analysis suggests that TviB is a dehydrogenase and TviC is an epimerase. Both enzymes are expected to be NAD(+) dependent. In order to verify their functions, TviB and TviC were cloned, expressed in Escherichia coli, and characterized. The C-terminal His(6)-tagged TviB protein, purified from soluble cell fractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity and is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylglucosaminuronic acid (UDP-GlcNAcA) with a k(cat) value of 15.5 +/- 1.0 min(-)(1). The K(m) values of TviB for UDP-GlcNAc and NAD(+) are 77 +/- 9 microM and 276 +/- 52 microM, respectively. TviC, purified as C-terminal hexahistidine-tagged protein, shows UDP-GlcNAcA 4-epimerase and UDP-N-acetylgalactosamine (UDP-GalNAc) 4-epimerase activities. The K(m) values of TviC for UDP-GlcNAcA and UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) are 20 +/- 1 microM and 42 +/- 2 microM, respectively. The k(cat) value for the conversion of UDP-GlcNAcA to UDP-GalNAcA is 56.8 +/- 0.5 min(-)(1), while that for the reverse reaction is 39.1 +/- 0.6 min(-)(1). These results show that the biosynthesis of Vi antigen is initiated by the TviB-catalyzed oxidation of UDP-GlcNAc to UDP-GalNAc, followed by the TviC-catalyzed epimerization at C-4 to form UDP-GalNAcA, which serves as the building block for the formation of Vi polymer. These results set the stage for future in vitro biosynthesis of Vi antigen. These enzymes may also be drug targets to inhibit Vi antigen production.
Collapse
Affiliation(s)
- Hua Zhang
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712
| | - Ying Zhou
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712
| | - Hongbo Bao
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712
| |
Collapse
|
48
|
Wasilenko J, Fridovich-Keil JL. Relationship between UDP-Galactose 4′-Epimerase Activity and Galactose Sensitivity in Yeast. J Biol Chem 2006; 281:8443-9. [PMID: 16452467 DOI: 10.1074/jbc.m600778200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UDP-galactose 4'-epimerase (GALE) catalyzes the final step of the highly conserved Leloir pathway of galactose metabolism. Loss of GALE in humans results in a variant form of the metabolic disorder, galactosemia. Loss of GALE in yeast results in galactose-dependent growth arrest. Although the role of GALE in galactose metabolism has been recognized for decades, the precise relationship between GALE activity and galactose sensitivity has remained unclear. Here we have explored this relationship by asking the following. 1) Is GALE rate-limiting for galactose metabolism in yeast? 2) What is the relationship between GALE activity and galactose-dependent growth arrest in yeast? 3) What is the relationship between GALE activity and the abnormal accumulation of galactose metabolites in yeast? To answer these questions we engineered a strain of yeast in which GALE was doxycycline-repressible and studied these cells under conditions of intermediate GALE expression. Our results demonstrated a smooth linear relationship between galactose metabolism and GALE activity over a range from 0 to approximately 5% but a steep threshold relationship between growth rate in galactose and GALE activity over the same range. The relationship between abnormal accumulation of metabolites and GALE activity was also linear over the range from 0 to approximately 5%, suggesting that if the abnormal accumulation of metabolites underlies galactose-dependent growth-arrest in GALE-impaired yeast, either the impact of individual metabolites must be synergistic and/or the threshold of sensitivity must be very steep. Together these data reveal important points of similarity and contrast between the roles of GALE and galactose-1-phosphate uridylyltransferase in galactose metabolism in yeast and provide a framework for future studies in mammalian systems.
Collapse
Affiliation(s)
- Jamie Wasilenko
- Graduate Program in Genetics and Molecular Biology, Emory University and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
49
|
Abstract
Alpha-D-galactose is metabolized in species ranging from E. coli to mammals predominantly via a series of sequential reactions collectively known as the Leloir pathway. Deficiency of any one of these enzymes in humans results in a form of the inherited metabolic disorder, galactosemia, although the symptoms and severity depend upon the enzyme impaired, and the degree of functional deficiency (Tyfield and Walter, 2002, The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw Hill.). Studies of these enzymes, and the disorders associated with their loss, have led to a much deeper appreciation of the intricate and interwoven levels of regulation that govern their normal function. These insights have further identified likely mediators of outcome severity in patients, and have enabled a rational approach to the development of novel strategies of intervention.
Collapse
Affiliation(s)
- Judith L Fridovich-Keil
- Department of Human Genetics. Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Openo KK, Schulz JM, Vargas CA, Orton CS, Epstein MP, Schnur RE, Scaglia F, Berry GT, Gottesman GS, Ficicioglu C, Slonim AE, Schroer RJ, Yu C, Rangel VE, Keenan J, Lamance K, Fridovich-Keil JL. Epimerase-deficiency galactosemia is not a binary condition. Am J Hum Genet 2006; 78:89-102. [PMID: 16385452 PMCID: PMC1380226 DOI: 10.1086/498985] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 10/11/2005] [Indexed: 11/03/2022] Open
Abstract
Epimerase-deficiency galactosemia results from the impairment of UDP-galactose 4'-epimerase (GALE), the third enzyme in the Leloir pathway of galactose metabolism. Originally identified as a clinically benign "peripheral" condition with enzyme impairment restricted to circulating blood cells, GALE deficiency was later demonstrated also to exist in a rare but clinically severe "generalized" form, with enzyme impairment affecting a range of tissues. Isolated cases of clinically and/or biochemically intermediate cases of epimerase deficiency have also been reported. We report here studies of 10 patients who, in the neonatal period, received the diagnosis of hemolysate epimerase deficiency. We have characterized these patients with regard to three parameters: (1) GALE activity in transformed lymphoblasts, representing a "nonperipheral" tissue, (2) metabolic sensitivity of those lymphoblasts to galactose challenge in culture, and (3) evidence of normal versus abnormal galactose metabolism in the patients themselves. Our results demonstrate two important points. First, whereas some of the patients studied exhibited near-normal levels of GALE activity in lymphoblasts, consistent with a diagnosis of peripheral epimerase deficiency, many did not. We detected a spectrum of GALE activity levels ranging from 15%-64% of control levels, demonstrating that epimerase deficiency is not a binary condition; it is a continuum disorder. Second, lymphoblasts demonstrating the most severe reduction in GALE activity also demonstrated abnormal metabolite levels in the presence of external galactose and, in some cases, also in the absence of galactose. These abnormalities included elevated galactose-1P, elevated UDP-galactose, and deficient UDP-glucose. Moreover, some of the patients themselves also demonstrated metabolic abnormalities, both on and off galactose-restricted diet. Long-term follow-up studies of these and other patients will be required to elucidate the clinical significance of these biochemical abnormalities and the potential impact of dietary intervention on outcome.
Collapse
Affiliation(s)
- Kimberly K. Openo
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Jenny M. Schulz
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Claudia A. Vargas
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Corey S. Orton
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Rhonda E. Schnur
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Fernando Scaglia
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Gerard T. Berry
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Gary S. Gottesman
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Can Ficicioglu
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Alfred E. Slonim
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Richard J. Schroer
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Chunli Yu
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Vanessa E. Rangel
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Jennifer Keenan
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Kerri Lamance
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| |
Collapse
|