1
|
Liu L, Rashid M, Wess J. Regulation of GLP-1 and Glucagon Receptor Function by β-Arrestins in Metabolically Important Cell Types. Biochemistry 2025; 64:978-986. [PMID: 39983043 DOI: 10.1021/acs.biochem.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) and glucagon (GCG) are polypeptides derived from a common precursor (preproglucagon) that modulates the activity of numerous cell types involved in regulating glucose and energy homeostasis. GLP-1 and GCG exert their biological functions via binding to specific G protein-coupled receptors (GLP-1Rs and GCGRs). Ligand-activated GLP-1Rs and GCGRs preferentially activate the heterotrimeric G protein Gs, resulting in increased cytosolic cAMP levels. However, activation of the two receptors also leads to the recruitment of β-arrestin-1 and -2 (βarr1 and βarr2, respectively) to the intracellular surface of the receptor proteins. The binding of β-arrestins to the activated receptors contributes to the termination of receptor-stimulated G protein coupling. In addition, receptor-β-arrestin complexes can act as signaling nodes in their own right by modulating the activity of many intracellular signaling pathways. In this Review, we will discuss the roles of βarr1 and βarr2 in regulating key metabolic functions mediated by activated GLP-1Rs and GCGRs. During the past decade, GLP-1R agonists have emerged as highly efficacious antidiabetic and antiobesity drugs. Moreover, dual agonists that stimulate both GLP-1Rs and GCGRs are predicted to offer additional therapeutic benefits as compared to GLP-1R agonist monotherapy. We will summarize and try to synthesize a series of studies suggesting that the development of G protein-biased GLP-1R and/or GCGR agonists, which do not lead to the recruitment of β-arrestins, may lead to even more efficacious therapeutic agents.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Misbah Rashid
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Jallouli R, Moreno Salinas AL, Laniel A, Holleran B, Avet C, Jacob J, Hoang T, Lavoie C, Carmon KS, Bouvier M, Leduc R. G protein selectivity profile of GPR56/ADGRG1 and its effect on downstream effectors. RESEARCH SQUARE 2024:rs.3.rs-4869264. [PMID: 39281883 PMCID: PMC11398566 DOI: 10.21203/rs.3.rs-4869264/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-a-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3αDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3αDOG. Similarly to 3αDOG, 10C7 promoted the recruitment of b-arrestin-2 but GPR56 internalization was β-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joan Jacob
- The University of Texas MD Anderson Cancer Center
| | - Trang Hoang
- University of Montreal: Universite de Montreal
| | | | | | | | | |
Collapse
|
3
|
Jallouli R, Moreno-Salinas AL, Laniel A, Holleran B, Avet C, Jacob J, Hoang T, Lavoie C, Carmon KS, Bouvier M, Leduc R. G protein selectivity profile of GPR56/ADGRG1 and its effect on downstream effectors. Cell Mol Life Sci 2024; 81:383. [PMID: 39231834 PMCID: PMC11374949 DOI: 10.1007/s00018-024-05416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024]
Abstract
GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-α-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3αDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3αDOG. Similarly to 3αDOG, 10C7 promoted the recruitment of β-arrestin-2 but GPR56 internalization was β-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.
Collapse
Affiliation(s)
- Raida Jallouli
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ana L Moreno-Salinas
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andréanne Laniel
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brian Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Charlotte Avet
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada
| | - Joan Jacob
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Trang Hoang
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada
| | - Christine Lavoie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kendra S Carmon
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
4
|
Mao RT, Guo SQ, Zhang G, Li YD, Xu JP, Wang HY, Fu P, Liu CP, Wu SQ, Chen P, Mei YS, Jin QC, Liu CY, Zhang YCF, Ding XY, Liu WJ, Romanova EV, Zhou HB, Cropper EC, Checco JW, Sweedler JV, Jing J. Two C-terminal isoforms of Aplysia tachykinin-related peptide receptors exhibit phosphorylation-dependent and phosphorylation-independent desensitization mechanisms. J Biol Chem 2024; 300:107556. [PMID: 39002683 PMCID: PMC11365428 DOI: 10.1016/j.jbc.2024.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.
Collapse
Affiliation(s)
- Rui-Ting Mao
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shi-Qi Guo
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guo Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Ya-Dong Li
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ju-Ping Xu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Ying Wang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Fu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cui-Ping Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shao-Qian Wu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Chen
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yu-Shuo Mei
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qing-Chun Jin
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cheng-Yi Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xue-Ying Ding
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei-Jia Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jian Jing
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
5
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
6
|
Li W, Trigg JS, Taghert PH. Regulation of PDF receptor signaling controlling daily locomotor rhythms in Drosophila. PLoS Genet 2022; 18:e1010013. [PMID: 35605015 PMCID: PMC9166358 DOI: 10.1371/journal.pgen.1010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/03/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Each day and in conjunction with ambient daylight conditions, neuropeptide PDF regulates the phase and amplitude of locomotor activity rhythms in Drosophila through its receptor, PDFR, a Family B G protein-coupled receptor (GPCR). We studied the in vivo process by which PDFR signaling turns off, by converting as many as half of the 28 potential sites of phosphorylation in its C terminal tail to a non-phosphorylatable residue (alanine). We report that many such sites are conserved evolutionarily, and their conversion creates a specific behavioral syndrome opposite to loss-of-function phenotypes previously described for pdfr. That syndrome includes increases in the amplitudes of both Morning and Evening behavioral peaks, as well as multi-hour delays of the Evening phase. The precise behavioral effects were dependent on day-length, and most effects mapped to conversion of only a few, specific serine residues near the very end of the protein and specific to its A isoform. Behavioral phase delays of the Evening activity under entraining conditions predicted the phase of activity cycles under constant darkness. The behavioral phenotypes produced by the most severe PDFR variant were ligand-dependent in vivo, and not a consequence of changes to their pharmacological properties, nor of changes in their surface expression, as measured in vitro. The mechanisms underlying termination of PDFR signaling are complex, subject to regulation that is modified by season, and central to a better understanding of the peptidergic modulation of behavior. In multi-cellular organisms, circadian pacemakers create output as a series of phase markers across the 24 hour day to allow other cells to pattern diverse aspects of daily rhythmic physiology and behavior. Within circadian pacemaker circuits, neuropeptide signaling is essential to help promote coherent circadian outputs. In the fruit fly Drosophila 150 neurons are dedicated circadian clocks and they all tell the same time. In spite of such strong synchronization, they provide diverse phasic outputs in the form of their discrete, asynchronous neuronal activity patterns. Neuropeptide signaling breaks the clock-generated symmetry and drives many pacemakers away from their preferred activity period in the morning. Each day, neuropeptide PDF is released by Morning pacemakers and delays the phase of activity of specific other pacemakers to later parts of the day or night. When and how the PDF that is released in the morning stops acting is unknown. Furthermore, timing of signal termination is not fixed because day length changes each day, hence the modulatory delay exerted by PDF must itself be regulated. Here we test a canonical model of G protein-coupled receptor physiology to ask how PDF receptor signaling is normally de-activated. We use behavioral measures to define sequence elements of the receptor whose post-translational modifications (e.g., phosphorylation) may define the duration of receptor signaling.
Collapse
Affiliation(s)
- Weihua Li
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jennifer S. Trigg
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Paul H. Taghert
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
7
|
Gadgaard S, van der Velden WJC, Schiellerup SP, Hunt JE, Gabe MBN, Windeløv JA, Boer GA, Kissow H, Ørskov C, Holst JJ, Hartmann B, Rosenkilde MM. Novel agonist- and antagonist-based radioligands for the GLP-2 receptor - useful tools for studies of basic GLP-2R pharmacology. Br J Pharmacol 2021; 179:1998-2015. [PMID: 34855984 PMCID: PMC9303331 DOI: 10.1111/bph.15766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Background Glucagon‐like peptide‐2 (GLP‐2) is a pro‐glucagon‐derived hormone secreted from intestinal enteroendocrine L cells with actions on gut and bones. GLP‐2(1–33) is cleaved by DPP‐4, forming GLP‐2(3–33), having low intrinsic activity and competitive antagonism properties at GLP‐2 receptors. We created radioligands based on these two molecules. Experimental approach The methionine in position 10 of GLP‐2(1–33) and GLP‐2(3–33) was substituted with tyrosine (M10Y) enabling oxidative iodination, creating [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y). Both were characterized by competition binding, on‐and‐off‐rate determination and receptor activation. Receptor expression was determined by target‐tissue autoradiography and immunohistochemistry. Key results Both M10Y‐substituted peptides induced cAMP production via the GLP‐2 receptor comparable to the wildtype peptides. GLP‐2(3–33,M10Y) maintained the antagonistic properties of GLP‐2(3–33). However, hGLP‐2(1–33,M10Y) had lower arrestin recruitment than hGLP‐2(1–33). High affinities for the hGLP‐2 receptor were observed using [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y) with KD values of 59.3 and 40.6 nM. The latter (with antagonistic properties) had higher Bmax and faster on and off rates compared to the former (full agonist). Both bound the hGLP‐1 receptor with low affinity (Ki of 130 and 330 nM, respectively). Autoradiography in wildtype mice revealed strong labelling of subepithelial myofibroblasts, confirmed by immunohistochemistry using a GLP‐2 receptor specific antibody that in turn was confirmed in GLP‐2 receptor knock‐out mice. Conclusion and implications Two new radioligands with different binding kinetics, one a full agonist and the other a weak partial agonist with antagonistic properties were developed and subepithelial myofibroblasts identified as a major site for GLP‐2 receptor expression.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Bainan Biotech, Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Sine P Schiellerup
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Maria B N Gabe
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Geke Aline Boer
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hannelouise Kissow
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Cathrine Ørskov
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Moo EV, van Senten JR, Bräuner-Osborne H, Møller TC. Arrestin-Dependent and -Independent Internalization of G Protein-Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling. Mol Pharmacol 2021; 99:242-255. [PMID: 33472843 DOI: 10.1124/molpharm.120.000192] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Agonist-induced endocytosis is a key regulatory mechanism for controlling the responsiveness of the cell by changing the density of cell surface receptors. In addition to the role of endocytosis in signal termination, endocytosed G protein-coupled receptors (GPCRs) have been found to signal from intracellular compartments of the cell. Arrestins are generally believed to be the master regulators of GPCR endocytosis by binding to both phosphorylated receptors and adaptor protein 2 (AP-2) or clathrin, thus recruiting receptors to clathrin-coated pits to facilitate the internalization process. However, many other functions have been described for arrestins that do not relate to their role in terminating signaling. Additionally, there are now more than 30 examples of GPCRs that internalize independently of arrestins. Here we review the methods, pharmacological tools, and cellular backgrounds used to determine the role of arrestins in receptor internalization, highlighting their advantages and caveats. We also summarize key examples of arrestin-independent GPCR endocytosis in the literature and their suggested alternative endocytosis pathway (e.g., the caveolae-dependent and fast endophilin-mediated endocytosis pathways). Finally, we consider the possible function of arrestins recruited to GPCRs that are endocytosed independently of arrestins, including the catalytic arrestin activation paradigm. Technological improvements in recent years have advanced the field further, and, combined with the important implications of endocytosis on drug responses, this makes endocytosis an obvious parameter to include in molecular pharmacological characterization of ligand-GPCR interactions. SIGNIFICANCE STATEMENT: G protein-coupled receptor (GPCR) endocytosis is an important means to terminate receptor signaling, and arrestins play a central role in the widely accepted classical paradigm of GPCR endocytosis. In contrast to the canonical arrestin-mediated internalization, an increasing number of GPCRs are found to be endocytosed via alternate pathways, and the process appears more diverse than the previously defined "one pathway fits all."
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Lotta LA, Pietzner M, Stewart ID, Wittemans LBL, Li C, Bonelli R, Raffler J, Biggs EK, Oliver-Williams C, Auyeung VPW, Luan J, Wheeler E, Paige E, Surendran P, Michelotti GA, Scott RA, Burgess S, Zuber V, Sanderson E, Koulman A, Imamura F, Forouhi NG, Khaw KT, Griffin JL, Wood AM, Kastenmüller G, Danesh J, Butterworth AS, Gribble FM, Reimann F, Bahlo M, Fauman E, Wareham NJ, Langenberg C. A cross-platform approach identifies genetic regulators of human metabolism and health. Nat Genet 2021; 53:54-64. [PMID: 33414548 PMCID: PMC7612925 DOI: 10.1038/s41588-020-00751-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
In cross-platform analyses of 174 metabolites, we identify 499 associations (P < 4.9 × 10-10) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
Collapse
Affiliation(s)
- Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Laura B L Wittemans
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Chen Li
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Roberto Bonelli
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Emma K Biggs
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Clare Oliver-Williams
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Homerton College, University of Cambridge, Cambridge, UK
| | | | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Ellie Paige
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Verena Zuber
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Albert Koulman
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, Cambridge, UK
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian L Griffin
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Cambridge, MA, USA
| | | | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany.
| |
Collapse
|
10
|
Nielsen CDT, Dhasmana D, Floresta G, Wohland T, Cilibrizzi A. Illuminating the Path to Target GPCR Structures and Functions. Biochemistry 2020; 59:3783-3795. [PMID: 32956586 DOI: 10.1021/acs.biochem.0c00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) are ubiquitous within eukaryotes, responsible for a wide array of physiological and pathological processes. Indeed, the fact that they are the most drugged target in the human genome is indicative of their importance. Despite the clear interest in GPCRs, most information regarding their activity has been so far obtained by analyzing the response from a "bulk medium". As such, this Perspective summarizes some of the common methods for this indirect observation. Nonetheless, by inspecting approaches applying super-resolution imaging, we argue that imaging is perfectly situated to obtain more detailed structural and spatial information, assisting in the development of new GPCR-targeted drugs and clinical strategies. The benefits of direct optical visualization of GPCRs are analyzed in the context of potential future directions in the field.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, U.K
| | - Divya Dhasmana
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| |
Collapse
|
11
|
Issahaku AR, Agoni C, Kumi RO, Olotu FA, Soliman MES. Lipid-Embedded Molecular Dynamics Simulation Model for Exploring the Reverse Prostaglandin D2 Agonism of CT-133 towards CRTH2 in the Treatment of Type-2 Inflammation Dependent Diseases. Chem Biodivers 2020; 17:e1900548. [PMID: 32034875 DOI: 10.1002/cbdv.201900548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) has been involved in several inflammation dependent diseases by mediating the chemotaxis of pro-inflammatory cells in response to allergy and other responses through PGD2 ligation. This CRTH2-PGD2 signaling pathway has become a target for treating allergic and type 2 inflammation dependent diseases, with many inhibitors developed to target the PGD2 binding pocket. One of such inhibitors is the ramatroban analog, CT-133, which exhibited therapeutic potency cigarette smoke-induced acute lung injury in patients. Nonetheless, the molecular mechanism and structural dynamics that accounts for its therapeutic prowess remain unclear. Employing computational tools, this study revealed that although the carboxylate moiety in CT-133 and the native agonist PGD2 aided in their stability within the CRTH2 binding pocket, the tetrahydrocarbazole group of CT-133 engaged in strong interactions with binding pocket residues which could have formed as the basis of the antagonistic advantage of CT-133. Tetrahydrocarbazole group interactions also enhanced the relative stability CT-133 within the binding pocket which consequently favored CT-133 binding affinity. CT-133 binding also induced an inactive or 'desensitized' state in the helix 8 of CRTH2 which could conversely favor the recruitment of arrestin. These revelations would aid in the speedy development of small molecule inhibitors of CRTH2 in the treatment of type 2 inflammation dependent diseases.
Collapse
Affiliation(s)
- Abdul Rashid Issahaku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ransford O Kumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
12
|
Gobron B, Bouvard B, Legrand E, Chappard D, Mabilleau G. GLP-2 administration in ovariectomized mice enhances collagen maturity but did not improve bone strength. Bone Rep 2020; 12:100251. [PMID: 32071954 PMCID: PMC7013338 DOI: 10.1016/j.bonr.2020.100251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis and bone fragility are progressing worldwide. Previous published literature reported a possible beneficial role of gut hormones, and especially glucagon-like peptide-2 (GLP-2), in modulating bone remodeling. As now (Gly2)GLP-2 is approved in the treatment of short bowel syndrome, we thought to investigate whether such molecule could be beneficial in bone fragility. MC3T3 and Raw 264.7 were cultured in presence of ascending concentrations of (Gly2)GLP-2. Collagen crosslinks, maturity, lysyl oxidase activity and osteoclastogenesis were then analyzed. Furthermore, (Gly2)GLP-2, at the clinical approved dose of 50 μg/kg/day, was also administered to ovariectomized Balb/c mice for 8 weeks. Hundred μg/kg zoledronic acid (once iv) was also used as a positive comparator. Bone strength, microarchitectures and bone tissue composition were analyzed by 3-point bending, compression test, microCT and Fourier transform infrared imaging, respectively. In vitro, (Gly2)GLP-2 was potent in enhancing bone matrix gene expression but also to dose-dependently enhanced collagen maturation and post-processing. (Gly2)GLP-2 was also capable of reducing dose-dependently the number of newly generated osteoclasts. However, in vivo, (Gly2)GLP-2 was not capable of improving neither bone strength, at the femur diaphysis or lumbar vertebrae, nor bone microarchitecture. On the other hand, at the tissue material level, (Gly2)GLP-2 significantly enhances collagen maturity and reduce phosphate/amide ratio. Overall, this study highlights that despite modification of bone tissue composition, (Gly2)GLP-2, at the clinical approved dose of 50 μg/kg/day, did not provide real beneficial effects in improving bone strength in a mouse model of bone fragility. Further studies are recommended to validate the best dose and regimen of administration to significantly enhance bone strength. In vitro, (Gly2)GLP-2 enhances dose-dependently bone matrix deposition and quality. In vitro, (Gly2)GLP-2 reduces dose-dependently osteoclast formation. In vivo, (Gly2)GLP-2 failed to improve bone strength in ovariectomy-induced bone loss. In vivo, (Gly2)GLP-2 failed to improve bone microarchitecture. In vivo, (Gly2)GLP-2 increased collagen maturity and phosphate/amide ratios.
Collapse
Affiliation(s)
- B Gobron
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service de Rhumatologie, CHU d'Angers, 49933 Angers cedex, France
| | - B Bouvard
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service de Rhumatologie, CHU d'Angers, 49933 Angers cedex, France
| | - E Legrand
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service de Rhumatologie, CHU d'Angers, 49933 Angers cedex, France
| | - D Chappard
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service commun d'imageries et d'analyses microscopiques, SCIAM, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,UF de Pathologie osseuse, CHU d'Angers, 49933 Angers cedex, France
| | - G Mabilleau
- Groupe études remodelage osseux et biomatériaux, GEROM, UPRES EA4658, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,Service commun d'imageries et d'analyses microscopiques, SCIAM, UNIV Angers, SFR 42-08, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers cedex, France.,UF de Pathologie osseuse, CHU d'Angers, 49933 Angers cedex, France
| |
Collapse
|
13
|
Wang C, Xu C, Liu M, Pan Y, Bai B, Chen J. C-terminus of OX2R significantly affects downstream signaling pathways. Mol Med Rep 2017; 16:159-166. [PMID: 28487995 PMCID: PMC5482145 DOI: 10.3892/mmr.2017.6557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
The human orexin 2 receptor (OX2R) is a G-protein‑coupled receptor (GPCR) that has been implicated in a number of diverse physiological functions. Recent studies have identified a number of functions of the C‑termini of GPCRs. However, the importance of the OX2R C‑terminus in regulating signaling and surface expression remains unclear. In the present study, the function of the OX2R C‑terminus was investigated using three C‑terminal mutants, which were truncated at residues 368, 384 and 414, respectively, and the wild‑type control, which expressed the full‑length OX2R. HEK‑293 cells were transfected with the mutated and control OX2R constructs. ELISA, western blot analysis and calcium assays were used to investigate the effects of the mutations on OX2R function. The present results demonstrated that residues 385‑414 and 415‑444 exhibited a cumulative effect on the surface expression of OX2R. Residues 369‑384 exhibited a significant influence on inositol phosphate production and extracellular signal‑regulated kinase 1/2 phosphorylation. Residues 385‑414 significantly influenced agonist‑induced internalization, whereas residues 369‑384 and 385‑414 significantly influenced Ca2+ release. The results of the present study suggest that the C‑terminus of OX2R is important for its role in various physiological and pathological processes, and may therefore be associated with such disorders as depression and anorexia.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chao Xu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Minghui Liu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
14
|
Mayo BJ, Stringer AM, Bowen JM, Bateman EH, Keefe DM. Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemother Pharmacol 2016; 79:233-249. [PMID: 27770239 DOI: 10.1007/s00280-016-3165-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients' regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention. METHODS This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action. RESULTS Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease. CONCLUSION This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.
Collapse
Affiliation(s)
- Bronwen J Mayo
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Andrea M Stringer
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emma H Bateman
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dorothy M Keefe
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Li N, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W. GLP-2 Attenuates LPS-Induced Inflammation in BV-2 Cells by Inhibiting ERK1/2, JNK1/2 and NF-κB Signaling Pathways. Int J Mol Sci 2016; 17:190. [PMID: 26861286 PMCID: PMC4783924 DOI: 10.3390/ijms17020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) often involves the over-activation of microglia. Over-activated microglia could produce several inflammatory mediators, which trigger excessive inflammation and ultimately cause dopaminergic neuron damage. Anti-inflammatory effects of glucagon-like peptide-2 (GLP-2) in the periphery have been shown. Nonetheless, it has not been illustrated in the brain. Thus, in this study, we aimed to understand the role of GLP-2 in microglia activation and to elucidate the underlying mechanisms. BV-2 cells were pretreated with GLP-2 and then stimulated by lipopolysaccharide (LPS). Cells were assessed for the responses of pro-inflammatory enzymes (iNOS and COX-2) and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α); the related signaling pathways were evaluated by Western blotting. The rescue effect of GLP-2 on microglia-mediated neurotoxicity was also examined. The results showed that GLP-2 significantly reduced LPS-induced production of inducible nitric oxide synthase (iNOS), cyclooxygenase-s (COX-2), IL-1β, IL-6 and TNF-α. Blocking of Gαs by NF449 resulted in a loss of this anti-inflammatory effect in BV-2 cells. Analyses in signaling pathways demonstrated that GLP-2 reduced LPS-induced phosphorylation of ERK1/2, JNK1/2 and p65, while no effect was observed on p38 phosphorylation. In addition, GLP-2 could suppress microglia-mediated neurotoxicity. All results imply that GLP-2 inhibits LPS-induced microglia activation by collectively regulating ERK1/2, JNK1/2 and p65.
Collapse
Affiliation(s)
- Nan Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Bo-Wen Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wen-Zhi Ren
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ju-Xiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Su-Nan Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shou-Peng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ya-Long Zeng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shi-Yao Xu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xuan Yan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ying-Jie Gao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dian-Feng Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
16
|
The role of the C-terminus of the human hydroxycarboxylic acid receptors 2 and 3 in G protein activation using Gα-engineered yeast cells. Eur J Pharmacol 2016; 770:70-7. [DOI: 10.1016/j.ejphar.2015.11.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022]
|
17
|
Underwood CR, Knudsen LB, Garibay PW, Peters GH, Reedtz-Runge S. Development of a cysteine-deprived and C-terminally truncated GLP-1 receptor. Peptides 2013; 49:100-8. [PMID: 24045233 DOI: 10.1016/j.peptides.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/20/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C-terminally truncated GLP-1R. Single cysteines were initially substituted with alanine, and functionally redundant cysteines were subsequently changed simultaneously. Our results indicate that Cys(174), Cys(226), Cys(296) and Cys(403) are important for the GLP-1-mediated response, whereas Cys(236), Cys(329), Cys(341), Cys(347), Cys(438), Cys(458) and Cys(462) are not. Extensive deletions were made in the C-terminal tail of GLP-1R in order to determine the limit for truncation. As for other family B GPCRs, we observed a direct correlation between the length of the C-terminal tail and specific binding of (125)I-GLP-1, indicating that the membrane proximal part of the C-terminal is involved in receptor expression at the cell surface. The results show that seven cysteines and more than half of the C-terminal tail can be removed from GLP-1R without compromising GLP-1 binding or function.
Collapse
Affiliation(s)
- Christina Rye Underwood
- Department of Incretin Biology, Novo Nordisk, DK-2820 Gentofte, Denmark; Department of Chemistry, MEMPHYS - Center for Biomembrane Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
18
|
Katsushima Y, Sato T, Yamada C, Ito M, Suzuki Y, Ogawa E, Sukegawa I, Sukegawa J, Fukunaga K, Yanagisawa T. Interaction of PICK1 with C-terminus of growth hormone-releasing hormone receptor (GHRHR) modulates trafficking and signal transduction of human GHRHR. J Pharmacol Sci 2013; 122:193-204. [PMID: 23823934 DOI: 10.1254/jphs.12287fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Release of growth hormone (GH) from the somatotroph is regulated by binding GH-releasing hormone (GHRH) to its cognate receptor (GHRHR), one of the members of the G protein-coupled receptor (GPCR) superfamily. Proteins bound to the carboxy (C)-terminus of GPCR have been reported to regulate intracellular trafficking and function of the receptor; however, no functionally significant protein associated with GHRHR has been reported. We have identified a protein interacting with C-kinase 1 (PICK1) as a binding partner of GHRHR. In vitro binding assay revealed the PDZ-domain of PICK1 and the last four amino acid residues of GHRHR were prerequisite for the interaction. Further, in vivo association of these proteins was confirmed. Immunostaining data of a stable cell line expressing GHRHR with or without PICK1 suggested the C-terminus of GHRHR promoted cell surface expression of GHRHR and PICK1 affected the kinetics of the cell surface expression of GHRHR. Furthermore, cAMP production assay showed the C-terminus of GHRHR is involved in the regulation of receptor activation, and the interaction of GHRHR with PICK1 may influence intensities of the signal response after ligand stimulation. Thus, the interaction of the C-terminus of GHRHR with PICK1 has a profound role in regulating the trafficking and the signaling of GHRHR. [Supplementary Figure: available only at http://dx.doi.org/10.1254/jphs.12287FP].
Collapse
Affiliation(s)
- Yuriko Katsushima
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Punn A, Chen J, Delidaki M, Tang J, Liapakis G, Lehnert H, Levine MA, Grammatopoulos DK. Mapping structural determinants within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor. J Biol Chem 2012; 287:8974-85. [PMID: 22247544 PMCID: PMC3308756 DOI: 10.1074/jbc.m111.272161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The type 1 corticotropin-releasing hormone receptor (CRH-R1) influences biological responses important for adaptation to stressful stimuli, through activation of multiple downstream effectors. The structural motifs within CRH-R1 that mediate G protein activation and signaling selectivity are unknown. The aim of this study was to gain insights about important structural determinants within the third intracellular loop (IC3) of the human CRH-R1α important for cAMP and ERK1/2 pathways activation and selectivity. We investigated the role of the juxtamembrane regions of IC3 by mutating amino acid cassettes or specific residues to alanine. Although simultaneous tandem alanine mutations of both juxtamembrane regions Arg292-Met295 and Lys311-Lys314 reduced ligand binding and impaired signaling, all other mutant receptors retained high affinity binding, indistinguishable from wild-type receptor. Agonist-activated receptors with tandem mutations at the proximal or distal terminal segments enhanced activation of adenylyl cyclase by 50–75% and diminished activation of inositol trisphosphate and ERK1/2 by 60–80%. Single Ala mutations identified Arg292, Lys297, Arg310, Lys311, and Lys314 as important residues for the enhanced activation of adenylyl cyclase, partly due to reduced inhibition of adenylyl cyclase activity by pertussis toxin-sensitive G proteins. In contrast, mutation of Arg299 reduced receptor signaling activity and cAMP response. Basic as well as aliphatic amino acids within both juxtamembrane regions were identified as important for ERK1/2 phosphorylation through activation of pertussis toxin-sensitive G proteins as well as Gq proteins. These data uncovered unexpected roles for key amino acids within the highly conserved hydrophobic N- and C-terminal microdomains of IC3 in the coordination of CRH-R1 signaling activity.
Collapse
Affiliation(s)
- Anu Punn
- Department of Endocrinology and Metabolism, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Proteinase-Activated Receptors (PARs) and Calcium Signaling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:979-1000. [DOI: 10.1007/978-94-007-2888-2_45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Discovery of dual-action membrane-anchored modulators of incretin receptors. PLoS One 2011; 6:e24693. [PMID: 21935440 PMCID: PMC3173463 DOI: 10.1371/journal.pone.0024693] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/15/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function. METHODOLOGY/PRINCIPAL FINDINGS Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G(7)]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7) into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7)]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes. CONCLUSIONS These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target.
Collapse
|
22
|
Leen JLS, Izzo A, Upadhyay C, Rowland KJ, Dubé PE, Gu S, Heximer SP, Rhodes CJ, Storm DR, Lund PK, Brubaker PL. Mechanism of action of glucagon-like peptide-2 to increase IGF-I mRNA in intestinal subepithelial fibroblasts. Endocrinology 2011; 152:436-46. [PMID: 21159855 PMCID: PMC3384785 DOI: 10.1210/en.2010-0822] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IGF-I, a known secretory product of intestinal subepithelial myofibroblasts (ISEMFs), is essential for the intestinotropic effects of glucagon-like peptide-2 (GLP-2). Furthermore, GLP-2 increases IGF-I mRNA transcript levels in vitro in heterogeneous fetal rat intestinal cultures, as well as in vivo in the rodent small intestine. To determine the mechanism underlying the stimulatory effect of GLP-2 on intestinal IGF-I mRNA, murine ISEMF cells were placed into primary culture. Immunocytochemistry showed that the ISEMF cells appropriately expressed α-smooth muscle actin and vimentin but not desmin. The cells also expressed GLP-2 receptor and IGF-I mRNA transcripts. Treatment of ISEMF cells with (Gly2)GLP-2 induced IGF-I mRNA transcripts by up to 5-fold of basal levels after treatment with 10(-8) m GLP-2 for 2 h (P < 0.05) but did not increase transcript levels for other intestinal growth factors, such as ErbB family members. Immunoblot revealed a 1.6-fold increase in phospho (p)-Akt/total-(t)Akt with 10(-8) m GLP-2 treatment (P < 0.05) but no changes in cAMP, cAMP-dependent β-galactosidase expression, pcAMP response element-binding protein/tcAMP response element-binding protein, pErk1/2/tErk1/2, or intracellular calcium. Furthermore, pretreatment of ISEMF cells with the phosphatidylinositol 3 kinase (PI3K) inhibitors, LY294002 and wortmannin, abrogated the IGF-I mRNA response to GLP-2, as did overexpression of kinase-dead Akt. The role of PI3K/Akt in GLP-2-induced IGF-I mRNA levels in the murine jejunum was also confirmed in vivo. These findings implicate the PI3K/Akt pathway in the stimulatory effects of GLP-2 to enhance intestinal IGF-I mRNA transcript levels and provide further evidence in support of a role for IGF-I produced by the ISEMF cells in the intestinotropic effects of GLP-2.
Collapse
Affiliation(s)
- Jason L S Leen
- Department of Physiology,University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Romero G, von Zastrow M, Friedman PA. Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:279-314. [PMID: 21907913 DOI: 10.1016/b978-0-12-385952-5.00003-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PDZ proteins, named for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1), constitute a family of 200-300 recognized members. These cytoplasmic adapter proteins are capable of assembling a variety of membrane-associated proteins and signaling molecules in short-lived functional units. Here, we review PDZ proteins that participate in the regulation of signaling, trafficking, and function of G protein-coupled receptors. Salient structural features of PDZ proteins that allow them to recognize targeted GPCRs are considered. Scaffolding proteins harboring PDZ domains may contain single or multiple PDZ modules and may also include other protein-protein interaction modules. PDZ proteins may impact receptor signaling by diverse mechanisms that include retaining the receptor at the cell membrane, thereby increasing the duration of ligand binding, as well as importantly influencing GPCR internalization, trafficking, recycling, and intracellular sorting. PDZ proteins are also capable of modifying the assembled complex of accessory proteins such as β-arrestins that themselves regulate GPCR signaling. Additionally, PDZ proteins may modulate GPCR signaling by altering the G protein to which the receptor binds, or affect other regulatory proteins that impact GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the PDZ protein-GPCR interaction are being developed and may become important and selective drug candidates.
Collapse
Affiliation(s)
- Guillermo Romero
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
24
|
Velázquez E, Blázquez E, Ruiz-Albusac JM. Synergistic effect of glucagon-like peptide 2 (GLP-2) and of key growth factors on the proliferation of cultured rat astrocytes. Evidence for reciprocal upregulation of the mRNAs for GLP-2 and IGF-I receptors. Mol Neurobiol 2009; 40:183-93. [PMID: 19672727 DOI: 10.1007/s12035-009-8080-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/27/2009] [Indexed: 12/29/2022]
Abstract
The aim of this work was to determine whether the stimulating effect of glucagon-like peptide (GLP)-2 on astrocyte proliferation could be reinforced by proliferating substances, including growth factors such as EGF, platelet-derived growth factor, insulin-like growth factor type I (IGF-I) or a hormone such as insulin. Both DNA synthesis and astrocyte density, as well as the expression of c-Fos, Ki-67, proliferating cell nuclear antigen and glial fibrillary acidic proteins, were found to be higher in the presence of GLP-2 than in its absence. In an attempt to get a better understanding of this process, intracellular cyclic adenosine monophosphate (cAMP) production, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and the expression of GLP-2R and IGF-I receptor (IGF-IR) mRNAs were studied in response to growth factors. Our results indicate that, in the presence of different growth factors, GLP-2 does not increase cAMP production but raises ERK 1/2 phosphorylation. In addition, GLP-2R mRNA expression was increased by IGF-I, whilst mRNA expression of IGF-IR was higher in cells incubated with GLP-2 than in control cells. These results suggest for the first time that GLP-2 and several growth factors show synergistic effects on the proliferation of rat astrocytes, a process in which an enhanced expression of GLP-2R and IGF-IR may be involved, providing additional insights into the physiological role of this novel neuropeptide, specially during astroglial regeneration.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
25
|
Böhme I, Beck-Sickinger AG. Illuminating the life of GPCRs. Cell Commun Signal 2009; 7:16. [PMID: 19602276 PMCID: PMC2726148 DOI: 10.1186/1478-811x-7-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/14/2009] [Indexed: 01/19/2023] Open
Abstract
The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented.
Collapse
Affiliation(s)
- Ilka Böhme
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr, 34, 04103 Leipzig, Germany.
| | | |
Collapse
|
26
|
Islam D, Zhang N, Wang P, Li H, Brubaker PL, Gaisano HY, Wang Q, Jin T. Epac is involved in cAMP-stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic alpha- and intestinal L-cell lines. Am J Physiol Endocrinol Metab 2009; 296:E174-81. [PMID: 18854429 DOI: 10.1152/ajpendo.90419.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both Epac and PKA are effectors of the second messenger cAMP. Utilizing an exchange protein directly activated by cAMP (Epac) pathway-specific cAMP analog (ESCA), we previously reported that Epac signaling regulates proglucagon gene (gcg) expression in the glucagon-like peptide-1 (GLP-1)-producing intestinal endocrine L-cell lines GLUTag and STC-1. We now show that Epac-2 is also expressed in glucagon-producing pancreatic alpha-cell lines, including PKA-deficient InR1-G9 cells, and that ESCA stimulates gcg promoter and mRNA expression in the InR1-G9 cells. Using a dominant-negative Epac-2 expression plasmid (Epac-2DN), we found that Epac inhibition attenuated forskolin-stimulated gcg promoter expression in the PKA-active STC-1 cell line and blocked forskolin-stimulated gcg promoter expression in the InR1-G9 cells. Consistently, ESCA was shown to stimulate glucagon and GLP-1 production in the InR1-G9 and GLUTag cell lines, respectively. Surprisingly, ESCA treatment did not show a notable stimulation of glucagon or GLP-1 secretion from these two cell lines. This is in contrast to its ability to stimulate insulin secretion from the pancreatic INS-1 beta-cell line. Our findings suggest that Epac is selectively involved in peptide hormone secretion in pancreatic and intestinal endocrine cells and that distinct signaling cascades are involved in stimulating production vs. secretion of glucagon and GLP-1 in response to cAMP elevation.
Collapse
Affiliation(s)
- Diana Islam
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, 101 College St., Toronto, Ontario M5G 1L7
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Schröder R, Merten N, Mathiesen JM, Martini L, Kruljac-Letunic A, Krop F, Blaukat A, Fang Y, Tran E, Ulven T, Drewke C, Whistler J, Pardo L, Gomeza J, Kostenis E. The C-terminal tail of CRTH2 is a key molecular determinant that constrains Galphai and downstream signaling cascade activation. J Biol Chem 2008; 284:1324-36. [PMID: 19010788 DOI: 10.1074/jbc.m806867200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin D(2) activation of the seven-transmembrane receptor CRTH2 regulates numerous cell functions that are important in inflammatory diseases, such as asthma. Despite its disease implication, no studies to date aimed at identifying receptor domains governing signaling and surface expression of human CRTH2. We tested the hypothesis that CRTH2 may take advantage of its C-tail to silence its own signaling and that this mechanism may explain the poor functional responses observed with CRTH2 in heterologous expression systems. Although the C terminus is a critical determinant for retention of CRTH2 at the plasma membrane, the presence of this domain confers a signaling-compromised conformation onto the receptor. Indeed, a mutant receptor lacking the major portion of its C-terminal tail displays paradoxically enhanced Galpha(i) and ERK1/2 activation despite enhanced constitutive and agonist-mediated internalization. Enhanced activation of Galpha(i) proteins and downstream signaling cascades is probably due to the inability of the tail-truncated receptor to recruit beta-arrestin2 and undergo homologous desensitization. Unexpectedly, CRTH2 is not phosphorylated upon agonist-stimulation, a primary mechanism by which GPCR activity is regulated. Dynamic mass redistribution assays, which allow label-free monitoring of all major G protein pathways in real time, confirm that the C terminus inhibits Galpha(i) signaling of CRTH2 but does not encode G protein specificity determinants. We propose that intrinsic CRTH2 inhibition by its C terminus may represent a rather unappreciated strategy employed by a GPCR to specify the extent of G protein activation and that this mechanism may compensate for the absence of the classical phosphorylation-dependent signal attenuation.
Collapse
Affiliation(s)
- Ralf Schröder
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Conner M, Hicks MR, Dafforn T, Knowles TJ, Ludwig C, Staddon S, Overduin M, Günther UL, Thome J, Wheatley M, Poyner DR, Conner AC. Functional and biophysical analysis of the C-terminus of the CGRP-receptor; a family B GPCR. Biochemistry 2008; 47:8434-44. [PMID: 18636754 DOI: 10.1021/bi8004126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-protein coupled receptors (GPCRs) typically have a functionally important C-terminus which, in the largest subfamily (family A), includes a membrane-parallel eighth helix. Mutations of this region are associated with several diseases. There are few C-terminal studies on the family B GPCRs and no data supporting the existence of a similar eighth helix in this second major subfamily, which has little or no sequence homology to family A GPCRs. Here we show that the C-terminus of a family B GPCR (CLR) has a disparate region from N400 to C436 required for CGRP-mediated internalization, and a proximal region of twelve residues (from G388 to W399), in a similar position to the family A eighth helix, required for receptor localization at the cell surface. A combination of circular and linear dichroism, fluorescence and modified waterLOGSY NMR spectroscopy (SALMON) demonstrated that a peptide mimetic of this domain readily forms a membrane-parallel helix anchored to the liposome by an interfacial tryptophan residue. The study reveals two key functions held within the C-terminus of a family B GPCR and presents support for an eighth helical region with striking topological similarity to the nonhomologous family A receptor. This helix structure appears to be found in most other family B GPCRs.
Collapse
|
29
|
Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology 2008; 149:2341-51. [PMID: 18258680 DOI: 10.1210/en.2007-1142] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proglucagon gene (glu) encodes the incretin hormone glucagon-like peptide-1 (GLP-1), produced in the intestinal endocrine L cells. We found previously that the bipartite transcription factor beta-catenin/T cell factor (cat/TCF), the major effector of the canonical Wnt signaling pathway, activates intestinal glu expression and GLP-1 production. We show here that 100 nm insulin stimulated glu expression and enhanced GLP-1 content in the intestinal GLUTag L cell line as well as in primary fetal rat intestinal cell cultures. Increased intestinal glu mRNA expression and GLP-1 content were also observed in vivo in hyperinsulinemic MKR mice. In the GLUTag cells, insulin-induced activation of glu expression occurred through the same TCF site that mediates cat/TCF activation. Phosphatidylinositol 3-kinase inhibition, but not protein kinase B inhibition, attenuated the stimulation by insulin. Furthermore, nuclear beta-catenin content in the intestinal L cells was increased by insulin. Finally, insulin enhanced the binding of TCF-4 and beta-catenin to the TCF site in the glu promoter G2 enhancer element, as determined by quantitative chromatin immunoprecipitation assay. Collectively, these findings indicate that enhancement of beta-catenin nuclear translocation and cat/TCF binding are among the mechanisms underlying cross talk between the insulin and Wnt signaling pathways in intestinal endocrine L cells.
Collapse
Affiliation(s)
- Fenghua Yi
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | | | | | | | | | | |
Collapse
|
30
|
Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc Natl Acad Sci U S A 2008; 105:6614-9. [PMID: 18445652 DOI: 10.1073/pnas.0710402105] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a polypeptide hormone secreted from enteroendocrine L cells and potentiates glucose-dependent insulin secretion in pancreatic beta cells. Recently the GLP-1 receptor (GLP-1 R) has been a focus for new anti-diabetic therapy with the introduction of GLP-1 analogues and DPP-IV inhibitors, and this has stimulated additional interest in the mechanisms of GLP-1 signaling. Here we identify a mechanism for GLP-1 action, showing that the scaffold protein beta-arrestin-1 mediates the effects of GLP-1 to stimulate cAMP production and insulin secretion in beta cells. Using a coimmunoprecipitation technique, we also found a physical association between the GLP-1 R and beta-arrestin-1 in cultured INS-1 pancreatic beta cells. beta-Arrestin-1 knockdown broadly attenuated GLP-1 signaling, causing decreased ERK and CREB activation and IRS-2 expression as well as reduced cAMP levels and impaired insulin secretion. However, beta-arrestin-1 knockdown did not affect GLP-1 R surface expression and ligand-induced GLP-1 R internalization/desensitization. Taken together, these studies indicate that beta-arrestin-1 plays a role in GLP-1 signaling leading to insulin secretion, defining a previously undescribed mechanism for GLP-1 action.
Collapse
|
31
|
Abstract
Glucagon-like peptide-2 (GLP-2) is a pleiotropic hormone that affects multiple facets of intestinal physiology, including growth, barrier function, digestion, absorption, motility, and blood flow. The mechanisms through which GLP-2 produces these actions are complex, involving unique signaling mechanisms and multiple indirect mediators. As clinical trials have begun for the use of GLP-2 in a variety of intestinal disorders, the elucidation of such mechanisms is vital. The GLP-2 receptor (GLP-2R) is a G protein-coupled receptor, signaling through multiple G proteins to affect the cAMP and mitogen-activated protein kinase pathways, leading to both proliferative and antiapoptotic cellular responses. The GLP-2R also demonstrates unique mechanisms for receptor trafficking. Expression of the GLP-2R in discrete sets of intestinal cells, including endocrine cells, subepithelial myofibroblasts, and enteric neurons, has led to the hypothesis that GLP-2 acts indirectly through multiple mediators to produce its biological effects. Indeed, several studies have now provided important mechanistic data illustrating several of the indirect pathways of GLP-2 action. Thus, insulin-like growth factor I has been demonstrated to be required for GLP-2-induced crypt cell proliferation, likely involving activation of beta-catenin signaling. Furthermore, vasoactive intestinal polypeptide modulates the actions of GLP-2 in models of intestinal inflammation, while keratinocyte growth factor is required for GLP-2-induced colonic mucosal growth and mucin expression. Finally, enteric neural GLP-2R signaling affects intestinal blood flow through a nitric oxide-dependent mechanism. Determining how GLP-2 produces its full range of biological effects, which mediators are involved, and how these mediators interact is a continuing area of active research.
Collapse
Affiliation(s)
- Philip E Dubé
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Matsumoto ML, Narzinski K, Nikiforovich GV, Baranski TJ. A Comprehensive Structure-Function Map of the Intracellular Surface of the Human C5a Receptor. J Biol Chem 2007; 282:3122-33. [PMID: 17090530 DOI: 10.1074/jbc.m607683200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within any given cell many G protein-coupled receptors are expressed in the presence of multiple G proteins, yet most receptors couple to a specific subset of G proteins to elicit their programmed response. Numerous studies demonstrate that the carboxyl-terminal five amino acids of the Galpha subunits are a major determinant of specificity, however the receptor determinants of specificity are less clear. We have used a collection of 133 functional mutants of the C5a receptor obtained in a mutagenesis screen targeting the intracellular loops and the carboxyl terminus (Matsumoto, M. L., Narzinski, K., Kiser, P. D., Nikiforovich, G. V., and Baranski, T. J. (2007) J. Biol. Chem. 282, 3105-3121) to investigate how specificity is encoded. Each mutant, originally selected for its ability to signal through a nearly full-length Galpha(i) in yeast, was tested to see whether it could activate three versions of chimeric Galpha subunits consisting of Gpa1 fused to the carboxyl-terminal five amino acids of Galpha(i), Galpha(q), or Galpha(s) in yeast. Surprisingly the carboxyl-terminal tail of the C5a receptor is the most important specificity determinant in that nearly all mutants in this region showed a gain in coupling to Galpha(q) and/or Galpha(s). More than half of the receptors mutated in the second intracellular loop also demonstrated broadened G protein coupling. Given a lack of selective advantage for this broadened signaling in the initial screen, we propose a model in which the carboxyl-terminal tail acts together with the intracellular loops to generate a specificity filter for receptor-G protein interactions that functions primarily to restrict access of incorrect G proteins to the receptor.
Collapse
Affiliation(s)
- Marissa L Matsumoto
- Department of Medicine and Molecular Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
33
|
Matsumoto ML, Narzinski K, Kiser PD, Nikiforovich GV, Baranski TJ. A comprehensive structure-function map of the intracellular surface of the human C5a receptor. I. Identification of critical residues. J Biol Chem 2006; 282:3105-21. [PMID: 17135254 DOI: 10.1074/jbc.m607679200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors are one of the largest protein families in nature; however, the mechanisms by which they activate G proteins are still poorly understood. To identify residues on the intracellular face of the human C5a receptor that are involved in G protein activation, we performed a genetic analysis of each of the three intracellular loops and the carboxyl-terminal tail of the receptor. Amino acid substitutions were randomly incorporated into each loop, and functional receptors were identified in yeast. The third intracellular loop contains the largest number of preserved residues (positions resistant to amino acid substitutions), followed by the second loop, the first loop, and lastly the carboxyl terminus. Surprisingly, complete removal of the carboxyl-terminal tail did not impair C5a receptor signaling. When mapped onto a three-dimensional structural model of the inactive state of the C5a receptor, the preserved residues reside on one half of the intracellular surface of the receptor, creating a potential activation face. Together these data provide one of the most comprehensive functional maps of the intracellular surface of any G protein-coupled receptor to date.
Collapse
Affiliation(s)
- Marissa L Matsumoto
- Department of Medicine and Molecular Biology, Washington School of Medicine, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Multiple peptide hormones produced within the gastrointestinal system aid in the regulation of energy homeostasis and metabolism. Among these is the intestinotrophic peptide glucagon-like peptide-2 (GLP-2), which is released following food intake and plays a significant role in the adaptive regulation of bowel mass and mucosal integrity. The discovery of GLP-2's potent growth-promoting and cytoprotective effects in the gastrointestinal (GI) tract stimulated interest in its use as a therapeutic agent for the treatment of GI diseases involving malabsorption, inflammation, and/or mucosal damage. Current research has focused on determining the physiological mechanisms contributing to the effects of GLP-2 and factors regulating its biological mechanisms of action. This chapter provides an overview of the biology of GLP-2 with a focus on the most recent findings on the role of this peptide hormone in the normal and diseased GI tract.
Collapse
Affiliation(s)
- Jennifer L Estall
- Department of Laboratory Medicine and Pathobiology, The Banting and Best Diabetes Center, Toronto General Hospital, University of Toronto, Ontario, Canada, M5G 2C4
| | | |
Collapse
|