1
|
Urbančič D, Jukič M, Šmid A, Gobec S, Jazbec J, Mlinarič-Raščan I. Thiopurine S-methyltransferase - An important intersection of drug-drug interactions in thiopurine treatment. Biomed Pharmacother 2025; 184:117893. [PMID: 39923408 DOI: 10.1016/j.biopha.2025.117893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Understanding the molecular mechanisms of medicines is crucial for developing novel drugs, for repurposing existing medicines, and for predicting toxicities. Thiopurine S-methyltransferase (TPMT) serves as an exemplary case in personalized medicine, as its activity is influenced by genetic variants, co-factors, substrates, and inhibitors, which lead to diverse outcomes in thiopurine therapy. This comprehensive review explores the role of TPMT in drug-drug interactions by investigating its interactions with co-factors, substrates, and inhibitors. We focus on the principal interactions of TPMT with clinically relevant inhibitors, and add to this information with molecular docking analyses for the substrate and co-factor binding sites of TPMT. Notably, methotrexate and sulfasalazine emerged as the top-ranked compounds with favorable docking scores for the co-factor binding site, while furosemide is presented as the highest ranked inhibitor for the substrate binding site. Furthermore, we highlight the chemical and structural properties governing ligand binding to TPMT. We support the molecular characteristics by using a summary of clinical implications. Examining the molecular interactions between substrates or inhibitors and TPMT not only addresses therapeutic consequences, but also reveals potential novel indications of interacting compounds. These insights are also invaluable for identifying endogenous ligands and enhancing our understanding of TPMT's biological function.
Collapse
Affiliation(s)
- Dunja Urbančič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, Koper SI-6000, Slovenia.
| | - Alenka Šmid
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| | - Janez Jazbec
- Division of Pediatrics, Hematology and Oncology, University Medical Center Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Al Khoury C, Thoumi S, Tokajian S, Sinno A, Nemer G, El Beyrouthy M, Rahy K. ABC transporter inhibition by beauvericin partially overcomes drug resistance in Leishmania tropica. Antimicrob Agents Chemother 2024; 68:e0136823. [PMID: 38572959 PMCID: PMC11064568 DOI: 10.1128/aac.01368-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sergio Thoumi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Aia Sinno
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Mark El Beyrouthy
- Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Kelven Rahy
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
3
|
Bernardo L, Ibarra-Meneses AV, Douanne N, Corbeil A, Solana JC, Beaudry F, Carrillo E, Moreno J, Fernandez-Prada C. Potential selection of antimony and methotrexate cross-resistance in Leishmania infantum circulating strains. PLoS Negl Trop Dis 2024; 18:e0012015. [PMID: 38422164 DOI: 10.1371/journal.pntd.0012015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) resolution depends on a wide range of factors, including the instauration of an effective treatment coupled to a functional host immune system. Patients with a depressed immune system, like the ones receiving methotrexate (MTX), are at higher risk of developing VL and refusing antileishmanial drugs. Moreover, the alarmingly growing levels of antimicrobial resistance, especially in endemic areas, contribute to the increasing the burden of this complex zoonotic disease. PRINCIPAL FINDINGS To understand the potential links between immunosuppressants and antileishmanial drugs, we have studied the interaction of antimony (Sb) and MTX in a Leishmania infantum reference strain (LiWT) and in two L. infantum clinical strains (LiFS-A and LiFS-B) naturally circulating in non-treated VL dogs in Spain. The LiFS-A strain was isolated before Sb treatment in a case that responded positively to the treatment, while the LiFS-B strain was recovered from a dog before Sb treatment, with the dog later relapsing after the treatment. Our results show that, exposure to Sb or MTX leads to an increase in the production of reactive oxygen species (ROS) in LiWT which correlates with a sensitive phenotype against both drugs in promastigotes and intracellular amastigotes. LiFS-A was sensitive against Sb but resistant against MTX, displaying high levels of protection against ROS when exposed to MTX. LiFS-B was resistant to both drugs. Evaluation of the melting proteomes of the two LiFS, in the presence and absence of Sb and MTX, showed a differential enrichment of direct and indirect targets for both drugs, including common and unique pathways. CONCLUSION Our results show the potential selection of Sb-MTX cross-resistant parasites in the field, pointing to the possibility to undermine antileishmanial treatment of those patients being treated with immunosuppressant drugs in Leishmania endemic areas.
Collapse
Affiliation(s)
- Lorena Bernardo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Noelie Douanne
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Quebec, Canada
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
4
|
Bigot S, Leprohon P, Ouellette M. Delving in folate metabolism in the parasite Leishmania major through a chemogenomic screen and methotrexate selection. PLoS Negl Trop Dis 2023; 17:e0011458. [PMID: 37384801 DOI: 10.1371/journal.pntd.0011458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Most of our understanding of folate metabolism in the parasite Leishmania is derived from studies of resistance to the antifolate methotrexate (MTX). A chemical mutagenesis screen of L. major Friedlin and selection for resistance to MTX led to twenty mutants with a 2- to 400-fold decrease in MTX susceptibility in comparison to wild-type cells. The genome sequence of the twenty mutants highlighted recurrent mutations (SNPs, gene deletion) in genes known to be involved in folate metabolism but also in novel genes. The most frequent events occurred at the level of the locus coding for the folate transporter FT1 and included gene deletion and gene conversion events, as well as single nucleotide changes. The role of some of these FT1 point mutations in MTX resistance was validated by gene editing. The gene DHFR-TS coding for the dihydrofolate reductase-thymidylate synthase was the second locus with the most mutations and gene editing confirmed a role in resistance for some of these. The pteridine reductase gene PTR1 was mutated in two mutants. The episomal overexpression of the mutated versions of this gene, but also of DHFR-TS, led to parasites several fold more resistant to MTX than those overexpressing the wild-type versions. Genes with no known link with folate metabolism and coding for a L-galactolactone oxidase or for a methyltransferase were mutated in specific mutants. Overexpression of the wild-type versions of these genes in the appropriate mutants reverted their resistance. Our Mut-seq approach provided a holistic view and a long list of candidate genes potentially involved in folate and antifolate metabolism in Leishmania.
Collapse
Affiliation(s)
- Sophia Bigot
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
5
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
6
|
Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLoS Negl Trop Dis 2021; 15:e0009377. [PMID: 33905412 PMCID: PMC8104401 DOI: 10.1371/journal.pntd.0009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/07/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously. The protozoan parasite Leishmania is auxotroph for folate and unconjugated pterins and salvages both from the mammalian host. Two enzymes of the folate metabolism pathway, namely the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the pteridine reductase 1 (PTR1), are being evaluated for drug discovery and repurposing of existing anti-metabolites. Despite their apparent potential, development of DHFR-TS and PTR1 targeted chemotherapy against Leishmania is still awaiting. Here we revisited folate metabolism at the genomic level and report on the identification of known resistance genes alongside some new ones. Through gene disruption studies we found that L. infantum DHFR-TS null mutants are thymidine auxotroph and that these can be rescued by the bacterial flavin dependent thymidylate synthase ThyX. We also found that PTR1 is essential in the absence of a functional DHFR-TS even in the presence of ThyX or thymidine supplementation, indicating the essential role of reduced pterins or folate beyond thymidine synthesis. This study indicates that simultaneous targeting of DHFR-TS and PTR1 will be required for the development of anti-folate chemotherapy against Leishmania.
Collapse
|
7
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
8
|
Amiri-Dashatan N, Rezaei-Tavirani M, Zali H, Koushki M, Ahmadi N. Quantitative proteomic analysis reveals differentially expressed proteins in Leishmania major metacyclogenesis. Microb Pathog 2020; 149:104557. [DOI: 10.1016/j.micpath.2020.104557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
|
9
|
Ranjan R, Das P, Vijayakumar S. Differentially modulated proteins associated with Leishmaniasis-a systematic review of in-vivo and in-vitro studies. Mol Biol Rep 2020; 47:9159-9178. [PMID: 33113081 PMCID: PMC7591689 DOI: 10.1007/s11033-020-05936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 11/05/2022]
Abstract
High-throughput proteomic technologies are widely used for understanding the disease mechanism, drug-resistant mechanism, and to identify drug targets and markers for diagnostics. Studies with proteomics applications, relating to Leishmaniasis, are being constantly reported in the literature. However, from such studies, a readily accessible knowledge of differentially modulated proteins associated with Leishmaniasis is lacking. Hence, we performed a systematic review concerning differentially modulated proteins (DMP) in Leishmania as well as host infected with Leishmania from the published articles between the years 2000 and 2019. This review is classified into five different sections, namely, DMP in the host after Leishmania infection, DMP between different strains of Leishmania, DMP in drug-resistant Leishmania, DMP in Leishmania under stress, and DMP in different life stages of Leishmania. A lot of consensuses could be observed among the DMP in drug-resistant and stressed Leishmania. In addition to the review, a database was constructed with the data collected in this study (protein accession ID, protein name, gene name, host organism, experimental conditions, fold change, and regulatory data). A total of 2635 records are available in the database. We believe this review and the database will help the researcher in understanding the disease better and provide information for the targeted proteomics study related to Leishmaniasis. Database availability: http://ldepdb.biomedinformri.com/ .
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Pradeep Das
- Department of Molecular Biology/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Saravanan Vijayakumar
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India.
| |
Collapse
|
10
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
11
|
Saviola AJ, Negrão F, Yates JR. Proteomics of Select Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:315-336. [PMID: 32109150 DOI: 10.1146/annurev-anchem-091619-093003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry-based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
Collapse
Affiliation(s)
- Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Fernanda Negrão
- Department of Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
12
|
Bhattacharya A, Sharma M, Pakkinathan C, Rosen BP, Leprohon P, Ouellette M. Genomewide Analysis of Mode of Action of the S-Adenosylmethionine Analogue Sinefungin in Leishmania infantum. mSystems 2019; 4:e00416-19. [PMID: 31615876 PMCID: PMC6794121 DOI: 10.1128/msystems.00416-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
To further our understanding of one-carbon metabolism in the protozoan parasite Leishmania, we conducted genomic screens to study how the parasite responded to sinefungin (SNF) selection. SNF is a structural analogue of S-adenosylmethionine (AdoMet), a key methyl group donor to a number of biomolecules. One screen consisted of sequencing SNF-resistant mutants generated by stepwise selection with gradually increasing drug concentrations. These studies demonstrated deletion of the AdoMet transporter (AdoMetT1) by intergenic recombination as a crucial loss-of-function marker for SNF resistance. The second screen consisted of Cos-seq, a gain-of-function cosmid-based genomewide functional screen with increasing SNF concentration coupled to next-generation sequencing. Cosmids enriched in that screen and sequenced led to the identification of (i) the AdoMet synthetase (METK) as the major SNF target, (ii) an mRNA [(guanine-N7)-methyltransferase (CMT1)], (iii) a leucine carboxyl methyltransferase (LCMT), (iv) two tryparedoxin genes, and (v) two protein phosphatase regulatory genes. Further functional exploration indicated that LCMT interacts with one phosphatase catalytic subunit (PP2AC) and that mutation of the C-terminal leucine residue of PP2AC affects sinefungin susceptibility. These holistic screens led to the identification of transporters, biosynthetic genes, RNA and protein methyltransferases, as well as phosphatases linked to AdoMet-mediated functions in Leishmania IMPORTANCE The two main cellular metabolic one-carbon donors are reduced folates and S-adenosylmethionine, whose biosynthetic pathways have proven highly effective in chemotherapeutic interventions in various cell types. Sinefungin, a nucleoside analogue of S-adenosylmethionine, was shown to have potent activity against the protozoan parasite Leishmania Here, we studied resistance to sinefungin using whole-genome approaches as a way to further our understanding of the role of S-adenosylmethionine in this parasite and to reveal novel potential drug targets. These approaches allowed the characterization of novel features related to S-adenosylmethionine function in Leishmania which could further help in the development of sinefungin-like compounds against this pathogenic parasite.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Mansi Sharma
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Charles Pakkinathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Philippe Leprohon
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Marc Ouellette
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| |
Collapse
|
13
|
Sundar S, Singh B. Understanding Leishmania parasites through proteomics and implications for the clinic. Expert Rev Proteomics 2018; 15:371-390. [PMID: 29717934 PMCID: PMC5970101 DOI: 10.1080/14789450.2018.1468754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Leishmania spp. are causative agents of leishmaniasis, a broad-spectrum neglected vector-borne disease. Genomic and transcriptional studies are not capable of solving intricate biological mysteries, leading to the emergence of proteomics, which can provide insights into the field of parasite biology and its interactions with the host. Areas covered: The combination of genomics and informatics with high throughput proteomics may improve our understanding of parasite biology and pathogenesis. This review analyses the roles of diverse proteomic technologies that facilitate our understanding of global protein profiles and definition of parasite development, survival, virulence and drug resistance mechanisms for disease intervention. Additionally, recent innovations in proteomics have provided insights concerning the drawbacks associated with conventional chemotherapeutic approaches and Leishmania biology, host-parasite interactions and the development of new therapeutic approaches. Expert commentary: With progressive breakthroughs in the foreseeable future, proteome profiles could provide target molecules for vaccine development and therapeutic intervention. Furthermore, proteomics, in combination with genomics and informatics, could facilitate the elimination of several diseases. Taken together, this review provides an outlook on developments in Leishmania proteomics and their clinical implications.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| | - Bhawana Singh
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| |
Collapse
|
14
|
Proteomic approaches for drug discovery against tegumentary leishmaniasis. Biomed Pharmacother 2017; 95:577-582. [DOI: 10.1016/j.biopha.2017.08.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
|
15
|
Vacchina P, Norris-Mullins B, Carlson ES, Morales MA. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani. Parasit Vectors 2016; 9:621. [PMID: 27906059 PMCID: PMC5133764 DOI: 10.1186/s13071-016-1904-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
Background Protozoan parasites of the genus Leishmania are responsible for leishmaniasis, a neglected tropical disease affecting millions worldwide. Visceral leishmaniasis (VL), caused by Leishmania donovani, is the most severe form of leishmaniasis with high rates of mortality if left untreated. Current treatments include pentavalent antimonials and amphotericin B. However, high toxicity and emergence of resistance hinder the success of these options. Miltefosine (HePC) is the first oral treatment available for leishmaniasis. While treatment with HePC has proven effective, higher tolerance to the drug has been observed, and experimental resistance is easily developed in an in vitro environment. Several studies, including ours, have revealed that HePC resistance has a multi-factorial origin and this work aims to shed light on this complex mechanism. Methods 2D-DIGE quantitative proteomics comparing the soluble proteomes of sensitive and HePC resistant L. donovani lines identified a protein of interest tentatively involved in drug resistance. To test this link, we employed a gain-of-function approach followed by mutagenesis analysis. Functional studies were complemented with flow cytometry to measure HePC incorporation and cell death. Results We identified a mitochondrial HSP70 (HSPA9B) downregulated in HePC-resistant L. donovani promastigotes. The overexpression of HSPA9B in WT lines confers an increased sensitivity to HePC, regardless of whether the expression is ectopic or integrative. Moreover, the increased sensitivity to HePC is specific to the HSPA9B overexpression since dominant negative mutant lines were able to restore HePC susceptibility to WT values. Interestingly, the augmented susceptibility to HePC did not correlate with an increased HePC uptake. Leishmania donovani promastigotes overexpressing HSPA9B were subjected to different environmental stimuli. Our data suggest that HSPA9B is capable of protecting cells from stressful conditions such as low pH and high temperature. This phenotype was further corroborated in axenic amastigotes overexpressing HSPA9B. Conclusions The results from this study provide evidence to support the involvement of a mitochondrial HSP70 (HSPA9B) in experimental HePC resistance, a mechanism that is not yet fully understood, and reveal potential fundamental roles of HSPA9B in the biology of Leishmania. Overall, our findings are relevant for current and future antileishmanial chemotherapy strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1904-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Vacchina
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - B Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - E S Carlson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - M A Morales
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
16
|
Alcolea PJ, Tuñón GIL, Alonso A, García-Tabares F, Ciordia S, Mena MC, Campos RNS, Almeida RP, Larraga V. Differential protein abundance in promastigotes of nitric oxide-sensitive and resistantLeishmania chagasistrains. Proteomics Clin Appl 2016; 10:1132-1146. [DOI: 10.1002/prca.201600054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Pedro J. Alcolea
- Department of Molecular Microbiology and Biology of Infections and Service of Proteomics and Genomics; Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas); Madrid Spain
| | - Gabriel I. L. Tuñón
- Department of Morphology; Universidade Federal de Sergipe; São Cristóvão Sergipe Brazil
| | - Ana Alonso
- Department of Molecular Microbiology and Biology of Infections and Service of Proteomics and Genomics; Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas); Madrid Spain
| | - Francisco García-Tabares
- Department of Molecular Microbiology and Biology of Infections and Service of Proteomics and Genomics; Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas); Madrid Spain
| | - Sergio Ciordia
- Proteomics Unit; Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas); Madrid Spain
| | - María C. Mena
- Proteomics Unit; Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas); Madrid Spain
| | - Roseane N. S. Campos
- Department of Morphology; Universidade Federal de Sergipe; São Cristóvão Sergipe Brazil
| | - Roque P. Almeida
- Department of Medicine; Universidade Federal de Sergipe; Aracaju Sergipe Brazil
| | - Vicente Larraga
- Department of Molecular Microbiology and Biology of Infections and Service of Proteomics and Genomics; Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas); Madrid Spain
| |
Collapse
|
17
|
Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301326. [PMID: 26167482 PMCID: PMC4488524 DOI: 10.1155/2015/301326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.
Collapse
|
18
|
Ferreira TR, Alves-Ferreira EVC, Defina TPA, Walrad P, Papadopoulou B, Cruz AK. Altered expression of an RBP-associated arginine methyltransferase 7 in Leishmania major affects parasite infection. Mol Microbiol 2014; 94:1085-1102. [PMID: 25294169 DOI: 10.1111/mmi.12819] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Protein arginine methylation is a widely conserved post-translational modification performed by arginine methyltransferases (PRMTs). However, its functional role in parasitic protozoa is still under-explored. The Leishmania major genome encodes five PRMT homologs, including PRMT7. Here we show that LmjPRMT7 expression and arginine monomethylation are tightly regulated in a lifecycle stage-dependent manner. LmjPRMT7 levels are higher during the early promastigote logarithmic phase, negligible at stationary and late-stationary phases and rise once more post-differentiation to intracellular amastigotes. Immunofluorescence and co-immunoprecipitation studies demonstrate that LmjPRMT7 is a cytosolic protein associated with several RNA-binding proteins (RBPs) from which Alba20 is monomethylated only in LmjPRMT7-expressing promastigote stages. In addition, Alba20 protein levels are significantly altered in stationary promastigotes of the LmjPRMT7 knockout mutant. Considering RBPs are well-known mammalian PRMT substrates, our data suggest that arginine methylation via LmjPRMT7 may modulate RBP function during Leishmania spp. lifecycle progression. Importantly, genomic deletion of the LmjPRMT7 gene leads to an increase in parasite infectivity both in vitro and in vivo, while lesion progression is significantly reduced in LmjPRMT7-overexpressing parasites. This study is the first to describe a role of Leishmania protein arginine methylation in host-parasite interactions.
Collapse
Affiliation(s)
- Tiago R Ferreira
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Proteomic analysis of metacyclogenesis in Leishmania infantum wild-type and PTR1 null mutant. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Proteomic analysis of the soluble proteomes of miltefosine-sensitive and -resistant Leishmania infantum chagasi isolates obtained from Brazilian patients with different treatment outcomes. J Proteomics 2014; 108:198-208. [DOI: 10.1016/j.jprot.2014.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 01/12/2023]
|
21
|
Magalhães RDM, Duarte MC, Mattos EC, Martins VT, Lage PS, Chávez-Fumagalli MA, Lage DP, Menezes-Souza D, Régis WCB, Manso Alves MJ, Soto M, Tavares CAP, Nagen RAP, Coelho EAF. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 2014; 8:e2764. [PMID: 24699271 PMCID: PMC3974679 DOI: 10.1371/journal.pntd.0002764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background The present study analyzed whether or not the in vitro cultivation for long periods of time of pre-isolated Leishmania amazonensis from lesions of chronically infected BALB/c mice was able to interfere in the parasites' infectivity using in vivo and in vitro experiments. In addition, the proteins that presented a significant decrease or increase in their protein expression content were identified applying a proteomic approach. Methodology/Principal Findings Parasites were cultured in vitro for 150 days. Aliquots were collected on the day 0 of culture (R0), as well as after ten (R10; 50 days of culture), twenty (R20; 100 days of culture), and thirty (R30; 150 days of culture) passages, and were used to analyze the parasites' in vitro and in vivo infectivity, as well as to perform the proteomic approach. Approximately 837, 967, 935, and 872 spots were found in 2-DE gels prepared from R0, R10, R20, and R30 samples, respectively. A total of 37 spots presented a significant decrease in their intensity of expression, whereas a significant increase in protein content during cultivation could be observed for 19 proteins (both cases >2.0 folds). Some of these identified proteins can be described, such as diagnosis and/or vaccine candidates, while others are involved in the infectivity of Leishmania. It is interesting to note that six proteins, considered hypothetical in Leishmania, showed a significant decrease in their expression and were also identified. Conclusions/Significance The present study contributes to the understanding that the cultivation of parasites over long periods of time may well be related to the possible loss of infectivity of L. amazonensis. The identified proteins that presented a significant decrease in their expression during cultivation, including the hypothetical, may also be related to this loss of parasites' infectivity, and applied in future studies, including vaccine candidates and/or immunotherapeutic targets against leishmaniasis. Leishmania amazonensis can induce a diversity of clinical manifestations in mammal hosts, including tegumentary and visceral leishmaniasis. The present study evaluated the variation of infectivity of L. amazonensis, which was pre-isolated from lesions of chronically infected mice and in vitro cultured for 150 days, in turn connecting these results with the profile of parasite protein expression using a proteomic approach. Parasites were recovered after the first passage, as well as after 50, 100, and 150 days of axenic cultures, and were subsequently evaluated. A total of 37 proteins presented a significant decrease, whereas 19 proteins presented a significant increase in their protein expression content in the assays (both cases >2.0 fold). Some of the identified proteins have been reported in prior literature, including diagnosis and/or vaccine candidates for leishmaniasis, while others proved to be involved in the infectivity of Leishmania. It is interesting to note that proteins related to the parasites' metabolism were also the majority of the proteins identified in the old cultures of L. amazonensis, suggesting a possible relation between the metabolic state of parasites and their possible loss of infectivity. In conclusion, the proteins identified in this study represent a contribution to the discovery of new vaccine candidates and/or immunotherapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Rubens D. M. Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vivian T. Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P. Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wiliam C. B. Régis
- Departamento de Bioquímica, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Maria J. Manso Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A. P. Nagen
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
22
|
Ramírez C, Dea-Ayuela M, Gutiérrez-Blázquez M, Bolas-Fernández F, Requena J, Puerta C. Identification of proteins interacting with HSP70 mRNAs in Leishmania braziliensis. J Proteomics 2013; 94:124-37. [DOI: 10.1016/j.jprot.2013.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/09/2013] [Accepted: 09/11/2013] [Indexed: 01/02/2023]
|
23
|
Abstract
SIGNIFICANCE Parasitic infections continue to be a major problem for global human health. Vaccines are practically not available and chemotherapy is highly unsatisfactory. One approach toward a novel antiparasitic drug development is to unravel pathways that may be suited as future targets. Parasitic organisms show a remarkable diversity with respect to the nature and functions of their main low-molecular-mass antioxidants and many of them developed pathways that do not have a counterpart in their mammalian hosts. RECENT ADVANCES Work of the last years disclosed the individual antioxidants employed by parasites and their distinct pathways. Entamoeba, Trichomonas, and Giardia directly use cysteine as main low-molecular-mass thiol but have divergent cysteine metabolisms. Malarial parasites rely exclusively on cysteine uptake and generate glutathione (GSH) as main free thiol as do metazoan parasites. Trypanosomes and Leishmania have a unique trypanothione-based thiol metabolism but employ individual mechanisms for their cysteine supply. In addition, some trypanosomatids synthesize ovothiol A and/or ascorbate. Various essential parasite enzymes such as trypanothione synthetase and trypanothione reductase in Trypanosomatids and the Schistosoma thioredoxin GSH reductase are currently intensively explored as drug target molecules. CRITICAL ISSUES Essentiality is a prerequisite but not a sufficient property of an enzyme to become a suited drug target. The availability of an appropriate in vivo screening system and many other factors are equally important. FUTURE DIRECTIONS The current organism-wide RNA-interference and proteome analyses are supposed to reveal many more interesting candidates for future drug development approaches directed against the parasite antioxidant defense systems.
Collapse
|
24
|
Brotherton MC, Racine G, Ouameur AA, Leprohon P, Papadopoulou B, Ouellette M. Analysis of membrane-enriched and high molecular weight proteins in Leishmania infantum promastigotes and axenic amastigotes. J Proteome Res 2012; 11:3974-85. [PMID: 22716046 DOI: 10.1021/pr201248h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane and high molecular weight (HMW) proteins tend to be underrepresented in proteome analyses. Here, we optimized a protocol designed for the extraction and purification of membranes from the protozoan parasite Leishmania using a combination of serial centrifugation and free-flow zone electrophoresis (ZE-FFE). We also enriched for Leishmania HMW proteins from total extracts using the Gelfree 8100 fractionation system. This allowed the study of expression of both membrane-enriched and HMW proteins in Leishmania infantum promastigotes and amastigotes. We identified 194 proteins with at least one transmembrane domain (TMD) and 171 HMW proteins (≥100 kDa) in the invertebrate promastigote stage and 66 proteins with at least one TMD and 154 HMW proteins in the mammalian amastigote stage. Several of the proteins identified in one of the stages are part of pathways consistent with the known biology of the parasite, with many proteins involved in lipid synthesis, numerous dynein heavy chains, and some surface antigen proteins 2 detected in the promastigote stage. Notably, some proteins involved in transport and proteolysis were detected either in promastigote or amastigote. The present study is using improved proteomic methods for studying membrane-enriched and HMW proteins helping to achieve a better understanding of the parasite life cycle.
Collapse
Affiliation(s)
- Marie-Christine Brotherton
- Centre de Recherche en Infectiologie, Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Abánades DR, Arruda LV, Arruda ES, Pinto JRAS, Palma MS, Aquino D, Caldas AJ, Soto M, Barral A, Barral-Netto M. Immunodominant antigens of Leishmania chagasi associated with protection against human visceral leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1687. [PMID: 22724032 PMCID: PMC3378602 DOI: 10.1371/journal.pntd.0001687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Protection and recovery from visceral leishmaniasis (VL) have been associated with cell-mediated immune (CMI) responses, whereas no protective role has been attributed to humoral responses against specific parasitic antigens. In this report, we compared carefully selected groups of individuals with distinct responses to Leishmania chagasi to explore antigen-recognizing IgG present in resistant individuals. METHODOLOGY AND PRINCIPAL FINDINGS VL patients with negative delayed-type hypersensitivity (DTH) were classified into the susceptible group. Individuals who had recovered from VL and converted to a DTH+ response, as well as asymptomatic infected individuals (DTH+), were categorized into the resistant group. Sera from these groups were used to detect antigens from L. chagasi by conventional and 2D Western blot assays. Despite an overall reduction in the reactivity of several proteins after DTH conversion, a specific group of proteins (approximately 110-130 kDa) consistently reacted with sera from DTH converters. Other antigens that specifically reacted with sera from DTH+ individuals were isolated and tandem mass spectrometry followed by database query with the protein search engine MASCO were used to identify antigens. The serological properties of recombinant version of the selected antigens were tested by ELISA. Sera from asymptomatic infected people (DTH+) reacted more strongly with a mixture of selected recombinant antigens than with total soluble Leishmania antigen (SLA), with less cross-reactivity against Chagas disease patients' sera. SIGNIFICANCE Our results are the first evidence of leishmania proteins that are specifically recognized by sera from individuals who are putatively resistant to VL. In addition, these data highlight the possibility of using specific proteins in serological tests for the identification of asymptomatic infected individuals.
Collapse
Affiliation(s)
- Daniel R. Abánades
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Leonardo V. Arruda
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Elaine S. Arruda
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - José Roberto A. S. Pinto
- Center of the Study of Social Insects, Institute of Biosciences of Rio Claro, Department of Biology, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Mario S. Palma
- Center of the Study of Social Insects, Institute of Biosciences of Rio Claro, Department of Biology, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Dorlene Aquino
- Departamento de Enfermagem, Universidade Federal do Maranhão, São Luis, Maranhão, Brazil
| | - Arlene J. Caldas
- Departamento de Enfermagem, Universidade Federal do Maranhão, São Luis, Maranhão, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
26
|
Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol 2012; 183:166-76. [PMID: 22449941 DOI: 10.1016/j.molbiopara.2012.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 12/19/2022]
Abstract
The rate of treatment failure to antileishmanial chemotherapy in Latin America is up to 64%. Parasite drug resistance contributes to an unknown proportion of treatment failures. Identification of clinically relevant molecular mechanisms responsible for parasite drug resistance is critical to the conservation of available drugs and to the discovery of novel targets to reverse the resistant phenotype. We conducted comparative proteomic-based analysis of Leishmania (Viannia) panamensis lines selected in vitro for resistance to trivalent antimony (Sb(III)) to identify factors associated with antimony resistance. Using 2-dimensional gel electrophoresis, two distinct sub-proteomes (soluble in NP-40/urea and Triton X-114, respectively) of promastigotes of WT and Sb(III)-resistant lines were generated. Overall, 9 differentially expressed putative Sb-resistance factors were detected and identified by mass spectrometry. These constituted two major groups: (a) proteins involved in general stress responses and (b) proteins with highly specific metabolic and transport functions, potentially directly contributing to the Sb-resistance mechanism. Notably, the sulfur amino acid-metabolizing enzymes S-adenosylmethionine synthetase (SAMS) and S-adenosylhomocysteine hydrolase (SAHH) were over-expressed in Sb(III)-resistant lines and Sb(III)-resistant clinical isolates. These enzymes play a central role in the upstream synthesis of precursors of trypanothione, a key molecule involved in Sb-resistance in Leishmania parasites, and suggest involvement of epigenetic regulation in response to drug exposure. These data re-enforce the importance of thiol metabolism in Leishmania Sb resistance, reveal previously unrecognized steps in the mechanism(s) of Sb tolerance, and suggest a cross-talk between drug resistance, metabolism and virulence.
Collapse
|
27
|
Leishmania donovani: proteasome-mediated down-regulation of methionine adenosyltransferase. Parasitology 2011; 138:1082-92. [DOI: 10.1017/s0031182011000862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SUMMARYMethionine adenosyltransferase (MAT) is an important enzyme for metabolic processes, to the extent that its product, S-adenosylmethionine (AdoMet), plays a key role intrans-methylation,trans-sulphuration and polyamine synthesis. Previous studies have shown that a MAT-overexpressing strain ofLeishmania donovanicontrols AdoMet production, keeping the intracellular AdoMet concentration at levels that are compatible with cell survival. This unexpected result, together with the fact that MAT activity and abundance changed with time in culture, suggests that different regulatory mechanisms acting beyond the post-transcriptional level are controlling this protein. In order to gain an insight into these mechanisms, several experiments were carried out to explain the MAT abundance during promastigote cell growth. Determination of MAT turnover in cycloheximide (CHX)-treated cultures resulted in a surprising 5-fold increase in MAT turnover compared to CHX-untreated cultures. This increase agrees with a stabilization of the MAT protein, whose integrity was maintained during culture. The presence of proteasome inhibitors, namely MG-132, MG-115, epoxomycin and lactacystin in the culture medium prevented MAT degradation in both MAT-overexpressing and ‘mock-transfected’ leishmanial strains. The role of the ubiquitin (Ub) pathway in MAT down-regulation was supported using immunoprecipitation experiments. Immunoprecipitated MAT cross-reacted with anti-Ub antibodies, which provides evidence of a proteasome-mediated down-regulation of the leishmanial MAT abundance.
Collapse
|
28
|
Paape D, Aebischer T. Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics 2011; 74:1614-24. [PMID: 21621022 DOI: 10.1016/j.jprot.2011.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
Leishmania spp., protozoan parasites with a digenetic life cycle, cause a spectrum of diseases in humans. Recently several Leishmania spp. have been sequenced which significantly boosted the number and quality of proteomic studies conducted. Here a historic review will summarize work of the pre-genomic era and then focus on studies after genome information became available. Firstly works comparing the different life cycle stages, in order to identify stage specific proteins, will be discussed. Identifying post-translational modifications by proteomics especially phosphorylation events will be discussed. Further the contribution of proteomics to the understanding of the molecular mechanism of drug resistance and the investigation of immunogenic proteins for the identification of vaccine candidates will be summarized. Approaches of how potentially secreted proteins were identified are discussed. So far 30-35% of the total predicted proteome of Leishmania spp. have been identified. This comprises mainly the abundant proteins, therefore the last section will look into technological approaches on how this coverage may be increased and what the gel-free and gel-based proteomics have to offer will be compared.
Collapse
Affiliation(s)
- Daniel Paape
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, YO10 5DD, UK.
| | | |
Collapse
|
29
|
Brotherton MC, Racine G, Foucher AL, Drummelsmith J, Papadopoulou B, Ouellette M. Analysis of Stage-Specific Expression of Basic Proteins in Leishmania infantum. J Proteome Res 2010; 9:3842-53. [DOI: 10.1021/pr100048m] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marie-Christine Brotherton
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Gina Racine
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Aude L. Foucher
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jolyne Drummelsmith
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
30
|
Dridi L, Ahmed Ouameur A, Ouellette M. High affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem 2010; 285:19767-75. [PMID: 20406813 PMCID: PMC2888387 DOI: 10.1074/jbc.m110.114520] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms.
Collapse
Affiliation(s)
- Larbi Dridi
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Amin Ahmed Ouameur
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Marc Ouellette
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| |
Collapse
|
31
|
Abstract
The post-genomics era has provided researchers with access to a new generation of tools for the global characterization and understanding of pathogen diversity. This review provides a critical summary of published Leishmania post-genomic research efforts to date, and discusses the potential impact of the addition of metabolomics to the post-genomic toolbox. Metabolomics aims at understanding biology by comprehensive metabolite profiling. We present an overview of the design and interpretation of metabolomics experiments in the context of Leishmania research. Sample preparation, measurement techniques, and bioinformatics analysis of the generated complex datasets are discussed in detail. To illustrate the concepts and the expected results of metabolomics analyses, we also present an overview of comparative metabolic profiles of drug-sensitive and drug-resistant Leishmania donovani clinical isolates.
Collapse
|
32
|
Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics 2010; 73:845-67. [PMID: 20056176 DOI: 10.1016/j.jprot.2009.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 12/18/2009] [Indexed: 12/31/2022]
Abstract
Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei are protozoan parasites that cause a spectrum of fatal human diseases around the world. Recent completion of the genomic sequencing of these parasites has enormous relevance to the study of their biology and the pathogenesis of the diseases they cause because it opens the door to high-throughput proteomic technologies. This review encompasses studies using diverse proteomic approaches with these organisms to describe and catalogue global protein profiles, reveal changes in protein expression during development, elucidate the subcellular localisation of gene products, and evaluate host-parasite interactions.
Collapse
Affiliation(s)
- Patricia Cuervo
- Laboratorio de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
33
|
Sharma S, Singh G, Chavan HD, Dey CS. Proteomic analysis of wild type and arsenite-resistant Leishmania donovani. Exp Parasitol 2009; 123:369-76. [DOI: 10.1016/j.exppara.2009.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 06/23/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
|
34
|
El Fadili K, Drummelsmith J, Roy G, Jardim A, Ouellette M. Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Exp Parasitol 2009; 123:51-7. [PMID: 19500579 DOI: 10.1016/j.exppara.2009.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 12/01/2022]
Abstract
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials, but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory promastigote isolates, but the mechanism leading to drug resistance in amastigote isolates is lagging behind. Here we describe a comparative proteomic analysis of a genetically related pair of antimonial-sensitive and -resistant Leishmania infantum axenic amastigote strains. The proteomics screen has highlighted a number of proteins differentially expressed in the resistant parasite. The expression of the protein argininosuccinate synthetase (ARGG) was increased in the drug resistant mutant while a decrease in the expression of the kinetoplastid membrane protein (KMP-11) correlated with the drug resistance phenotype. This proteomic screen highlighted several novel proteins that are putatively involved in resistance to antimonials.
Collapse
Affiliation(s)
- Karima El Fadili
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUQ and Division de Microbiologie, Faculté de Médecine, Université Laval, Que., Canada G1V 4G2
| | | | | | | | | |
Collapse
|
35
|
Vaidyanathan R, Kodukula K. Using a systems biology approach to dissect parasite-host interactions. Drug Dev Res 2009. [DOI: 10.1002/ddr.20307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Ubeda JM, Légaré D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B, Ouellette M. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 2008; 9:R115. [PMID: 18638379 PMCID: PMC2530873 DOI: 10.1186/gb-2008-9-7-r115] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/06/2008] [Accepted: 07/18/2008] [Indexed: 12/02/2022] Open
Abstract
Gene expression and DNA copy number analyses using full genome oligonucleotide microarrays of Leishmania reveal molecular mechanisms of methotrexate resistance. Background Drug resistance can be complex, and several mutations responsible for it can co-exist in a resistant cell. Transcriptional profiling is ideally suited for studying complex resistance genotypes and has the potential to lead to novel discoveries. We generated full genome 70-mer oligonucleotide microarrays for all protein coding genes of the human protozoan parasites Leishmania major and Leishmania infantum. These arrays were used to monitor gene expression in methotrexate resistant parasites. Results Leishmania is a eukaryotic organism with minimal control at the level of transcription initiation and few genes were differentially expressed without concomitant changes in DNA copy number. One exception was found in Leishmania major, where the expression of whole chromosomes was down-regulated. The microarrays highlighted several mechanisms by which the copy number of genes involved in resistance was altered; these include gene deletion, formation of extrachromosomal circular or linear amplicons, and the presence of supernumerary chromosomes. In the case of gene deletion or gene amplification, the rearrangements have occurred at the sites of repeated (direct or inverted) sequences. These repeats appear highly conserved in both species to facilitate the amplification of key genes during environmental changes. When direct or inverted repeats are absent in the vicinity of a gene conferring a selective advantage, Leishmania will resort to supernumerary chromosomes to increase the levels of a gene product. Conclusion Aneuploidy has been suggested as an important cause of drug resistance in several organisms and additional studies should reveal the potential importance of this phenomenon in drug resistance in Leishmania.
Collapse
Affiliation(s)
- Jean-Michel Ubeda
- Université Laval, Division de Microbiologie, Centre de Recherche en Infectiologie, boulevard Laurier, Québec, G1V 4G2, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Utilization of pharmacogenomic information has the potential to significantly improve treatment outcome and markedly reduce the rate of attrition of drugs in clinical development. A major gap that limits our ability to utilize pharmacogenomic information in drug discovery, drug development or clinical practice is that we often do not know the genetic variants responsible for inter-individual differences in drug metabolism or drug response. We examine emerging genomic methods that can fill this gap; these methods can be used to generate new information about drug metabolism or mechanism of action, or to identify predictors of drug response. Although they have not yet had their full impact, a wider application of these emerging genomic technologies has the potential to significantly improve the safety of drugs, the quality of patient care and the efficiency of clinical drug development.
Collapse
Affiliation(s)
- Guochun Liao
- Department of Genetics & Genomics, Roche Palo Alto, Palo Alto, California 94304-1397, USA
| | | | | | | |
Collapse
|
38
|
Handman E, Kedzierski L, Uboldi AD, Goding JW. Fishing for anti-leishmania drugs: principles and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:48-60. [PMID: 18365658 DOI: 10.1007/978-0-387-77570-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To date, there are no vaccines against any of the major parasitic diseases including leishmaniasis, and chemotherapy is the main weapon in our arsenal. Current drugs are toxic and expensive, and are losing their effectiveness due to parasite resistance. The availability of the genome sequence of two species of Leishmania, Leishmania major and Leishmania infantum, as well as that of Trypanosoma brucei and Trypanosoma cruzi should provide a cornucopia of potential new drug targets. Their exploitation will require a multi-disciplinary approach that includes protein structure and function and high throughput screening of random and directed chemical libraries, followed by in vivo testing in animals and humans. We outline the opportunities that are made possible by recent technologies, and potential problems that need to be overcome.
Collapse
Affiliation(s)
- Emanuela Handman
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|
39
|
Reguera RM, Redondo CM, Pérez-Pertejo Y, Balaña-Fouce R. S-Adenosylmethionine in protozoan parasites: Functions, synthesis and regulation. Mol Biochem Parasitol 2007; 152:1-10. [PMID: 17196271 DOI: 10.1016/j.molbiopara.2006.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
S-adenosylmethionine is one of the most frequently used enzymatic substrates in all living organisms. It plays a role in all biological methyl transfer reactions in as much as it is a donor of propylamine groups in the synthesis of the polyamines spermidine and spermine, it participates in the trans-sulphuration pathway to cysteine one of the three amino acids involved in glutathione and trypanothione synthesis in trypanosomatids and finally it is a source of the 5-deoxyadenosyl radicals, which are involved in many reductive metabolic processes, biodegradative pathways, tRNA modification and DNA repair. This mini-review is an update of the progress on the S-adenosylmethionine synthesis in different representative protozoan parasites responsible for many of the most devastating so-called tropical diseases that have an enormous impact on global health.
Collapse
Affiliation(s)
- Rosa M Reguera
- Department of Pharmacology and Toxicology, University of León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | |
Collapse
|
40
|
Tsai CY, Pai PJ, Ho YH, Lu JF, Wang JS, Lin WY, Her GR. Rapid protein identification using a disposable on-line clean-up/concentrating device and electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:459-65. [PMID: 17221931 DOI: 10.1002/rcm.2857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A simple, low-cost, expedient method has been developed for identification of proteins isolated from two-dimensional (2D) gels. The method described uses a disposable on-line clean-up device, a syringe infusion pump and electrospray ionization mass spectrometry (ESI-MS). The on-line clean-up and concentrating device is a tapered capillary column filled with 1.5 cm of 5 microm C18 particles. The short column was easily prepared and was connected directly to the ESI source through a low-flow ESI sprayer. Peptides resulting from enzymatic digestion of proteins were eluted from the short column isocratically using a syringe infusion pump and analyzed by ESI-MS. This simple set-up was found useful in the analysis of proteins isolated from 2D gels. Compared to the more conventional micro-liquid chromatography/tandem mass spectrometry (microLC/MS/MS), this method can identify proteins rapidly without the need for an HPLC pump and removes the problem of cross-contamination caused by system carryover. These advantages make the method described competitive with conventional LC/MS even though the latter method gives slightly expanded sequence coverage.
Collapse
Affiliation(s)
- Chu-Yun Tsai
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
41
|
Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M. A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 2006; 6:88-101. [PMID: 17050524 DOI: 10.1074/mcp.m600319-mcp200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials (Sb(V)), but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory isolates, but our understanding of resistance in field isolates is lagging behind. We describe here a comparative analysis of a genetically related pair of Sb(V)-sensitive and -resistant Leishmania donovani strains isolated from kala-azar patients. The resistant isolate exhibited cross-resistance to other unrelated Leishmania drugs including miltefosine and amphotericin B. A comparative proteomics screen has highlighted a number of proteins differentially expressed suggesting that programmed cell death (PCD) is modified in the resistant parasite. Indeed drug-induced PCD progression was altered in the Sb(V)-resistant strain as determined using early and late markers of apoptosis. Two proteins, the heat shock protein HSP83 and the small kinetoplastid calpain-related protein (SKCRP14.1) were shown to be intimately implicated in the drug-induced PCD phenotype. HSP83 increased drug resistance and reduced drug-mediated PCD activation by interfering with the mitochondrial membrane potential, whereas SKCRP14.1 promoted antimonial-induced PCD but protected against miltefosine-induced PCD. This study highlights the important role of PCD in drug susceptibility/resistance in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Baptiste Vergnes
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Vickers TJ, Orsomando G, de la Garza RD, Scott DA, Kang SO, Hanson AD, Beverley SM. Biochemical and genetic analysis of methylenetetrahydrofolate reductase in Leishmania metabolism and virulence. J Biol Chem 2006; 281:38150-8. [PMID: 17032644 DOI: 10.1074/jbc.m608387200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR; EC 1.5.1.20) is the sole enzyme responsible for generation of 5-methyltetrahydrofolate, which is required for methionine synthesis and provision of methyl groups via S-adenosylmethionine. Genome analysis showed that Leishmania species, unlike Trypanosoma brucei and Trypanosoma cruzi, contain genes encoding MTHFR and two distinct methionine synthases. Leishmania MTHFR differed from those in other eukaryotes by the absence of a C-terminal regulatory domain. L. major MTHFR was expressed in yeast and recombinant enzyme was produced in Escherichia coli. MTHFR was not inhibited by S-adenosylmethionine and, uniquely among folate-metabolizing enzymes, showed dual-cofactor specificity with NADH and NADPH under physiological conditions. MTHFR null mutants (mthfr(-)) lacked 5-methyltetrahydrofolate, the most abundant intracellular folate, and could not utilize exogenous homocysteine for growth. Under conditions of methionine limitation mthfr(-) mutant cells grew poorly, whereas their growth was normal in standard culture media. Neither in vitro MTHFR activity nor the growth of mthfr(-) mutants or MTHFR overexpressors were differentially affected by antifolates known to inhibit parasite growth via targets beyond dihydrofolate reductase and pteridine reductase 1. In a mouse model of infection mthfr(-) mutants showed good infectivity and virulence, indicating that sufficient methionine is available within the parasitophorous vacuole to meet the needs of the parasite.
Collapse
Affiliation(s)
- Tim J Vickers
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Subproteomic analysis of soluble proteins of the microsomal fraction from two Leishmania species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:300-8. [DOI: 10.1016/j.cbd.2006.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/26/2006] [Accepted: 05/27/2006] [Indexed: 01/17/2023]
|
44
|
Foucher AL, Papadopoulou B, Ouellette M. Prefractionation by digitonin extraction increases representation of the cytosolic and intracellular proteome of Leishmania infantum. J Proteome Res 2006; 5:1741-50. [PMID: 16823982 DOI: 10.1021/pr060081j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteome coverage is limited by the dynamic range of proteins present in a sample and often is confined to the analysis of abundant proteins. We have developed a protein prefractionation protocol, based on the differential solubilization of membranes using digitonin, that has allowed an increase in the resolution and depth of comparative proteomic studies. This prefractionation protocol can also be used to infer the subcellular localization of hypothetical proteins as tested experimentally using green fluorescent fusion proteins. The abundant tubulins and associated proteins of the cytoskeleton were removed from the sample using digitonin extraction, hence facilitating the visualization of lower abundance proteins. The digitonin prefractionation protocol was applied for a comparative proteomic analysis of the promastigote and amastigote life cycle stages of Leishmania infantum and has allowed the identification of novel proteins expressed in a stage-specific manner.
Collapse
Affiliation(s)
- Aude L Foucher
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, Sainte Foy, Québec, Canada
| | | | | |
Collapse
|
45
|
McNicoll F, Drummelsmith J, Müller M, Madore E, Boilard N, Ouellette M, Papadopoulou B. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 2006; 6:3567-81. [PMID: 16705753 DOI: 10.1002/pmic.200500853] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protozoan parasites of the genus Leishmania are found as promastigotes in the sandfly vector and as amastigotes in mammalian macrophages. Mechanisms controlling stage-regulated gene expression in these organisms are poorly understood. Here, we applied a comprehensive approach consisting of protein prefractionation, global proteomics and targeted DNA microarray analysis to the study of stage differentiation in Leishmania. By excluding some abundant structural proteins and reducing complexity, we detected and identified numerous novel differentially expressed protein isoforms in L. infantum. Using 2-D gels, over 2200 protein isoforms were visualized in each developmental stage. Of these, 6.1% were strongly increased or appeared unique in the promastigote stage, while the relative amounts of 12.4% were increased in amastigotes. Amastigote-specific protein isoform and mRNA expression trends correlated modestly (53%), while no correlation was found for promastigote-specific spots. Even where direction of regulation was similar, fold-changes were more modest at the RNA than protein level. Many proteins were present in multiple spots, suggesting that PTM is extensive in this organism. In several cases, different isoforms appeared to be specific to different life stages. Our results suggest that post-transcriptional controls at translational and post-translational levels could play major roles in differentiation in Leishmania parasites.
Collapse
Affiliation(s)
- François McNicoll
- Infectious Diseases Research Centre, CHUL Research Centre and Division of Microbiology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Foucher AL, McIntosh A, Douce G, Wastling J, Tait A, Turner CMR. A proteomic analysis of arsenical drug resistance in Trypanosoma brucei. Proteomics 2006; 6:2726-32. [PMID: 16526094 DOI: 10.1002/pmic.200500419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have undertaken 2-DE and MS to identify proteins associated with arsenical drug resistance in Trypanosoma brucei. This parasite causes sleeping sickness in humans, and arsenical drug resistance is a significant potential problem. Comparative analysis of approximately 2000 spots resolved by 2-DE in the soluble proteomes of drug-sensitive and drug-resistant isogenic lines of T. brucei identified a protein spot whose absence associated with resistance to the arsenical drug, Cymelarsan. MS matched this protein to an identical pair of tandem genes Tb09.211.0120 and 0130 that encode a putative nascent polypeptide associated complex subunit. This protein also occurs as an isoform located in both resistant and sensitive lines at a similar molecular weight, but different pI. The difference between isogenic lines was confirmed by Western blot using an antibody against recombinant protein. Both genes were identical in sequence between drug-sensitive and drug-resistant lines and both were transcribed as determined by RT-PCR. We postulate that the missing protein isoform arose due to the lack of a PTM.
Collapse
Affiliation(s)
- Aude L Foucher
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
47
|
Kissinger JC. A tale of three genomes: the kinetoplastids have arrived. Trends Parasitol 2006; 22:240-3. [PMID: 16635586 DOI: 10.1016/j.pt.2006.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/15/2006] [Accepted: 04/04/2006] [Indexed: 01/23/2023]
Abstract
July 2005 marked a milestone in kinetoplastid biology research. A tour de force effort led by the Tri-Trypanosomatidae "Tritryp" genome consortium yielded the publication of three prominent kinetoplastid parasite genome sequences: Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. The individual and combined comparative analyses of these three genome sequences, combined with proteomic analyses, have yielded insights into topics ranging from genome evolution and horizontal gene transfer to potential new therapeutic and vaccine targets.
Collapse
Affiliation(s)
- Jessica C Kissinger
- Department of Genetics and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30606, USA.
| |
Collapse
|
48
|
Walker J, Vasquez JJ, Gomez MA, Drummelsmith J, Burchmore R, Girard I, Ouellette M. Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol 2006; 147:64-73. [PMID: 16530278 DOI: 10.1016/j.molbiopara.2006.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/16/2005] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
We have employed proteomics to identify proteins upregulated in the amastigote life-stage of Leishmaniapanamensis, using axenically-differentiated forms as models of authentic intracellular parasites. Resolution of the soluble proteomes of axenic amastigotes and promastigotes by two-dimensional electrophoresis (2DE) in the neutral pI range (5-7) revealed equivalent numbers of protein spots in both life-stages (644-682 using Coomassie Blue and 851-863 by silver staining). Although representing a relatively low proportion (8.1-10.8%) of the predicted 8000 gene products of Leishmania, these proteome maps enabled the reproducible detection of 75 differentially-regulated protein spots in amastigotes, comprising 24 spots "uniquely" expressed in this life-stage and 51 over-expressed by 1.2-5.7-fold compared to promastigotes. Of the 11 amastigote-specific spots analysed by mass spectrometry (MS), 5 yielded peptide sequences with no orthologues in Leishmania major, and the remaining 6 were identified as 7 distinct proteins (some of which were truncated isoforms) representing several functional classes: carbohydrate/energy metabolism (fructose 1,6-bisphosphate aldolase, glucose 6-phosphate dehydrogenase, pyruvate dehydrogenase), stress response (heat shock protein [HSP] 83), cell membrane/cytoskeleton (beta-tubulin), amino acid metabolism (cysteine synthase) and cell-cycle (ran-binding protein). Four additional over-expressed spots were tentatively identified as HSPs 60 and 70 and HSP 70-related proteins -1 and -4 by positional analogy with these landmark proteins in the Leishmania guyanensis proteome. Our data demonstrate the feasibility of proteomics as an approach to identify novel developmentally-regulated proteins linked to Leishmania differentiation and intracellular survival, while simultaneously pinpointing therapeutic targets. In particular, the amastigote-specific expression of cysteine synthase underlines the importance of de novo cysteine synthesis both as a potential parasite virulence factor and as a major metabolic difference from mammalian host cells.
Collapse
Affiliation(s)
- John Walker
- Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Avenida 1 Norte No. 3-03, Cali, Colombia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen S. Rapid protein identification using direct infusion nanoelectrospray ionization mass spectrometry. Proteomics 2006; 6:16-25. [PMID: 16294305 DOI: 10.1002/pmic.200500043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current protein identification techniques are largely based on MALDI-TOF mass fingerprinting and LC-ESI MS/MS sequence tag analysis. Here we describe an improved method for rapid protein identification that uses direct infusion nanoelectrospray quadrupole time-of-flight (nanoESI QTOF) MS. Protein digests were analyzed without LC separation using nanoESI on a QSTAR XL MS/MS system in information dependent data acquisition mode. The protein identification conditions and parameters were extensively evaluated with in-solution and in-gel digested protein samples. Rapid identification of proteins was achieved and compared directly to the results obtained on the same samples using nanoflow HPLC-MS/MS on the QSTAR system. The increased throughput, reproducibility, the high data quality, and the ease of use make the direct infusion system an efficient and affordable technique for protein identification analysis.
Collapse
Affiliation(s)
- Sixue Chen
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63146, USA.
| |
Collapse
|
50
|
Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 2005; 57:1690-9. [PMID: 16135234 DOI: 10.1111/j.1365-2958.2005.04782.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimonial-containing drugs are the first line of treatment against the parasite Leishmania. Resistance to antimonials has been correlated to its reduced accumulation. We used a dominant negative functional cloning strategy where a Leishmania mexicana expression cosmid bank was transfected in cells resistant to trivalent antimony (SbIII). Cells were selected for increased sensitivity to SbIII. One cosmid was isolated that could bestow SbIII sensitivity to resistant cells. The gene part of this cosmid that is responsible for increased SbIII sensitivity corresponds to AQP1, an aquaglyceroporin. AQP1 was recently shown to be a route by which SbIII can accumulate in Leishmania cells. Transport studies have shown that the L. mexicana AQP1 can restore SbIII transport in resistant cells. Southern blot analysis indicated that the copy number of neither the AQP1 gene nor the other AQP homologues was changed in antimony-resistant mutants of several Leishmania species. The AQP1 gene sequence was also unchanged in mutants. However, the AQP1 RNA levels were downregulated in several Leishmania promastigote species resistant to antimonials. In general, but not always, the level of AQP1 transcript levels correlated well with the accumulation of SbIII and resistance levels in Leishmania cells. AQP1 thus appears to be a key determinant of antimonials accumulation and susceptibility in Leishmania.
Collapse
Affiliation(s)
- Nathalie Marquis
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|