1
|
Sebastià C, Folch JM, Ballester M, Estellé J, Passols M, Muñoz M, García-Casco JM, Fernández AI, Castelló A, Sánchez A, Crespo-Piazuelo D. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 2024; 9:e0104923. [PMID: 38095419 PMCID: PMC10804976 DOI: 10.1128/msystems.01049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
The gut microbiota is a key player in the host metabolism. Some bacteria are able to ferment non-digestible compounds and produce short-chain fatty acids that the host can later transform and accumulate in tissue. In this study, we aimed to better understand the relationships between the microorganisms and the short-chain fatty acid composition of the rectal content, including the possible linkage with the fatty acid composition in backfat and muscle of the pig. We studied a Duroc × Iberian crossbred population, and we found significant correlations between different bacterial and archaeal genera and the fatty acid profile. The abundance of n-butyric acid in the rectal content was positively associated with Prevotella spp. and negatively associated with Akkermansia spp., while conversely, the abundance of acetic acid was negatively and positively associated with the levels of Prevotella spp. and Akkermansia spp., respectively. The most abundant genus, Rikenellaceae RC9 gut group, had a positive correlation with palmitic acid in muscle and negative correlations with stearic acid in backfat and oleic acid in muscle. These results suggest the possible role of Prevotella spp. and Akkermansia spp. as biomarkers for acetic and n-butyric acids, and the relationship of Rikenellaceae RC9 gut group with the lipid metabolism, building up the potential, although indirect, role of the microbiota in the modification of the backfat and muscle fatty acid composition of the host.IMPORTANCEThe vital role of the gut microbiota on its host metabolism makes it essential to know how its modulation is mirrored on the fatty acid composition of the host. Our findings suggest Prevotella spp. and Akkermansia spp. as potential biomarkers for the levels of beneficial short-chain fatty acids and the possible influence of Rikenellaceae RC9 gut group in the backfat and muscle fatty acid composition of the pig.
Collapse
Affiliation(s)
- Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - Ana I. Fernández
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
2
|
Nakazawa M, Inui H. Understanding wax ester synthesis in Euglena gracilis: Insights into mitochondrial anaerobic respiration. Protist 2023; 174:125996. [PMID: 38041972 DOI: 10.1016/j.protis.2023.125996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Euglena gracilis, photosynthetic protist, has a unique ability to generate wax esters in the absence of oxygen, employing a distinctive fatty acid synthesis mechanism. Through comprehensive inhibitor assays and gene-silencing techniques, our research clearly emphasized the indispensable role of the mitochondrial anaerobic respiratory chain in this biosynthesis. We identified acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) as central molecular components in the pathway. These findings strongly indicated a potential reversal of beta-oxidation occurring within mitochondria for fatty acid production in anaerobic conditions. Furthermore, our analysis revealed the pivotal function of nicotinamide nucleotide transhydrogenase (NNT) in efficiently managing the NADPH/NAD+ conversion essential for sustaining anaerobic metabolism. This review outlines our key findings and provides a comprehensive understanding of the molecular mechanisms that enable E. gracilis to produce wax ester anaerobically.
Collapse
Affiliation(s)
- Masami Nakazawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan.
| | - Hiroshi Inui
- Department of Applied Biological Chemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan; Department of Health and Nutrition, Otemae University, Osaka, Japan
| |
Collapse
|
3
|
Gain G, Berne N, Feller T, Godaux D, Cenci U, Cardol P. Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis: interactions between fermentation and photosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1186926. [PMID: 37560033 PMCID: PMC10407231 DOI: 10.3389/fpls.2023.1186926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION In their natural environment, microalgae can be transiently exposed to hypoxic or anoxic environments. Whereas fermentative pathways and their interactions with photosynthesis are relatively well characterized in the green alga model Chlamydomonas reinhardtii, little information is available in other groups of photosynthetic micro-eukaryotes. In C. reinhardtii cyclic electron flow (CEF) around photosystem (PS) I, and light-dependent oxygen-sensitive hydrogenase activity both contribute to restoring photosynthetic linear electron flow (LEF) in anoxic conditions. METHODS Here we analyzed photosynthetic electron transfer after incubation in dark anoxic conditions (up to 24 h) in two secondary microalgae: the marine diatom Thalassiosira pseudonana and the excavate Euglena gracilis. RESULTS Both species showed sustained abilities to prevent over-reduction of photosynthetic electron carriers and to restore LEF. A high and transient CEF around PSI was also observed specifically in anoxic conditions at light onset in both species. In contrast, at variance with C. reinhardtii, no sustained hydrogenase activity was detected in anoxic conditions in both species. DISCUSSION Altogether our results suggest that another fermentative pathway might contribute, along with CEF around PSI, to restore photosynthetic activity in anoxic conditions in E. gracilis and T. pseudonana. We discuss the possible implication of the dissimilatory nitrate reduction to ammonium (DNRA) in T. pseudonana and the wax ester fermentation in E. gracilis.
Collapse
Affiliation(s)
- Gwenaëlle Gain
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Nicolas Berne
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Tom Feller
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Damien Godaux
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR8576 – UGSF, Lille, France
| | - Pierre Cardol
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| |
Collapse
|
4
|
Garces Daza F, Haitz F, Born A, Boles E. An optimized reverse β-oxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:71. [PMID: 37101299 PMCID: PMC10134560 DOI: 10.1186/s13068-023-02317-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Medium-chain fatty acids are molecules with applications in different industries and with growing demand. However, the current methods for their extraction are not environmentally sustainable. The reverse β-oxidation pathway is an energy-efficient pathway that produces medium-chain fatty acids in microorganisms, and its use in Saccharomyces cerevisiae, a broadly used industrial microorganism, is desired. However, the application of this pathway in this organism has so far either led to low titers or to the predominant production of short-chain fatty acids. RESULTS We genetically engineered Saccharomyces cerevisiae to produce the medium-chain fatty acids hexanoic and octanoic acid using novel variants of the reverse β-oxidation pathway. We first knocked out glycerolphosphate dehydrogenase GPD2 in an alcohol dehydrogenases knock-out strain (△adh1-5) to increase the NADH availability for the pathway, which significantly increased the production of butyric acid (78 mg/L) and hexanoic acid (2 mg/L) when the pathway was expressed from a plasmid with BktB as thiolase. Then, we tested different enzymes for the subsequent pathway reactions: the 3-hydroxyacyl-CoA dehydrogenase PaaH1 increased hexanoic acid production to 33 mg/L, and the expression of enoyl-CoA hydratases Crt2 or Ech was critical to producing octanoic acid, reaching titers of 40 mg/L in both cases. In all cases, Ter from Treponema denticola was the preferred trans-enoyl-CoA reductase. The titers of hexanoic acid and octanoic acid were further increased to almost 75 mg/L and 60 mg/L, respectively, when the pathway expression cassette was integrated into the genome and the fermentation was performed in a highly buffered YPD medium. We also co-expressed a butyryl-CoA pathway variant to increase the butyryl-CoA pool and support the chain extension. However, this mainly increased the titers of butyric acid and only slightly increased that of hexanoic acid. Finally, we also tested the deletion of two potential medium-chain acyl-CoA depleting reactions catalyzed by the thioesterase Tes1 and the medium-chain fatty acyl CoA synthase Faa2. However, their deletion did not affect the production titers. CONCLUSIONS By engineering the NADH metabolism and testing different reverse β-oxidation pathway variants, we extended the product spectrum and obtained the highest titers of octanoic acid and hexanoic acid reported in S. cerevisiae. Product toxicity and enzyme specificity must be addressed for the industrial application of the pathway in this organism.
Collapse
Affiliation(s)
- Fernando Garces Daza
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany
| | - Fabian Haitz
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany
| | - Alice Born
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Yu L, Diao S, Zhang G, Yu J, Zhang T, Luo H, Duan A, Wang J, He C, Zhang J. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of Hippophae rhamnoides. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1257-1273. [PMID: 35244328 PMCID: PMC9241383 DOI: 10.1111/pbi.13802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 06/01/2023]
Abstract
Plants of the Elaeagnaceae family are widely used to treat various health disorders owing to their natural phytochemicals. Seabuckthorn (Hippophae rhamnoides L.) is an economically and ecologically important species within the family with richness of biologically and pharmacologically active substances. Here, we present a chromosome-level genome assembly of seabuckthorn (http://hipp.shengxin.ren/), the first genome sequence of Elaeagnaceae, which has a total length of 849.04 Mb with scaffold N50 of 69.52 Mb and 30 864 annotated genes. Two sequential tetraploidizations with one occurring ~36-41 million years ago (Mya) and the last ~24-27 Mya were inferred, resulting in expansion of genes related to ascorbate and aldarate metabolism, lipid biosynthesis, and fatty acid elongation. Comparative genomic analysis reconstructed the evolutionary trajectories of the seabuckthorn genome with the predicted ancestral genome of 14 proto-chromosomes. Comparative transcriptomic and metabonomic analyses identified some key genes contributing to high content of polyunsaturated fatty acids and ascorbic acid (AsA). Additionally, we generated and analysed 55 whole-genome sequences of diverse accessions, and identified 9.80 million genetic variants in the seabuckthorn germplasms. Intriguingly, genes in selective sweep regions identified through population genomic analysis appeared to contribute to the richness of AsA and fatty acid in seabuckthorn fruits, among which GalLDH, GMPase and ACC, TER were the potentially major-effect causative genes controlling AsA and fatty acid content of the fruit, respectively. Our research offers novel insights into the molecular basis underlying phytochemical innovation of seabuckthorn, and provides valuable resources for exploring the evolution of the Elaeagnaceae family and molecular breeding.
Collapse
Affiliation(s)
- Liyang Yu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Research Institute of Non‐Timber ForestryChinese Academy of Forestry/Key Laboratory of Non‐timber Forest Germplasm Enhancement & Utilization of National and Grassland AdministrationZhengzhouChina
| | - Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jigao Yu
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Tong Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hongmei Luo
- Experimental Center of Desert ForestryChinese Academy of ForestryDengkouChina
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jinpeng Wang
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
6
|
Ogawa T, Nakamoto M, Tanaka Y, Sato K, Okazawa A, Kanaya S, Ohta D. Exploration and characterization of chemical stimulators to maximize the wax ester production by Euglena gracilis. J Biosci Bioeng 2021; 133:243-249. [PMID: 34952786 DOI: 10.1016/j.jbiosc.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Euglena gracilis, a phototrophic protist, is a valuable biomass producer that is often employed in sustainable development efforts. E. gracilis accumulates wax esters as byproducts during anaerobic ATP production via the reductive tricarboxylic acid cycle, utilizing the storage carbohydrate β-1,3-glucan paramylon as the carbon source. Here, we report a library screening for chemical stimulators that accelerate both wax ester production and paramylon consumption. Among the 115 compounds tested, we identified nine compounds that increased wax ester production by more than 2.0-fold relative to the solvent control. In the presence of these nine compounds, the paramylon content decreased compared with the control experiment, and the residual paramylon content varied between 7% and 26% of the initial level. The most active compound, 1,4-diaminoanthracene-9,10-dione (OATQ008), stimulated wax ester production up to 2.7-fold within 24 h, and 93% of the cellular paramylon was consumed. In terms of the structural features of the chemical stimulators, we discuss the potential target sites to stimulate wax ester production in mitochondria under anaerobic conditions.
Collapse
Affiliation(s)
- Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yuki Tanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuhiro Sato
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Center for the 21st Century, Research Institute for Bioeconomy, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan.
| |
Collapse
|
7
|
Blasio M, Balzano S. Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications. Front Microbiol 2021; 12:718933. [PMID: 34659147 PMCID: PMC8511707 DOI: 10.3389/fmicb.2021.718933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The exploitation of petrochemical hydrocarbons is compromising ecosystem and human health and biotechnological research is increasingly focusing on sustainable materials from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can occur as storage lipids or cell wall components and possess, in some cases, striking cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain (>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and exhibit a combustion enthalpy higher than that of C14 - 20 fatty acids, being potentially suitable as biofuel candidates. Finally, being the building blocks of cell wall components, some fatty acid derivatives might also be used as starters for the industrial synthesis of different polymers. Within this context, microalgae can be a promising source of fatty acid derivatives and, in contrast with terrestrial plants, do not require arable land neither clean water for their growth. Microalgal mass culturing for the extraction and the exploitation of fatty acid derivatives, along with products that are relevant in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the viability of microalgal biotechnologies. This review explores fatty acids derivatives from microalgae with applications in the field of renewable energies, biomaterials and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta) are particularly interesting for biotechnological applications since they grow at faster rates than many other species and possess hydroxy fatty acids and aliphatic cell wall polymers.
Collapse
Affiliation(s)
- Martina Blasio
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Sergio Balzano
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg (Texel), Netherlands
| |
Collapse
|
8
|
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar Drugs 2021; 19:113. [PMID: 33670628 PMCID: PMC7922858 DOI: 10.3390/md19020113] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.
Collapse
Affiliation(s)
- Marine Remize
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Yves Brunel
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Joana L. Silva
- ALLMICROALGAE–Natural Products, Avenida 25 Abril, 2445-413 Pataias, Portugal;
| | | | - Edith Filaire
- GREENTECH, Biopôle Clermont-Limagne, 63360 SAINT BEAUZIRE, France;
- ECREIN Team, UMR 1019 INRA-UcA, UNH (Human Nutrition Unity), University Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, Lukeš J. A Uniquely Complex Mitochondrial Proteome from Euglena gracilis. Mol Biol Evol 2020; 37:2173-2191. [PMID: 32159766 PMCID: PMC7403612 DOI: 10.1093/molbev/msaa061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Euglena gracilis is a metabolically flexible, photosynthetic, and adaptable free-living protist of considerable environmental importance and biotechnological value. By label-free liquid chromatography tandem mass spectrometry, a total of 1,786 proteins were identified from the E. gracilis purified mitochondria, representing one of the largest mitochondrial proteomes so far described. Despite this apparent complexity, protein machinery responsible for the extensive RNA editing, splicing, and processing in the sister clades diplonemids and kinetoplastids is absent. This strongly suggests that the complex mechanisms of mitochondrial gene expression in diplonemids and kinetoplastids occurred late in euglenozoan evolution, arising independently. By contrast, the alternative oxidase pathway and numerous ribosomal subunits presumed to be specific for parasitic trypanosomes are present in E. gracilis. We investigated the evolution of unexplored protein families, including import complexes, cristae formation proteins, and translation termination factors, as well as canonical and unique metabolic pathways. We additionally compare this mitoproteome with the transcriptome of Eutreptiella gymnastica, illuminating conserved features of Euglenida mitochondria as well as those exclusive to E. gracilis. This is the first mitochondrial proteome of a free-living protist from the Excavata and one of few available for protists as a whole. This study alters our views of the evolution of the mitochondrion and indicates early emergence of complexity within euglenozoan mitochondria, independent of parasitism.
Collapse
Affiliation(s)
- Michael J Hammond
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Anzhelika Butenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Eva Lacová Dobáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Mark C Field
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| |
Collapse
|
10
|
Zhou B, Ma Y, Tian Y, Li J, Zhong H. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of Monascus Response to High Ammonium Chloride Concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:808-817. [PMID: 31870144 DOI: 10.1021/acs.jafc.9b05852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various Monascus bioactive metabolites used as food or food additives in Asia for centuries are subjected to constant physical and chemical changes and different Monascus genus. With the aim to identify enzymes that participate in or indirectly regulate the pigments and citrinin biosynthesis pathways of Monascus purpureus cultured under high ammonium chloride, the changes of the proteome profile were examined using sequential window acquisition of all theoretical mass spectra-mass spectrometry-based quantitative proteomics approach in combination with bioinformatics analysis. A total of 292 proteins were confidently detected and quantified in each sample, including 163 that increased and 129 that decreased (t-tests, p ≤ 0.05). Pathway analysis indicated that high ammonium chloride in the present study accelerates the carbon substrate utilization and promotes the activity of key enzymes in glycolysis and β-oxidation of fatty acid catabolism to generate sufficient acetyl-CoA. However, the synthesis of the monascus pigments and citrinin was not enhanced because of inhibition of the polyketide synthase activity. All results demonstrated that the cause of initiation of pigments and citrinin synthesis is mainly due to the apparent inhibition of acyl and acetyl transfer by some acyltransferase and acetyltransferase, likely malony-CoA:ACP transacylase.
Collapse
Affiliation(s)
- Bo Zhou
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose , Changsha 410004 , China
| | - Yifan Ma
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| | - Yuan Tian
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| | - Jingbo Li
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Haiyan Zhong
- School of Food Science and Engineering , Central South University of Forestry and Technology , Changsha 410004 , P. R China
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , Changsha 410004 , P. R China
| |
Collapse
|
11
|
Tamaki S, Nishino K, Ogawa T, Maruta T, Sawa Y, Arakawa K, Ishikawa T. Comparative proteomic analysis of mitochondria isolated from Euglena gracilis under aerobic and hypoxic conditions. PLoS One 2019; 14:e0227226. [PMID: 31891638 PMCID: PMC6938325 DOI: 10.1371/journal.pone.0227226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
The unicellular microalga Euglena gracilis produces wax esters for ATP acquisition under low-oxygen conditions. The regulatory mechanism of wax ester production is not yet understood. Indeed, our previous transcriptomic analysis showed that transcript levels of genes involved in the wax ester synthesis hardly changed under hypoxic conditions, suggesting contribution of post-transcriptional regulation. In this study, we conducted a proteome analysis of E. gracilis mitochondria, as this organelle employs the fatty-acid synthesis pathway under hypoxic conditions. Mitochondria were isolated from E. gracilis SM-ZK strain treated with both aerobic and hypoxic conditions and used for shotgun proteomic analysis. Three independent proteomic analyses succeeded in identifying a total of 714 non-redundant proteins. Of these, 229 were detected in common to all experiments, and 116 were significantly recognized as differentially expressed proteins. GO enrichment analysis suggested dynamic changes in mitochondrial metabolic pathways and redox reactions under aerobic and hypoxic conditions. Protein levels of bifunctional enzymes isocitrate lyase and malate synthase in glyoxylate cycle were 1.35-fold higher under hypoxic conditions. Abundances of the propionyl-CoA synthetic enzymes, succinyl-CoA synthetase and propionyl-CoA carboxylase, were also 1.35- and 1.47-fold higher, respectively, under hypoxic conditions. Protein levels of pyruvate:NADP+ oxidoreductase, a key enzyme for anaerobic synthesis of acetyl-CoA, which serves as a C2 donor for fatty acids, showed a 1.68-fold increase under hypoxic conditions, whereas those of pyruvate dehydrogenase subunits showed a 0.77–0.81-fold decrease. Protein levels of the fatty-acid synthesis enzymes, 3-ketoacyl-CoA thiolase isoforms (KAT1 and KAT2), 3-hydroxyacyl-CoA dehydrogenases, and acyl-CoA dehydrogenase were up-regulated by 1.20- to 1.42-fold in response to hypoxic treatment. Overall, our proteomic analysis revealed that wax ester synthesis-related enzymes are up-regulated at the protein level post-transcriptionally to promote wax ester production in E. gracilis under low-oxygen conditions.
Collapse
Affiliation(s)
- Shun Tamaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Kohei Nishino
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takahisa Ogawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takanori Maruta
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Yoshihiro Sawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Hernández Limón MD, Hennon GMM, Harke MJ, Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional patterns of
Emiliania huxleyi
in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential. Environ Microbiol 2019; 22:381-396. [DOI: 10.1111/1462-2920.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023]
Affiliation(s)
- María D. Hernández Limón
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Gwenn M. M. Hennon
- University of Alaska Fairbanks College of Fisheries and Ocean Sciences Fairbanks AK USA
| | - Matthew J. Harke
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Kyle R. Frischkorn
- Department of Earth and Environmental Science Columbia University New York NY USA
| | - Sheean T. Haley
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Sonya T. Dyhrman
- Department of Earth and Environmental Science Columbia University New York NY USA
| |
Collapse
|
13
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Tunsagool P, Jutidamrongphan W, Phaonakrop N, Jaresitthikunchai J, Roytrakul S, Leelasuphakul W. Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. PLANT CELL REPORTS 2019; 38:559-575. [PMID: 30715581 DOI: 10.1007/s00299-019-02386-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 05/11/2023]
Abstract
Bacillus subtilis CLP extract activates defense gene expression and increases the unique protein production involving in pathways of ISR, SAR, ubiquitin-proteasome system, and glycolysis for stress responses in flavedo tissues. Cyclic lipopeptides (CLPs) of Bacillus subtilis ABS-S14 had ability to activate plant defensive pathways, increase resistance and control green mold rot caused by Penicillium digitatum in mandarin fruit. The current study investigated transcriptional and proteomic data to highlight the unique induction effect of CLPs produced by B. subtilis ABS-S14 on the defense mechanism of mandarins in response to P. digitatum attack, and their differences from those following the exogenous plant hormone application. The proteomic patterns of the flavedo tissues as affected by Bacillus CLP extract, salicylic acid (SA), methyl jasmonate (MeJA), and ethephon (Et) were explored. qPCR analysis revealed the great effects of CLP extract in enhancing the transcription of PAL, ACS1, GLU, POD, and PR1. Tryptic peptides by LC-MS analysis between treatments with and without fungal infection were compared. B. subtilis CLP extract empowered the plant's immune response to wound stress by the significant production of calmodulin-binding receptor-like cytoplasmic kinase 2, molybdenum cofactor sulfurase, and NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase. Ubiquitin carrier protein abundance was developed only in the treated flavedo with CLP extract coupled with P. digitatum infection. The gene expression and overall proteome findings involving pathways of ubiquitin proteasome system, ISR, SAR, and energy production provide a new insight into the molecular mechanisms of the antagonist B. subtilis ABS-S14 inducing resistance against green mold in mandarins.
Collapse
Affiliation(s)
- Paiboon Tunsagool
- Department of Biochemistry, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | | |
Collapse
|
15
|
Tomiyama T, Goto K, Tanaka Y, Maruta T, Ogawa T, Sawa Y, Ito T, Ishikawa T. A major isoform of mitochondrial trans-2-enoyl-CoA reductase is dispensable for wax ester production in Euglena gracilis under anaerobic conditions. PLoS One 2019; 14:e0210755. [PMID: 30650145 PMCID: PMC6334954 DOI: 10.1371/journal.pone.0210755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022] Open
Abstract
Under anaerobic conditions, Euglena gracilis produces a large amount of wax ester through mitochondrial fatty acid synthesis from storage polysaccharides termed paramylon, to generate ATP. Trans-2-enoyl-CoA reductases (TERs) in mitochondria have been considered to play a key role in this process, because the enzymes catalyze the reduction of short chain length CoA-substrates (such as crotonyl-CoA). A TER enzyme (EgTER1) has been previously identified and enzymologically characterized; however, its physiological significance remained to be evaluated by genetic analysis. We herein generated EgTER1-knockdown Euglena cells, in which total crotonyl-CoA reductase activity was decreased to 10% of control value. Notably, the knockdown cells showed a severe bleaching phenotype with deficiencies in chlorophylls and glycolipids, but grew normally under heterotrophic conditions (with glucose supplementation). Moreover, the knockdown cells accumulated much greater quantities of wax ester than control cells before and after transfer to anaerobic conditions, which was accompanied by a large metabolomic change. Furthermore, we failed to find any contribution of other potential TER genes in wax ester production. Our findings propose a novel role of EgTER1 in the greening process and demonstrate that this enzyme is dispensable for wax ester production under anaerobic conditions.
Collapse
Affiliation(s)
- Takuya Tomiyama
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Kyo Goto
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Yuji Tanaka
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Takuro Ito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Nakazawa M, Ando H, Nishimoto A, Ohta T, Sakamoto K, Ishikawa T, Ueda M, Sakamoto T, Nakano Y, Miyatake K, Inui H. Anaerobic respiration coupled with mitochondrial fatty acid synthesis in wax ester fermentation by Euglena gracilis. FEBS Lett 2018; 592:4020-4027. [PMID: 30328102 PMCID: PMC6587861 DOI: 10.1002/1873-3468.13276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022]
Abstract
In Euglena gracilis, wax ester fermentation produces ATP during anaerobiosis. Here, we report that anaerobic wax ester production is suppressed when the mitochondrial electron transport chain complex I is inhibited by rotenone, whereas it is increased by the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The ADP/ATP ratio in anaerobic cells is elevated by treatment with either rotenone or CCCP. Gene silencing experiments indicate that acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) participate in wax ester production. These results suggest that fatty acids are synthesized in mitochondria by the reversal of β-oxidation, where trans-2-enoyl-CoA is reduced mainly by acyl-CoA dehydrogenase using the electrons provided by NADH via the electron transport chain complex I, RQ, and ETF, and that ATP production is highly supported by anaerobic respiration utilizing trans-2-enoyl-CoA as a terminal electron acceptor.
Collapse
Affiliation(s)
- Masami Nakazawa
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
- Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)KawaguchiJapan
| | - Hiroko Ando
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Ayusa Nishimoto
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Tsuyoshi Ohta
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular BiologyFaculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | - Takahiro Ishikawa
- Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)KawaguchiJapan
- Department of Life Science and BiotechnologyFaculty of Life and Environmental ScienceShimane UniversityMatsueJapan
| | - Mitsuhiro Ueda
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Tatsuji Sakamoto
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Yoshihisa Nakano
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Kazutaka Miyatake
- Department of Nutrition and Food SciencesFaculty of Human and Cultural StudiesTezukayama Gakuin UniversitySakaiJapan
| | - Hiroshi Inui
- Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)KawaguchiJapan
- Department of NutritionCollege of Health and Human SciencesOsaka Prefecture UniversityHabikinoJapan
| |
Collapse
|
17
|
Yu JL, Qian ZG, Zhong JJ. Advances in bio-based production of dicarboxylic acids longer than C4. Eng Life Sci 2018; 18:668-681. [PMID: 32624947 DOI: 10.1002/elsc.201800023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Growing concerns of environmental pollution and fossil resource shortage are major driving forces for bio-based production of chemicals traditionally from petrochemical industry. Dicarboxylic acids (DCAs) are important platform chemicals with large market and wide applications, and here the recent advances in bio-based production of straight-chain DCAs longer than C4 from biological approaches, especially by synthetic biology, are reviewed. A couple of pathways were recently designed and demonstrated for producing DCAs, even those ranging from C5 to C15, by employing respective starting units, extending units, and appropriate enzymes. Furthermore, in order to achieve higher production of DCAs, enormous efforts were made in engineering microbial hosts that harbored the biosynthetic pathways and in improving properties of biocatalytic elements to enhance metabolic fluxes toward target DCAs. Here we summarize and discuss the current advantages and limitations of related pathways, and also provide perspectives on synthetic pathway design and optimization for hyper-production of DCAs.
Collapse
Affiliation(s)
- Jia-Le Yu
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P. R. China.,State Key Laboratory of Bioreactor Engineering, School of Biotechnology East China University of Science and Technology Shanghai P. R. China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) East China University of Science and Technology Shanghai P. R. China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P. R. China.,State Key Laboratory of Bioreactor Engineering, School of Biotechnology East China University of Science and Technology Shanghai P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) East China University of Science and Technology Shanghai P. R. China
| |
Collapse
|
18
|
Kuhaudomlarp S, Patron NJ, Henrissat B, Rejzek M, Saalbach G, Field RA. Identification of Euglena gracilis β-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. J Biol Chem 2018; 293:2865-2876. [PMID: 29317507 PMCID: PMC5827456 DOI: 10.1074/jbc.ra117.000936] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Glycoside phosphorylases (EC 2.4.x.x) carry out the reversible phosphorolysis of glucan polymers, producing the corresponding sugar 1-phosphate and a shortened glycan chain. β-1,3-Glucan phosphorylase activities have been reported in the photosynthetic euglenozoan Euglena gracilis, but the cognate protein sequences have not been identified to date. Continuing our efforts to understand the glycobiology of E. gracilis, we identified a candidate phosphorylase sequence, designated EgP1, by proteomic analysis of an enriched cellular protein lysate. We expressed recombinant EgP1 in Escherichia coli and characterized it in vitro as a β-1,3-glucan phosphorylase. BLASTP identified several hundred EgP1 orthologs, most of which were from Gram-negative bacteria and had 37-91% sequence identity to EgP1. We heterologously expressed a bacterial metagenomic sequence, Pro_7066 in E. coli and confirmed it as a β-1,3-glucan phosphorylase, albeit with kinetics parameters distinct from those of EgP1. EgP1, Pro_7066, and their orthologs are classified as a new glycoside hydrolase (GH) family, designated GH149. Comparisons between GH94, EgP1, and Pro_7066 sequences revealed conservation of key amino acids required for the phosphorylase activity, suggesting a phosphorylase mechanism that is conserved between GH94 and GH149. We found bacterial GH149 genes in gene clusters containing sugar transporter and several other GH family genes, suggesting that bacterial GH149 proteins have roles in the degradation of complex carbohydrates. The Bacteroidetes GH149 genes located to previously identified polysaccharide utilization loci, implicated in the degradation of complex carbohydrates. In summary, we have identified a eukaryotic and a bacterial β-1,3-glucan phosphorylase and uncovered a new family of phosphorylases that we name GH149.
Collapse
Affiliation(s)
- Sakonwan Kuhaudomlarp
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Nicola J Patron
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, 163 Avenue de Luminy, 13288 Marseille, France; CNRS, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France; Department of Biological Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Gerhard Saalbach
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
19
|
Kim S, Gonzalez R. Selective production of decanoic acid from iterative reversal of β-oxidation pathway. Biotechnol Bioeng 2018; 115:1311-1320. [PMID: 29315475 DOI: 10.1002/bit.26540] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
Decanoic acid is a valuable compound used as precursor for industrial chemicals, pharmaceuticals, and biofuels. Despite efforts to produce it from renewables, only limited achievements have been reported. Here, we report an engineered cell factory able to produce decanoic acid as a major product from glycerol, and abundant and renewable feedstock. We exploit the overlapping chain-length specificity of β-oxidation reversal (r-BOX) and thioesterase enzymes to selectively generate decanoic acid. This was achieved by selecting r-BOX enzymes that support the synthesis of acyl-CoA of up to 10 carbons (thiolase BktB and enoyl-CoA reductase EgTER) and a thioesterase that exhibited high activity toward decanoyl-CoA and longer-chain acyl-CoAs (FadM). Combined chromosomal and episomal expression of r-BOX core enzymes such as enoyl-CoA reductase and thiolase (in the presence of E. coli thioesterase FadM) increased titer and yield of decanoic acid, respectively. The carbon flux toward decanoic acid was substantially increased by the use of an organic overlay, which decreased its intracellular accumulation and presumably increased its concentration gradient across cell membrane, suggesting that decanoic acid transport to the extracellular medium might be a major bottleneck. When cultivated in the presence of a n-dodecane overlay, the final engineered strain produced 2.1 g/L of decanoic acid with a yield of 0.1 g/g glycerol. Collectively, our data suggests that r-BOX can be used as a platform to selectively produce decanoic acid and its derivatives at high yield, titer and productivity.
Collapse
Affiliation(s)
- Seohyoung Kim
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|
20
|
Somboonpatarakun C, Rodpai R, Intapan PM, Sanpool O, Sadaow L, Wongkham C, Insawang T, Boonmars T, Maleewong W. Immuno-proteomic analysis of Trichinella spiralis, T. pseudospiralis, and T. papuae extracts recognized by human T. spiralis-infected sera. Parasitol Res 2018; 117:201-212. [PMID: 29189952 DOI: 10.1007/s00436-017-5694-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022]
Abstract
The present study explored potentially immunogenic proteins of the encapsulated (Trichinella spiralis) and non-encapsulated (T. pseudospiralis, T. papuae) species within the genus Trichinella. The somatic muscle larval extracts of each species were subjected to immunoblotting analysis using human T. spiralis-infected serum samples. Fifteen reactive bands of all three species were selected for further protein identification by liquid chromatography-tandem mass spectrometry, and their possible functions were ascertained using the gene ontology. Our findings showed immunogenic protein patterns with molecular mass in the range of 33-67 kDa. Proteomic and bioinformatic analysis revealed a wide variety of functions of 17 identified proteins, which are associated with catalytic, binding, and structural activities. Most proteins were involved in cellular and metabolic processes that contribute in the invasion of host tissues and the larval molting processes. The parasite proteins were identified as actin-5C, serine protease, deoxyribonuclease-2, and intermediate filament protein ifa-1. This information may lead to alternative tools for selection of potential diagnostic protein markers or aid in the design of vaccine candidates for prevention and control of Trichinella infection.
Collapse
Grants
- The Faculty of Medicine, Khon Kaen University (Grant No. TR57201) The Faculty of Medicine, Khon Kaen University
- The Faculty of Medicine, Khon Kaen University (Grant No. TR57201) The Faculty of Medicine, Khon Kaen University
- the Research Assistantship, Faculty of Medicine, Khon Kaen University, Thailand (Grant No. AS58302) The Faculty of Medicine, Khon Kaen University
- the Research Assistantship, Faculty of Medicine, Khon Kaen University, Thailand (Grant No. AS58302) The Faculty of Medicine, Khon Kaen University
- Grant No. 59146 The Post-Doctoral Training Program from the Research Affairs and Graduate School, Khon Kaen University, Thailand
- TRF Senior Research Scholar Grant, Thailand Research Fund (Grant No. RTA5880001) Thailand Research Fund (TH)
- TRF Senior Research Scholar Grant, Thailand Research Fund (Grant No. RTA5880001) Thailand Research Fund
Collapse
Affiliation(s)
- Chalermchai Somboonpatarakun
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tonkla Insawang
- Khon Kaen University Research Instrument Center, Research Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
21
|
Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. The Mitochondrion of Euglena gracilis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:19-37. [PMID: 28429315 DOI: 10.1007/978-3-319-54910-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cessa Rauch
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
22
|
Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y, Ishikawa T. Wax Ester Synthase/Diacylglycerol Acyltransferase Isoenzymes Play a Pivotal Role in Wax Ester Biosynthesis in Euglena gracilis. Sci Rep 2017; 7:13504. [PMID: 29044218 PMCID: PMC5647427 DOI: 10.1038/s41598-017-14077-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
Wax ester fermentation is a unique energy gaining pathway for a unicellular phytoflagellated protozoan, Euglena gracilis, to survive under anaerobiosis. Wax esters produced in E. gracilis are composed of saturated fatty acids and alcohols, which are the major constituents of myristic acid and myristyl alcohol. Thus, wax esters can be promising alternative biofuels. Here, we report the identification and characterization of wax ester synthase/diacylglycerol acyltrasferase (WSD) isoenzymes as the terminal enzymes of wax ester production in E. gracilis. Among six possible Euglena WSD orthologs predicted by BLASTX search, gene expression analysis and in vivo evaluation for enzyme activity with yeast expressing individual recombinant WSDs indicated that two of them (EgWSD2 and EgWSD5) predominantly function as wax ester synthase. Furthermore, experiments with gene silencing demonstrated a pivotal role of both EgWSD2 and EgWSD5 in wax ester synthesis, as evidenced by remarkably reduced wax ester contents in EgWSD2/5-double knockdown E. gracilis cells treated with anaerobic conditions. Interestingly, the decreased ability to produce wax ester did not affect adaptation of E. gracilis to anaerobiosis. Lipid profile analysis suggested allocation of metabolites to other compounds including triacylglycerol instead of wax esters.
Collapse
Affiliation(s)
- Takuya Tomiyama
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Kaeko Kurihara
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-chou, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-chou, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
23
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
|
25
|
Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks. Metab Eng 2017; 42:33-42. [PMID: 28550000 DOI: 10.1016/j.ymben.2017.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022]
Abstract
β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.
Collapse
|
26
|
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Inui H, Ishikawa T, Tamoi M. Wax Ester Fermentation and Its Application for Biofuel Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:269-283. [PMID: 28429326 DOI: 10.1007/978-3-319-54910-1_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Euglena cells under anaerobic conditions, paramylon, the storage polysaccharide, is promptly degraded and converted to wax esters. The wax esters synthesized are composed of saturated fatty acids and alcohols with chain lengths of 10-18, and the major constituents are myristic acid and myristyl alcohol. Since the anaerobic cells gain ATP through the conversion of paramylon to wax esters, the phenomenon is named "wax ester fermentation". The wax ester fermentation is quite unique in that the end products, i.e. wax esters, have relatively high molecular weights, are insoluble in water, and accumulate in the cells, in contrast to the common fermentation end products such as lactic acid and ethanol.A unique metabolic pathway involved in the wax ester fermentation is the mitochondrial fatty acid synthetic system. In this system, fatty acid are synthesized by the reversal of β-oxidation with an exception that trans-2-enoyl-CoA reductase functions instead of acyl-CoA dehydrogenase. Therefore, acetyl-CoA is directly used as a C2 donor in this fatty acid synthesis, and the conversion of acetyl-CoA to malonyl-CoA, which requires ATP, is not necessary. Consequently, the mitochondrial fatty acid synthetic system makes possible the net gain of ATP through the synthesis of wax esters from paramylon. In addition, acetyl-CoA is provided in the anaerobic cells from pyruvate by the action of a unique enzyme, oxygen sensitive pyruvate:NADP+ oxidoreductase, instead of the common pyruvate dehydrogenase multienzyme complex.Wax esters produced by anaerobic Euglena are promising biofuels because myristic acid (C14:0) in contrast to other algal produced fatty acids, such as palmitic acid (C16:0) and stearic acid (C18:0), has a low freezing point making it suitable as a drop-in jet fuel. To improve wax ester production, the molecular mechanisms by which wax ester fermentation is regulated in response to aerobic and anaerobic conditions have been gradually elucidated by identifying individual genes related to the wax ester fermentation metabolic pathway and by comprehensive gene/protein expression analysis. In addition, expression of the cyanobacterial Calvin cycle fructose-1,6-bisphosphatase/sedohepturose-1,7-bisphosphatase, in Euglena provided photosynthesis resulting in increased paramylon accumulation enhancing wax ester production. This chapter will discuss the biochemistry of the wax ester fermentation, recent advances in our understanding of the regulation of the wax ester fermentation and genetic engineering approaches to increase production of wax esters for biofuels.
Collapse
Affiliation(s)
- Hiroshi Inui
- Department of Nutrition, Osaka Prefecture University, 30-7-3 Habikino, Habikino, Osaka, 583-8555, Japan.
| | - Takahiro Ishikawa
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Masahiro Tamoi
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| |
Collapse
|
28
|
Tomita Y, Yoshioka K, Iijima H, Nakashima A, Iwata O, Suzuki K, Hasunuma T, Kondo A, Hirai MY, Osanai T. Succinate and Lactate Production from Euglena gracilis during Dark, Anaerobic Conditions. Front Microbiol 2016; 7:2050. [PMID: 28066371 PMCID: PMC5174102 DOI: 10.3389/fmicb.2016.02050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Euglena gracilis is a eukaryotic, unicellular phytoflagellate that has been widely studied in basic science and applied science. Under dark, anaerobic conditions, the cells of E. gracilis produce a wax ester that can be converted into biofuel. Here, we demonstrate that under dark, anaerobic conditions, E. gracilis excretes organic acids, such as succinate and lactate, which are bulk chemicals used in the production of bioplastics. The levels of succinate were altered by changes in the medium and temperature during dark, anaerobic incubation. Succinate production was enhanced when cells were incubated in CM medium in the presence of NaHCO3. Excretion of lactate was minimal in the absence of external carbon sources, but lactate was produced in the presence of glucose during dark, anaerobic incubation. E. gracilis predominantly produced L-lactate; however, the percentage of D-lactate increased to 28.4% in CM medium at 30°C. Finally, we used a commercial strain of E. gracilis for succinate production and found that nitrogen-starved cells, incubated under dark, anaerobic conditions, produced 869.6 mg/L succinate over a 3-day incubation period, which was 70-fold higher than the amount produced by nitrogen-replete cells. This is the first study to demonstrate organic acid excretion by E. gracilis cells and to reveal novel aspects of primary carbon metabolism in this organism.
Collapse
Affiliation(s)
- Yuko Tomita
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | - Hiroko Iijima
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | | | | | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji UniversityKawasaki, Japan; RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
29
|
Kallscheuer N, Gätgens J, Lübcke M, Pietruszka J, Bott M, Polen T. Improved production of adipate with Escherichia coli by reversal of β-oxidation. Appl Microbiol Biotechnol 2016; 101:2371-2382. [PMID: 27933454 DOI: 10.1007/s00253-016-8033-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
Abstract
The linear C6 dicarboxylic acid adipic acid is an important bulk chemical in the petrochemical industry as precursor of the polymer nylon-6,6-polyamide. In recent years, efforts were made towards the biotechnological production of adipate from renewable carbon sources using microbial cells. One strategy is to produce adipate via a reversed β-oxidation pathway. Hitherto, the adipate titers were very low due to limiting enzyme activities for this pathway. In most cases, the CoA intermediates are non-natural substrates for the tested enzymes and were therefore barely converted. We here tested heterologous enzymes in Escherichia coli to overcome these limitations and to improve the production of adipate via a reverse β-oxidation pathway. We tested in vitro selected enzymes for the efficient reduction of the enoyl-CoA and in the final reaction for the thioester cleavage. The genes encoding the enzymes which showed in vitro the highest activity were then used to construct an expression plasmid for a synthetic adipate pathway. Expression of paaJ, paaH, paaF, dcaA, and tesB in E. coli BL21(DE3) resulted in the production of up to 36 mg/L of adipate after 30 h of cultivation. Beside the activities of the pathway enzymes, the availability of metabolic precursors may limit the synthesis of adipate, providing another key target for further strain engineering towards high-yield production of adipate with E. coli.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Jochem Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marvin Lübcke
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität, Düsseldorf, 52425, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität, Düsseldorf, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
30
|
Dasgupta S. Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Cheong S, Clomburg JM, Gonzalez R. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat Biotechnol 2016; 34:556-61. [DOI: 10.1038/nbt.3505] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/10/2016] [Indexed: 11/09/2022]
|
32
|
Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 2016; 17:182. [PMID: 26939900 PMCID: PMC4778363 DOI: 10.1186/s12864-016-2540-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/25/2016] [Indexed: 11/18/2022] Open
Abstract
Background The phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena, the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions. Results The E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis, of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans-splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel β-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these components were not extensive or dynamic during the anaerobic treatment. Conclusion The RNA-Seq analysis provided comprehensive transcriptome information on E.gracilis for the first time, and this information will advance our understanding of this unique organism. The comprehensive analysis indicated that paramylon and wax ester metabolic pathways are regulated at post-transcriptional rather than the transcriptional level in response to anaerobic conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2540-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuta Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.
| | - Takuya Tomiyama
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.
| |
Collapse
|
33
|
Mukaida S, Ogawa T, Ohishi K, Tanizawa Y, Ohta D, Arita M. The effect of rapamycin on biodiesel-producing protist Euglena gracilis. Biosci Biotechnol Biochem 2016; 80:1223-9. [PMID: 26872547 DOI: 10.1080/09168451.2016.1141040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rapamycin induces autophagy with lipid remodeling in yeast and mammalian cells. To investigate the lipid biosynthesis of Euglena gracilis, rapamycin was supplemented in comparison with two model algae, Chlamydomonas reinhardtii and Cyanidioschyzon merolae. In Euglena, rapamycin induced the reduction of chlorophylls and the accumulation of neutral lipids without deterring its cell proliferation. Its lipidomic profile revealed that the fatty acid composition did not alter by supplementing rapamycin. In Chlamydomonas, however, rapamycin induced serious growth inhibition as reported elsewhere. With a lower concentration of rapamycin, the alga accumulated neutral lipids without reducing chlorophylls. In Cyanidioschyzon, rapamycin did not increase neutral lipids but reduced its chlorophyll content. We also tested fatty acid elongase inhibitors such as pyroxasulfone or flufenacet in Euglena with no significant change in its neutral lipid contents. In summary, controlled supplementation of rapamycin can increase the yield of neutral lipids while the scheme is not always applicable for other algal species.
Collapse
Affiliation(s)
- Shiho Mukaida
- a Center for Information Biology, National Institute of Genetics , Mishima , Japan
| | - Takumi Ogawa
- b Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Osaka , Japan
| | - Kazuko Ohishi
- a Center for Information Biology, National Institute of Genetics , Mishima , Japan
| | - Yasuhiro Tanizawa
- a Center for Information Biology, National Institute of Genetics , Mishima , Japan.,c Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences , The University of Tokyo , Kashiwa , Japan
| | - Daisaku Ohta
- b Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Osaka , Japan
| | - Masanori Arita
- a Center for Information Biology, National Institute of Genetics , Mishima , Japan.,d RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| |
Collapse
|
34
|
Schadeweg V, Boles E. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:44. [PMID: 26913077 PMCID: PMC4765181 DOI: 10.1186/s13068-016-0456-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/09/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Butanol isomers are regarded as more suitable fuel substitutes than bioethanol. n-Butanol is naturally produced by some Clostridia species, but due to inherent problems with clostridial fermentations, industrially more relevant organisms have been genetically engineered for n-butanol production. Although the yeast Saccharomyces cerevisiae holds significant advantages in terms of scalable industrial fermentation, n-butanol yields and titers obtained so far are only low. RESULTS Here we report a thorough analysis and significant improvements of n-butanol production from glucose with yeast via the acetoacetyl-CoA-derived pathway. First, we established an improved n-butanol pathway by testing various isoenzymes of different pathway reactions. This resulted in n-butanol titers around 15 mg/L in synthetic medium after 74 h. As the initial substrate of the n-butanol pathway is acetyl-coenzyme A (acetyl-CoA) and most intermediates are bound to coenzyme A (CoA), we increased CoA synthesis by overexpression of the pantothenate kinase coaA gene from Escherichia coli. Supplementation with pantothenate increased n-butanol production up to 34 mg/L. Additional reduction of ethanol formation by deletion of alcohol dehydrogenase genes ADH1-5 led to n-butanol titers of 71 mg/L. Further expression of a mutant form of an ATP independent acetylating acetaldehyde dehydrogenase, adhE(A267T/E568K), converting acetaldehyde into acetyl-CoA, resulted in 95 mg/L n-butanol. In the final strain, the n-butanol pathway genes, coaA and adhE (A267T/E568K), were stably integrated into the yeast genome, thereby deleting another alcohol dehydrogenase gene, ADH6, and GPD2-encoding glycerol-3-phosphate dehydrogenase. This led to a further decrease in ethanol and glycerol by-product formation and elevated redox power in the form of NADH. With the addition of pantothenate, this strain produced n-butanol up to a titer of 130 ± 20 mg/L and a yield of 0.012 g/g glucose. These are the highest values reported so far for S. cerevisiae in synthetic medium via an acetoacetyl-CoA-derived n-butanol pathway. CONCLUSIONS By gradually increasing substrate supply and redox power in the form of CoA, acetyl-CoA, and NADH, and decreasing ethanol and glycerol formation, we could stepwise increase n-butanol production in S. cerevisiae. However, still further bottlenecks in the n-butanol pathway must be deciphered and improved for industrially relevant n-butanol production levels.
Collapse
Affiliation(s)
- Virginia Schadeweg
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt Am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt Am Main, Germany
| |
Collapse
|
35
|
Sheppard MJ, Kunjapur AM, Prather KL. Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 2016; 33:28-40. [DOI: 10.1016/j.ymben.2015.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
|
36
|
Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A. Solving a Bloody Mess: B-Vitamin Independent Metabolic Convergence among Gammaproteobacterial Obligate Endosymbionts from Blood-Feeding Arthropods and the Leech Haementeria officinalis. Genome Biol Evol 2015; 7:2871-2884. [PMID: 26454017 PMCID: PMC4684696 DOI: 10.1093/gbe/evv188] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 02/07/2023] Open
Abstract
Endosymbiosis is a common phenomenon in nature, especially between bacteria and insects, whose typically unbalanced diets are usually complemented by their obligate endosymbionts. While much interest and focus has been directed toward phloem-feeders like aphids and mealybugs, blood-feeders such as the Lone star tick (Amblyomma americanum), Glossina flies, and the human body louse (Pediculus humanus corporis) depend on obligate endosymbionts which complement their B-vitamin-deficient diets, and thus are required for growth and survival. Glossiphoniid leeches have also been found to harbor distinct endosymbionts housed in specialized organs. Here, we present the genome of the bacterial endosymbiont from Haementeria officinalis, first of a glossiphoniid leech. This as-yet-unnamed endosymbiont belongs to the Gammaproteobacteria, has a pleomorphic shape and is restricted to bacteriocytes. For this bacterial endosymbiont, we propose the name Candidatus Providencia siddallii. This symbiont possesses a highly reduced genome with high A+T content and a reduced set of metabolic capabilities, all of which are common characteristics of ancient obligate endosymbionts of arthropods. Its genome has retained many pathways related to the biosynthesis of B-vitamins, pointing toward a role in supplementing the blood-restricted diet of its host. Through comparative genomics against the endosymbionts of A. americanum, Glossina flies, and P. humanus corporis, we were able to detect a high degree of metabolic convergence among these four very distantly related endosymbiotic bacteria.
Collapse
Affiliation(s)
| | - Alejandro Oceguera-Figueroa
- Laboratorio de Helmintología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Distrito Federal, Mexico
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Valencia, Spain
| | - Luis F Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Distrito Federal, Mexico
| | - Andres Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
37
|
Shtaida N, Khozin-Goldberg I, Boussiba S. The role of pyruvate hub enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic microalgae. PHOTOSYNTHESIS RESEARCH 2015; 125:407-22. [PMID: 25846135 DOI: 10.1007/s11120-015-0136-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/27/2015] [Indexed: 05/15/2023]
Abstract
Photosynthetic microalgae are currently the focus of basic and applied research due to an ever-growing interest in renewable energy resources. This review discusses the role of carbon-unit supply for the production of acetyl-CoA, a direct precursor of fatty acid biosynthesis and the primary building block of the growing acyl chains for the purpose of triacylglycerol (TAG) production in photosynthetic microalgae under stressful conditions. It underscores the importance of intraplastidic acetyl-CoA generation for storage lipid accumulation. The main focus is placed on two enzymatic steps linking the central carbon metabolism and fatty acid synthesis, namely the reactions catalyzed by the plastidic isoform of pyruvate kinase and the chloroplastic pyruvate dehydrogenase complex. Alternative routes for plastidic acetyl-CoA synthesis are also reviewed. A separate section is devoted to recent advances in functional genomics studies related to fatty acid and TAG biosynthesis.
Collapse
Affiliation(s)
- Nastassia Shtaida
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | | | | |
Collapse
|
38
|
Lian J, Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 2015; 4:332-41. [PMID: 24959659 DOI: 10.1021/sb500243c] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Functionally reversing the β-oxidation cycle represents an efficient and versatile strategy for synthesis of a wide variety of fuels and chemicals. However, due to the compartmentalization of cellular metabolisms, reversing the β-oxidation cycle in eukaryotic systems remains elusive. Here, we report the first successful reversal of the β-oxidation cycle in Saccharomyces cerevisiae, an important cell factory for large-scale production of fuels and chemicals. After extensive gene cloning and enzyme activity assays, a reversed β-oxidation pathway was functionally constructed in the yeast cytosol, which led to the synthesis of n-butanol, medium-chain fatty acids (MCFAs), and medium-chain fatty acid ethyl esters (MCFAEEs). The resultant recombinant strain provides a new broadly applicable platform for synthesis of fuels and chemicals in S. cerevisiae.
Collapse
Affiliation(s)
- Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Ogawa T, Tamoi M, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T, Shigeoka S. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:80. [PMID: 26056534 PMCID: PMC4459067 DOI: 10.1186/s13068-015-0264-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/22/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microalgae have recently been attracting attention as a potential platform for the production of biofuels. Euglena gracilis, a unicellular phytoflagellate, has been proposed as an attractive feedstock to produce biodiesel because it can produce large amounts of wax esters, consisting of medium-chain fatty acids and alcohols with 14:0 carbon chains. E. gracilis cells highly accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. When grown aerobically and then transferred into anaerobic conditions, E. gracilis cells degrade paramylon to actively synthesize and accumulate wax esters. Thus, the enhanced accumulation of paramylon through the genetic engineering of photosynthesis should increase the capacity for wax ester production. RESULTS We herein generated transgenic Euglena (EpFS) cells expressing the cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), which is involved in the Calvin cycle, to enhance its photosynthetic activity. FBP/SBPase was successfully expressed within Euglena chloroplasts. The cell volume of the EpFS4 cell line was significantly larger than that of wild-type cells under normal growth conditions. The photosynthetic activity of EpFS4 cells was significantly higher than that of wild type under high light and high CO2, resulting in enhanced biomass production, and the accumulation of paramylon was increased in transgenic cell lines than in wild-type cells. Furthermore, when EpFS cell lines grown under high light and high CO2 were placed on anaerobiosis, the productivity of wax esters was approximately 13- to 100-fold higher in EpFS cell lines than in wild-type cells. CONCLUSION Our results obtained here indicate that the efficiency of biomass production in E. gracilis can be improved by genetically modulating photosynthetic capacity, resulting in the enhanced production of wax esters. This is the first step toward the utilization of E. gracilis as a sustainable source for biofuel production under photoautotrophic cultivation.
Collapse
Affiliation(s)
- Takahisa Ogawa
- />Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Masahiro Tamoi
- />Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Ayako Kimura
- />Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Ayaka Mine
- />Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | - Harumi Sakuyama
- />Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Eriko Yoshida
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
- />euglena Co., Ltd., 31F Iidabashi First Tower, 2-6-1 Koraku, Bunkyo-ku, Tokyo, 112-0004 Japan
| | - Takanori Maruta
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
- />Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Kengo Suzuki
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
- />euglena Co., Ltd., 31F Iidabashi First Tower, 2-6-1 Koraku, Bunkyo-ku, Tokyo, 112-0004 Japan
| | - Takahiro Ishikawa
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
- />Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Shigeru Shigeoka
- />Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
40
|
Krajčovič J, Schwartzbach SD. Euglenoid flagellates: a multifaceted biotechnology platform. J Biotechnol 2014; 202:135-45. [PMID: 25527385 DOI: 10.1016/j.jbiotec.2014.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023]
Abstract
Euglenoid flagellates are mainly fresh water protists growing in highly diverse environments making them well-suited for a multiplicity of biotechnology applications. Phototrophic euglenids possesses complex chloroplasts of green algal origin bounded by three membranes. Euglena nuclear and plastid genome organization, gene structure and gene expression are distinctly different from other organisms. Our observations on the model organism Euglena gracilis indicate that transcription of both the plastid and nuclear genome is insensitive to environmental changes and that gene expression is regulated mainly at the post-transcriptional level. Euglena plastids have been proposed as a site for the production of proteins and value added metabolites of biotechnological interest. Euglena has been shown to be a suitable protist species to be used for production of several compounds that are used in the production of cosmeceuticals and nutraceuticals, such as α-tocopherol, wax esters, polyunsaturated fatty acids, biotin and tyrosine. The storage polysaccharide, paramylon, has immunostimulatory properties and has shown a promise for biomaterials production. Euglena biomass can be used as a nutritional supplement in aquaculture and in animal feed. Diverse applications of Euglena in environmental biotechnology include ecotoxicological risk assessment, heavy metal bioremediation, bioremediation of industrial wastewater and contaminated water.
Collapse
Affiliation(s)
- Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia.
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152-3560, USA
| |
Collapse
|
41
|
Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. J Ind Microbiol Biotechnol 2014; 42:437-51. [PMID: 25306882 DOI: 10.1007/s10295-014-1518-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022]
Abstract
Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed.
Collapse
|
42
|
Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nat Commun 2014; 5:5031. [PMID: 25248664 DOI: 10.1038/ncomms6031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022] Open
Abstract
Increasingly complex metabolic pathways have been engineered by modifying natural pathways and establishing de novo pathways with enzymes from a variety of organisms. Here we apply retro-biosynthetic screening to a modular pathway design to identify a redox neutral, theoretically high yielding route to a branched C6 alcohol. Enzymes capable of converting natural E. coli metabolites into 4-methyl-pentanol (4MP) via coenzyme A (CoA)-dependent chemistry were taken from nine different organisms to form a ten-step de novo pathway. Selectivity for 4MP is enhanced through the use of key enzymes acting on acyl-CoA intermediates, a carboxylic acid reductase from Nocardia iowensis and an alcohol dehydrogenase from Leifsonia sp. strain S749. One implementation of the full pathway from glucose demonstrates selective carbon chain extension and acid reduction with 4MP constituting 81% (90±7 mg l(-1)) of the observed alcohol products. The highest observed 4MP titre is 192±23 mg l(-1). These results demonstrate the ability of modular pathway screening to facilitate de novo pathway engineering.
Collapse
|
43
|
Kim DG, Yoo JC, Kim E, Lee YS, Yarishkin OV, Lee DY, Lee KH, Hong SG, Hwang EM, Park JY. A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity. Endocrinol Metab (Seoul) 2014; 29:185-94. [PMID: 25031892 PMCID: PMC4091492 DOI: 10.3803/enm.2014.29.2.185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα. METHODS To identify the expression pattern of MECR and the cytosolic form of MECR (cMECR), we performed reverse transcription polymerase chain reaction (RT-PCR) with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity. RESULTS We provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells. CONCLUSION We found the cytosolic form of MECR (cMECR) was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.
Collapse
Affiliation(s)
- Dong-Gyu Kim
- Department of Physiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Jae Cheal Yoo
- Department of Physiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Eunju Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Young-Sun Lee
- Department of Physiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Oleg V. Yarishkin
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Da Yong Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Kun Ho Lee
- Department of Marine Life Science, Chosun University College of Natural Sciences, Gwangju, Korea
| | - Seong-Geun Hong
- Department of Physiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Jae-Yong Park
- Department of Physiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju, Korea
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| |
Collapse
|
44
|
Acrylyl-coenzyme A reductase, an enzyme involved in the assimilation of 3-hydroxypropionate by Rhodobacter sphaeroides. J Bacteriol 2013; 195:4716-25. [PMID: 23955006 DOI: 10.1128/jb.00685-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anoxygenic phototroph Rhodobacter sphaeroides uses 3-hydroxypropionate as a sole carbon source for growth. Previously, we showed that the gene (RSP_1434) known as acuI, which encodes a protein of the medium-chain dehydrogenase/reductase (MDR) superfamily, was involved in 3-hydroxypropionate assimilation via the reductive conversion to propionyl-coenzyme A (CoA). Based on these results, we speculated that acuI encoded acrylyl-CoA reductase. In this work, we characterize the in vitro enzyme activity of purified, recombinant AcuI using a coupled spectrophotometric assay. AcuI from R. sphaeroides catalyzes the NADPH-dependent acrylyl-CoA reduction to produce propionyl-CoA. Two other members of the MDR012 family within the MDR superfamily, the products of SPO_1914 from Ruegeria pomeroyi and yhdH from Escherichia coli, were shown to also be part of this new class of NADPH-dependent acrylyl-CoA reductases. The activities of the three enzymes were characterized by an extremely low Km for acrylyl-CoA (<3 μM) and turnover numbers of 45 to 80 s(-1). These homodimeric enzymes were highly specific for NADPH (Km = 18 to 33 μM), with catalytic efficiencies of more than 10-fold higher for NADPH than for NADH. The introduction of codon-optimized SPO_1914 or yhdH into a ΔacuI::kan mutant of R. sphaeroides on a plasmid complemented 3-hydroxypropionate-dependent growth. However, in their native hosts, SPO_1914 and yhdH are believed to function in the metabolism of substrates other than 3-hydroxypropionate, where acrylyl-CoA is an intermediate. Complementation of the ΔacuI::kan mutant phenotype by crotonyl-CoA carboxylase/reductase from R. sphaeroides was attributed to the fact that the enzyme also uses acrylyl-CoA as a substrate.
Collapse
|
45
|
Structures of trans-2-enoyl-CoA reductases from Clostridium acetobutylicum and Treponema denticola: insights into the substrate specificity and the catalytic mechanism. Biochem J 2013; 449:79-89. [PMID: 23050861 DOI: 10.1042/bj20120871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TERs (trans-2-enoyl-CoA reductases; EC 1.3.1.44), which specifically catalyse the reduction of crotonyl-CoA to butyryl-CoA using NADH as cofactor, have recently been applied in the design of robust synthetic pathways to produce butan-1-ol as a biofuel. We report in the present paper the characterization of a CaTER (a TER homologue in Clostridium acetobutylicum), the structures of CaTER in apo form and in complexes with NADH and NAD+, and the structure of TdTER (Treponema denticola TER) in complex with NAD+. Structural and sequence comparisons show that CaTER and TdTER share approximately 45% overall sequence identity and high structural similarities with the FabV class enoyl-acyl carrier protein reductases in the bacterial fatty acid synthesis pathway, suggesting that both types of enzymes belong to the same family. CaTER and TdTER function as monomers and consist of a cofactor-binding domain and a substrate-binding domain with the catalytic active site located at the interface of the two domains. Structural analyses of CaTER together with mutagenesis and biochemical data indicate that the conserved Glu75 determines the cofactor specificity, and the conserved Tyr225, Tyr235 and Lys244 play critical roles in catalysis. Upon cofactor binding, the substrate-binding loop changes from an open conformation to a closed conformation, narrowing a hydrophobic channel to the catalytic site. A modelling study shows that the hydrophobic channel is optimal in both width and length for the binding of crotonyl-CoA. These results provide molecular bases for the high substrate specificity and the catalytic mechanism of TERs.
Collapse
|
46
|
Clomburg JM, Vick JE, Blankschien MD, Rodríguez-Moyá M, Gonzalez R. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 2012; 1:541-54. [PMID: 23656231 DOI: 10.1021/sb3000782] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While we have recently constructed a functional reversal of the β-oxidation cycle as a platform for the production of fuels and chemicals by engineering global regulators and eliminating native fermentative pathways, the system-level approach used makes it difficult to determine which of the many deregulated enzymes are responsible for product synthesis. This, in turn, limits efforts to fine-tune the synthesis of specific products and prevents the transfer of the engineered pathway to other organisms. In the work reported here, we overcome the aforementioned limitations by using a synthetic biology approach to construct and functionally characterize a reversal of the β-oxidation cycle. This was achieved through the in vitro kinetic characterization of each functional unit of the core and termination pathways, followed by their in vivo assembly and functional characterization. With this approach, the four functional units of the core pathway, thiolase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydratase, and acyl-CoA dehydrogenase/trans-enoyl-CoA reductase, were purified and kinetically characterized in vitro. When these four functional units were assembled in vivo in combination with thioesterases as the termination pathway, the synthesis of a variety of 4-C carboxylic acids from a one-turn functional reversal of the β-oxidation cycle was realized. The individual expression and modular construction of these well-defined core components exerted the majority of control over product formation, with only highly selective termination pathways resulting in shifts in product formation. Further control over product synthesis was demonstrated by overexpressing a long-chain thiolase that enables the operation of multiple turns of the reversal of the β-oxidation cycle and hence the synthesis of longer-chain carboxylic acids. The well-defined and self-contained nature of each functional unit makes the engineered reversal of the β-oxidation cycle "chassis neutral" and hence transferrable to the host of choice for efficient fuel or chemical production.
Collapse
Affiliation(s)
- James M. Clomburg
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Jacob E. Vick
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Matthew D. Blankschien
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - María Rodríguez-Moyá
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| |
Collapse
|
47
|
Bond-Watts BB, Weeks AM, Chang MCY. Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola. Biochemistry 2012; 51:6827-37. [PMID: 22906002 DOI: 10.1021/bi300879n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The production of fatty acids is an important cellular pathway for both cellular function and the development of engineered pathways for the synthesis of advanced biofuels. Despite the conserved reaction chemistry of various fatty acid synthase systems, the individual isozymes that catalyze these steps are quite diverse in their structural and biochemical features and are important for controlling differences at the cellular level. One of the key steps in the fatty acid elongation cycle is the enoyl-ACP (CoA) reductase function that drives the equilibrium forward toward chain extension. In this work, we report the structural and biochemical characterization of the trans-enoyl-CoA reductase from Treponema denticola (tdTer), which has been utilized for the engineering of synthetic biofuel pathways with an order of magnitude increase in product titers compared to those of pathways constructed with other enoyl-CoA reductase components. The crystal structure of tdTer was determined to 2.00 Å resolution and shows that the Ter enzymes are distinct from members of the FabI, FabK, and FabL families but are highly similar to members of the FabV family. Further biochemical studies show that tdTer uses an ordered bi-bi mechanism initiated by binding of the NADH redox cofactor, which is consistent with the behavior of other enoyl-ACP (CoA) reductases. Mutagenesis of the substrate binding loop, characterization of enzyme activity with respect to crotonyl-CoA, hexenoyl-CoA, and dodecenoyl-CoA substrates, and product inhibition by lauroyl-CoA suggest that this region is important for controlling chain length specificity, with the major portal playing a more important role for longer chain length substrates.
Collapse
Affiliation(s)
- Brooks B Bond-Watts
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | |
Collapse
|
48
|
Atteia A, van Lis R, Tielens AGM, Martin WF. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:210-23. [PMID: 22902601 DOI: 10.1016/j.bbabio.2012.08.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/30/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
Abstract
Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Ariane Atteia
- Unité de Bioénergétique et Ingénierie des Protéines-UMR 7281, CNRS-Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | | | |
Collapse
|
49
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 517] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
50
|
Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 2011; 133:11399-401. [PMID: 21707101 DOI: 10.1021/ja203814d] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An Escherichia coli strain was engineered to synthesize 1-hexanol from glucose by extending the coenzyme A (CoA)-dependent 1-butanol synthesis reaction sequence catalyzed by exogenous enzymes. The C4-acyl-CoA intermediates were first synthesized via acetyl-CoA acetyltransferase (AtoB), 3-hydroxybutyryl-CoA dehydrogenase (Hbd), crotonase (Crt), and trans-enoyl-CoA reductase (Ter) from various organisms. The butyryl-CoA synthesized was further extended to hexanoyl-CoA via β-ketothiolase (BktB), Hbd, Crt, and Ter. Finally, hexanoyl-CoA was reduced to yield 1-hexanol by aldehyde/alcohol dehydrogenase (AdhE2). Enzyme activities for the C6 intermediates were confirmed by assays using HPLC and GC. 1-Hexanol was secreted to the fermentation medium under anaerobic conditions. Furthermore, co-expressing formate dehydrogenase (Fdh) from Candida boidinii increased the 1-hexanol titer. This demonstration of 1-hexanol production by extending the 1-butanol pathway provides the possibility to produce other medium chain length alcohols using the same strategy.
Collapse
Affiliation(s)
- Yasumasa Dekishima
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|