1
|
Zeng C, Xiao W. Molecular cloning and functional characterization of UBC13 and MMS2 from Candida albicans. Gene 2022; 816:146163. [PMID: 34995738 DOI: 10.1016/j.gene.2021.146163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
To maintain genome stability, eukaryotes have evolved a powerful DNA damage response system called DNA-damage tolerance (DDT) to deal with replication-blocking lesions. In the budding yeast Saccharomyces cerevisiae, K63-linked polyubiquitination of proliferating cell nuclear antigen (PCNA) is mediated by a Ubc13-Mms2 heterodimer, leading to error-free DDT. Candida albicans is one of the most studied fungal pathogens and to date no data regarding K63-linked ubiquitination or error-free DDT has been available. Here we report the identification and functional characterization of UBC13 and MMS2 genes from C. albicans. Both genes are highly conserved between S. cerevisiae and C. albicans. However, CaUbc13 differs from all other eukaryotes in that it contains a 21-amino acid tail that appears to attenuate its interaction with CaMms2, suggesting a possible regulatory mechanism in C. albicans. Both CaUBC13 and CaMMS2 genes can functionally rescue the corresponding budding yeast mutants from increased spontaneous mutagenesis and killing by DNA-damaging agents, indicating an error-free DDT pathway in C. albicans. Indeed Caubc13Δ/Δ and Camms2Δ/Δ null mutants were constructed and displayed characteristic sensitivity to DNA-damaging agents.
Collapse
Affiliation(s)
- Chuanwen Zeng
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
2
|
Li M, Wang L, Liu Y, Lin Y, Zhang Y, Long Y, Luo C, Zhang Y, Chen Q, Chen P, Wang Y, Wang X, Tang H, Luo Y. Characterization and regulation mechanism analysis of ubiquitin-conjugating family genes in strawberry reveals a potential role in fruit ripening. BMC PLANT BIOLOGY 2022; 22:39. [PMID: 35045827 PMCID: PMC8767729 DOI: 10.1186/s12870-021-03421-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND E2 ubiquitin-conjugating (UBC) enzymes are an integral component of the ubiquitin proteasome system that play an important role in plant development, growth, and external stress responses. Several UBC genes have been identified in various plants. However, no studies exploring the functions of UBC genes in regulating fruit of strawberry have been reported. In the present study, a systematic analysis of the entire UBC family members were conducted in the genome of strawberry (Fragaria ×ananassa) based on bioinformatics method, and the gene functioning in strawberry ripening was explored. RESULTS A total of 191 UBC genes were identified in the genome of cultivated strawberry. These genes were unevenly distributed across the 28 chromosomes from the 4 subgenomes of cultivated strawberry, ranging from 3 to 11 genes per chromosome. Moreover, the expansion of FaUBC genes in strawberry was mainly driven by WGD. All the FaUBC genes were clarified into 13 groups and most of them were included in the group VI. The gene structure analysis showed that the number of exons varied from 1 to 23, and the structure of genes had few differences within the same groups but a distinction in different groups. Identification of the cis-acting elements of the promoter revealed multiple regulatory elements that responded to plant growth and development, phytohormone responsive, and abiotic and biotic stress. Data from functional annotation indicated that FaUBC genes play a role in a variety of biological processes. The RNA-seq data showed that FaUBC genes displayed different expression pattern during the fruit ripening process and clarified into 6 clusters. In particular, cluster 3 exhibiting a sudden expression increase in the turning red stage were speculated to be involved in fruit ripening. Hence, two FaUBC genes (FaUBC76 and FaUBC78) were selected for gene function analysis by transient over-expression method. The results indicated that FaUBC76 has a positive effect on the fruit development and ripening in strawberry by up-regulating accumulation of anthocyanins. Moreover, expression of some maturity-related genes were also significantly increased, further supporting a role for FaUBC76 in the regulation of fruit ripening or softening. On the contrary, the overexpression of FaUBC78 significantly increased the firmness of strawberry fruit, indicating that FaUBC78 had a positive role in inhibiting the decrease of strawberry fruit firmness. CONCLUSION Our study not only provide comprehensive information on system evolution and function on UBC genes, but also give a new insight into explore the roles of FaUBC genes in the regulation of strawberry ripening.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiting Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Long
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuanying Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pinwen Chen
- Departmental and Municipal Co-construction of Crops Genetic Improvement of Hill Land Key Laboratory of Sichuan, Nanchong, 637000, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Zhu L, Zhang Q, Cordeiro CD, Banjade S, Sardana R, Mao Y, Emr SD. Adaptor linked K63 di-ubiquitin activates Nedd4/Rsp5 E3 ligase. eLife 2022; 11:77424. [PMID: 35770973 PMCID: PMC9282857 DOI: 10.7554/elife.77424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY motif containing adaptor proteins. Several arrestin-related trafficking adaptors (ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63-linked di-ubiquitination by Rsp5. This modification enhances the plasma membrane recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the pombe orthologs of Rsp5 and Art1, Pub1, and Any1. Furthermore, we discover that the homologous to E6AP C-terminus (HECT) domain exosite protects the K63-linked di-ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment, and activity of Rsp5 for the turnover of membrane proteins.
Collapse
Affiliation(s)
- Lu Zhu
- Weill Institute of Cell and Molecular Biology, Cornell UniversityIthacaUnited States,Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Qing Zhang
- Weill Institute of Cell and Molecular Biology, Cornell UniversityIthacaUnited States,Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Ciro D Cordeiro
- Weill Institute of Cell and Molecular Biology, Cornell UniversityIthacaUnited States,Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Sudeep Banjade
- Weill Institute of Cell and Molecular Biology, Cornell UniversityIthacaUnited States,Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Richa Sardana
- Weill Institute of Cell and Molecular Biology, Cornell UniversityIthacaUnited States,Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Yuxin Mao
- Weill Institute of Cell and Molecular Biology, Cornell UniversityIthacaUnited States,Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Scott D Emr
- Weill Institute of Cell and Molecular Biology, Cornell UniversityIthacaUnited States,Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| |
Collapse
|
4
|
Gene Expression of Putative Pathogenicity-Related Genes in Verticillium dahliae in Response to Elicitation with Potato Extracts and during Infection Using Quantitative Real-Time PCR. Pathogens 2021; 10:pathogens10050510. [PMID: 33922492 PMCID: PMC8146963 DOI: 10.3390/pathogens10050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Quantitative real-time PCR was used to monitor the expression of 15 Verticillium dahliae's genes, putatively involved in pathogenicity, highly (HAV) and weakly aggressive (WAV) V. dahliae isolates after either (i) elicitation with potato leaf, stem, or root extracts, or (ii) inoculation of potato detached petioles. These genes, i.e., coding for Ras-GAP-like protein, serine/threonine protein kinase, Ubiquitin-conjugating enzyme variant-MMS2, NADH-ubiquinone oxidoreductase, Thioredoxin, Pyruvate dehydrogenase E1 VdPDHB, myo-inositol 2-dehydrogenase, and HAD-superfamily hydrolase, showed differential upregulation in the HAV versus WAV isolate in response to plant extracts or after inoculation of potato leaf petioles. This suggests their potential involvement in the observed differential aggressiveness between isolates. However, other genes like glucan endo-1,3-alpha-glucosidase and nuc-1 negative regulatory protein VdPREG showed higher activity in the WAV than in the HAV in response to potato extracts and/or during infection. This, in contrast, may suggest a role in their lower aggressiveness. These findings, along with future functional analysis of selected genes, will contribute to improving our understanding of V. dahliae's pathogenesis. For example, expression of VdPREG negatively regulates phosphorus-acquisition enzymes, which may indicate a lower phosphorus acquisition activity in the WAV. Therefore, integrating the knowledge about the activity of both genes enhancing pathogenicity and those restraining it will provide a guild line for further functional characterization of the most critical genes, thus driving new ideas towards better Verticillium wilt management.
Collapse
|
5
|
Uev1A amino terminus stimulates poly-ubiquitin chain assembly and is required for NF-κB activation. Cell Signal 2020; 74:109712. [DOI: 10.1016/j.cellsig.2020.109712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
|
6
|
Guo H, Wang L, Hu R, He Y, Xiao W. Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110518. [PMID: 32563457 DOI: 10.1016/j.plantsci.2020.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Ubc13 and Ubc/E2 variant (Uev) form a stable heterodimer to mediate Lys63-linked polyubiquitination. Unicellular eukaryotic genomes often contain single UBC13 and UEV gene; however, multiple homologs were found in higher plants. As initial land plants, Physcomitrella patens occupies a key evolutionary position between green algae and higher plants. In this study, we report the identification and functional characterization of two UBC13 and three UEV1 genes from P. patens. Both PpUbc13s form heterodimers with PpUev1B or PpUev1C, which catalyze Lys63-linked polyubiquitination in vitro and functionally complement the yeast ubc13 mms2 null mutant from killing by DNA-damaging agents. In contrast, PpUev1A is unable to interact with Ubc13s and cannot complement the yeast mms2 mutant. Two single mutations, PpUev1A-D12N and ΔCT, barely have any effect; however, the corresponding double mutation makes PpUev1A functional in both heterodimer formation and complementation. This study identifies a critical Uev residue located in the Ubc13-Uev interface and reveals that mosses began to evolve multiple UBC13 and UEV orthologs in order to adapt to the terrestrial environment. The evolutionary significance of PpUEV1A is discussed.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Linxiao Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
7
|
Bai Z, Wei M, Li Z, Xiao W. Drosophila Uev1a is dually required for Ben-dependent DNA-damage response and fly mobility. Cell Signal 2020; 74:109719. [PMID: 32702441 DOI: 10.1016/j.cellsig.2020.109719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022]
Abstract
K63-linked polyubiquitination requires the ubiquitin-conjugating enzyme Ubc13 and a Ubc/E2 variant Uev. Lower eukaryotic organisms contain one UEV gene required for DNA-damage tolerance, while vertebrates and higher plants contain multiple UEV genes with distinct functions. In contrast, Drosophila contains only one UEV gene designated dUev1a. Here we report that dUev1a forms a stable heterodimer with Ben, the Drosophila Ubc13 ortholog, that dUev1a-F15E completely abolishes the interaction, and that a conserved dUev1a-F15Y substitution severely reduces its interaction with Ben. dUev1a functionally rescues the corresponding yeast mms2 null mutant from killing by various DNA-damaging agents in a Ben-dependent manner, and the heterozygous dUev1a mutant flies are more sensitive to DNA-damaging agent, indicating that the function of UEV in DNA-damage response is conserved throughout eukaryotes. Meanwhile, dUev1a+/- mutant flies displayed reduced mobility characteristic of defects in the central nervous system and reminiscent of the bendless phenotypes, suggesting that dUev1a acts together with Ben in this process. Our observations collectively imply that dUev1a is dually required for DNA-damage response and neurological signaling in Drosophila, and that these processes are mediated by the Ben-dUev1a complex that promotes K63-linked polyubiquitination.
Collapse
Affiliation(s)
- Zhiqiang Bai
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Min Wei
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
8
|
Guo H, Wen R, Wang Q, Datla R, Xiao W. Three Brachypodium distachyon Uev1s Promote Ubc13-Mediated Lys63-Linked Polyubiquitination and Confer Different Functions. FRONTIERS IN PLANT SCIENCE 2016; 7:1551. [PMID: 27803708 PMCID: PMC5067413 DOI: 10.3389/fpls.2016.01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 05/08/2023]
Abstract
In this study, we report the identification and functional characterization of three Brachypodium distachyon UEV genes. All three BdUev1s form heterodimers with BdUbc13s, which are capable of catalyzing Lys63-linked polyubiquitination in vitro. The three BdUEV1 genes are also able to functionally complement the budding yeast mms2 mutant defective in DNA-damage tolerance. BdUev1A differs from the other two BdUev1s in that it contains an 18-amino acid tail, which appears to compromise its function in yeast, as deletion of this tail restores full function. BdUev1A is excluded from the nucleus, whereas BdUev1B, BdUev1C and the C-terminally truncated BdUev1A are mainly found in the nucleus. These and the BdUEV1 gene expression analysis allow us to speculate that although all three BdUev1s function by promoting Lys63-linked polyubiquitination, BdUev1B and BdUev1C are involved in DNA-damage response and possibly other nuclear functions, while BdUev1A is required for non-nuclear function(s).
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Rui Wen
- National Research Council Canada, SaskatoonSK, Canada
| | - Qianqian Wang
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Raju Datla
- National Research Council Canada, SaskatoonSK, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal UniversityBeijing, China
- Department of Microbiology and Immunology, University of Saskatchewan, SaskatoonSK, Canada
- *Correspondence: Wei Xiao,
| |
Collapse
|
9
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
10
|
Zhu Q, Chang Y, Yang J, Wei Q. Post-translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncol Lett 2014; 7:1363-1369. [PMID: 24765138 PMCID: PMC3997659 DOI: 10.3892/ol.2014.1943] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that the post-translational modifications of proliferating cell nuclear antigen (PCNA) may be crucial in influencing the cellular choice between different pathways, such as the cell cycle checkpoint, DNA repair or apoptosis pathways, in order to maintain genomic stability. DNA damage leads to replication stress and the subsequent induction of PCNA modification by small ubiquitin (Ub)-related modifiers and Ub, which has been identified to affect multiple biological processes of genomic DNA. Thus far, much has been learned concerning the behavior of modified PCNA as a key signal integrator in response to DNA damage. In humans and yeast, modified PCNA activates DNA damage bypass via an error-prone or error-free pathway to prevent the breakage of DNA replication forks, which may potentially induce double-strand breaks and subsequent chromosomal rearrangements. However, the exact mechanisms by which these pathways work and by what means the modified PCNA is involved in these processes remain elusive. Thus, the improved understanding of PCNA modification and its implications for DNA damage response may provide us with more insight into the mechanisms by which human cells regulate aberrant recombination events, and cancer initiation and development. The present review focuses on the post-translational modifications of PCNA and its important functions in mediating mammalian cellular response to different types of DNA damage.
Collapse
Affiliation(s)
- Qiong Zhu
- Battalion Two of Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuxiao Chang
- Battalion Two of Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Quanfang Wei
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
11
|
Zhou Y, Wang Y, Schreader BA, Nambu JR. Drosophila morgue associates with SkpA and polyubiquitin in vivo. PLoS One 2013; 8:e74860. [PMID: 24098672 PMCID: PMC3787007 DOI: 10.1371/journal.pone.0074860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
Morgue is a unique ubiquitination protein that influences programmed cell death and circadian rhythms in Drosophila. We have found that over-expression of wild-type Morgue results in organismal lethality. This over-expression phenotype was used as the basis for an in vivo functional assay to investigate the importance of the Morgue zinc finger, F box, Ubiquitin E2 Conjugase Variant (UEV) domain, and active site Glycine residue. Removal of the zinc finger or UEV domain reduced Morgue's ability to induce lethality and enhance cell death. In contrast, lack of the F box as well as several different substitutions of the active site Glycine did not alter Morgue-induced lethality or cell death enhancement. To further characterize Morgue functions, a Flag:Morgue protein was used to isolate Morgue-associated proteins from whole adult Drosophila. Mass spectrometry analysis of the Morgue-associated proteins identified SkpA as well as a ubiquitin multimer. The identification of SkpA is consistent with previous in vitro studies and further suggests Morgue acts in an SCF-type ubiquitin E3 ligase complex. The identification of poly-ubiquitin was unexpected and this interaction had not been previously identified. The associated poly-ubiquitin was found to exhibit a Lys-48 topology, consistent with distinct functions of Morgue in proteasome-mediated protein turnover. Multiple regions of Morgue were subsequently shown to be required for poly-ubiquitin binding. Overall, Morgue is a novel multi-functional ubiquitin-binding protein.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Yiqin Wang
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Barbara A. Schreader
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - John R. Nambu
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
Post-translational modification by ubiquitin (ubiquitination, ubiquitylation, ubiquitinylation) is used as a robust signaling mechanism in a variety of processes that are essential for cell homeostasis. Its signaling specificity is conferred by the inherent dynamics of ubiquitin, the multivalency of ubiquitin chains, and its subcellular context, often defined by ubiquitin receptors and the substrate. Greater than 150 ubiquitin receptors have been found and their ubiquitin-binding domains (UBDs) are structurally diverse and include alpha-helical motifs, zinc fingers (ZnF), pleckstrin-homology (PH) domains, ubiquitin conjugating (Ubc)-related structures and src homology 3 (SH3) domains. New UBD structural motifs continue to be identified expanding the ubiquitin-signaling map to proteins and structural families not previously associated with ubiquitin trafficking. In this manuscript, we highlight several ubiquitin receptors from the multiple UBD folds with a focus on the structural characteristics of their interaction with ubiquitin.
Collapse
Affiliation(s)
- Leah Randles
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
13
|
Berndsen CE, Wolberger C. A spectrophotometric assay for conjugation of ubiquitin and ubiquitin-like proteins. Anal Biochem 2011; 418:102-10. [PMID: 21771579 PMCID: PMC3178097 DOI: 10.1016/j.ab.2011.06.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/20/2023]
Abstract
Ubiquitination is a widely studied regulatory modification involved in protein degradation, DNA damage repair, and the immune response. Ubiquitin is conjugated to a substrate lysine in an enzymatic cascade involving an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. Assays for ubiquitin conjugation include electrophoretic mobility shift assays and detection of epitope-tagged or radiolabeled ubiquitin, which are difficult to quantitate accurately and are not amenable to high-throughput screening. We have developed a colorimetric assay that quantifies ubiquitin conjugation by monitoring pyrophosphate released in the first enzymatic step in ubiquitin transfer, the ATP-dependent charging of the E1 enzyme. The assay is rapid, does not rely on radioactive labeling, and requires only a spectrophotometer for detection of pyrophosphate formation. We show that pyrophosphate production by E1 is dependent on ubiquitin transfer and describe how to optimize assay conditions to measure E1, E2, and E3 activity. The kinetics of polyubiquitin chain formation by Ubc13-Mms2 measured by this assay are similar to those determined by gel-based assays, indicating that the data produced by this method are comparable to methods that measure ubiquitin transfer directly. This assay is adaptable to high-throughput screening of ubiquitin and ubiquitin-like conjugating enzymes.
Collapse
Affiliation(s)
- Christopher E Berndsen
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute and the Johns Hopkins University School of Medicine, Baltimore, MD 21202, USA
| | | |
Collapse
|
14
|
Duncan LM, Nathan JA, Lehner PJ. Stabilization of an E3 ligase-E2-ubiquitin complex increases cell surface MHC class I expression. THE JOURNAL OF IMMUNOLOGY 2010; 184:6978-85. [PMID: 20483773 DOI: 10.4049/jimmunol.0904154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus-encoded ubiquitin E3 ligase K3 ubiquitinates cell-surface MHC class I molecules (MHC I), causing the internalization and degradation of MHC I via the endolysosomal pathway. K3 recruits the cellular E2 ubiquitin-conjugating enzyme Ubc13 to generate lysine-63-linked polyubiquitin chains on MHC I, leading to the clathrin-mediated endocytosis and lysosomal degradation of MHC I. In this study, we identify a ubiquitin isoleucine-44-alanine mutant (I44A) that inhibits K3-mediated downregulation of MHC I by preventing MHC I polyubiqitination. This E3-specific inhibition by I44A prevents dissociation of the MHC I-K3-Ubc13-ubiquitin complex, allows the in vivo visualization of a transient substrate-E3-E2-ubiquitin complex interaction, and highlights a potential substrate hierarchy between the different MHC I alleles downregulated by K3. The I44A mutant also increases cell-surface MHC I expression in control cells in the absence of K3, predicting the presence of an endogenous E3 ubiquitin ligase required for cell-surface MHC I regulation.
Collapse
Affiliation(s)
- Lidia M Duncan
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
15
|
Fatimababy AS, Lin YL, Usharani R, Radjacommare R, Wang HT, Tsai HL, Lee Y, Fu H. Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. FEBS J 2010; 277:796-816. [DOI: 10.1111/j.1742-4658.2009.07531.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol Cell Biol 2009; 29:3307-18. [PMID: 19364824 DOI: 10.1128/mcb.00240-09] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyubiquitination can mediate several different biochemical functions, determined in part by which lysine of ubiquitin is used to link the polyubiquitin chain. Among the HECT domain ubiquitin ligases, some, such as human E6AP, preferentially catalyze the formation of K48-linked polyubiquitin chains, while others, including Saccharomyces cerevisiae Rsp5 and human Itch, preferentially catalyze the formation of K63-linked chains. The features of HECT E3s that determine their chain type specificities have not been identified. We show here that chain type specificity is a function solely of the Rsp5 HECT domain, that the identity of the cooperating E2 protein does not influence the chain type specificity, that single chains produced by Rsp5 contain between 12 and 30 ubiquitin moieties, and that the determinants of chain type specificity are located within the last 60 amino acids of the C lobe of the HECT domain. Our results are also consistent with a simple sequential-addition mechanism for polyubiquitination by Rsp5, rather than a mechanism involving the formation of either E2- or E3-linked polyubiquitin chain transfers.
Collapse
|
17
|
Wen R, Torres-Acosta JA, Pastushok L, Lai X, Pelzer L, Wang H, Xiao W. Arabidopsis UEV1D promotes Lysine-63-linked polyubiquitination and is involved in DNA damage response. THE PLANT CELL 2008; 20:213-27. [PMID: 18178771 PMCID: PMC2254933 DOI: 10.1105/tpc.107.051862] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 12/06/2007] [Accepted: 12/17/2007] [Indexed: 05/17/2023]
Abstract
DNA damage tolerance (DDT) in budding yeast requires Lys-63-linked polyubiquitination of the proliferating cell nuclear antigen. The ubiquitin-conjugating enzyme Ubc13 and the Ubc enzyme variant (Uev) methyl methanesulfonate2 (Mms2) are required for this process. Mms2 homologs have been found in all eukaryotic genomes examined; however, their roles in multicellular eukaryotes have not been elucidated. We report the isolation and characterization of four UEV1 genes from Arabidopsis thaliana. All four Uev1 proteins can form a stable complex with At Ubc13 or with Ubc13 from yeast or human and can promote Ubc13-mediated Lys-63 polyubiquitination. All four Uev1 proteins can replace yeast MMS2 DDT functions in vivo. Although these genes are ubiquitously expressed in most tissues, UEV1D appears to express at a much higher level in germinating seeds and in pollen. We obtained and characterized two uev1d null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Those that germinated grew slower, and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage. This report links Ubc13-Uev with functions in DNA damage response in Arabidopsis.
Collapse
Affiliation(s)
- Rui Wen
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | | | | | |
Collapse
|
18
|
Pastushok L, Spyracopoulos L, Xiao W. Two Mms2 residues cooperatively interact with ubiquitin and are critical for Lys63 polyubiquitination in vitro and in vivo. FEBS Lett 2007; 581:5343-8. [PMID: 17964296 DOI: 10.1016/j.febslet.2007.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 01/14/2023]
Abstract
Recent structural analyses support a model whereby Mms2 interacts with and orientates Ub to promote Ubc13-mediated Lys63 chain formation. However, residues of the hMms2-Ub interface have not been addressed. We found two hMms2 residues to be critical for binding and polyUb conjugation. Surprisingly, while each single mutation reduces the binding affinity, the double mutation causes significant reduction of Ub binding and abolishes polyUb chain formation. Furthermore, the corresponding yeast mms2 double mutant exhibited an additive phenotype that caused a complete loss of MMS2 function. Taken together, this study identifies key residues of the Mms2-Ub interface and provides direct experimental evidence that Mms2 physical association with Ub is correlated with its ability to promote Lys63-linked Ub chain assembly.
Collapse
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
19
|
Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol 2006; 13:915-20. [PMID: 16980971 DOI: 10.1038/nsmb1148] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/29/2006] [Indexed: 02/03/2023]
Abstract
Lys63-linked polyubiquitin chains participate in nonproteolytic signaling pathways, including regulation of DNA damage tolerance and NF-kappaB activation. E2 enzymes bound to ubiquitin E2 variants (UEV) are vital in these pathways, synthesizing Lys63-linked polyubiquitin chains, but how these complexes achieve specificity for a particular lysine linkage has been unclear. We have determined the crystal structure of an Mms2-Ubc13-ubiquitin (UEV-E2-Ub) covalent intermediate with donor ubiquitin linked to the active site residue of Ubc13. In the structure, the unexpected binding of a donor ubiquitin of one Mms2-Ubc13-Ub complex to the acceptor-binding site of Mms2-Ubc13 in an adjacent complex allows us to visualize at atomic resolution the molecular determinants of acceptor-ubiquitin binding. The structure reveals the key role of Mms2 in allowing selective insertion of Lys63 into the Ubc13 active site and suggests a molecular model for polyubiquitin chain elongation.
Collapse
Affiliation(s)
- Michael J Eddins
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
20
|
Plosky BS, Vidal AE, de Henestrosa ARF, McLenigan MP, McDonald JP, Mead S, Woodgate R. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J 2006; 25:2847-55. [PMID: 16763556 PMCID: PMC1500862 DOI: 10.1038/sj.emboj.7601178] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 05/12/2006] [Indexed: 01/18/2023] Open
Abstract
Y-family DNA polymerases have spacious active sites that can accommodate a wide variety of geometric distortions. As a consequence, they are considerably more error-prone than high-fidelity replicases. It is hardly surprising, therefore, that the in vivo activity of these polymerases is tightly regulated, so as to minimize their inadvertent access to primer-termini. We report here that one such mechanism employed by human cells relies on a specific and direct interaction between DNA polymerases iota and eta with ubiquitin (Ub). Indeed, we show that both polymerases interact noncovalently with free polyUb chains, as well as mono-ubiquitinated proliferating cell nuclear antigen (Ub-PCNA). Mutants of poliota (P692R) and poleta (H654A) were isolated that are defective in their interactions with polyUb and Ub-PCNA, whilst retaining their ability to interact with unmodified PCNA. Interestingly, the polymerase mutants exhibit significantly lower levels of replication foci in response to DNA damage, thereby highlighting the biological importance of the polymerase-Ub interaction in regulating the access of the TLS polymerases to stalled replication forks in vivo.
Collapse
Affiliation(s)
- Brian S Plosky
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Antonio E Vidal
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Antonio R Fernández de Henestrosa
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Mead
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Haas A. Cecile Pickart 1954–2006. Nat Struct Mol Biol 2006. [DOI: 10.1038/nsmb0606-468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Wang M, Cheng D, Peng J, Pickart CM. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J 2006; 25:1710-9. [PMID: 16601690 PMCID: PMC1440828 DOI: 10.1038/sj.emboj.7601061] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/03/2006] [Indexed: 01/19/2023] Open
Abstract
Ubiquitin (Ub)-protein ligases (E3s) frequently modify their substrates with multiple Ub molecules in the form of a polyubiquitin (poly-Ub) chain. Although structurally distinct poly-Ub chains (linked through different Ub lysine (Lys) residues) can confer different fates on target proteins, little is known about how E3s select the Lys residue to be used in chain synthesis. Here, we used a combination of mutagenesis, biochemistry, and mass spectrometry to map determinants of linkage choice in chain assembly catalyzed by KIAA10, an HECT (Homologous to E6AP C-Terminus) domain E3 that synthesizes K29- and K48-linked chains. Focusing on the Ub molecule that contributes the Lys residue for chain formation, we found that specific surface residues adjacent to K48 and K29 are critical for the usage of the respective Lys residues in chain synthesis. This direct mechanism of linkage choice bears similarities to the mechanism of substrate site selection in sumoylation catalyzed by Ubc9, but is distinct from the mechanism of chain linkage selection used by the Mms2/Ubc13 (Ub E2 variant (UEV)/E2) complex.
Collapse
Affiliation(s)
- Min Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Junmin Peng
- Department of Human Genetics, Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Cecile M Pickart
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Fujimuro M, Nishiya T, Nomura Y, Yokosawa H. Involvement of polyubiquitin chains via specific chain linkages in stress response in mammalian cells. Biol Pharm Bull 2006; 28:2315-8. [PMID: 16327172 DOI: 10.1248/bpb.28.2315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyubiquitination plays key roles in various proteasome-dependent and independent cellular events. To elucidate roles in stress response of polyubiquitin chains formed via specific chain linkages in mammalian cells, we established NIH3T3 stable cell lines that are capable of conditionally expressing K29R, K48R and K63R ubiquitin mutants, in which the Lys29, Lys48 and Lys63 residues of ubiquitin had been changed to Arg, and we examined the effects of various stresses on their cell viabilities. The expression of K63R ubiquitin mutant decreased viability of the cells post-exposed to ethanol, H(2)O(2) and methyl methanesulfonate (MMS), while that of K48R mutant decreased viability of the cells post-exposed to heat shock as well as ethanol, H(2)O(2) and MMS. Thus, these results suggest that polyubiquitin chains formed via specific chain linkages are involved in the respective stress responses in mammalian cells.
Collapse
Affiliation(s)
- Masahiro Fujimuro
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
24
|
Lewis MJ, Saltibus LF, Hau DD, Xiao W, Spyracopoulos L. Structural basis for non-covalent interaction between ubiquitin and the ubiquitin conjugating enzyme variant human MMS2. JOURNAL OF BIOMOLECULAR NMR 2006; 34:89-100. [PMID: 16518696 DOI: 10.1007/s10858-005-5583-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 11/09/2005] [Indexed: 05/07/2023]
Abstract
Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 linked polyubiquitin chains are involved in error-free DNA repair. The catalysis of lysine-63 linked polyubiquitin chains involves the sequential activity of three enzymes (E1, E2, and E3) that ultimately transfer a ubiquitin thiolester intermediate to a protein target. The E2 responsible for catalysis of lysine-63 linked polyubiquitination is a protein heterodimer consisting of a canonical E2 known as Ubc13, and an E2-like protein, or ubiquitin conjugating enzyme variant (UEV), known as Mms2. We have determined the solution structure of the complex formed by human Mms2 and ubiquitin using high resolution, solution state nuclear magnetic resonance (NMR) spectroscopy. The structure of the Mms2-Ub complex provides important insights into the molecular basis underlying the catalysis of lysine-63 linked polyubiquitin chains.
Collapse
Affiliation(s)
- Michael J Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
25
|
Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci U S A 2006; 103:341-6. [PMID: 16407162 PMCID: PMC1326157 DOI: 10.1073/pnas.0506618103] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient targeting of proteins for degradation from the secretory pathway is essential to homeostasis. This occurs through endoplasmic reticulum (ER)-associated degradation (ERAD). In this study, we establish that a human ubiquitin ligase (E3), gp78, and a specific E2, Ube2g2, are both critically important for ERAD of multiple substrates. gp78 exhibits a complex domain structure that, in addition to the RING finger, includes a ubiquitin-binding Cue domain and a specific binding site for Ube2g2. Disruption of either of these domains abolishes gp78-mediated ubiquitylation and protein degradation, resulting in accumulation of substrates in their fully glycosylated forms in the ER. This suggests that gp78-mediated ubiquitylation is an early step in ERAD that precedes dislocation of substrates from the ER. The in vivo requirement for both an E2-binding site distinct from the RING finger and a ubiquitin-binding domain intrinsic to an E3 suggests a previously unappreciated level of complexity in ubiquitin ligase function. These results also provide proof of principle that interrupting a specific E2-E3 interaction can selectively inhibit ERAD.
Collapse
Affiliation(s)
- Bo Chen
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, Building 560, Room 22-103, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
26
|
Current awareness on yeast. Yeast 2005; 22:1249-56. [PMID: 16320446 DOI: 10.1002/yea.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|