1
|
Zhang W, Lei W, Bo T, Xu J, Wang W. Metabolomics' Change Under β-Cypermethrin Stress and Detoxification Role of CYP5011A1 in Tetrahymena thermophila. Metabolites 2025; 15:143. [PMID: 40137108 PMCID: PMC11944115 DOI: 10.3390/metabo15030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND β-cypermethrin (β-CYP) exhibits high toxicity to aquatic organisms and poses significant risks to aquatic ecosystems. Tetrahymena thermophila, a protozoa widely distributed in aquatic environments, can tolerate high concentrations of β-cypermethrin. However, the comprehensive detoxification mechanisms remain poorly understood in Tetrahymena. METHODS Untargeted metabolomics was used to explore the detoxification mechanisms of T. thermophila under β-CYP stress. RESULTS Trehalose, maltose, glycerol, and D-myo-inositol were upregulated under β-CYP exposure in Tetrahymena. Furthermore, the expression level of CYP5011A1 was upregulated under β-CYP treatment. CYP5011A1 knockout mutants resulted in a decreasing proliferation rate of T. thermophila under β-CYP stress. The valine-leucine and isoleucine biosynthesis and glycine-serine and threonine metabolism were significantly affected, with significantly changed amino acids including serine, isoleucine, and valine. CONCLUSIONS These findings confirmed that T. thermophila develops β-CYP tolerance by carbohydrate metabolism reprogramming and Cyp5011A1 improves cellular adaptations by influencing amino acid metabolisms. Understanding these mechanisms can inform practices aimed at reducing the adverse effects of agricultural chemicals on microbial and environmental health.
Collapse
Affiliation(s)
- Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
2
|
Lobo-Rojas ÁE, Delgado-Chacón MA, Valera-Vera EA, Chacón-Arnaude M, Pérez-Aguilar MC, Rondón-Mercado R, Quintero-Troconis E, Quiñones W, Concepción JL, Cáceres AJ. Galactokinase and galactose metabolism in Leishmania spp. Exp Parasitol 2025; 269:108888. [PMID: 39743191 DOI: 10.1016/j.exppara.2024.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
In Leishmania, the nucleotide-sugar UDP-galactose can be synthesized by a salvage pathway, the Isselbacher route, involving phosphorylation of galactose and the action of UDP-sugar pyrophosphorylase. The first enzyme of the pathway, galactokinase, has yet to be studied in this parasite. Here, we report a molecular and biochemical characterization of this enzyme in Leishmania mexicana. We showed that recombinant galactokinase (LmxGALK) phosphorylates galactose in the presence of ATP with Km values of 0.077 mM for galactose and 0.017 mM for ATP. We proved by immunodetection that GALK is expressed in promastigotes and amastigotes of L. mexicana, L. braziliensis and L. infantum. In agreement with the presence of a type 1 peroxisome-targeting signal sequence present at the C-terminus of LmxGALK, the protein is localized mostly within glycosomes as shown by selective membrane permeabilization with digitonin, differential centrifugation, and immunofluorescence. Indeed, LmxGALK enzymatic activity was measured in the fractions corresponding to the homogenate and glycosomes, proving that it is active in promastigotes. In addition, it was shown that galactose cannot serve as an important carbon source for sustaining parasite growth, as cultures of promastigotes from three Leishmania species in LIT medium containing either no sugar or supplemented with D-galactose (20 mM) grew to lower density compared to these cultured with D-glucose (20 mM). These results suggest that D-galactose is mainly used for UDP-galactose synthesis by the salvage route, functioning when glucose is depleted from the medium, similar to the conditions promastigotes experience in the gut of the insect vector during its life cycle.
Collapse
Affiliation(s)
- Ángel E Lobo-Rojas
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela; Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - María A Delgado-Chacón
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Edward A Valera-Vera
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Mary Carmen Pérez-Aguilar
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Rocío Rondón-Mercado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Juan L Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
| |
Collapse
|
3
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Lobo-Rojas Á, Quintero-Troconis E, Rondón-Mercado R, Pérez-Aguilar. MC, Concepción JL, Cáceres AJ. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens 2022; 11:1174. [PMID: 36297231 PMCID: PMC9611177 DOI: 10.3390/pathogens11101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we demonstrate that Trypanosoma cruzi epimastigotes previously grown in LIT medium supplemented with 20 mM galactose and exposed to sub-lethal concentrations of hydrogen peroxide (100 μM) showed two-fold and five-fold viability when compared to epimastigotes grown in LIT medium supplemented with two different glucose concentrations (20 mM and 1.5 mM), respectively. Similar results were obtained when exposing epimastigotes from all treatments to methylene blue 30 μM. Additionally, through differential centrifugation and the selective permeabilization of cellular membranes with digitonin, we found that phosphoglucomutase activity (a key enzyme in galactose metabolism) occurs predominantly within the cytosolic compartment. Furthermore, after partially permeabilizing epimastigotes with digitonin (0.025 mg × mg-1 of protein), intact glycosomes treated with 20 mM galactose released a higher hexose phosphate concentration to the cytosol in the form of glucose-1-phosphate, when compared to intact glycosomes treated with 20 mM glucose, which predominantly released glucose-6-phosphate. These results shine a light on T. cruzi's galactose metabolism and its interplay with mechanisms that enable resistance to oxidative stress.
Collapse
Affiliation(s)
- Ángel Lobo-Rojas
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | |
Collapse
|
5
|
Bandini G, Damerow S, Sempaio Guther ML, Guo H, Mehlert A, Paredes Franco JC, Beverley S, Ferguson MAJ. An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei. eLife 2021; 10:e70272. [PMID: 34410224 PMCID: PMC8439653 DOI: 10.7554/elife.70272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.
Collapse
Affiliation(s)
- Giulia Bandini
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Maria Lucia Sempaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Angela Mehlert
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jose Carlos Paredes Franco
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Stephen Beverley
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Michael AJ Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
6
|
Sampaio Guther ML, Prescott AR, Kuettel S, Tinti M, Ferguson MAJ. Nucleotide sugar biosynthesis occurs in the glycosomes of procyclic and bloodstream form Trypanosoma brucei. PLoS Negl Trop Dis 2021; 15:e0009132. [PMID: 33592041 PMCID: PMC7909634 DOI: 10.1371/journal.pntd.0009132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.
Collapse
Affiliation(s)
- Maria Lucia Sampaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sabine Kuettel
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Robinson KA, Dunn M, Hussey SP, Fritz-Laylin LK. Identification of antibiotics for use in selection of the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. PLoS One 2020; 15:e0240480. [PMID: 33079945 PMCID: PMC7575076 DOI: 10.1371/journal.pone.0240480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in Bd and Bsal, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.
Collapse
Affiliation(s)
- Kristyn A. Robinson
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Mallory Dunn
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Shane P. Hussey
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Lillian K. Fritz-Laylin
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
8
|
Identification of Leishmania major UDP-Sugar Pyrophosphorylase Inhibitors Using Biosensor-Based Small Molecule Fragment Library Screening. Molecules 2019; 24:molecules24050996. [PMID: 30871023 PMCID: PMC6429087 DOI: 10.3390/molecules24050996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis is a neglected disease that is caused by different species of the protozoan parasite Leishmania, and it currently affects 12 million people worldwide. The antileishmanial therapeutic arsenal remains very limited in number and efficacy, and there is no vaccine for this parasitic disease. One pathway that has been genetically validated as an antileishmanial drug target is the biosynthesis of uridine diphosphate-glucose (UDP-Glc), and its direct derivative UDP-galactose (UDP-Gal). De novo biosynthesis of these two nucleotide sugars is controlled by the specific UDP-glucose pyrophosphorylase (UGP). Leishmania parasites additionally express a UDP-sugar pyrophosphorylase (USP) responsible for monosaccharides salvage that is able to generate both UDP-Gal and UDP-Glc. The inactivation of the two parasite pyrophosphorylases UGP and USP, results in parasite death. The present study reports on the identification of structurally diverse scaffolds for the development of USP inhibitors by fragment library screening. Based on this screening, we selected a small set of commercially available compounds, and identified molecules that inhibit both Leishmania major USP and UGP, with a half-maximal inhibitory concentration in the 100 µM range. The inhibitors were predicted to bind at allosteric regulation sites, which were validated by mutagenesis studies. This study sets the stage for the development of potent USP inhibitors.
Collapse
|
9
|
Acosta H, Burchmore R, Naula C, Gualdrón-López M, Quintero-Troconis E, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2019; 229:62-74. [PMID: 30831156 PMCID: PMC7082770 DOI: 10.1016/j.molbiopara.2019.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
In Trypanosoma cruzi, the causal agent of Chagas disease, the first seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Besides glycolysis, activity of enzymes of other metabolic processes have been reported to be present in glycosomes, such as β-oxidation of fatty acids, purine salvage, pentose-phosphate pathway, gluconeogenesis and biosynthesis of ether-lipids, isoprenoids, sterols and pyrimidines. In this study, we have purified glycosomes from T. cruzi epimastigotes, collected the soluble and membrane fractions of these organelles, and separated peripheral and integral membrane proteins by Na2CO3 treatment and osmotic shock. Proteomic analysis was performed on each of these fractions, allowing us to confirm the presence of enzymes involved in various metabolic pathways as well as identify new components of this parasite's glycosomes.
Collapse
Affiliation(s)
- Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christina Naula
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
10
|
Osorio-Méndez JF, Cevallos AM. Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease. Front Cell Infect Microbiol 2019; 8:439. [PMID: 30666299 PMCID: PMC6330712 DOI: 10.3389/fcimb.2018.00439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
There is an urgent need to develop new treatments for Chagas' disease. To identify drug targets, it is important to understand the basic biology of Trypanosoma cruzi, in particular with respect to the biological pathways or proteins that are essential for its survival within the host. This review provides a streamlined approach for identifying drug targets using freely available chemogenetic databases and outlines the relevant characteristics of an ideal chemotherapeutic target. Among those are their essentiality, druggability, availability of structural information, and selectivity. At the moment only 16 genes have been found as essential by gene disruption in T. cruzi. At the TDR Targets database, a chemogenomics resource for neglected diseases, information about published structures for these genes was only found for three of these genes, and annotation of validated inhibitors was found in two. These inhibitors have activity against the parasitic stages present in the host. We then analyzed three of the pathways that are considered promising in the search for new targets: (1) Ergosterol biosynthesis, (2) Resistance to oxidative stress, (3) Synthesis of surface glycoconjugates. We have annotated all the genes that participate in them, identified those that are considered as druggable, and incorporated evidence from either Trypanosoma brucei, and Leishmania spp. that supports the hypothesis that these pathways are essential for T. cruzi survival.
Collapse
Affiliation(s)
- Juan Felipe Osorio-Méndez
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia.,Grupo de Estudio en Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Silva Pereira S, Jackson AP. UDP-glycosyltransferase genes in trypanosomatid genomes have diversified independently to meet the distinct developmental needs of parasite adaptations. BMC Evol Biol 2018; 18:31. [PMID: 29540192 PMCID: PMC5853035 DOI: 10.1186/s12862-018-1149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trypanosomatid parasites such as Trypanosoma spp. and Leishmania spp. are a major source of infectious disease in humans and domestic animals worldwide. Fundamental to the host-parasite interactions of these potent pathogens are their cell surfaces, which are highly decorated with glycosylated proteins and other macromolecules. Trypanosomatid genomes contain large multi-copy gene families encoding UDP-dependent glycosyltransferases (UGTs), the primary role of which is cell-surface decoration. Here we report a phylogenetic analysis of UGTs from diverse trypanosomatid genomes, the aim of which was to understand the origin and evolution of their diversity. RESULTS By combining phylogenetics with analyses of recombination, and selection, we compared UGT repertoire, genomic context and sequence evolution across 19 trypanosomatids. We identified a UGT lineage present in stercorarian trypanosomes and a free-living kinetoplastid Bodo saltans that likely represents the ancestral state of this gene family. The phylogeny of parasite-specific genes shows that UGTs repertoire in Leishmaniinae and salivarian trypanosomes has expanded independently and with distinct evolutionary dynamics. In the former, the ancestral UGT repertoire was organised in a tandem array from which sporadic transpositions to telomeric regions occurred, allowing expansion most likely through telomeric exchange. In the latter, the ancestral UGT repertoire was comprised of seven subtelomeric lineages, two of which have greatly expanded potentially by gene transposition between these dynamic regions of the genome. CONCLUSIONS The phylogeny of UGTs confirms that they represent a substantial parasite-specific innovation, which has diversified independently in the distinct trypanosomatid lineages. Nonetheless, developmental regulation has been a strong driver of UGTs diversification in both African trypanosomes and Leishmania.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
12
|
Cramer JT, Führing JI, Baruch P, Brütting C, Knölker HJ, Gerardy-Schahn R, Fedorov R. Decoding Allosteric Networks in Biocatalysts: Rational Approach to Therapies and Biotechnologies. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes T. Cramer
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jana I. Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Petra Baruch
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christian Brütting
- Department of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
13
|
Allmann S, Bringaud F. Glycosomes: A comprehensive view of their metabolic roles in T. brucei. Int J Biochem Cell Biol 2017; 85:85-90. [PMID: 28179189 DOI: 10.1016/j.biocel.2017.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
Peroxisomes are single-membrane cellular organelles, present in most eukaryotic cells and organisms from human to yeast, fulfilling essential metabolic functions in lipid metabolism, free radical detoxification, differentiation, development, morphogenesis, etc. Interestingly, the protozoan parasite species Trypanosoma contains peroxisome-like organelles named glycosomes, which lack hallmark peroxisomal pathways and enzymes, such as catalase. Glycosomes are the only peroxisome-like organelles containing most enzymatic steps of the glycolytic pathway as well as enzymes of pyrimidine biosynthesis, purine salvage and biosynthesis of nucleotide sugars. We present here an overview of the glycosomal metabolic peculiarities together with the current view of the raison d'être of this unique metabolic peroxisomal sequestration.
Collapse
Affiliation(s)
- Stefan Allmann
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France.
| |
Collapse
|
14
|
Damerow M, Graalfs F, Güther MLS, Mehlert A, Izquierdo L, Ferguson MAJ. A Gene of the β3-Glycosyltransferase Family Encodes N-Acetylglucosaminyltransferase II Function in Trypanosoma brucei. J Biol Chem 2016; 291:13834-45. [PMID: 27189951 PMCID: PMC4919465 DOI: 10.1074/jbc.m116.733246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/06/2022] Open
Abstract
The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1-3 and Manα1-6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the β3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328-9339). Here, we demonstrate that TbGT15, another member of the same β3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1-6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1-3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of β3-glycosyltransferase family members to catalyze β1-2 glycosidic linkages.
Collapse
Affiliation(s)
- Manuela Damerow
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Frauke Graalfs
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - M Lucia S Güther
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Angela Mehlert
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Luis Izquierdo
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Michael A J Ferguson
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
15
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Damerow S, Hoppe C, Bandini G, Zarnovican P, Buettner FR, Lüder CGK, Ferguson MAJ, Routier FH. Depletion of UDP-Glucose and UDP-Galactose Using a Degron System Leads to Growth Cessation of Leishmania major. PLoS Negl Trop Dis 2015; 9:e0004205. [PMID: 26529232 PMCID: PMC4631452 DOI: 10.1371/journal.pntd.0004205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/11/2015] [Indexed: 11/25/2022] Open
Abstract
Interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) by the UDP-Glc 4´-epimerase intimately connects the biosynthesis of these two nucleotide sugars. Their de novo biosynthesis involves transformation of glucose-6-phosphate into glucose-1-phosphate by the phosphoglucomutase and subsequent activation into UDP-Glc by the specific UDP-Glc pyrophosphorylase (UGP). Besides UGP, Leishmania parasites express an uncommon UDP-sugar pyrophosphorylase (USP) able to activate both galactose-1-phosphate and glucose-1-phosphate in vitro. Targeted gene deletion of UGP alone was previously shown to principally affect expression of lipophosphoglycan, resulting in a reduced virulence. Since our attempts to delete both UGP and USP failed, deletion of UGP was combined with conditional destabilisation of USP to control the biosynthesis of UDP-Glc and UDP-Gal. Stabilisation of the enzyme produced by a single USP allele was sufficient to maintain the steady-state pools of these two nucleotide sugars and preserve almost normal glycoinositolphospholipids galactosylation, but at the apparent expense of lipophosphoglycan biosynthesis. However, under destabilising conditions, the absence of both UGP and USP resulted in depletion of UDP-Glc and UDP-Gal and led to growth cessation and cell death, suggesting that either or both of these metabolites is/are essential. Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania. They affect about 12 million people and cause a high morbidity. Since treatments against all forms of leishmaniasis are limited in number and efficacy, many efforts are made to identify potential drug targets and develop new therapies. Although considerable progress in genetic manipulation of Leishmania parasites have been made, it remains difficult to study molecules or metabolic pathways essential for parasite viability and growth. In the present work, we used a combination of gene deletion and conditional protein destabilization to demonstrate that biosynthesis of the nucleotide sugar UDP-glucose and its derivative UDP-galactose is essential for parasite growth. Addition of a specific ligand to the culture medium of the engineered parasite protected the targeted enzyme from degradation and enabled cell growth and viability. However, removal of the stabilizing compound led to depletion of UDP-glucose and UDP-galactose, growth arrest and cell death. This work thus opens a new possibility for the study of essential proteins.
Collapse
Affiliation(s)
- Sebastian Damerow
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Carolin Hoppe
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Giulia Bandini
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Patricia Zarnovican
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Falk R. Buettner
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Carsten G. K. Lüder
- Institute for Medical Microbiology, Georg-August University, Goettingen, Germany
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Françoise H. Routier
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
17
|
Abstract
Galactose salvage in Leishmania major is mediated by UDP-sugar pyrophosphorylase (USP). USP is not rate limiting for glycocalyx biosynthesis under standard growth conditions. Salvage by USP contributes to glycoconjugate biosynthesis but is insufficient on its own.
Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania whose severity ranges from self-healing cutaneous lesions to fatal visceral infections. Leishmania parasites synthesise a wide array of cell surface and secreted glycoconjugates that play important roles in infection. These glycoconjugates are particularly abundant in the promastigote form and known to be essential for establishment of infection in the insect midgut and effective transmission to the mammalian host. Since they are rich in galactose, their biosynthesis requires an ample supply of UDP-galactose. This nucleotide-sugar arises from epimerisation of UDP-glucose but also from an uncharacterised galactose salvage pathway. In this study, we evaluated the role of the newly characterised UDP-sugar pyrophosphorylase (USP) of Leishmania major in UDP-galactose biosynthesis. Upon deletion of the USP encoding gene, L. major lost the ability to synthesise UDP-galactose from galactose-1-phosphate but its ability to convert glucose-1-phosphate into UDP-glucose was fully maintained. Thus USP plays a role in UDP-galactose activation but does not significantly contribute to the de novo synthesis of UDP-glucose. Accordingly, USP was shown to be dispensable for growth and glycoconjugate biosynthesis under standard growth conditions. However, in a mutant seriously impaired in the de novo synthesis of UDP-galactose (due to deficiency of the UDP-glucose pyrophosphorylase) addition of extracellular galactose increased biosynthesis of the cell surface lipophosphoglycan. Thus under restrictive conditions, such as those encountered by Leishmania in its natural habitat, galactose salvage by USP may play a substantial role in biosynthesis of the UDP-galactose pool. We hypothesise that USP recycles galactose from the blood meal within the midgut of the insect for synthesis of the promastigote glycocalyx and thereby contributes to successful vector infection.
Collapse
|
18
|
Yang J, Yoshida Y, Cisar JO. Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species. Mol Oral Microbiol 2015; 29:24-31. [PMID: 24397790 DOI: 10.1111/omi.12042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2013] [Indexed: 11/28/2022]
Abstract
Interbacterial adhesion between streptococci and actinomyces promotes early dental plaque biofilm development. Recognition of coaggregation receptor polysaccharides (RPS) on strains of Streptococcus sanguinis, Streptococcus gordonii and Streptococcus oralis by Actinomyces spp. type 2 fimbriae is the principal mechanism of these interactions. Previous studies of genetic loci for synthesis of RPS (rps) and RPS precursors (rml, galE1 and galE2) in S. gordonii 38 and S. oralis 34 revealed differences between these strains. To determine whether these differences are strain-specific or species-specific, we identified and compared loci for polysaccharide biosynthesis in additional strains of these species and in several strains of the previously unstudied species, S. sanguinis. Genes for synthesis of RPS precursors distinguished the rps loci of different streptococci. Hence, rml genes for synthesis of TDP-L-Rha were in rps loci of S. oralis strains but at other loci in S. gordonii and S. sanguinis. Genes for two distinct galactose epimerases were also distributed differently. Hence, galE1 for epimerization of UDP-Glc and UDP-Gal was in galactose operons of S. gordonii and S. sanguinis strains but surprisingly, this gene was not present in S. oralis. Moreover, galE2 for epimerization of both UDP-Glc and UDP-Gal and UDP-GlcNAc and UDP-GalNAc was at a different locus in each species, including rps operons of S. sanguinis. The findings provide insight into cell surface properties that distinguish different RPS-producing streptococci and open an approach for identifying these bacteria based on the arrangement of genes for synthesis of polysaccharide precursors.
Collapse
Affiliation(s)
- J Yang
- Microbial Receptors Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
19
|
Izquierdo L, Acosta-Serrano A, Mehlert A, Ferguson MA. Identification of a glycosylphosphatidylinositol anchor-modifying β1-3 galactosyltransferase in Trypanosoma brucei. Glycobiology 2014; 25:438-47. [PMID: 25467966 PMCID: PMC4339879 DOI: 10.1093/glycob/cwu131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African sleeping sickness and the cattle disease nagana. Trypanosoma brucei is dependent on glycoproteins for its survival and infectivity throughout its life cycle. Here we report the functional characterization of TbGT3, a glycosyltransferase expressed in the bloodstream and procyclic form of the parasite. Bloodstream and procyclic form TbGT3 conditional null mutants were created and both exhibited normal growth under permissive and nonpermissive conditions. Under nonpermissive conditions, the normal glycosylation of the major glycoprotein of bloodstream form T. brucei, the variant surface glycoprotein and the absence of major alterations in lectin binding to other glycoproteins suggested that the major function of TbGT3 occurs in the procyclic form of the parasite. Consistent with this, the major surface glycoprotein of the procyclic form, procyclin, exhibited a marked reduction in molecular weight due to changes in glycosylphosphatidylinositol (GPI) anchor side chains. Structural analysis of the mutant procyclin GPI anchors indicated that TbGT3 encodes a UDP-Gal: β-GlcNAc-GPI β1-3 Gal transferase. Despite the alterations in GPI anchor side chains, TbGT3 conditional null mutants remained infectious to tsetse flies under nonpermissive conditions.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK Barcelona Centre for International Health Research, CRESIB, Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain
| | - Alvaro Acosta-Serrano
- Department of Parasitology Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Mehlert
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael Aj Ferguson
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
20
|
Güther MS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res 2014; 13:2796-806. [PMID: 24792668 PMCID: PMC4052807 DOI: 10.1021/pr401209w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Indexed: 01/23/2023]
Abstract
The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed.
Collapse
Affiliation(s)
- Maria
Lucia S. Güther
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael D. Urbaniak
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Amy Tavendale
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Alan Prescott
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
21
|
Nakanishi M, Karasudani M, Shiraishi T, Hashida K, Hino M, Ferguson MAJ, Nomoto H. TbGT8 is a bifunctional glycosyltransferase that elaborates N-linked glycans on a protein phosphatase AcP115 and a GPI-anchor modifying glycan in Trypanosoma brucei. Parasitol Int 2014; 63:513-8. [PMID: 24508870 PMCID: PMC4003530 DOI: 10.1016/j.parint.2014.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/25/2013] [Accepted: 01/20/2014] [Indexed: 11/01/2022]
Abstract
The procyclic form of Trypanosoma brucei expresses procyclin surface glycoproteins with unusual glycosylphosphatidylinositol-anchor side chain structures that contain branched N-acetyllactosamine and lacto-N-biose units. The glycosyltransferase TbGT8 is involved in the synthesis of the branched side chain through its UDP-GlcNAc: βGal β1-3N-acetylglucosaminyltransferase activity. Here, we explored the role of TbGT8 in the mammalian bloodstream form of the parasite with a tetracycline-inducible conditional null T. brucei mutant for TbGT8. Under non-permissive conditions, the mutant showed significantly reduced binding to tomato lectin, which recognizes poly-N-acetyllactosamine-containing glycans. Lectin pull-down assays revealed differences between the wild type and TbGT8 null-mutant T. brucei, notably the absence of a broad protein band with an approximate molecular weight of 110 kDa in the mutant lysate. Proteomic analysis revealed that the band contained several glycoproteins, including the acidic ecto-protein phosphatase AcP115, a stage-specific glycoprotein in the bloodstream form of T. brucei. Western blotting with an anti-AcP115 antibody revealed that AcP115 was approximately 10kDa smaller in the mutant. Enzymatic de-N-glycosylation demonstrated that the underlying protein cores were the same, suggesting that the 10-kDa difference was due to differences in N-linked glycans. Immunofluorescence microscopy revealed the colocalization of hemagglutinin epitope-tagged TbGT8 and the Golgi-associated protein GRASP. These data suggest that TbGT8 is involved in the construction of complex poly-N-acetyllactosamine-containing type N-linked and GPI-linked glycans in the Golgi of the bloodstream and procyclic parasite forms, respectively.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Moe Karasudani
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Takahiro Shiraishi
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Kazunori Hashida
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mami Hino
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
22
|
Liu L, Xu YX, Caradonna KL, Kruzel EK, Burleigh BA, Bangs JD, Hirschberg CB. Inhibition of nucleotide sugar transport in Trypanosoma brucei alters surface glycosylation. J Biol Chem 2013; 288:10599-615. [PMID: 23443657 DOI: 10.1074/jbc.m113.453597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1-4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei.
Collapse
Affiliation(s)
- Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Izquierdo L, Güther MLS, Ferguson MAJ. Creation and characterization of glycosyltransferase mutants of Trypanosoma brucei. Methods Mol Biol 2013; 1022:249-75. [PMID: 23765667 DOI: 10.1007/978-1-62703-465-4_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The survival strategies of protozoan parasites frequently involve the participation of glycoconjugates. Trypanosoma brucei expresses complex glycoproteins throughout its life cycle and a review of its repertoire of glycosidic linkages suggests a minimum of 38 glycosyltransferase activities. Here we describe a functional characterization workflow in which we create glycosyltransferase null or conditional null mutants in both the bloodstream and procyclic life-cycle forms of the parasite. Subsequently, we characterize the biochemical phenotype of the mutant strains generated and assign precise functions to the genes involved in glycoconjugate biosynthesis and processing in T. brucei. In this way, a comprehensive picture of -T. brucei glycosylation associated genes, their specificities and their relationship to similar genes in other organisms can be obtained.
Collapse
Affiliation(s)
- Luis Izquierdo
- Barcelona Centre for International Health Research, (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, Spain
| | | | | |
Collapse
|
24
|
Verplaetse E, Gualdrón-López M, Chevalier N, Michels PAM. Studies on the organization of the docking complex involved in matrix protein import into glycosomes of Trypanosoma brucei. Biochem Biophys Res Commun 2012; 424:781-5. [PMID: 22809509 DOI: 10.1016/j.bbrc.2012.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Trypanosoma brucei contains peroxisome-like organelles designated glycosomes because they sequester the major part of the glycolytic pathway. Import of proteins into the peroxisomal matrix involves a protein complex associated with the peroxisomal membrane of which PEX13 is a component. Two very different PEX13 isoforms have recently been identified in T. brucei. A striking feature of one of the isoforms, TbPEX13.1, is the presence of a C-terminal type 1 peroxisomal-targeting signal (PTS1), the tripeptide TKL, conserved in its orthologues in all members of the Trypanosomatidae family so far studied, but absent from TbPEX13.2 and the PEX13s in all other organisms. Despite their differences, both TbPEX13s function as part of a docking complex for cytosolic receptors with bound matrix proteins to be imported. We further characterized TbPEX13.1's function in glycosomal matrix-protein import. It provides a frame to anchor another docking complex component, PEX14, to the glycosomal membrane or information to correctly position it within the membrane. To investigate the possible function of the C-terminal TKL, we determined the topology of the C-terminal half of TbPEX13.1 in the membrane and show that its SH3 domain, located immediately adjacent to the PTS1, is at the cytosolic face.
Collapse
Affiliation(s)
- Emilie Verplaetse
- Research Unit for Tropical Diseases, de Duve Institute, Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
25
|
Bandini G, Mariño K, Güther MLS, Wernimont AK, Kuettel S, Qiu W, Afzal S, Kelner A, Hui R, Ferguson MAJ. Phosphoglucomutase is absent in Trypanosoma brucei and redundantly substituted by phosphomannomutase and phospho-N-acetylglucosamine mutase. Mol Microbiol 2012; 85:513-34. [PMID: 22676716 PMCID: PMC3465800 DOI: 10.1111/j.1365-2958.2012.08124.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose-phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.
Collapse
Affiliation(s)
- Giulia Bandini
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McCorvie TJ, Liu Y, Frazer A, Gleason TJ, Fridovich-Keil JL, Timson DJ. Altered cofactor binding affects stability and activity of human UDP-galactose 4'-epimerase: implications for type III galactosemia. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1516-26. [PMID: 22613355 DOI: 10.1016/j.bbadis.2012.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 02/04/2023]
Abstract
Deficiency of UDP-galactose 4'-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and no ability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD(+). p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD(+). These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation.
Collapse
Affiliation(s)
- Thomas J McCorvie
- School of Biological Sciences, Queen's University, Belfast, BT9 7BL, UK
| | | | | | | | | | | |
Collapse
|
27
|
Mehlert A, Wormald MR, Ferguson MAJ. Modeling of the N-glycosylated transferrin receptor suggests how transferrin binding can occur within the surface coat of Trypanosoma brucei. PLoS Pathog 2012; 8:e1002618. [PMID: 22496646 PMCID: PMC3320590 DOI: 10.1371/journal.ppat.1002618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/13/2012] [Indexed: 12/17/2022] Open
Abstract
The transferrin receptor of bloodstream form Trypanosoma brucei is a heterodimer encoded by expression site associated genes 6 and 7. This low-abundance glycoprotein with a single glycosylphosphatidylinositol membrane anchor and eight potential N-glycosylation sites is located in the flagellar pocket. The receptor is essential for the parasite, providing its only source of iron by scavenging host transferrin from the bloodstream. Here, we demonstrate that both receptor subunits contain endoglycosidase H-sensitive and endoglycosidase H-resistant N-glycans. Lectin blotting of the purified receptor and structural analysis of the released N-glycans revealed oligomannose and paucimannose structures but, contrary to previous suggestions, no poly-N-acetyllactosamine structures were found. Overlay experiments suggest that the receptor can bind to other trypanosome glycoproteins, which may explain this discrepancy. Nevertheless, these data suggest that a current model, in which poly-N-acetyllactosamine glycans are directly involved in receptor-mediated endocytosis in bloodstream form Trypanosoma brucei, should be revised. Sequential endoglycosidase H and peptide-N-glycosidase F treatment, followed by tryptic peptide analysis, allowed the mapping of oligomannose and paucimannose structures to four of the receptor N-glycosylation sites. These results are discussed with respect to the current model for protein N-glycosylation in the parasite. Finally, the glycosylation data allowed the creation of a molecular model for the parasite transferrin receptor. This model, when placed in the context of a model for the dense variant surface glycoprotein coat in which it is embedded, suggests that receptor N-glycosylation may play an important role in providing sufficient space for the approach and binding of transferrin to the receptor, without significantly disrupting the continuity of the protective variant surface glycoprotein coat. The tsetse fly transmitted parasite that causes human African trypanosomiasis, or sleeping sickness, scavenges iron from the bloodstream of the infected individual so that it can live, multiply and ultimately cause disease. To do this, it places a glycoprotein (a protein with carbohydrate chains attached) called the transferrin receptor on its surface to capture circulating human transferrin, an iron transport protein. It then internalizes transferrin receptor/transferrin complex and digests the transferrin part, releasing the iron for its own use. By analyzing the parasite transferrin receptor, we have been able to describe the carbohydrate chains of the transferrin receptor and thus complete a molecular model of this important glycoprotein. We have further built models of how we expect this low abundance glycoprotein will sit in the surface coat of the parasite, which is made of millions of copies of another glycoprotein. The results provide a ‘molecule's eye view’ of how the carbohydrate chains of the transferrin receptor provide the space necessary for the transferrin to bind to it without disrupting the protective coat.
Collapse
Affiliation(s)
- Angela Mehlert
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark R. Wormald
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Kuettel S, Wadum MCT, Güther MLS, Mariño K, Riemer C, Ferguson MAJ. The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei. Mol Microbiol 2012; 84:340-51. [PMID: 22375793 PMCID: PMC3412276 DOI: 10.1111/j.1365-2958.2012.08026.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2012] [Indexed: 11/28/2022]
Abstract
The sugar nucleotide GDP-mannose is essential for Trypanosoma brucei. Phosphomannose isomerase occupies a key position on the de novo pathway to GDP-mannose from glucose, just before intersection with the salvage pathway from free mannose. We identified the parasite phosphomannose isomerase gene, confirmed that it encodes phosphomannose isomerase activity and localized the endogenous enzyme to the glycosome. We also created a bloodstream-form conditional null mutant of phosphomannose isomerase to assess the relative roles of the de novo and salvage pathways of GDP-mannose biosynthesis. Phosphomannose isomerase was found to be essential for parasite growth. However, supplementation of the medium with low concentrations of mannose, including that found in human plasma, relieved this dependence. Therefore, we do not consider phosphomannose isomerase to be a viable drug target. We further established culture conditions where we can control glucose and mannose concentrations and perform steady-state [U-(13) C]-D-glucose labelling. Analysis of the isotopic sugar composition of the parasites variant surface glycoprotein synthesized in cells incubated in 5 mM [U-(13) C]-D-glucose in the presence and absence of unlabelled mannose showed that, under physiological conditions, about 80% of GDP-mannose synthesis comes from the de novo pathway and 20% from the salvage pathway.
Collapse
Affiliation(s)
- Sabine Kuettel
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Majken C T Wadum
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Maria Lucia S Güther
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | | | - Carolin Riemer
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| |
Collapse
|
29
|
Carnes J, Lewis Ernst N, Wickham C, Panicucci B, Stuart K. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei. PLoS One 2012; 7:e33405. [PMID: 22438925 PMCID: PMC3305318 DOI: 10.1371/journal.pone.0033405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes) that catalyze RNA editing but the relative roles of each protein are not known. METHODOLOGY/PRINCIPAL FINDINGS The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect) and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity. CONCLUSIONS KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Nancy Lewis Ernst
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Carey Wickham
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Brian Panicucci
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kenneth Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
30
|
Izquierdo L, Mehlert A, Ferguson MAJ. The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases. Glycobiology 2012; 22:696-703. [PMID: 22241825 PMCID: PMC3311286 DOI: 10.1093/glycob/cws003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently presented a model for site-specific protein N-glycosylation in Trypanosoma brucei whereby the TbSTT3A oligosaccharyltransferase (OST) first selectively transfers biantennary Man(5)GlcNAc(2) from the lipid-linked oligosaccharide (LLO) donor Man(5)GlcNAc(2)-PP-Dol to N-glycosylation sequons in acidic to neutral peptide sequences and TbSTT3B selectively transfers triantennary Man(9)GlcNAc(2) to any remaining sequons. In this paper, we investigate the specificities of the two OSTs for their preferred LLO donors by glycotyping the variant surface glycoprotein (VSG) synthesized by bloodstream-form T. brucei TbALG12 null mutants. The TbALG12 gene encodes the α1-6-mannosyltransferase that converts Man(7)GlcNAc(2)-PP-Dol to Man(8)GlcNAc(2)-PP-Dol. The VSG synthesized by the TbALG12 null mutant in the presence and the absence of α-mannosidase inhibitors was characterized by electrospray mass spectrometry both intact and as pronase glycopetides. The results show that TbSTT3A is able to transfer Man(7)GlcNAc(2) as well as Man(5)GlcNAc(2) to its preferred acidic glycosylation site at Asn263 and that, in the absence of Man(9)GlcNAc(2)-PP-Dol, TbSTT3B transfers both Man(7)GlcNAc(2) and Man(5)GlcNAc(2) to the remaining site at Asn428, albeit with low efficiency. These data suggest that the preferences of TbSTT3A and TbSTT3B for their LLO donors are based on the c-branch of the Man(9)GlcNAc(2) oligosaccharide, such that the presence of the c-branch prevents recognition and/or transfer by TbSTT3A, whereas the presence of the c-branch enhances recognition and/or transfer by TbSTT3B.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
31
|
UDP-xylose and UDP-galactose synthesis in Trichomonas vaginalis. Mol Biochem Parasitol 2011; 181:53-6. [PMID: 22008417 PMCID: PMC3223521 DOI: 10.1016/j.molbiopara.2011.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/21/2011] [Accepted: 10/03/2011] [Indexed: 12/13/2022]
Abstract
The presence of xylose and galactose residues in the structure of trichomonad lipoglycans was indicated by previous studies and the modification of any glycoconjugate with either monosaccharide requires the respective presence of the nucleotide sugars, UDP-xylose and UDP-galactose. Biosynthesis of UDP-xylose de novo is mediated by UDP-xylose synthase (UXS; UDP-glucuronic acid decarboxylase), which converts UDP-glucuronic acid to UDP-xylose, whereas UDP-galactose can be generated from UDP-glucose by UDP-galactose epimerases (GalE). Trichomonas vaginalis cDNAs, encoding proteins with homology to these enzymes from other eukaryotes, were isolated. The recombinant T. vaginalis UDP-xylose synthase and UDP-galactose epimerase were expressed in Escherichia coli and tested via high pressure liquid chromatography to demonstrate their enzymatic activities. Thereby, in this first report on enzymes involved in glycoconjugate biosynthesis in this organism, we demonstrate the existence of xylose and galactose synthesising pathways in T. vaginalis.
Collapse
|
32
|
Mariño K, Güther MLS, Wernimont AK, Qiu W, Hui R, Ferguson MAJ. Characterization, localization, essentiality, and high-resolution crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:985-97. [PMID: 21531872 PMCID: PMC3147419 DOI: 10.1128/ec.05025-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/25/2011] [Indexed: 11/20/2022]
Abstract
A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed.
Collapse
Affiliation(s)
- Karina Mariño
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - M. Lucia Sampaio Güther
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Amy K. Wernimont
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 7th Floor, 101 College St., Toronto, Ontario, Canada M5G 1L7
| | - Wei Qiu
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 7th Floor, 101 College St., Toronto, Ontario, Canada M5G 1L7
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 7th Floor, 101 College St., Toronto, Ontario, Canada M5G 1L7
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
33
|
Oppenheimer M, Valenciano AL, Sobrado P. Biosynthesis of galactofuranose in kinetoplastids: novel therapeutic targets for treating leishmaniasis and chagas' disease. Enzyme Res 2011; 2011:415976. [PMID: 21687654 PMCID: PMC3112513 DOI: 10.4061/2011/415976] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/02/2011] [Accepted: 03/14/2011] [Indexed: 12/14/2022] Open
Abstract
Cell surface proteins of parasites play a role in pathogenesis by modulating mammalian cell recognition and cell adhesion during infection. β-Galactofuranose (Galf) is an important component of glycoproteins and glycolipids found on the cell surface of Leishmania spp. and Trypanosoma cruzi. β-Galf-containing glycans have been shown to be important in parasite-cell interaction and protection against oxidative stress. Here, we discuss the role of β-Galf in pathogenesis and recent studies on the Galf-biosynthetic enzymes: UDP-galactose 4′ epimerase (GalE), UDP-galactopyranose mutase (UGM), and UDP-galactofuranosyl transferase (GalfT). The central role in Galf formation, its unique chemical mechanism, and the absence of a homologous enzyme in humans identify UGM as the most attractive drug target in the β-Galf-biosynthetic pathway in protozoan parasites.
Collapse
|
34
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
35
|
Mariño K, Güther MLS, Wernimont AK, Amani M, Hui R, Ferguson MAJ. Identification, subcellular localization, biochemical properties, and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase. Glycobiology 2010; 20:1619-30. [PMID: 20724435 PMCID: PMC3270307 DOI: 10.1093/glycob/cwq115] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/14/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite's survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T. brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4'-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (β-D-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T. brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T. brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme.
Collapse
Affiliation(s)
- Karina Mariño
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria Lucia Sampaio Güther
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Amy K Wernimont
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mernhaz Amani
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 7th Floor, 101 College St, Toronto, Ontario, CanadaM5G 1L7
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 7th Floor, 101 College St, Toronto, Ontario, CanadaM5G 1L7
| | - Michael AJ Ferguson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
36
|
Identification of a novel UDP-sugar pyrophosphorylase with a broad substrate specificity in Trypanosoma cruzi. Biochem J 2010; 429:533-43. [DOI: 10.1042/bj20100238] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The diverse types of glycoconjugates synthesized by trypanosomatid parasites are unique compared with the host cells. These glycans are required for the parasite survival, invasion or evasion of the host immune system. Synthesis of those glycoconjugates requires a constant supply of nucleotide-sugars (NDP-sugars), yet little is known about how these NDP-sugars are made and supplied. In the present paper, we report a functional gene from Trypanosoma cruzi that encodes a nucleotidyltransferase, which is capable of transforming different types of sugar 1-phosphates and NTP into NDP-sugars. In the forward reaction, the enzyme catalyses the formation of UDP-glucose, UDP-galactose, UDP-xylose and UDP-glucuronic acid, from their respective monosaccharide 1-phosphates in the presence of UTP. The enzyme could also convert glucose 1-phosphate and TTP into TDP-glucose, albeit at lower efficiency. The enzyme requires bivalent ions (Mg2+ or Mn2+) for its activity and is highly active between pH 6.5 and pH 8.0, and at 30–42 °C. The apparent Km values for the forward reaction were 177 μM (glucose 1-phosphate) and 28.4 μM (UTP) respectively. The identification of this unusual parasite enzyme with such broad substrate specificities suggests an alternative pathway that might play an essential role for nucleotide-sugar biosynthesis and for the regulation of the NDP-sugar pool in the parasite.
Collapse
|
37
|
Durrant JD, Urbaniak MD, Ferguson MAJ, McCammon JA. Computer-aided identification of Trypanosoma brucei uridine diphosphate galactose 4'-epimerase inhibitors: toward the development of novel therapies for African sleeping sickness. J Med Chem 2010; 53:5025-32. [PMID: 20527952 PMCID: PMC2895357 DOI: 10.1021/jm100456a] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Indexed: 02/06/2023]
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, affects tens of thousands of sub-Saharan Africans. As current therapeutics are inadequate due to toxic side effects, drug resistance, and limited effectiveness, novel therapies are urgently needed. UDP-galactose 4'-epimerase (TbGalE), an enzyme of the Leloir pathway of galactose metabolism, is one promising T. brucei drug target. We here use the relaxed complex scheme, an advanced computer-docking methodology that accounts for full protein flexibility, to identify inhibitors of TbGalE. An initial hit rate of 62% was obtained at 100 microM, ultimately leading to the identification of 14 low-micromolar inhibitors. Thirteen of these inhibitors belong to a distinct series with a conserved binding motif that may prove useful in future drug design and optimization.
Collapse
Affiliation(s)
- Jacob D Durrant
- Biomedical Sciences Program, University of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
38
|
El-Ganiny AM, Sheoran I, Sanders DAR, Kaminskyj SGW. Aspergillus nidulans UDP-glucose-4-epimerase UgeA has multiple roles in wall architecture, hyphal morphogenesis, and asexual development. Fungal Genet Biol 2010; 47:629-35. [PMID: 20211750 DOI: 10.1016/j.fgb.2010.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/28/2010] [Accepted: 03/02/2010] [Indexed: 11/16/2022]
Abstract
Aspergillus nidulans UDP-glucose-4-epimerase UgeA interconverts UDP-glucose and UDP-galactose and participates in galactose metabolism. The sugar moiety of UDP-galactose is predominantly found as galactopyranose (Galp, the six-membered ring form), which is the substrate for UDP-galactopyranose mutase (encoded by ugmA) to generate UDP-galactofuranose (Galf, the five-membered ring form) that is found in fungal walls. In A. fumigatus, Galf residues appear to be important for virulence. The A. nidulans ugeA Delta strain is viable, and has defects including wide, slow growing, highly branched hyphae and reduced conidiation that resemble the ugmA Delta strain. As for the ugmA Delta strain, ugeA Delta colonies had substantially reduced sporulation but normal spore viability. Conidia of the ugeA Delta strain could not form colonies on galactose as a sole carbon source, however they produced short, multinucleate germlings suggesting they ceased to grow from starvation. UgeA purified from an expression plasmid had a relative molecular weight of 40.6 kDa, and showed in vitro UDP-glucose-4-epimerase activity. Transmission electron microscope cross-sections of wildtype, ugeA Delta, and ugmA Delta hyphae showed they had similar cytoplasmic contents but the walls of each strain were different in appearance and thickness. Both deletion strains showed increased substrate adhesion. Localization of UgeA-GFP and UgmA-GFP was cytoplasmic, and was similar on glucose and galactose. Neither gene product had a longitudinal polarized distribution. Localization of a UgmA-mRFP in a strain that resembled the ugmA Delta strain was cytoplasmic and lacked a longitudinal polarized distribution. The roles of UgeA in A. nidulans growth and morphogenesis are consistent with the importance of Galf, and are related but not identical to the roles of UgmA.
Collapse
Affiliation(s)
- Amira M El-Ganiny
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon SK, Canada
| | | | | | | |
Collapse
|
39
|
Damerow S, Lamerz AC, Haselhorst T, Führing J, Zarnovican P, von Itzstein M, Routier FH. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage? J Biol Chem 2009; 285:878-87. [PMID: 19906649 DOI: 10.1074/jbc.m109.067223] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.
Collapse
Affiliation(s)
- Sebastian Damerow
- Department of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Clemmens CS, Morris MT, Lyda TA, Acosta-Serrano A, Morris JC. Trypanosoma brucei AMP-activated kinase subunit homologs influence surface molecule expression. Exp Parasitol 2009; 123:250-7. [PMID: 19647733 PMCID: PMC2774744 DOI: 10.1016/j.exppara.2009.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
The African trypanosome, Trypanosoma brucei, can gauge its environment by sensing nutrient availability. For example, procyclic form (PF) trypanosomes monitor changes in glucose levels to regulate surface molecule expression, which is important for survival in the tsetse fly vector. The molecular connection between glycolysis and surface molecule expression is unknown. Here we partially characterize T. brucei homologs of the beta and gamma subunits of the AMP-activated protein kinase (AMPK), and determine their roles in regulating surface molecule expression. Using flow cytometry and mass spectrometry, we found that TbAMPKbeta or TbAMPKgamma-deficient parasites express both of the major surface molecules, EP- and GPEET-procyclin, with the latter being a form that is expressed when glucose is low such as in the tsetse fly. Last, we have found that the putative scaffold component of the complex, TbAMPKbeta, fractionates with organellar components and colocalizes in part with a glycosomal marker as well as the flagellum of PF parasites.
Collapse
Affiliation(s)
- Clarice S. Clemmens
- Department of Genetics and Biochemistry, Clemson University, Clemson South Carolina 29634
| | - Meredith T. Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson South Carolina 29634
| | - Todd A. Lyda
- Department of Genetics and Biochemistry, Clemson University, Clemson South Carolina 29634
| | - Alvaro Acosta-Serrano
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - James C. Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson South Carolina 29634
| |
Collapse
|
41
|
Güther MLS, Beattie K, Lamont DJ, James J, Prescott AR, Ferguson MAJ. Fate of glycosylphosphatidylinositol (GPI)-less procyclin and characterization of sialylated non-GPI-anchored surface coat molecules of procyclic-form Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:1407-17. [PMID: 19633269 PMCID: PMC2747833 DOI: 10.1128/ec.00178-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 06/29/2009] [Indexed: 11/20/2022]
Abstract
A Trypanosoma brucei TbGPI12 null mutant that is unable to express cell surface procyclins and free glycosylphosphatidylinositols (GPI) revealed that these are not the only surface coat molecules of the procyclic life cycle stage. Here, we show that non-GPI-anchored procyclins are N-glycosylated, accumulate in the lysosome, and appear as proteolytic fragments in the medium. We also show, using lectin agglutination and galactose oxidase-NaB(3)H(4) labeling, that the cell surface of the TbGPI12 null parasites contains glycoconjugates that terminate in sialic acid linked to galactose. Following desialylation, a high-apparent-molecular-weight glycoconjugate fraction was purified by ricin affinity chromatography and gel filtration and shown to contain mannose, galactose, N-acetylglucosamine, and fucose. The latter has not been previously reported in T. brucei glycoproteins. A proteomic analysis of this fraction revealed a mixture of polytopic transmembrane proteins, including P-type ATPase and vacuolar proton-translocating pyrophosphatase. Immunolocalization studies showed that both could be labeled on the surfaces of wild-type and TbGPI12 null cells. Neither galactose oxidase-NaB(3)H(4) labeling of the non-GPI-anchored surface glycoconjugates nor immunogold labeling of the P-type ATPase was affected by the presence of procyclins in the wild-type cells, suggesting that the procyclins do not, by themselves, form a macromolecular barrier.
Collapse
Affiliation(s)
- Maria Lucia Sampaio Güther
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Penha LL, Sant'Anna CB, Mendonça-Previato L, Cunha-e-Silva NL, Previato JO, Lima APCA. Sorting of phosphoglucomutase to glycosomes in Trypanosoma cruzi is mediated by an internal domain. Glycobiology 2009; 19:1462-72. [PMID: 19696235 DOI: 10.1093/glycob/cwp121] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma cruzi relies on highly galactosylated molecules as virulence factors and the enzymes involved in sugar biosynthesis are potential therapeutic targets. The synthesis of UDP-galactose in T. cruzi requires the activity of phosphoglucomutase (PGM), the enzyme that catalyzes the interconversion of glucose-6-phosphate and glucose-1-phosphate. Several enzymes that participate in carbohydrate metabolism in trypanosomes are confined to specialized peroxisome-like organelles called glycosomes. The majority of glycosomal proteins contain peroxisome-targeting signals (PTS) at the COOH- or at the amino-terminus, which drive their transport to glycosomes. We had previously identified the T. cruzi PGM gene (TcPGM) and demonstrated that it encodes a functional enzyme. Here, we show that, in contrast to yeast and mammalian cells, TcPGM resides in glycosomes of the parasite. However, no classical PTS1 or PTS2 motif is present in its sequence. We investigated glycosomal targeting by generating T. cruzi cell lines expressing different domains of TcPGM fused to the green fluorescent protein (GFP). The analysis of the subcellular localization of fusion proteins revealed that an internal targeting signal of TcPGM, residing between amino acid residues 260 and 380, is capable of targeting GFP to glycosomes. These results demonstrate that, in T. cruzi, PGM import into glycosomes is mediated by a novel non-PTS domain that is located internally in the protein.
Collapse
Affiliation(s)
- Luciana L Penha
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Bloco G, Universidade Federal do Rio de Janeiro, 21 944 970, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Izquierdo L, Nakanishi M, Mehlert A, Machray G, Barton GJ, Ferguson MAJ. Identification of a glycosylphosphatidylinositol anchor-modifying beta1-3 N-acetylglucosaminyl transferase in Trypanosoma brucei. Mol Microbiol 2009; 71:478-91. [PMID: 19040631 DOI: 10.1111/j.1365-2958.2008.06542.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanosoma brucei expresses complex glycoproteins throughout its life cycle. A review of its repertoire of glycosidic linkages suggests a minimum of 38 glycosyltransferase activities. Of these, five have been experimentally related to specific genes and a further nine can be associated with candidate genes. The remaining linkages have no obvious candidate glycosyltransferase genes; however, the T. brucei genome contains a family of 21 putative UDP sugar-dependent glycosyltransferases of unknown function. One representative, TbGT8, was used to establish a functional characterization workflow. Bloodstream and procyclic-form TbGT8 null mutants were created and both exhibited normal growth. The major surface glycoprotein of the procyclic form, the procyclin, exhibited a marked reduction in molecular weight due to changes in the procyclin glycosylphosphatidylinositol (GPI) anchor side-chains. Structural analysis of the mutant procyclin GPI anchors indicated that TbGT8 encodes a UDP-GlcNAc: beta-Gal-GPI beta1-3 GlcNAc transferase. This is only the second GPI-modifying glycosyltransferase to have been identified from any organism. The glycosylation of the major glycoprotein of bloodstream-form T. brucei, the variant surface glycoprotein, was unaffected in the TbGT8 mutant. However, changes in the lectin binding of other glycoproteins suggest that TbGT8 influences the processing of the poly N-acetyllactosamine-containing asparagine-linked glycans of this life cycle stage.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
44
|
Stokes MJ, Güther MLS, Turnock DC, Prescott AR, Martin KL, Alphey MS, Ferguson MAJ. The synthesis of UDP-N-acetylglucosamine is essential for bloodstream form trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation reveals a hierarchy in parasite protein glycosylation. J Biol Chem 2008; 283:16147-61. [PMID: 18381290 PMCID: PMC2414269 DOI: 10.1074/jbc.m709581200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.
Collapse
Affiliation(s)
- Matthew J Stokes
- Division of Biological Chemistry and Drug Discovery, The Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Vertommen D, Van Roy J, Szikora JP, Rider MH, Michels PAM, Opperdoes FR. Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Mol Biochem Parasitol 2007; 158:189-201. [PMID: 18242729 DOI: 10.1016/j.molbiopara.2007.12.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 11/30/2022]
Abstract
Label-free semi-quantitative differential three-dimensional liquid chromatography coupled to mass spectrometry (3D-LC-MS/MS) was used to compare the glycosomal and mitochondrial proteomes of the bloodstream- and insect-form of Trypanosoma brucei. The abundance of glycosomal marker proteins identified in the two life-cycle stages corresponded well with the relative importance of biochemical pathways present in the glycosomes of the two stages and the peptide spectral count ratios of selected enzymes were in good agreement with published data about their enzymatic specific activities. This approach proved extremely useful for the generation of large scale proteomics data for the comparison of different life-cycle stages. Several proteins involved in oxidative stress protection, sugar-nucleotide synthesis, purine salvage, nucleotide-monophosphate formation and purine-nucleotide cycle were identified as glycosomal proteins.
Collapse
Affiliation(s)
- Didier Vertommen
- Hormone Research Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Lopez AB, Sener K, Trosien J, Jarroll EL, van Keulen H. UDP-N-acetylglucosamine 4'-epimerase from the intestinal protozoan Giardia intestinalis lacks UDP-glucose 4'-epimerase activity. J Eukaryot Microbiol 2007; 54:154-60. [PMID: 17403156 DOI: 10.1111/j.1550-7408.2007.00246.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protozoan parasite Giardia intestinalis has a simple life cycle consisting of an intestinal trophozoite stage and an environmentally resistant cyst stage. The cyst is formed when a trophozoite encases itself within an external filamentous covering, the cyst wall, which is crucial to the cyst's survival outside of the host. The filaments in the cyst wall consist mainly of a beta (1-3) polymer of N-acetylgalactosamine. Its precursor, UDP-N-acetylgalactosamine, is synthesized from fructose 6-phosphate by a pathway of five inducible enzymes. The fifth, UDP-N-acetylglucosamine 4'-epimerase, epimerizes UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine reversibly. The epimerase of G. intestinalis lacks UDP-glucose/UDP-galactose 4'-epimerase activity and shows characteristic amino acyl residues to allow binding of only the larger UDP-N-acetylhexosamines. While the Giardia epimerase catalyzes the reversible epimerization of UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine, the reverse reaction apparently is favored. The enzyme has a higher Vmax and a smaller Km in this direction. Therefore, an excess of UDP-N-acetylglucosamine is required to drive the reaction towards the synthesis of UDP-N-acetylgalactosamine, when it is needed for cyst wall formation. This forms the ultimate regulatory step in cyst wall biosynthesis.
Collapse
Affiliation(s)
- Alex B Lopez
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | |
Collapse
|
47
|
Turnock DC, Izquierdo L, Ferguson MAJ. The de novo synthesis of GDP-fucose is essential for flagellar adhesion and cell growth in Trypanosoma brucei. J Biol Chem 2007; 282:28853-28863. [PMID: 17640865 DOI: 10.1074/jbc.m704742200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes human African sleeping sickness in sub-Saharan Africa. The parasite makes several essential glycoproteins, which has led to the investigation of the sugar nucleotides and glycosyltransferases required to synthesize these structures. Fucose is a common sugar in glycoconjugates from many organisms; however, the sugar nucleotide donor GDP-fucose was only recently detected in T. brucei, and the importance of fucose metabolism in this organism is not known. In this paper, we identified the genes encoding functional GDP-fucose biosynthesis enzymes in T. brucei and created conditional null mutants of TbGMD, the gene encoding the first enzyme in the pathway from GDP-mannose to GDP-fucose, in both bloodstream form and procyclic form parasites. Under nonpermissive conditions, both life cycle forms of the parasite became depleted in GDP-fucose and suffered growth arrest, demonstrating that fucose metabolism is essential to both life cycle stages. In procyclic form parasites, flagellar detachment from the cell body was also observed under nonpermissive conditions, suggesting that fucose plays a significant role in flagellar adhesion. Fluorescence microscopy of epitope-tagged TbGMD revealed that this enzyme is localized in glycosomes, despite the absence of PTS-1 or PTS-2 target sequences.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom
| | - Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom.
| |
Collapse
|
48
|
Capul AA, Hickerson S, Barron T, Turco SJ, Beverley SM. Comparisons of mutants lacking the Golgi UDP-galactose or GDP-mannose transporters establish that phosphoglycans are important for promastigote but not amastigote virulence in Leishmania major. Infect Immun 2007; 75:4629-37. [PMID: 17606605 PMCID: PMC1951182 DOI: 10.1128/iai.00735-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abundant surface Leishmania phosphoglycans (PGs) containing [Gal(beta1,4)Man(alpha1-PO(4))]-derived repeating units are important at several points in the infectious cycle of this protozoan parasite. PG synthesis requires transport of activated nucleotide-sugar precursors from the cytoplasm to the Golgi apparatus. Correspondingly, null mutants of the L. major GDP-mannose transporter LPG2 lack PGs and are severely compromised in macrophage survival and induction of acute pathology in susceptible mice, yet they are able to persist indefinitely and induce protective immunity. However, lpg2(-) L. mexicana amastigotes similarly lacking PGs but otherwise normal in known glycoconjugates remain able to induce acute pathology. To explore this further, we tested the infectivity of a new PG-null L. major mutant, which is inactivated in the two UDP-galactose transporter genes LPG5A and LPG5B. Surprisingly this mutant did not recapitulate the phenotype of L. major lpg2(-), instead resembling the L. major lipophosphoglycan-deficient lpg1(-) mutant. Metacyclic lpg5A(-)/lpg5B(-) promastigotes showed strong defects in the initial steps of macrophage infection and survival. However, after a modest delay, the lpg5A(-)/lpg5B(-) mutant induced lesion pathology in infected mice, which thereafter progressed normally. Amastigotes recovered from these lesions were fully infective in mice and in macrophages despite the continued absence of PGs. This suggests that another LPG2-dependent metabolite is responsible for the L. major amastigote virulence defect, although further studies ruled out cytoplasmic mannans. These data thus resolve the distinct phenotypes seen among lpg2(-) Leishmania species by emphasizing the role of glycoconjugates other than PGs in amastigote virulence, while providing further support for the role of PGs in metacyclic promastigote virulence.
Collapse
Affiliation(s)
- Althea A Capul
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
49
|
Turnock DC, Ferguson MAJ. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. EUKARYOTIC CELL 2007; 6:1450-63. [PMID: 17557881 PMCID: PMC1951125 DOI: 10.1128/ec.00175-07] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
50
|
Urbaniak MD, Turnock DC, Ferguson MAJ. Galactose starvation in a bloodstream form Trypanosoma brucei UDP-glucose 4'-epimerase conditional null mutant. EUKARYOTIC CELL 2007; 5:1906-13. [PMID: 17093269 PMCID: PMC1694802 DOI: 10.1128/ec.00156-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galactose metabolism is essential for the survival of Trypanosoma brucei, the etiological agent of African sleeping sickness. T. brucei hexose transporters are unable to transport galactose, which is instead obtained through the epimerization of UDP-glucose to UDP-galactose catalyzed by UDP-glucose 4'-epimerase (galE). Here, we have characterized the phenotype of a bloodstream form T. brucei galE conditional null mutant under nonpermissive conditions that induced galactose starvation. Cellular levels of UDP-galactose dropped rapidly upon induction of galactose starvation, reaching undetectable levels after 72 h. Analysis of extracted glycoproteins by ricin and tomato lectin blotting showed that terminal beta-d-galactose was virtually eliminated and poly-N-acetyllactosamine structures were substantially reduced. Mass spectrometric analysis of variant surface glycoprotein confirmed complete loss of galactose from the glycosylphosphatidylinositol anchor. After 96 h, cell division ceased, and electron microscopy revealed that the cells had adopted a morphologically distinct stumpy-like form, concurrent with the appearance of aberrant vesicles close to the flagellar pocket. These data demonstrate that the UDP-glucose 4'-epimerase is essential for the production of UDP-galactose required for galactosylation of glycoproteins and that galactosylation of one or more glycoproteins, most likely in the lysosomal/endosomal system, is essential for the survival of bloodstream form T. brucei.
Collapse
Affiliation(s)
- Michael D Urbaniak
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|