1
|
Xia F, Duan Q, Zhang Q, Feng W, Ding D, Ji DK, Wang X, Tan W. Self-assembled aptamer nanoparticles for enhanced recognition and anticancer therapy through a lysosome-independent pathway. Acta Biomater 2025; 194:364-372. [PMID: 39863148 DOI: 10.1016/j.actbio.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Aptamers and aptamer-drug conjugates (ApDCs) have shown some success as targeted therapies in cancer theranostics. However, their stability in complex media and their capacity to evade lysosomal breakdown still need improvement. To address these challenges, we herein developed a one-step self-assembly strategy to improve the stability of aptamers or ApDCs, while simultaneously enhancing their delivery performance and therapeutic efficiency through a lysosome-independent pathway. This strategy involves the formation of stable complexes between disulfide monomer and aptamers (Sgc8) or ApDCs (Gem-Sgc8). Self-assembled Sgc8 NPs resisted nuclease degradation for up to 24 h, whereas the aptamer alone degraded within just 3 h. These self-assembled Sgc8 NPs, as well as Gem-Sgc8 NPs, demonstrated enhanced binding capabilities compared to Sgc8 aptamers or Gem-Sgc8 alone. Furthermore, lysosome-independent cellular uptake was significantly improved, which in turn increased the therapeutic efficacy of Gem-Sgc8 NPs by 2.5 times compared to Gem-Sgc8 alone. In vivo results demonstrated that Gem-Sgc8 NPs can effectively suppress the growth of tumors. The same self-assembly strategy was successfully applied to other aptamers, such as MJ5C and cMET, showing the generalizability of our method, Overall, this aptamer self-assembly strategy not only overcomes the limitations associated with instability and lysosomal degradation but also demonstrates its broad applicability, highlighting its potential as a promising avenue for advancing targeted cancer theranostics. STATEMENT OF SIGNIFICANCE: We developed a one-step self-assembly strategy to improve the stability of aptamers or ApDCs and enhance their drug therapeutic efficiency through a lysosome-independent pathway. The stability of self-assembled Sgc8 nanoparticles (NPs) was significantly improved. The resulting Sgc8 NPs or GEM-Sgc8 NPs exhibited enhanced binding ability compared to Sgc8 aptamers or GEM-Sgc8 alone, and they also facilitated lysosome-independent cellular uptake, resulting in a 2.5-fold increase in therapeutic efficacy of GEM-Sgc8-NPs. The same self-assembly strategy was successfully applied to other aptamers, such as MJ5C and cMET, showing the generalizability of our method.
Collapse
Affiliation(s)
- Fangfang Xia
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qiao Duan
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Qing Zhang
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenqi Feng
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ding Ding
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ding-Kun Ji
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Xiang Wang
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Weihong Tan
- Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, PR China.
| |
Collapse
|
2
|
Liu XY, Tong JF, Li MY, Li LF, Cai WW, Li JQ, Wang LH, Sun MJ. Progress in application of cyclic single-stranded nucleic acids. J Biotechnol 2024; 393:140-148. [PMID: 39067578 DOI: 10.1016/j.jbiotec.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cyclic nucleic acids are biologically stable against nucleic acid exonucleases due to the absence of 5' and 3' termini. Studies of cyclic nucleic acids mainly focus on cyclic single-stranded nucleic acids. Cyclic single-stranded nucleic acids are further divided into circular RNA (circRNA) and circular single-stranded DNA (cssDNA). The synthesis methods of circRNA include lasso-driven cyclization, intron-paired cyclization, intron cyclization, intron complementary pairing-driven cyclization, RNA-binding protein-driven cyclization, and artificial synthesis depending on the source. Its main role is to participate in gene expression and the treatment of some diseases. Circular single-stranded DNA is mainly synthesized by chemical ligation, template-directed enzyme ligation, and new techniques for the efficient preparation of DNA single loops and topologies based on CircLigase. It is mainly used in rolling circle amplification (RCA) technology and in the bioprotection of circular aptamers and second messengers. This review focuses on the types, synthesis methods, and applications of cyclic single-stranded nucleic acids, providing a reference for further research on cyclic single-stranded nucleic acids.
Collapse
Affiliation(s)
- Xin-Yang Liu
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Jian-Fei Tong
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Ming-Yang Li
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Lian-Fang Li
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Wen-Wei Cai
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Liang-Hua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China.
| | - Ming-Juan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China.
| |
Collapse
|
3
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Zhang XJ, Zhao Z, Wang X, Su MH, Ai L, Li Y, Yuan Q, Wang XQ, Tan W. A versatile strategy for convenient circular bivalent functional nucleic acids construction. Natl Sci Rev 2023; 10:nwac107. [PMID: 36960313 PMCID: PMC10029841 DOI: 10.1093/nsr/nwac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Functional nucleic acids (FNAs), such as aptamers, nucleic acid enzymes and riboswitches play essential roles in various fields of life sciences. Tailoring of ingenious chemical moieties toward FNAs can enhance their biomedical properties and/or confer them with exogenic biological functions that, in turn, can considerably expand their biomedical applications, or even improve their clinical translations. Herein, we report the first example of a general chemical tailoring strategy that enables the divergent ligation of DNA sequences. By applying this technology, different types of aptamers and single-stranded nucleic acids of various lengths could be efficiently tailored to deliver the designed circular bivalent aptamers (CBApts) and cyclized DNA sequences with high yields. It is worth noting that CBApts exhibited significantly enhanced nuclease resistance, as well as considerably improved binding, targeting and tumor tissue enrichment abilities, which may pave the way for different investigations for biomedical purposes.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zhuo Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xia Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Min-Hui Su
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | | | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
5
|
Li J, Zhang Z, Gu J, Amini R, Mansfield AG, Xia J, White D, Stacey HD, Ang JC, Panesar G, Capretta A, Filipe CDM, Mossman K, Salena BJ, Gubbay JB, Balion C, Soleymani L, Miller MS, Yamamura D, Brennan JD, Li Y. Three on Three: Universal and High-Affinity Molecular Recognition of the Symmetric Homotrimeric Spike Protein of SARS-CoV-2 with a Symmetric Homotrimeric Aptamer. J Am Chem Soc 2022; 144:23465-23473. [PMID: 36520671 PMCID: PMC9762500 DOI: 10.1021/jacs.2c09870] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/23/2022]
Abstract
Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 103 copies/mL. The ELABA was also used to test 50 SARS-CoV-2-positive and 60 SARS-CoV-2-negative patient saliva samples, providing sensitivity and specificity values of 84.0 and 98.3%, respectively, thus highlighting the potential of TMSA52 for the development of future rapid tests.
Collapse
Affiliation(s)
- Jiuxing Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Zijie Zhang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jimmy Gu
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Ryan Amini
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alexandria G. Mansfield
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jianrun Xia
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Dawn White
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Hannah D. Stacey
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jann C. Ang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gurpreet Panesar
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alfredo Capretta
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Carlos D. M. Filipe
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Karen Mossman
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Bruno J. Salena
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Cynthia Balion
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Leyla Soleymani
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Matthew S. Miller
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Deborah Yamamura
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Yingfu Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
6
|
Zhou F, Wang P, Chen J, Zhu Z, Li Y, Wang S, Wu S, Sima Y, Fu T, Tan W, Zhao Z. A photochemically covalent lock stabilizes aptamer conformation and strengthens its performance for biomedicine. Nucleic Acids Res 2022; 50:9039-9050. [PMID: 35993818 PMCID: PMC9458419 DOI: 10.1093/nar/gkac703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
Aptamers' vast conformation ensemble consisting of interconverting substates severely impairs their performance and applications in biomedicine. Therefore, developing new chemistries stabilizing aptamer conformation and exploring the conformation-performance relationship are highly desired. Herein, we developed an 8-methoxypsoralen-based photochemically covalent lock to stabilize aptamer conformation via crosslinking the inter-stranded thymine nucleotides at TpA sites. Systematical studies and molecular dynamics simulations were performed to explore the conformation-performance relationship of aptamers, revealing that conformation-stabilized aptamers displayed better ability to bind targets, adapt to physiological environment, resist macrophage uptake, prolong circulation half-life, accumulate in and penetrate into tumor than their counterparts. As expected, conformation-stabilized aptamers efficiently improved the therapeutic efficacy of aptamer-drug conjugation on tumor-bearing mice. Collectively, our study has developed a general, simple and economic strategy to stabilize aptamer conformation and shed light on the conformation-performance relationship of aptamers, laying a basis for promoting their basic researches and applications in biomedicine.
Collapse
Affiliation(s)
| | | | | | - Zhijia Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Youshan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sujuan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang 310022, China,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240, China
| | - Zilong Zhao
- To whom correspondence should be addressed. Tel: +86 731 88821894; Fax: +86 731 88821894;
| |
Collapse
|
7
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
8
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
9
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Beyond G-Quadruplexes-The Effect of Junction with Additional Structural Motifs on Aptamers Properties. Int J Mol Sci 2021; 22:ijms22189948. [PMID: 34576112 PMCID: PMC8466185 DOI: 10.3390/ijms22189948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
G-quadruplexes constitute an important type of nucleic acid structure, which can be found in living cells and applied by cell machinery as pivotal regulatory elements. Importantly, robust development of SELEX technology and modern, nucleic acid-based therapeutic strategies targeted towards various molecules have also revealed a large group of potent aptamers whose structures are grounded in G-quadruplexes. In this review, we analyze further extension of tetraplexes by additional structural elements and investigate whether G-quadruplex junctions with duplex, hairpin, triplex, or second G-quadruplex motifs are favorable for aptamers stability and biological activity. Furthermore, we indicate the specific and pivotal role of the G-quadruplex domain and the additional structural elements in interactions with target molecules. Finally, we consider the potency of G-quadruplex junctions in future applications and indicate the emerging research area that is still waiting for development to obtain highly specific and effective nucleic acid-based molecular tools.
Collapse
|
11
|
Ren H, Song L, Zhang W, Xu L. Synthesis, Stability, and Anti-Tumour Activity of a New Category of "Stapled" Antisense Oligonucleotides with Stimuli-Responsive Feature. J Pharm Sci 2021; 110:3166-3170. [PMID: 34102202 DOI: 10.1016/j.xphs.2021.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The development of nucleic acid drugs with unique structures and mechanisms has stimulated great research interest. Herein, we report a general strategy to construct "stapled" structures of single-stranded antisense oligonucleotides (ASONs) with a stimuli-responsive feature. "Stapled" cyclic structures can be synthesized with reactive bifunctional handles that react with thiol groups of phosphorothioate (PS)-modified ASONs, and can be alternatively adjusted depending on the desired PS sites in the ASON strand. The disulphide group in the stapled handle can be cleaved in the reducing microenvironment of tumour cells. Thus, "stapled" ASONs may be transformed back to a linear conformation to facilitate binding to target mRNAs. Stapling conferred protection against degradation, and enhanced anti-tumour activity compared to linear counterparts. This study provides a new, effective, and convenient strategy for designing ASONs with "stapled" structures, and also adds a further contribution to facilitate the stability and biological efficacy of novel nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Liya Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
12
|
Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang BT, Lu A, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9500-9519. [PMID: 32603135 DOI: 10.1021/acsami.0c05750] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aptamers are oligonucleotide sequences with a length of about 25-80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer-drug conjugates, and targeted delivery materials are comprehensively summarized.
Collapse
Affiliation(s)
- Shuaijian Ni
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Yu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Fangfei Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Jin Liu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Luyao Wang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Xiaoqiu Wu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Dijie Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Youyang Wan
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Aiping Lu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| |
Collapse
|
13
|
Lin M, Zhang J, Wan H, Yan C, Xia F. Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9369-9389. [PMID: 33146988 DOI: 10.1021/acsami.0c15644] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Specific interactions between ligands and receptors on cell surface play an important role in the cell biological process. Nucleic acid aptamers as commonly used ligands enable specific recognition and tight binding to membrane protein receptors for modulation of cell fate. Therefore, molecular probes with aptamers can be applied for cancer diagnosis and targeted therapy by targeting overexpression membrane proteins of cancer cells. However, because of their fast degradation and rapid glomerulus clearance in vivo, the applications of aptamers in physiological conditions remain challenged. Inspired by natural multivalent interactions, many approaches have been developed to construct multivalent aptamers to improve the performance of aptamers in complex matrices with higher binding affinity, more stability, and longer circulation time. In this review, we first introduce the aptamer generation from purified protein-based SELEX and whole cell-based SELEX for targeting the cell surface. We then highlight the approaches to fabricate multivalent aptamers and discuss their properties. By integrating different materials (including inorganic nanomaterials, diacyllipid, polymeric nanoparticles, and DNA nanostructures) as scaffolds with an interface modification technique, we have summarized four kinds of multivalent aptamers. After that, representative applications in biosensing and targeted therapy are illustrated to show the elevated performance of multivalent aptamers. In addition, we analyze the challenges and opportunities for the clinical practices of multivalent aptamers.
Collapse
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chengyang Yan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
14
|
Li Q, Zhang S, Li W, Ge Z, Fan C, Gu H. Programming CircLigase Catalysis for DNA Rings and Topologies. Anal Chem 2020; 93:1801-1810. [PMID: 33382236 DOI: 10.1021/acs.analchem.0c04668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular single-stranded (ss) DNA is an essential element in rolling circle amplification and many DNA nanotechnology constructions. It is commonly synthesized from linear ssDNA by a ligase, which nevertheless suffers from low and inconsistent efficiency due to the simultaneous formation of concatemeric byproducts. Here, we design an intramolecular terminal hybridization strategy to program the ring formation catalytic process of CircLigase, a thermostable RNA ligase 1 that can ligate ssDNA in an intramolecular fashion. With the enthalpy gained from the programmed hybridization to override disfavored entropic factors associated with end coupling, we broke the limit of natural CircLigase on circularization of ssDNA, realizing over 75% yields of byproduct-free monomeric rings on a series of hundred-to-half-kilo-based linear DNAs. We found that this hybridization strategy can be twisted from intra- to intermolecular to also program CircLigase to efficiently and predominantly join one ssDNA strand to another. We focused on DNA rings premade by CircLigase and demonstrated their utility in elevating the preparation, quantity, and quality of DNA topologies. We expect that the new insights on engineering CircLigase will further promote the development of nucleic acid biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Qingting Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Shu Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Mao Y, Gu J, Chang D, Wang L, Yao L, Ma Q, Luo Z, Qu H, Li Y, Zheng L. Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Res 2020; 48:10680-10690. [PMID: 33021630 PMCID: PMC7641760 DOI: 10.1093/nar/gkaa800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
Circular DNA aptamers are powerful candidates for therapeutic applications given their dramatically enhanced biostability. Herein we report the first effort to evolve circular DNA aptamers that bind a human protein directly in serum, a complex biofluid. Targeting human thrombin, this strategy has led to the discovery of a circular aptamer, named CTBA4T-B1, that exhibits very high binding affinity (with a dissociation constant of 19 pM), excellent anticoagulation activity (with the half maximal inhibitory concentration of 90 pM) and high stability (with a half-life of 8 h) in human serum, highlighting the advantage of performing aptamer selection directly in the environment where the application is intended. CTBA4T-B1 is predicted to adopt a unique structural fold with a central two-tiered guanine quadruplex capped by two long stem–loops. This structural arrangement differs from all known thrombin binding linear DNA aptamers, demonstrating the added advantage of evolving aptamers from circular DNA libraries. The method described here permits the derivation of circular DNA aptamers directly in biological fluids and could potentially be adapted to generate other types of aptamers for therapeutic applications.
Collapse
Affiliation(s)
- Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S4K1, Canada
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S4K1, Canada
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qihui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhaofeng Luo
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S4K1, Canada
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
16
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
17
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
18
|
Li X, Yang F, Zhou W, Yuan R, Xiang Y. Targeted and direct intracellular delivery of native DNAzymes enables highly specific gene silencing. Chem Sci 2020; 11:8966-8972. [PMID: 34123151 PMCID: PMC8163450 DOI: 10.1039/d0sc03974h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
DNAzymes exhibit high potential as gene silencing agents for therapeutic applications. Such purposes, however, are significantly challenged by the targeted and successful delivery of unmodified DNAzymes into cells with minimal side effects. Here, we set out to formulate and demonstrate a new stimuli-responsive and constrained aptamer/DNAzyme (Apt/Dz) catenane nanostructure for highly specific gene silencing. The rational design of the Apt/Dz catenane nanostructure with the respective integration of the aptamer sequence and the completely closed catenane format enables both the targeted capability and significantly improved nuclease resistance, facilitating the stable and targeted delivery of unmodified Dz into cancer cells. Moreover, the Dz enzymatic activity in the constrained structure can only be conditionally regulated by the specific intracellular mRNA sequences to silence the target gene with highly reduced side effects. Results show that the Apt/Dz catenane nanostructure can effectively inhibit the expression of the target gene and the proliferation of cancer cells with high specificity.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Wenjiao Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
19
|
Shi P, Wang X, Davis B, Coyne J, Dong C, Reynolds J, Wang Y. In Situ Synthesis of an Aptamer-Based Polyvalent Antibody Mimic on the Cell Surface for Enhanced Interactions between Immune and Cancer Cells. Angew Chem Int Ed Engl 2020; 59:11892-11897. [PMID: 32307868 DOI: 10.1002/anie.202004206] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 01/22/2023]
Abstract
An ability to promote therapeutic immune cells to recognize cancer cells is important for the success of cell-based cancer immunotherapy. We present a synthetic method for functionalizing the surface of natural killer (NK) cells with a supramolecular aptamer-based polyvalent antibody mimic (PAM). The PAM is synthesized on the cell surface through nucleic acid assembly and hybridization. The data show that PAM has superiority over its monovalent counterpart in powering NKs to bind to cancer cells, and that PAM-engineered NK cells exhibit the capability of killing cancer cells more effectively. Notably, aptamers can, in principle, be discovered against any cell receptors; moreover, the aptamers can be replaced by any other ligands when developing a PAM. Thus, this work has successfully demonstrated a technology platform for promoting interactions between immune and cancer cells.
Collapse
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - James Coyne
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Joshua Reynolds
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Shi P, Wang X, Davis B, Coyne J, Dong C, Reynolds J, Wang Y. In Situ Synthesis of an Aptamer‐Based Polyvalent Antibody Mimic on the Cell Surface for Enhanced Interactions between Immune and Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Xuelin Wang
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Brandon Davis
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - James Coyne
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Cheng Dong
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Joshua Reynolds
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Yong Wang
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
21
|
Li J, Mohammed-Elsabagh M, Paczkowski F, Li Y. Circular Nucleic Acids: Discovery, Functions and Applications. Chembiochem 2020; 21:1547-1566. [PMID: 32176816 DOI: 10.1002/cbic.202000003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Circular nucleic acids (CNAs) are nucleic acid molecules with a closed-loop structure. This feature comes with a number of advantages including complete resistance to exonuclease degradation, much better thermodynamic stability, and the capability of being replicated by a DNA polymerase in a rolling circle manner. Circular functional nucleic acids, CNAs containing at least a ribozyme/DNAzyme or a DNA/RNA aptamer, not only inherit the advantages of CNAs but also offer some unique application opportunities, such as the design of topology-controlled or enabled molecular devices. This article will begin by summarizing the discovery, biogenesis, and applications of naturally occurring CNAs, followed by discussing the methods for constructing artificial CNAs. The exploitation of circular functional nucleic acids for applications in nanodevice engineering, biosensing, and drug delivery will be reviewed next. Finally, the efforts to couple functional nucleic acids with rolling circle amplification for ultra-sensitive biosensing and for synthesizing multivalent molecular scaffolds for unique applications in biosensing and drug delivery will be recapitulated.
Collapse
Affiliation(s)
- Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Mostafa Mohammed-Elsabagh
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Freeman Paczkowski
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
22
|
Bialy RM, Ali MM, Li Y, Brennan JD. Protein-Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamer-Containing DNA Primer. Chemistry 2020; 26:5085-5092. [PMID: 32096262 DOI: 10.1002/chem.202000245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Indexed: 12/22/2022]
Abstract
We report a method to detect proteins via suppression of rolling circle amplification (RCA) by using an appropriate aptamer as the linear primer (denoted as an aptaprimer) to initiate RCA. In the absence of a protein target, the aptaprimer is free to initiate RCA, which can produce long DNA products that are detected via binding of a fluorescent intercalating dye. Introduction of a target causes the primer region within the aptamer to become unavailable for binding to the circular template, inhibiting RCA. Using SYBR Gold or QuantiFluor dyes as fluorescent probes to bind to the RCA reaction product, it is possible to produce a generic protein-modulated RCA assay system that does not require fluorophore- or biotin-modified DNA species, substantially reducing complexity and cost of reagents. Based on this modulation of RCA, we demonstrate the ability to produce both solution and paper-based assays for rapid and quantitative detection of proteins including platelet derived growth factor and thrombin.
Collapse
Affiliation(s)
- Roger M Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Monsur M Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
23
|
Lu Y, Xiao Y, Zheng G, Lu J, Zhou L. Conditioning with zero-valent iron or Fe 2+ activated peroxydisulfate at an acidic initial sludge pH removed intracellular antibiotic resistance genes but increased extracellular antibiotic resistance genes in sewage sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121982. [PMID: 31901543 DOI: 10.1016/j.jhazmat.2019.121982] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Sulfate radical (SO4-)-based conditioning methods, such as zero-valent iron (ZVI, i.e., Fe0) or ferrous iron (Fe2+) activated peroxydisulfate (S2O82-), have recently developed to improve sludge dewaterability, but it remains unclear how they impact the intracellular and extracellular antibiotic resistance genes (ARGs) in sewage sludge. In this study, it was found that conditioning treatments that used ZVI/S2O82- or Fe2+/S2O82- system, at an acidic initial sludge pH, removed the intracellular ARGs and intI1 and the extracellular intI1 from sewage sludge, but led to the accumulation of extracellular ARGs of aadA-01, aadA-02, aadA1, aadA2-03, and strB in conditioned sludge. During sludge conditioning with ZVI/S2O82- or Fe2+/S2O82-, bacterial hosts of ARGs and intI1 were seriously lysed to release the intracellular ARGs and intI1 to the extracellular environment, thus removing intracellular ARGs and intI1 in sludge, while the released ARGs and intI1 were primarily degraded by the produced SO4- to attenuate most extracellular ARGs and intI1. However, the relatively lower degradation ability of SO4- for extracellular ARGs of aadA-01, aadA-02, aadA1, aadA2-03, and strB led to their accumulation in conditioned sludge. Therefore, SO4--based conditioning methods can be employed to reduce ARGs in sludge, but the subsequent treatment of sludge dewatering filtrate requires more attention.
Collapse
Affiliation(s)
- Yi Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yifan Xiao
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Junhe Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
24
|
Deng M, Li M, Mao X, Li F, Zuo X. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9073-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019; 25:E3. [PMID: 31861277 PMCID: PMC6982925 DOI: 10.3390/molecules25010003] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.
Collapse
Affiliation(s)
- Fadwa Odeh
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Ezaldeen Esawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Baraa Qaqish
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Abeer Al Bawab
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Said I. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
- Qatar Genome Project, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
26
|
Manochehry S, McConnell EM, Li Y. Unraveling Determinants of Affinity Enhancement in Dimeric Aptamers for a Dimeric Protein. Sci Rep 2019; 9:17824. [PMID: 31780794 PMCID: PMC6883073 DOI: 10.1038/s41598-019-54005-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022] Open
Abstract
High-affinity aptamers can be derived de novo by using stringent conditions in SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments or can be engineered post SELEX via dimerization of selected aptamers. Using electrophoretic mobility shift assays, we studied a series of heterodimeric and homodimeric aptamers, constructed from two DNA aptamers with distinct primary sequences and secondary structures, previously isolated for VEGF-165, a homodimeric protein. We investigated four factors envisaged to impact the affinity of a dimeric aptamer to a dimeric protein: (1) length of the linker between two aptamer domains, (2) linking orientation, (3) binding-site compatibility of two component aptamers in a heterodimeric aptamer, and (4) steric acceptability of the two identical aptamers in a homodimeric aptamer. All heterodimeric aptamers for VEGF-165 were found to exhibit monomeric aptamer-like affinity and the lack of affinity enhancement was attributed to binding-site overlap by the constituent aptamers. The best homodimeric aptamer showed 2.8-fold better affinity than its monomeric unit (Kd = 13.6 ± 2.7 nM compared to 37.9 ± 14 nM), however the barrier to further affinity enhancement was ascribed to steric interference of the constituent aptamers. Our findings point to the need to consider the issues of binding-site compatibility and spatial requirement of aptamers for the development of dimeric aptamers capable of bivalent recognition. Thus, determinants highlighted herein should be assessed in future multimerization efforts.
Collapse
Affiliation(s)
- Sepehr Manochehry
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada. .,Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
27
|
Riccardi C, Meyer A, Vasseur JJ, Russo Krauss I, Paduano L, Morvan F, Montesarchio D. Fine-tuning the properties of the thrombin binding aptamer through cyclization: Effect of the 5'-3' connecting linker on the aptamer stability and anticoagulant activity. Bioorg Chem 2019; 94:103379. [PMID: 31699393 DOI: 10.1016/j.bioorg.2019.103379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
A small library of cyclic TBA analogues (named cycTBA I-IV), obtained by covalently connecting its 5'- and 3'-ends with flexible linkers, has been synthesized with the aim of improving its chemical and enzymatic stability, as well as its anticoagulant properties. Two chemical procedures have been exploited to achieve the desired cyclization, based on the oxime ligation method (providing cycTBA I and II) or on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC) protocols (for cycTBA III and IV), leading to analogues containing circularizing linkers with different chemical nature and length, overall spanning from 22 to 48 atoms. The resulting cyclic TBAs have been characterized using a variety of biophysical methods (UV, CD, gel electrophoresis, SE-HPLC analyses) and then tested for their serum resistance and anticoagulant activity under in vitro experiments. A fine-tuning of the length and flexibility of the linker allowed identifying a cyclic analogue, cycTBA II, with improved anticoagulant activity, associated with a dramatically stabilized G-quadruplex structure (ΔTm = +17 °C) and a 6.6-fold higher enzymatic resistance in serum compared to unmodified TBA.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - François Morvan
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.
| |
Collapse
|
28
|
Chaturvedi P, Vuković L. Structural Properties of Small Single-Stranded Circular Nucleic Acids. J Phys Chem B 2019; 123:8216-8221. [PMID: 31498637 DOI: 10.1021/acs.jpcb.9b06831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
One strategy to avoid rapid degradation of small nucleic acids in biomedical applications is to covalently link their 3'- and 5'-ends, turning them into circular nucleic acids (circNAs). Here, we examine structural properties of flexible non-base-paired circNAs, containing 6-48 nucleotides, in aqueous solution, using microsecond long molecular dynamics simulations. Analyses of conformational ensembles of circular DNA (circDNA) and RNA (circRNA) molecules of different lengths and sequences reveal how their structures and dynamics are affected by the constraints of their geometries. The circDNAs are more bent and flexible than circRNAs, with distinctly different arrangements of phosphate backbones and bases. Small circNAs can sequester counterions in conformations that resemble crown ethers for the smallest (6-8 nucleotide long) molecules examined, in contrast to their linear counterparts. At millimolar concentrations (7.9 mM), circNA molecules were observed to aggregate, adopting linear chain shapes at physiological ionic strengths.
Collapse
Affiliation(s)
- Parth Chaturvedi
- Department of Chemistry and Biochemistry , University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry , University of Texas at El Paso , El Paso , Texas 79968 , United States
| |
Collapse
|
29
|
Amato T, Virgilio A, Pirone L, Vellecco V, Bucci M, Pedone E, Esposito V, Galeone A. Investigating the properties of TBA variants with twin thrombin binding domains. Sci Rep 2019; 9:9184. [PMID: 31235717 PMCID: PMC6591170 DOI: 10.1038/s41598-019-45526-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
In this paper, we report studies concerning thrombin binding aptamer (TBA) dimeric derivatives in which the 3′-ends of two TBA sequences have been joined by means of linkers containing adenosine or thymidine residues and/or a glycerol moiety. CD and electrophoretic investigations indicate that all modified aptamers are able to form G-quadruplex domains resembling that of the parent TBA structure. However, isothermal titration calorimetry measurements of the aptamer/thrombin interaction point to different affinities to the target protein, depending on the type of linker. Consistently, the best ligands for thrombin show anticoagulant activities higher than TBA. Interestingly, two dimeric aptamers with the most promising properties also show far higher resistances in biological environment than TBA.
Collapse
Affiliation(s)
- Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Luciano Pirone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Valentina Vellecco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Mariarosaria Bucci
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
30
|
Liu M, Yin Q, Chang Y, Zhang Q, Brennan JD, Li Y. In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meng Liu
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Qingxin Yin
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Qiang Zhang
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
- School of Life Science and Biotechnology Dalian University of Technology Dalian 116024 China
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
| |
Collapse
|
31
|
Liu M, Yin Q, Chang Y, Zhang Q, Brennan JD, Li Y. In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angew Chem Int Ed Engl 2019; 58:8013-8017. [PMID: 31020784 DOI: 10.1002/anie.201901192] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Indexed: 01/01/2023]
Abstract
We report on the first effort to select DNA aptamers from a circular DNA library, which resulted in the discovery of two high-affinity circular DNA aptamers that recognize the glutamate dehydrogenase (GDH) from Clostridium difficile, an established antigen for diagnosing Clostridium difficile infection (CDI). One aptamer binds effectively in both the circular and linear forms, the other is functional only in the circular configuration. Interestingly, these two aptamers recognize different epitopes on GDH, demonstrating the advantage of selecting aptamers from circular DNA libraries. A sensitive diagnostic test was developed to take advantage of the high stability of circular DNA aptamers in biological samples and their compatibility with rolling circle amplification. This test is capable of identifying patients with active CDI using stool samples. This work represents a significant step forward towards demonstrating the practical utility of DNA aptamers in clinical diagnosis.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Qingxin Yin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada.,School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada.,Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| |
Collapse
|
32
|
Li J, Zhou J, Liu T, Chen S, Li J, Yang H. Circular DNA: a stable probe for highly efficient mRNA imaging and gene therapy in living cells. Chem Commun (Camb) 2018; 54:896-899. [DOI: 10.1039/c7cc08906f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We integrated circular DNA with graphene oxide to fabricate improved platforms for highly efficient imaging and therapy in living cells.
Collapse
Affiliation(s)
- Jingying Li
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Jie Zhou
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Tong Liu
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
33
|
Kuai H, Zhao Z, Mo L, Liu H, Hu X, Fu T, Zhang X, Tan W. Circular Bivalent Aptamers Enable in Vivo Stability and Recognition. J Am Chem Soc 2017. [PMID: 28635257 DOI: 10.1021/jacs.7b04547] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aptamers are powerful candidates for molecular imaging and targeted therapy of cancer based on such appealing features as high binding affinity, high specificity, site-specific modification and rapid tumor penetration. However, aptamers are susceptible to plasma exonucleases in vivo. This seriously affects their in vivo applications. To overcome this key limitation, we herein report the design and development of circular bivalent aptamers. Systematic studies reveal that cyclization of aptamers can improve thermal stability, nuclease resistance and binding affinity. In vivo fluorescence imaging further validates the efficient accumulation and retention of circular bivalent aptamers in tumors compared to "mono-aptamers". Therefore, this study provides a simple and efficient strategy to boost in vivo aptamer applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hailan Kuai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China
| | - Liuting Mo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University , Changsha 410082, China.,Departments of Chemistry, Departments of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
34
|
Vorobyeva M, Vorobjev P, Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications. Molecules 2016; 21:molecules21121613. [PMID: 27898020 PMCID: PMC6274531 DOI: 10.3390/molecules21121613] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid aptamers generated through an in vitro selection are currently extensively applied as very valuable biomolecular tools thanks to their prominent advantages. Diversity of spatial structures, ease of production through chemical synthesis and a large variety of chemical modifications make aptamers convenient building blocks for the generation of multifunctional constructs. An opportunity to combine different aptamer functionalities with other molecules of interest such as reporter groups, nanoparticles, chemotherapeutic agents, siRNA or antisense oligonucleotides provides a widest range of applications of multivalent aptamers. The present review summarizes approaches to the design of multivalent aptamers, various examples of multifunctional constructs and the prospects of employing them as components of biosensors, probes for affinity capture, tools for cell research and potential therapeutic candidates.
Collapse
Affiliation(s)
- Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
35
|
Rangnekar A, Nash JA, Goodfred B, Yingling YG, LaBean TH. Design of Potent and Controllable Anticoagulants Using DNA Aptamers and Nanostructures. Molecules 2016; 21:molecules21020202. [PMID: 26861277 PMCID: PMC6273181 DOI: 10.3390/molecules21020202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022] Open
Abstract
The regulation of thrombin activity offers an opportunity to regulate blood clotting because of the central role played by this molecule in the coagulation cascade. Thrombin-binding DNA aptamers have been used to inhibit thrombin activity. In the past, to address the low efficacy reported for these aptamers during clinical trials, multiple aptamers have been linked using DNA nanostructures. Here, we modify that strategy by linking multiple copies of various thrombin-binding aptamers using DNA weave tiles. The resulting constructs have very high anticoagulant activity in functional assays owing to their improved cooperative binding affinity to thrombin due to optimized spacing, orientation, and the high local concentration of aptamers. We also report the results of molecular dynamics simulations to gain insight into the solution conformations of the tiles. Moreover, by using DNA strand displacement, we were able to turn the coagulation cascade off and on as desired, thereby enabling significantly better control over blood coagulation.
Collapse
Affiliation(s)
- Abhijit Rangnekar
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jessica A Nash
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Bethany Goodfred
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
36
|
Goltry S, Hallstrom N, Clark T, Kuang W, Lee J, Jorcyk C, Knowlton WB, Yurke B, Hughes WL, Graugnard E. DNA topology influences molecular machine lifetime in human serum. NANOSCALE 2015; 7:10382-90. [PMID: 25959862 PMCID: PMC4457601 DOI: 10.1039/c5nr02283e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 05/28/2023]
Abstract
DNA nanotechnology holds the potential for enabling new tools for biomedical engineering, including diagnosis, prognosis, and therapeutics. However, applications for DNA devices are thought to be limited by rapid enzymatic degradation in serum and blood. Here, we demonstrate that a key aspect of DNA nanotechnology-programmable molecular shape-plays a substantial role in device lifetimes. These results establish the ability to operate synthetic DNA devices in the presence of endogenous enzymes and challenge the textbook view of near instantaneous degradation.
Collapse
Affiliation(s)
- Sara Goltry
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Natalya Hallstrom
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Tyler Clark
- Department of Physics , Boise State University , Boise , Idaho 83725 , USA
- Department of Mathematics , Boise State University , Boise , Idaho 83725 , USA
| | - Wan Kuang
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Jeunghoon Lee
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Chemistry & Biochemistry , Boise State University , Boise , Idaho 83725 , USA
| | - Cheryl Jorcyk
- Department of Biological Sciences , Boise State University , Boise , Idaho 83725 , USA
| | - William B. Knowlton
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Bernard Yurke
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - William L. Hughes
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Elton Graugnard
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| |
Collapse
|
37
|
Identification and Characterization of an eIF4e DNA Aptamer That Inhibits Proliferation With High Throughput Sequencing. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e217. [PMID: 25514650 PMCID: PMC4272410 DOI: 10.1038/mtna.2014.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/06/2014] [Indexed: 12/19/2022]
Abstract
Development of DNA aptamer screens that are both simple and informative can increase the success rate of DNA aptamer selection and induce greater adoption. High eIF4e levels contribute to malignancies, thus eIF4e presents itself as a valuable target for DNA aptamer-based inhibition screen. Here, we demonstrate a method for the rapid selection of looped DNA aptamers against eIF4e by combining negative selection and purification in a single step, followed by characterization with high throughput sequencing. The resulting aptamers show functional binding to eIF4e and inhibit translation initiation in biochemical assays. When transfected into cells, eIF4e aptamers cause a dramatic loss of cell proliferation in tumor cells as seen with eIF4e knockdown with antisense oligonucleotides, shRNAs, and siRNAs, hinting at therapeutic possibilities. With the large data set provided by high throughput sequencing, we demonstrate that selection happens in waves and that sequencing data can be used to infer aptamer structure. Lastly, we show that ligation of looped aptamers can enhance their functional effects. These results demonstrate a rapid protocol to screen and optimize aptamers against macromolecules of interest.
Collapse
|
38
|
Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 2014; 43:3324-41. [DOI: 10.1039/c3cs60439j] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Meyer M, Scheper T, Walter JG. Aptamers: versatile probes for flow cytometry. Appl Microbiol Biotechnol 2013; 97:7097-109. [PMID: 23838792 DOI: 10.1007/s00253-013-5070-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Aptamers are nucleic acid oligomers with distinct conformational shapes that allow them to bind targets with high affinity and specificity. Aptamers are selected from a random oligonucleotide library by their capability to bind a certain molecular target. A variety of targets ranging from small molecules like amino acids to complex targets and whole cells have been used to select aptamers. These characteristics and the ability to create specific aptamers against virtually any cell type in a process termed "systematic evolution by exponential enrichment" make them interesting tools for flow cytometry. In this contribution, we review the application of aptamers as probes for flow cytometry, especially cell-phenotyping and detection of various cancer cell lines and virus-infected cells and pathogens. We also discuss the potential of aptamers combined with nanoparticles such as quantum dots for the generation of new multivalent detector molecules with enhanced affinity and sensitivity. With regard to recent advancements in aptamer selection and the decreasing costs for oligonucleotide synthesis, aptamers may rise as potent competitors for antibodies as molecular probes in flow cytometry.
Collapse
Affiliation(s)
- Michael Meyer
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany
| | | | | |
Collapse
|
40
|
Synthesis, characterization and in vitro activity of thrombin-binding DNA aptamers with triazole internucleotide linkages. Eur J Med Chem 2013; 67:90-7. [PMID: 23850569 DOI: 10.1016/j.ejmech.2013.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 11/23/2022]
Abstract
A series of DNA aptamers bearing triazole internucleotide linkages that bind to thrombin was synthesized. The novel aptamers are structurally analogous to the well-known thrombin-inhibiting G-quadruplexes TBA15 and TBA31. The secondary structure stability, binding affinity for thrombin and anticoagulant effects of the triazole-modified aptamers were measured. A modification in the central loop of the aptamer quadruplex resulted in increased nuclease resistance and an inhibition efficiency similar to that of TBA15. The likely aptamer-thrombin binding mode was determined by molecular dynamics simulations. Due to their relatively high activity and the increased resistance to nuclease digestion imparted by the triazole internucleotide linkages, the novel aptamers are a promising alternative to known DNA-based anticoagulant agents.
Collapse
|
41
|
Zhao X, Lis JT, Shi H. A systematic study of the features critical for designing a high avidity multivalent aptamer. Nucleic Acid Ther 2013; 23:238-42. [PMID: 23550551 DOI: 10.1089/nat.2012.0410] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macromolecular interactions are central to the regulation and execution of many key biological processes, and therefore, they are attractive targets for drug discovery. Previously, we identified an RNA aptamer for the heat shock factor (HSF1), which is capable of interfering with the binding of HSF1 to its cognate DNA elements. Here we report the significant enhancement of avidity through dimerization of this aptamer. In particular, we describe the effect of 2 factors in designing a multivalent aptamer: the distance between active subunits and the flexibility of the linkage.
Collapse
Affiliation(s)
- Xiaoching Zhao
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
42
|
Janssen KPF, Knez K, Spasic D, Lammertyn J. Nucleic acids for ultra-sensitive protein detection. SENSORS (BASEL, SWITZERLAND) 2013; 13:1353-84. [PMID: 23337338 PMCID: PMC3574740 DOI: 10.3390/s130101353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of "personalized medicine". Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given.
Collapse
Affiliation(s)
- Kris P. F. Janssen
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Karel Knez
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Dragana Spasic
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Jeroen Lammertyn
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| |
Collapse
|
43
|
Loo AH, Bonanni A, Pumera M. Biorecognition on graphene: physical, covalent, and affinity immobilization methods exhibiting dramatic differences. Chem Asian J 2012; 8:198-203. [PMID: 23090869 DOI: 10.1002/asia.201200756] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Indexed: 01/09/2023]
Abstract
The preparation of biorecognition layers on the surface of a sensing platform is a very crucial step for the development of sensitive and selective biosensors. Different protocols have been used thus far for the immobilization of biomolecules onto various electrode surfaces. In this work, we investigate how the protocol followed for the immobilization of a DNA aptamer affects the performance of the fabricated thrombin aptasensor. Specifically, the differences in selectivity and optimum amount of immobilized aptamer of the fabricated aptasensors adopting either physical, covalent, or affinity immobilization were compared. It was discovered that while all three methods of immobilization uniformly show a similar optimum amount of immobilized aptamer, physical, and covalent immobilization methods exhibit higher selectivity than affinity immobilization. Hence, it is believed that our findings are very important in order to optimize and improve the performance of graphene-based aptasensors.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
44
|
Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. Pharmacol Ther 2012; 136:202-15. [PMID: 22850531 DOI: 10.1016/j.pharmthera.2012.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 01/29/2023]
Abstract
Nucleic acid-based aptamers can be selected from combinatorial libraries of synthetic oligonucleotides to bind, with affinity and specificity similar to antibodies, a wide range of biomedically relevant targets. Compared to protein therapeutics, aptamers exhibit significant advantages in terms of size, non-immunogenicity and wide synthetic accessibility. Various chemical modifications have been introduced in the natural oligonucleotide backbone of aptamers in order to increase their half-life, as well as their pharmacological properties. Very effective alternative approaches, devised in order to improve both the aptamer activity and stability, were based on the design of polyvalent aptamers, able to establish multivalent interactions with the target: thus, multiple copies of an aptamer can be assembled on the same molecular- or nanomaterial-based scaffold. In the present review, the thrombin binding aptamers (TBAs) are analyzed as a model system to study multiple-aptamer constructs aimed at improving their anticoagulation activity in terms of binding to the target and stability to enzymatic degradation. Indeed - even if the large number of chemically modified TBAs investigated in the last 20 years has led to encouraging results - a significant progress has been obtained only recently with bivalent or engineered dendritic TBA aptamers, or assemblies of TBAs on nanoparticles and DNA nanostructures. Furthermore, the modulation of the aptamers activity by means of tailored drug-active reversal agents, especially in the field of anticoagulant aptamers, as well as the reversibility of the TBA activity through the use of antidotes, such as porphyrins, complementary oligonucleotides or of external stimuli, are discussed.
Collapse
|
45
|
Neundlinger I, Poturnayova A, Karpisova I, Rankl C, Hinterdorfer P, Snejdarkova M, Hianik T, Ebner A. Characterization of enhanced monovalent and bivalent thrombin DNA aptamer binding using single molecule force spectroscopy. Biophys J 2012; 101:1781-7. [PMID: 21961605 DOI: 10.1016/j.bpj.2011.07.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/15/2022] Open
Abstract
Thrombin aptamer binding strength and stability is dependent on sterical parameters when used for atomic force microscopy sensing applications. Sterical improvements on the linker chemistry were developed for high-affinity binding. For this we applied single molecule force spectroscopy using two enhanced biotinylated thrombin aptamers, BFF and BFA immobilized on the atomic force microscopy tip via streptavidin. BFF is a dimer composed of two single-stranded aptamers (aptabody) connected to each other by a complementary sequence close to the biotinylated end. In contrast, BFA consists of a single DNA strand and a complementary strand in the supporting biotinylated part. By varying the pulling velocity in force-distance cycles the formed thrombin-aptamer complexes were ruptured at different force loadings allowing determination of the energy landscape. As a result, BFA aptamer showed a higher binding force at the investigated loading rates and a significantly lower dissociation rate constant, k(off), compared to BFF. Moreover, the potential of the aptabody BFF to form a bivalent complex could clearly be demonstrated.
Collapse
|
46
|
Keum JW, Ahn JH, Bermudez H. Design, assembly, and activity of antisense DNA nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3529-35. [PMID: 22025353 DOI: 10.1002/smll.201101804] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Indexed: 05/23/2023]
Abstract
Discrete DNA nanostructures allow simultaneous features not possible with traditional DNA forms: encapsulation of cargo, display of multiple ligands, and resistance to enzymatic digestion. These properties suggested using DNA nanostructures as a delivery platform. Here, DNA pyramids displaying antisense motifs are shown to be able to specifically degrade mRNA and inhibit protein expression in vitro, and they show improved cell uptake and gene silencing when compared to linear DNA. Furthermore, the activity of these pyramids can be regulated by the introduction of an appropriate complementary strand. These results highlight the versatility of DNA nanostructures as functional devices.
Collapse
Affiliation(s)
- Jung-Won Keum
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
47
|
Rakhmetova SY, Radko SP, Gnedenko OV, Bodoev NV, Ivanov AS, Archakov AI. Comparative thermodynamic analysis of thrombin interaction with anti-thrombin aptamers and their heterodimeric construct. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Boltz A, Piater B, Toleikis L, Guenther R, Kolmar H, Hock B. Bi-specific aptamers mediating tumor cell lysis. J Biol Chem 2011; 286:21896-905. [PMID: 21531729 DOI: 10.1074/jbc.m111.238261] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity plays a pivotal role in antibody-based tumor therapies and is based on the recruitment of natural killer cells to antibody-bound tumor cells via binding of the Fcγ receptor III (CD16). Here we describe the generation of chimeric DNA aptamers that simultaneously bind to CD16α and c-Met, a receptor that is overexpressed in many tumors. By application of the systematic evolution of ligands by exponential enrichment (SELEX) method, CD16α specific DNA aptamers were isolated that bound with high specificity and affinity (91 pm-195 nm) to their respective recombinant and cellularly expressed target proteins. Two optimized CD16α specific aptamers were coupled to each of two c-Met specific aptamers using different linkers. Bi-specific aptamers retained suitable binding properties and displayed simultaneous binding to both antigens. Moreover, they mediated cellular cytotoxicity dependent on aptamer and effector cell concentration. Displacement of a bi-specific aptamer from CD16α by competing antibody 3G8 reduced cytotoxicity and confirmed the proposed mode of action. These results represent the first gain of a tumor-effective function of two distinct oligonucleotides by linkage into a bi-specific aptamer mediating cellular cytotoxicity.
Collapse
Affiliation(s)
- Achim Boltz
- Clemens-Schoepf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, D-64289 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Poniková S, Tlučková K, Antalík M, Víglaský V, Hianik T. The circular dichroism and differential scanning calorimetry study of the properties of DNA aptamer dimers. Biophys Chem 2011; 155:29-35. [PMID: 21396765 DOI: 10.1016/j.bpc.2011.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
We have applied circular dichroism (CD), temperature-gradient gel electrophoresis (TGGE) and differential scanning calorimetry (DSC) to study the properties of novel bioengineered DNA aptamer dimers sensitive to fibrinogen (F) and heparin (H) binding sites of thrombin and compared them with canonical single stranded aptamer sensitive to fibrinogen binding site of thrombin (Fibri). The homodimer (FF) and heterodimer (FH) aptamers were constructed based on hybridization of their supported parts. CD results showed that both FF and FH dimers form stable guanine quadruplexes in the presence of potassium ions like those in Fibri. The thermal stability of aptamer dimers was slightly lower compared to those of canonical aptamers, but sufficient for practical applications. Both FF and FH aptamer dimers exhibited a potassium-dependent inhibitory effect on thrombin-mediated fibrin gel formation, which was on average two-fold higher than those of canonical single stranded Fibri aptamers.
Collapse
Affiliation(s)
- Slavomíra Poniková
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
50
|
Zhou J, Soontornworajit B, Wang Y. A temperature-responsive antibody-like nanostructure. Biomacromolecules 2010; 11:2087-93. [PMID: 20690716 DOI: 10.1021/bm100450k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibodies play an essential role in various applications. However, antibodies exhibit considerable challenges in applications that require tunable binding capabilities and exposure to nonphysiological conditions such as chemical conjugation. This study is aimed to develop a novel antibody-like nanostructure with special features. The key components of the nanostructure are two DNA aptamers and a dendrimer. The aptamers are used to mimic the antigen-binding sites of an antibody; the dendrimer is used to provide a defined conjugation site for carrying molecules of interest. The results showed that the bivalent nanostructure exhibited a high binding affinity and specificity. Moreover, a temperature shift from 0 to 37 degrees C would trigger its rapid dissociation from the bound target cells, which is not possible in antibody-antigen complexes. Thus, an antibody-like nanostructure was successfully developed with novel features that natural antibodies do not possess.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | | | | |
Collapse
|