1
|
Tian L, Xiao J, Zeng Y, Li Y, Wei A, Shen Q, Han Y, Chen Y, Hu Y. Design and synthesis of CDK9/EZH2 dual-target inhibitors to achieve synergistic antitumor effects. Eur J Med Chem 2025; 294:117773. [PMID: 40403644 DOI: 10.1016/j.ejmech.2025.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in regulating transcriptional elongation and has emerged as a promising target in cancer therapy. However, it is reported that CDK9 inhibitors cause abnormal upregulation of H3K27me3 in Diffuse Large B-cell Lymphoma (DLBCL) cell lines. Here, we designed a series of dual inhibitors targeting CDK9 and EZH2 by linking two distinct pharmacophores to achieve synergistic antitumor effects. Among these, the potent CDK9/EZH2 inhibitor D16 exhibited impressive inhibitory activities, with IC50 values of 83.9 nM for CDK9 and 108.6 nM for EZH2. Notably, compound D16 induced more significant DNA damage and exhibited greater inhibition of DLBCL proliferation than the single-target inhibitor SNS-032 or C24. In addition, D16 showed potent anti-proliferative activities in various solid tumor cell lines, which may provide an innovative strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Lina Tian
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Jian Xiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Yanping Zeng
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, 1 Xiangshanzhi Road, Hangzhou, 310024, China
| | - Yangsha Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Aihuan Wei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yixue Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yi Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China.
| | - Youhong Hu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, 1 Xiangshanzhi Road, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2025; 32:37-55. [PMID: 37620540 PMCID: PMC11742659 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
4
|
Wang J, Fendler NL, Shukla A, Wu SY, Challa A, Lee J, Joachimiak LA, Minna JD, Chiang CM, Vos SM, D'Orso I. ARF alters PAF1 complex integrity to selectively repress oncogenic transcription programs upon p53 loss. Mol Cell 2024; 84:4538-4557.e12. [PMID: 39532099 PMCID: PMC12001331 DOI: 10.1016/j.molcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The polymerase associated factor 1 (PAF1) complex (PAF1c) promotes RNA polymerase II (RNA Pol II) transcription at the elongation step; however, how PAF1c transcription activity is selectively regulated during cell fate transitions remains poorly understood. Here, we reveal that the alternative reading frame (ARF) tumor suppressor operates at two levels to restrain PAF1c-dependent oncogenic transcriptional programs upon p53 loss in mouse cells. First, ARF assembles into homo-oligomers to bind the PAF1 subunit to promote PAF1c disassembly, consequently dampening PAF1c interaction with RNA Pol II and PAF1c-dependent transcription. Second, ARF targets the RUNX family transcription factor 1 (RUNX1) to selectively tune gene transcription. Consistently, ARF loss triggers RUNX1- and PAF1c-dependent transcriptional activation of pro-growth ligands (growth differentiation factor/bone morphogenetic protein [GDF/BMP]), promoting a cell-intrinsic GDF/BMP-Smad1/5 axis that aberrantly induce cell growth. Notably, pharmacologic inactivation of GDF/BMP signaling and genetic perturbation of RUNX1 significantly attenuate cell proliferation mediated by dual p53 and ARF loss, offering therapeutic utility. Our data underscore the significance of selective ARF-mediated tumor-suppressive functions through a universal transcriptional regulator.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikole L Fendler
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukasz A Joachimiak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Chivu AG, Basso BA, Abuhashem A, Leger MM, Barshad G, Rice EJ, Vill AC, Wong W, Chou SP, Chovatiya G, Brady R, Smith JJ, Wikramanayake AH, Arenas-Mena C, Brito IL, Ruiz-Trillo I, Hadjantonakis AK, Lis JT, Lewis JJ, Danko CG. Evolution of promoter-proximal pausing enabled a new layer of transcription control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.19.529146. [PMID: 39416036 PMCID: PMC11482795 DOI: 10.1101/2023.02.19.529146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. Unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites that transitioned to a longer-lived, focused pause in metazoans. This event coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF in mammals shifted the promoter-proximal buildup of Pol II from the pause site into the early gene body and compromised transcriptional activation for a set of heat shock genes. Our work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.
Collapse
Affiliation(s)
- Alexandra G. Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Brent A. Basso
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward J. Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Albert C. Vill
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gopal Chovatiya
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Brady
- Department of Biology, Ithaca College, Ithaca NY 14850, USA
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | | | - César Arenas-Mena
- Department of Biology at the College of Staten Island and PhD Programs in Biology and Biochemistry at The Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain., Barcelona, 08003, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - John T. Lis
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - James J. Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Genetics and Biochemistry, Clemson University, 105 Collings St, Clemson, SC 29634
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 PMCID: PMC11629774 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman Sarott
- Department of Chemical and Systems Biology, Stanford University
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University
| | - Basel Karim
- Department of Chemistry, Stanford University
| | | | - Haopeng Yang
- Department of Lymphoma-Myeloma, MD Anderson Cancer Center
| | | | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Gerald R. Crabtree
- Department of Pathology, Stanford University
- Department Developmental Biology, Stanford University
| | | |
Collapse
|
7
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
8
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Amir N, Taube R. Role of long noncoding RNA in regulating HIV infection-a comprehensive review. mBio 2024; 15:e0192523. [PMID: 38179937 PMCID: PMC10865847 DOI: 10.1128/mbio.01925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A complete cure against human immunodeficiency virus (HIV) infection remains out of reach, as the virus persists in stable cell reservoirs that are resistant to antiretroviral therapy. The key to eliminating these reservoirs lies in deciphering the processes that govern viral gene expression and latency. However, while we comprehensively understand how host proteins influence HIV gene expression and viral latency, the emerging role of long noncoding RNAs (lncRNAs) in the context of T cell activation, HIV gene expression, and viral latency remain unexplored. This review dives into the evolving significance of lncRNAs and their impact on HIV gene expression and viral latency. We provide an overview of the current knowledge regarding how lncRNAs regulate HIV gene expression, categorizing them as either activators or inhibitors of viral gene expression and infectivity. Furthermore, we offer insights into the potential therapeutic applications of lncRNAs in combatting HIV. A deeper understanding of how lncRNAs modulate HIV gene transcription holds promise for developing novel RNA-based therapies to complement existing treatment strategies to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Noa Amir
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| |
Collapse
|
10
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Palumbo RJ, Yang Y, Feigon J, Hanes SD. Catalytic activity of the Bin3/MePCE methyltransferase domain is dispensable for 7SK snRNP function in Drosophila melanogaster. Genetics 2024; 226:iyad203. [PMID: 37982586 PMCID: PMC10763541 DOI: 10.1093/genetics/iyad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Methylphosphate Capping Enzyme (MePCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MePCE in vitro, little is known about its functions in vivo, or what roles-if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MePCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MePCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MePCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.
Collapse
Affiliation(s)
- Ryan J Palumbo
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Steven D Hanes
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
12
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Guan Q, Chen Z, Yu F, Liu L, Huang Y, Wei G, Chiang CM, Wong J, Li J. MYC promotes global transcription in part by controlling P-TEFb complex formation via DNA-binding independent inhibition of CDK9 SUMOylation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2167-2184. [PMID: 37115490 PMCID: PMC10524883 DOI: 10.1007/s11427-022-2281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 04/29/2023]
Abstract
MYC is an oncogenic transcription factor with a novel role in enhancing global transcription when overexpressed. However, how MYC promotes global transcription remains controversial. Here, we used a series of MYC mutants to dissect the molecular basis for MYC-driven global transcription. We found that MYC mutants deficient in DNA binding or known transcriptional activation activities can still promote global transcription and enhance serine 2 phosphorylation (Ser2P) of the RNA polymerase (Pol) II C-terminal domain (CTD), a hallmark of active elongating RNA Pol II. Two distinct regions within MYC can promote global transcription and Ser2P of Pol II CTD. The ability of various MYC mutants to promote global transcription and Ser2P correlates with their ability to suppress CDK9 SUMOylation and enhance positive transcription elongation factor b (P-TEFb) complex formation. We showed that MYC suppresses CDK9 SUMOylation by inhibiting the interaction between CDK9 and SUMO enzymes including UBC9 and PIAS1. Furthermore, MYC's activity in enhancing global transcription positively contributes to its activity in promoting cell proliferation and transformation. Together, our study demonstrates that MYC promotes global transcription, at least in part, by promoting the formation of the active P-TEFb complex via a sequence-specific DNA-binding activity-independent manner.
Collapse
Affiliation(s)
- Qingqing Guan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Lingling Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L, Shilatifard A. Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. Mol Cell 2023; 83:2896-2910.e4. [PMID: 37442129 PMCID: PMC10527981 DOI: 10.1016/j.molcel.2023.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Palumbo RJ, Hanes SD. Catalytic activity of the Bin3/MEPCE methyltransferase domain is dispensable for 7SK snRNP function in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543302. [PMID: 37333392 PMCID: PMC10274667 DOI: 10.1101/2023.06.01.543302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Methylphosphate Capping Enzyme (MEPCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MEPCE in vitro, little is known about its functions in vivo, or what roles- if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MEPCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MEPCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MEPCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.
Collapse
Affiliation(s)
- Ryan J Palumbo
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University 750 East Adams Street, 4283 Weiskotten Hall, Syracuse, New York, 13210
| | - Steven D Hanes
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University 750 East Adams Street, 4283 Weiskotten Hall, Syracuse, New York, 13210
| |
Collapse
|
16
|
Liu R. Brd4-dependent CDK9 expression induction upon sustained pharmacological inhibition of P-TEFb kinase activity. Biochem Biophys Res Commun 2023; 671:75-79. [PMID: 37295357 DOI: 10.1016/j.bbrc.2023.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
CDK9 is the kinase subunit of P-TEFb (positive transcription elongation factor b), which is crucial for effective transcriptional elongation. The activity of P-TEFb is well maintained, mainly through dynamic association with several larger protein complexes. Here, we show that CDK9 expression is induced upon inhibition of P-TEFb activity, a process dependent on Brd4 as later revealed. Brd4 inhibition synergizes with CDK9 inhibitor to suppress P-TEFb activity and tumor cell growth. Our study suggests that combined inhibition of Brd4 and CDK9 can be evaluated as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Rongdiao Liu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
17
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
18
|
Mbonye U, Kizito F, Karn J. New insights into transcription elongation control of HIV-1 latency and rebound. Trends Immunol 2023; 44:60-71. [PMID: 36503686 PMCID: PMC11932764 DOI: 10.1016/j.it.2022.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Antiretroviral therapy reduces circulating HIV-1 to undetectable amounts but does not eliminate the virus due to the persistence of a stable reservoir of latently infected cells. The reservoir is maintained both by proliferation of latently infected cells and by reseeding from reactivated cells. A major challenge for the field is to find safe and effective methods to eliminate this source of rebounding HIV-1. Studies on the molecular mechanisms leading to HIV-1 latency and reactivation are being transformed using latency models in primary and patient CD4+ T cells. These studies have revealed the central role played by the biogenesis of the transcription elongation factor P-TEFb (Positive Transcription Elongation Factor b) and its recruitment to proviral HIV-1, for the maintenance of viral latency and the control of viral reactivation.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Fredrick Kizito
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
Pham VV, Gao M, Meagher JL, Smith JL, D'Souza VM. A structure-based mechanism for displacement of the HEXIM adapter from 7SK small nuclear RNA. Commun Biol 2022; 5:819. [PMID: 35970937 PMCID: PMC9378691 DOI: 10.1038/s42003-022-03734-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Productive transcriptional elongation of many cellular and viral mRNAs requires transcriptional factors to extract pTEFb from the 7SK snRNP by modulating the association between HEXIM and 7SK snRNA. In HIV-1, Tat binds to 7SK by displacing HEXIM. However, without the structure of the 7SK-HEXIM complex, the constraints that must be overcome for displacement remain unknown. Furthermore, while structure details of the TatNL4-3-7SK complex have been elucidated, it is unclear how subtypes with more HEXIM-like Tat sequences accomplish displacement. Here we report the structures of HEXIM, TatG, and TatFin arginine rich motifs in complex with the apical stemloop-1 of 7SK. While most interactions between 7SK with HEXIM and Tat are similar, critical differences exist that guide function. First, the conformational plasticity of 7SK enables the formation of three different base pair configurations at a critical remodeling site, which allows for the modulation required for HEXIM binding and its subsequent displacement by Tat. Furthermore, the specific sequence variations observed in various Tat subtypes all converge on remodeling 7SK at this region. Second, we show that HEXIM primes its own displacement by causing specific local destabilization upon binding - a feature that is then exploited by Tat to bind 7SK more efficiently.
Collapse
Affiliation(s)
- Vincent V Pham
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Michael Gao
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
20
|
Fang Y, Wang Y, Spector BM, Xiao X, Yang C, Li P, Yuan Y, Ding P, Xiao ZX, Zhang P, Qiu T, Zhu X, Price DH, Li Q. Dynamic regulation of P-TEFb by 7SK snRNP is integral to the DNA damage response to regulate chemotherapy sensitivity. iScience 2022; 25:104844. [PMID: 36034227 PMCID: PMC9399290 DOI: 10.1016/j.isci.2022.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Testicular germ cell tumors and closely related embryonal stem cells are exquisitely sensitive to cisplatin, a feature thought to be linked to their pluripotent state and p53 status. It remains unclear whether and how cellular state is coordinated with p53 to confer cisplatin sensitivity. Here, we report that positive transcription elongation factor b (P-TEFb) determines cell fate upon DNA damage. We find that cisplatin rapidly activates P-TEFb by releasing it from inhibitory 7SK small nuclear ribonucleoprotein complex. P-TEFb directly phosphorylates pluripotency factor estrogen-related receptor beta (ESRRB), and induces its proteasomal degradation to enhance pro-survival glycolysis. On the other hand, P-TEFb is required for the transcription of a substantial portion of p53 target genes, triggering cell death during prolonged cisplatin treatment. These results reveal previously underappreciated roles of P-TEFb to coordinate the DNA damage response. We discuss the implications for using P-TEFb inhibitors to treat cancer and ameliorate cisplatin-induced ototoxicity. P-TEFb regulates pro-survival and pro-death pathways during DNA damage response P-TEFb promotes ESRRB proteasomal degradation to enhance pro-survival glycolysis P-TEFb induces a substantial portion of p53 target genes to trigger cell death Chemical inhibitors of P-TEFb blocks cisplatin- or UV-induced cell death
Collapse
Affiliation(s)
- Yin Fang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | | | - Xue Xiao
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Chao Yang
- Division of Bioinformatics, Sichuan Cunde Therapeutics, Chengdu 610093, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Ping Li
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yuan Yuan
- Division of Bioinformatics, Sichuan Cunde Therapeutics, Chengdu 610093, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Ping Ding
- Division of Bioinformatics, Sichuan Cunde Therapeutics, Chengdu 610093, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Peixuan Zhang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Zhu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Corresponding author
| | - David H. Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
- Corresponding author
| | - Qintong Li
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
- Corresponding author
| |
Collapse
|
21
|
Liu Y, Li L, Timani K, White C, He JJ. Tip110 Expression Facilitates the Release of HEXIM1 and pTEFb from the 7SK Ribonucleoprotein Complex Involving Regulation of the Intracellular Redox Level. Aging Dis 2021; 12:2113-2124. [PMID: 34881089 PMCID: PMC8612609 DOI: 10.14336/ad.2021.0528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Tat-interacting protein of 110 kDa (Tip110; p110nrb/SART3) has been identified to be important for HIV gene transcription and several host gene expression. In this study, we showed that Tip110 was present in the 7SK snRNP through direct binding to MEPCE, a component of the 7SK snRNP complex. In addition, we found a positive association between Tip110 expression, change of HEXIM1 from dimer/oligomer to monomer, and release of HEXIM1 and P-TEFb from the 7SK snRNP complex. A similar association was also noted specifically in nuclear matrix as well as in chromatin where the free HEXIM1 and 7SK snRNP-bound HEXIM1 are located. Moreover, we demonstrated that Tip110 expression was linked to the glutathione metabolic pathway and the intracellular redox level, which in turn regulated HEXIM1 dimerization/oligomerization. Lastly, we performed the FRET microscopic analysis and confirmed the direct relationship between Tip110 expression and HEXIM1 dimerization/oligomerization in vivo. Taken together, these results identified a new mechanism governing HEXIM1 dimerization/oligomerization and the release of HEXIM1 and P-TEFb from the 7SK snRNP complex. These results also yield new insights to the roles of Tip110 in HIV gene transcription and replication.
Collapse
Affiliation(s)
- Ying Liu
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Lu Li
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Khalid Timani
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Carl White
- 2Center for Cancer Cell Biology, Immunology and Infection, and.,3Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Johnny J He
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| |
Collapse
|
22
|
Isa NF, Bensaude O, Aziz NC, Murphy S. HSV-1 ICP22 Is a Selective Viral Repressor of Cellular RNA Polymerase II-Mediated Transcription Elongation. Vaccines (Basel) 2021; 9:1054. [PMID: 34696162 PMCID: PMC8539892 DOI: 10.3390/vaccines9101054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
The Herpes Simplex Virus (HSV-1) immediate-early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint of a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells. Our findings indicate that ICP22 interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16, has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.
Collapse
Affiliation(s)
- Nur Firdaus Isa
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Research Unit for Bioinformatics and Computational Biology, Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Olivier Bensaude
- Ecole Normale Supérieure, Institut de Biologie de l’Ecole Normale Supérieure, PSL Research University, CNRS UMR 8197, INSERM U 1024, F-75005 Paris, France;
| | - Nadiah C. Aziz
- Research Unit for Bioinformatics and Computational Biology, Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
23
|
Chen R, Zhang Y, Chen P, Pang Y, Li H, Chen Z, Zhang X, Zhang H, Li W. [7SK truncation at 128-179 nt suppresses embryonic stem cell proliferation in vitro by downregulating CDC6]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1125-1130. [PMID: 34549701 DOI: 10.12122/j.issn.1673-4254.2021.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of small nuclear noncoding RNA 7SK in embryonic stem cell (ESCs) proliferation and the value of 7SK as a target for early diagnosis and treatment for primordial dwarfism (PD). METHODS ESC line R1 was transfected with the CRISPR/Cas9 system, and sequencing of the PCR product and glycerol gradient analysis were performed to identify novel 7SK deletion mutations. A lentivirus system was used to knock down cyclin-dependent kinase 9 (CDK9) in clones with 7SK deletion mutations, and the effect of CDK9 knockdown on the protein level of cell division cycle 6 (CDC6) was analyzed with Western blotting. RESULTS We identified a novel deletion mutation of 7SK at 128-179 nt in the ESCs, which resulted in deficiency of cell proliferation. 7SK truncation at 128-179 nt significantly reduced the protein expressions of La-related protein 7 (LARP7) and CDC6. CONCLUSIONS 7SK truncation at 128-179 nt can significantly impair proliferation of ESCs by downregulating CDC6. 7SK is a key regulator of proliferation and mediates the growth of ESCs through a mechanism dependent on CDK9 activity, suggesting the value of 7SK truncation at 128-179 nt as a potential target for early diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Rui Chen
- First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Yurong Zhang
- First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Peng Chen
- Institute of Basic Medical Science, Xi'an Medical University, Xi'an 710021, China
| | - Yixin Pang
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hongbao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Ziwei Chen
- School of Clinical Medicine, Xi'an MedicalUniversity, Xi'an710021, China
| | - Xiaoyong Zhang
- First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Hongyi Zhang
- First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Wujun Li
- First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| |
Collapse
|
24
|
Yamayoshi A, Fukumoto H, Hayashi R, Kishimoto K, Kobori A, Koyanagi Y, Komano JA, Murakami A. Development of 7SK snRNA Mimics That Inhibit HIV Transcription. ChemMedChem 2021; 16:3181-3184. [PMID: 34233081 DOI: 10.1002/cmdc.202100422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/11/2022]
Abstract
The 332-nucleotide small nuclear RNA (snRNA) 7SK is a highly conserved non-coding RNA that regulates transcriptional elongation. By binding with positive transcriptional elongation factor b (P-TEFb) via HEXIM1, 7SK snRNA decreases the kinase activity of P-TEFb and inhibits transcriptional elongation. Additionally, it is reported that 7SK inhibition results in the stimulation of human immunodeficiency virus (HIV)-specific transcription. These reports suggest that 7SK is a naturally occurring functional molecule as negative regulator of P-TEFb and HIV transcription. In this study, we developed functional oligonucleotides that mimic the function of 7SK (7SK mimics) as novel inhibitors of HIV replication. We defined the essential region of 7SK regarding its suppressive effects on transcriptional downregulation using an antisense strategy. Based on the results, we designed 7SK mimics containing the defined region. The inhibitory effects of 7SK mimics on HIV-1 long terminal repeat promoter specific transcription was drastic compared with those of the control mimic molecule. Notably, these effects were found to be more enhanced by co-transfection with Tat-expressing plasmids. From these results, it is indicated that 7SK mimics may have great therapeutic potential for HIV/AIDS treatment.
Collapse
Affiliation(s)
- Asako Yamayoshi
- Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi Nagasaki-shi, Nagasaki, 852-8521, Japan
| | - Hiroyuki Fukumoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Rie Hayashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Kyosuke Kishimoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-kawaramachi 53 Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun A Komano
- Department of Microbiology and Infection Control, Faculty and Graduate School of Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1041, (Japan)
| | - Akira Murakami
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| |
Collapse
|
25
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
26
|
Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, Qian J, Hu X, Cai Y, Chattipakorn N, Huang W, Liang G. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY) 2021; 13:14892-14909. [PMID: 34102609 PMCID: PMC8221363 DOI: 10.18632/aging.202998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have demonstrated a key role of vascular smooth muscle cell (VSMC) dysfunction in atherosclerosis. Cyclin-dependent kinases 9 (CDK9), a potential biomarker of atherosclerosis, was significantly increased in coronary artery disease patient serum and played an important role in inflammatory diseases. This study was to explore the pharmacological role of CDK9 inhibition in attenuating atherosclerosis. METHODS A small-molecule CDK9 inhibitor, LDC000067, was utilized to treat the high fat diet (HFD)-fed ApoE-/- mice and human VSMCs. RESULTS The results showed that inflammation and phenotypic switching of VSMCs were observed in HFD-induced atherosclerosis in ApoE-/- mice, which were accompanied with increased CDK9 in the serum and atherosclerotic lesions where it colocalized with VSMCs. LDC000067 treatment significantly suppressed HFD-induced inflammation, proliferation and phenotypic switching of VSMCs, resulting in reduced atherosclerosis in the ApoE-/- mice, while had no effect on plasma lipids. Further in vitro studies confirmed that LDC000067 and siRNA-mediated CDK9 knockdown reversed ox-LDL-induced inflammation and phenotypic switching of VSMCs from a contractile phenotype to a synthetic phenotype via inhibiting NF-κB signaling pathway in human VSMCs. CONCLUSION These results indicate that inhibition of CDK9 may be a novel therapeutic target for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Shushi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qirui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Daona Yang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Jinfu Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang Hu
- Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yan Cai
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
27
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
28
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
29
|
Hsu E, Zemke NR, Berk AJ. Promoter-specific changes in initiation, elongation, and homeostasis of histone H3 acetylation during CBP/p300 inhibition. eLife 2021; 10:63512. [PMID: 33704060 PMCID: PMC8009678 DOI: 10.7554/elife.63512] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA polymerase II (Pol2) elongation in the promoter-proximal region is an important and ubiquitous control point for gene expression in metazoans. We report that transcription of the adenovirus 5 E4 region is regulated during the release of paused Pol2 into productive elongation by recruitment of the super-elongation complex, dependent on promoter H3K18/27 acetylation by CBP/p300. We also establish that this is a general transcriptional regulatory mechanism that applies to ~7% of expressed protein-coding genes in primary human airway epithelial cells. We observed that a homeostatic mechanism maintains promoter, but not enhancer, H3K18/27ac in response to extensive inhibition of CBP/p300 acetyl transferase activity by the highly specific small molecule inhibitor A-485. Further, our results suggest a function for BRD4 association at enhancers in regulating paused Pol2 release at nearby promoters. Taken together, our results uncover the processes regulating transcriptional elongation by promoter region histone H3 acetylation and homeostatic maintenance of promoter, but not enhancer, H3K18/27ac in response to inhibition of CBP/p300 acetyl transferase activity.
Collapse
Affiliation(s)
- Emily Hsu
- Molecular Biology Institute, UCLA, Los Angeles, United States
| | - Nathan R Zemke
- Molecular Biology Institute, UCLA, Los Angeles, United States
| | - Arnold J Berk
- Molecular Biology Institute, UCLA, Los Angeles, United States.,Department of Microbiology, UCLA, Los Angeles, United States
| |
Collapse
|
30
|
Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci 2021; 78:1487-1499. [PMID: 33063126 PMCID: PMC7904556 DOI: 10.1007/s00018-020-03675-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological conditions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since firstly discovered as component of the largest known ribonucleoprotein complexes called "vault". Although they have been initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.
Collapse
Affiliation(s)
- Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
31
|
Cassandri M, Fioravanti R, Pomella S, Valente S, Rotili D, Del Baldo G, De Angelis B, Rota R, Mai A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front Pharmacol 2020; 11:1230. [PMID: 32903585 PMCID: PMC7438590 DOI: 10.3389/fphar.2020.01230] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-Dependent Kinases (CDKs) are well-known reliable targets for cancer treatment being often deregulated. Among them, since the transcription-associated CDK9 represents the sentry of cell transcriptional homeostasis, it can be a valuable target for managing cancers in which the transcriptional machinery is dysregulated by tumor-driver oncogenes. Here we give an overview of some natural compounds identified as CDK inhibitors with reported activity also against CDK9, that were taken as a model for the development of highly active synthetic anti-CDK9 agents. After, we summarize the data on CDK9 inhibition in a group of rare pediatric solid tumors such as rhabdomyosarcoma, Ewing’s sarcoma, synovial sarcoma and malignant rhabdoid tumors (soft tissue sarcomas), highlighting the more recent results in this field. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
34
|
Mori L, Valente ST. Key Players in HIV-1 Transcriptional Regulation: Targets for a Functional Cure. Viruses 2020; 12:E529. [PMID: 32403278 PMCID: PMC7291152 DOI: 10.3390/v12050529] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation. Latency is also influenced by the availability of host transcription factors, integration site, and the surrounding chromatin environment. The latent reservoir is established in the first few days of infection and serves as the source of viral rebound upon treatment interruption. Despite effective suppression of HIV-1 replication by antiretroviral therapy (ART), to below the detection limit, ART is ineffective at reducing the latent reservoir size. Elimination of this reservoir has become a major goal of the HIV-1 cure field. However, aside from the ideal total HIV-1 eradication from the host genome, an HIV-1 remission or functional cure is probably more realistic. The "block-and-lock" approach aims at the transcriptional silencing of the viral reservoir, to render suppressed HIV-1 promoters extremely difficult to reactivate from latency. There are unfortunately no clinically available HIV-1 specific transcriptional inhibitors. Understanding the mechanisms that regulate latency is expected to provide novel targets to be explored in cure approaches.
Collapse
Affiliation(s)
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA;
| |
Collapse
|
35
|
Multivalent Role of Human TFIID in Recruiting Elongation Components at the Promoter-Proximal Region for Transcriptional Control. Cell Rep 2020; 26:1303-1317.e7. [PMID: 30699356 DOI: 10.1016/j.celrep.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 01/08/2023] Open
Abstract
Despite substantial progress in our understanding of the players involved and the regulatory mechanisms controlling the initiation and elongation steps of transcription, little is known about the recruitment of elongation factors at promoter-proximal regions for the initiation-to-elongation transition. Here, we show evidence that human TFIID, which initiates pre-initiation complex (PIC) assembly, contributes to regulating the recruitment of super-elongation complex (SEC) components at the promoter-proximal region through interactions among selective TAF and SEC components. In vitro direct interactions, coupled with cell-based assays, identified an important poly-Ser domain within SEC components that are involved in their interaction with TFIID. DNA template-based recruitment assays, using purified components, further show a direct role for poly-Ser domain-dependent TFIID interaction in recruiting SEC components on target DNA. Consistently, ChIP and RNA analyses have shown the importance of this mechanism in TFIID-dependent SEC recruitment and target gene expression within mammalian cells.
Collapse
|
36
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
37
|
Wang Y, Qiu T. Positive transcription elongation factor b and its regulators in development. ALL LIFE 2020. [DOI: 10.1080/21553769.2019.1663277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
38
|
Furlan A, Gonzalez-Pisfil M, Leray A, Champelovier D, Henry M, Le Nézet C, Bensaude O, Lefranc M, Wohland T, Vandenbunder B, Bidaux G, Héliot L. HEXIM1 Diffusion in the Nucleus Is Regulated by Its Interactions with Both 7SK and P-TEFb. Biophys J 2019; 117:1615-1625. [PMID: 31590891 PMCID: PMC6838758 DOI: 10.1016/j.bpj.2019.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022] Open
Abstract
How nuclear proteins diffuse and find their targets remains a key question in the transcription field. Dynamic proteins in the nucleus are classically subdiffusive and undergo anomalous diffusion, yet the underlying physical mechanisms are still debated. In this study, we explore the contribution of interactions to the generation of anomalous diffusion by the means of fluorescence spectroscopy and simulation. Using interaction-deficient mutants, our study indicates that HEXIM1 interactions with both 7SK RNA and positive transcription elongation factor b are critical for HEXIM1 subdiffusion and thus provides evidence of the effects of protein-RNA interaction on molecular diffusion. Numerical simulations allowed us to establish that the proportions of distinct oligomeric HEXIM1 subpopulations define the apparent anomaly parameter of the whole population. Slight changes in the proportions of these oligomers can lead to significant shifts in the diffusive features and recapitulate the modifications observed in cells with the various interaction-deficient mutants. By combining simulations and experiments, our work opens new prospects in which the anomaly α coefficient in diffusion becomes a helpful tool to infer alterations in molecular interactions.
Collapse
Affiliation(s)
- Alessandro Furlan
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France.
| | - Mariano Gonzalez-Pisfil
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Aymeric Leray
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche Comté, Dijon, France
| | - Dorian Champelovier
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Mélanie Henry
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Corentin Le Nézet
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Oliver Bensaude
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Marc Lefranc
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry, Center for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Bernard Vandenbunder
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Gabriel Bidaux
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France; INSERM UMR 1060, CarMeN laboratory, Univ Lyon1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Laurent Héliot
- University of Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France.
| |
Collapse
|
39
|
Didehydro-Cortistatin A Inhibits HIV-1 by Specifically Binding to the Unstructured Basic Region of Tat. mBio 2019; 10:mBio.02662-18. [PMID: 30723126 PMCID: PMC6368365 DOI: 10.1128/mbio.02662-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsically disordered HIV-1 Tat protein binds the viral RNA transactivation response structure (TAR), which recruits transcriptional cofactors, amplifying viral mRNA expression. Limited Tat transactivation correlates with HIV-1 latency. Unfortunately, Tat inhibitors are not clinically available. The small molecule didehydro-cortistatin A (dCA) inhibits Tat, locking HIV-1 in persistent latency, blocking viral rebound. We generated chemical derivatives of dCA that rationalized molecular docking of dCA to an active and specific Tat conformer. These revealed the importance of the cycloheptene ring and the isoquinoline nitrogen's positioning in the interaction with specific residues of Tat's basic domain. These features are distinct from the ones required for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known ligand of dCA. Besides, we demonstrated that dCA activity on HIV-1 transcription is independent of CDK8. The binding of dCA to Tat with nanomolar affinity alters the local protein environment, rendering Tat more resistant to proteolytic digestion. dCA thus locks a transient conformer of Tat, specifically blocking functions dependent of its basic domain, namely the Tat-TAR interaction; while proteins with similar basic patches are unaffected by dCA. Our results improve our knowledge of the mode of action of dCA and support structure-based design strategies targeting Tat, to help advance development of dCA, as well as novel Tat inhibitors.IMPORTANCE Tat activates virus production, and limited Tat transactivation correlates with HIV-1 latency. The Tat inhibitor dCA locks HIV in persistent latency. This drug class enables block-and-lock functional cure approaches, aimed at reducing residual viremia during therapy and limiting viral rebound. dCA may also have additional therapeutic benefits since Tat is also neurotoxic. Unfortunately, Tat inhibitors are not clinically available. We generated chemical derivatives and rationalized binding to an active and specific Tat conformer. dCA features required for Tat inhibition are distinct from features needed for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known target of dCA. Furthermore, knockdown of CDK8 did not impact dCA's activity on HIV-1 transcription. Binding of dCA to Tat's basic domain altered the local protein environment and rendered Tat more resistant to proteolytic digestion. dCA locks a transient conformer of Tat, blocking functions dependent on its basic domain, namely its ability to amplify viral transcription. Our results define dCA's mode of action, support structure-based-design strategies targeting Tat, and provide valuable information for drug development around the dCA pharmacophore.
Collapse
|
40
|
Abstract
The fact that many cancer types display transcriptional addiction driven by dysregulation of oncogenic enhancers and transcription factors has led to increased interest in a group of protein kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic targets. Despite early reservations about targeting a process that is essential to healthy cell types, there is now evidence that targeting tCDKs could provide enough therapeutic window to be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on highly-selective inhibitors and the challenges to be addressed before these inhibitors could be used for therapeutic purposes. Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-, MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymerase II;DRB: 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII: RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-negative breast cancer
Collapse
Affiliation(s)
- Matthew D Galbraith
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Heather Bender
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Joaquín M Espinosa
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,c Department of Molecular, Cellular and Developmental Biology , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
41
|
Abstract
Cyclin-dependent kinase 9 (CDK9) is critical for RNA Polymerase II (Pol II) transcription initiation, elongation, and termination in several key biological processes including development, differentiation, and cell fate responses. A broad range of diseases are characterized by CDK9 malfunction, illustrating its importance in maintaining transcriptional homeostasis in basal- and signal-regulated conditions. Here we provide a historical recount of CDK9 discovery and the current models suggesting CDK9 is a central hub necessary for proper execution of different steps in the transcription cycle. Finally, we discuss the current therapeutic strategies to treat CDK9 malfunction in several disease states. Abbreviations: CDK: Cyclin-dependent kinase; Pol II: RNA Polymerase II; PIC: Pre-initiation Complex; TFIIH: Transcription Factor-II H; snoRNA: small nucleolar RNA; CycT: CyclinT1/T2; P-TEFb: Positive Transcription Elongation Factor Complex; snRNP: small nuclear ribonucleo-protein; HEXIM: Hexamethylene Bis-acetamide-inducible Protein 1/2; LARP7: La-related Protein 7; MePCE: Methylphosphate Capping Enzyme; HIV: human immunodeficiency virus; TAT: trans-activator of transcription; TAR: Trans-activation response element; Hsp70: Heat Shock Protein 70; Hsp90/Cdc37: Hsp90- Hsp90 co-chaperone Cdc37; DSIF: DRB Sensitivity Inducing Factor; NELF: Negative Elongation Factor; CPSF: cleavage and polyadenylation-specific factor; CSTF: cleavage-stimulatory factor; eRNA: enhancer RNA; BRD4: Bromodomain-containing protein 4; JMJD6: Jumonji C-domain-containing protein 6; SEC: Super Elongation Complex; ELL: eleven-nineteen Lys-rich leukemia; ENL: eleven-nineteen leukemia; MLL: mixed lineage leukemia; BEC: BRD4-containing Elongation Complex; SEC-L2/L3: SEC-like complexes; KAP1: Kruppel-associated box-protein 1; KEC: KAP1-7SK Elongation Complex; DRB: Dichloro-1-ß-D-Ribofuranosylbenzimidazole; H2Bub1: H2B mono-ubiquitination; KM: KM05382; PP1: Protein Phosphatase 1; CDK9i: CDK9 inhibitor; SHAPE: Selective 2'-hydroxyl acylation analyzed by primer extension; TE: Typical enhancer; SE : Super enhancer.
Collapse
Affiliation(s)
- Curtis W Bacon
- a Biological Chemistry Graduate Program , The University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Iván D'Orso
- b Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
42
|
Timmons JA, Atherton PJ, Larsson O, Sood S, Blokhin IO, Brogan RJ, Volmar CH, Josse AR, Slentz C, Wahlestedt C, Phillips SM, Phillips BE, Gallagher IJ, Kraus WE. A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Res 2018; 46:7772-7792. [PMID: 29986096 PMCID: PMC6125682 DOI: 10.1093/nar/gky570] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.
Collapse
Affiliation(s)
- James A Timmons
- Division of Genetics and Molecular Medicine, King's College London, London, UK
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | - Ola Larsson
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | - Sanjana Sood
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Robert J Brogan
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | | | - Cris Slentz
- Duke University School of Medicine, Durham, USA
| | - Claes Wahlestedt
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | | | | | - Iain J Gallagher
- Scion House, Stirling University Innovation Park, Stirling, UK
- School of Health Sciences and Sport, University of Stirling, Stirling, UK
| | | |
Collapse
|
43
|
Ghosh K, Tang M, Kumari N, Nandy A, Basu S, Mall DP, Rai K, Biswas D. Positive Regulation of Transcription by Human ZMYND8 through Its Association with P-TEFb Complex. Cell Rep 2018; 24:2141-2154.e6. [PMID: 30134174 PMCID: PMC6152903 DOI: 10.1016/j.celrep.2018.07.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
Although human ZMYND8 has been implicated as a transcriptional co-repressor of multiple targets, global association of ZMYND8 with active genes and enhancer regions predicts otherwise. Here, we report an additional function of ZMYND8 in transcriptional activation through its association with the P-TEFb complex. Biochemical reconstitution analyses show that human ZMYND8, through direct association with CylcinT1, forms a minimal ZMYND8-P-TEFb complex. The importance of ZMYND8 in target gene activation, through P-TEFb complex recruitment, is demonstrated on chromosomally integrated reporter gene as well as native target genes in vivo. Physiologically, we further show that the ZMYND8-P-TEFb complex-mediated transcriptional activation is required for all-trans retinoic acid (ATRA)-mediated differentiation of neuronal precursor cells. Finally, to detail the dual activator and repressor nature, mechanistically we show that, through its putative coiled-coil domain, ZMYND8 forms a homodimer that preferentially associates with the activator P-TEFb complex, whereas the monomer associates with the CHD4 subunit of repressor NuRD complex.
Collapse
Affiliation(s)
- Koushik Ghosh
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 32, India
| | - Ming Tang
- Division of Cancer Medicine, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nidhi Kumari
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 32, India
| | - Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 32, India
| | - Dheerendra Pratap Mall
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 32, India
| | - Kunal Rai
- Division of Cancer Medicine, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
44
|
de Pablo-Maiso L, Doménech A, Echeverría I, Gómez-Arrebola C, de Andrés D, Rosati S, Gómez-Lucia E, Reina R. Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses. Viruses 2018; 10:v10080435. [PMID: 30126090 PMCID: PMC6116218 DOI: 10.3390/v10080435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection. Viral mutations resulting in escape from T-cell or antibody-mediated responses are the basis of the immune failure to control the infection. The innate immune response provides the first line of defense against viral infections in an antigen-independent manner. Antiviral innate responses are conducted by dendritic cells, macrophages, and natural killer cells, often targeted by lentiviruses, and intrinsic antiviral mechanisms exerted by all cells. Intrinsic responses depend on the recognition of the viral pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), and the signaling cascades leading to an antiviral state by inducing the expression of antiviral proteins, including restriction factors. This review describes the latest advances on innate immunity related to the infection by animal lentiviruses, centered on small ruminant lentiviruses (SRLV), equine infectious anemia virus (EIAV), and feline (FIV) and bovine immunodeficiency viruses (BIV), specifically focusing on the antiviral role of the major restriction factors described thus far.
Collapse
MESH Headings
- Animals
- Cats
- Cattle
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Gene Expression Regulation/immunology
- Goats
- Horses
- Immunity, Innate
- Immunodeficiency Virus, Bovine/immunology
- Immunodeficiency Virus, Bovine/pathogenicity
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lentivirus Infections/genetics
- Lentivirus Infections/immunology
- Lentivirus Infections/virology
- Macrophages/immunology
- Macrophages/virology
- Pathogen-Associated Molecular Pattern Molecules/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Sheep
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Ana Doménech
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Irache Echeverría
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Carmen Gómez-Arrebola
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Damián de Andrés
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Sergio Rosati
- Malattie Infettive degli Animali Domestici, Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Torino 10095, Italy.
| | - Esperanza Gómez-Lucia
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Ramsés Reina
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| |
Collapse
|
45
|
Lin X, Ammosova T, Kumari N, Nekhai S. Protein Phosphatase-1 -targeted Small Molecules, Iron Chelators and Curcumin Analogs as HIV-1 Antivirals. Curr Pharm Des 2018; 23:4122-4132. [PMID: 28677499 DOI: 10.2174/1381612823666170704123620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite efficient suppression of HIV-1 replication, current antiviral drugs are not able to eradicate HIV-1 infection. Permanent HIV-1 suppression or complete eradication requires novel biological approaches and therapeutic strategies. Our previous studies showed that HIV-1 transcription is regulated by host cell protein phosphatase-1. We also showed that HIV-1 transcription is sensitive to the reduction of intracellular iron that affects cell cycle-dependent kinase 2. We developed protein phosphatase 1-targeting small molecules that inhibited HIV-1 transcription. We also found an additional class of protein phosphatase-1-targeting molecules that activated HIV-1 transcription and reported HIV-1 inhibitory iron chelators and novel curcumin analogs that inhibit HIV-1. Here, we review HIV-1 transcription and replication with focus on its regulation by protein phosphatase 1 and cell cycle dependent kinase 2 and describe novel small molecules that can serve as future leads for anti-HIV drug development. RESULTS Our review describes in a non-exhaustive manner studies in which HIV-1 transcription and replication are targeted with small molecules. Previously, published studies show that HIV-1 can be inhibited with protein phosphatase-1-targeting and iron chelating compounds and curcumin analogs. These results are significant in light of the current efforts to eradicate HIV-1 through permanent inhibition. Also, HIV-1 activating compounds can be useful for "kick and kill" therapy in which the virus is reactivated prior to its inhibition by the combination antiretroviral therapy. CONCLUSION The studies described in our review point to protein phosphatase-1 as a new drug target, intracellular iron as subject for iron chelation and novel curcumin analogs that can be developed for novel HIV-1 transcription- targeting therapeutics.
Collapse
Affiliation(s)
- Xionghao Lin
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Namita Kumari
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Sergei Nekhai
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| |
Collapse
|
46
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
47
|
Mbonye U, Wang B, Gokulrangan G, Shi W, Yang S, Karn J. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. J Biol Chem 2018; 293:10009-10025. [PMID: 29743242 DOI: 10.1074/jbc.ra117.001347] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/29/2018] [Indexed: 11/06/2022] Open
Abstract
The HIV trans-activator Tat recruits the host transcription elongation factor P-TEFb to stimulate proviral transcription. Phosphorylation of Thr-186 on the activation loop (T-loop) of cyclin-dependent kinase 9 (CDK9) is essential for its kinase activity and assembly of CDK9 and cyclin T1 (CycT1) to form functional P-TEFb. Phosphorylation of a second highly conserved T-loop site, Ser-175, alters the competitive binding of Tat and the host recruitment factor bromodomain containing 4 (BRD4) to P-TEFb. Here, we investigated the intracellular mechanisms that regulate these key phosphorylation events required for HIV transcription. Molecular dynamics simulations revealed that the CDK9/CycT1 interface is stabilized by intramolecular hydrogen bonding of pThr-186 by an arginine triad and Glu-96 of CycT1. Arginine triad substitutions that disrupted CDK9/CycT1 assembly accumulated Thr-186-dephosphorylated CDK9 associated with the cytoplasmic Hsp90/Cdc37 chaperone. The Hsp90/Cdc37/CDK9 complex was also present in resting T cells, which lack CycT1. Hsp90 inhibition in primary T cells blocked P-TEFb assembly, disrupted Thr-186 phosphorylation, and suppressed proviral reactivation. The selective CDK7 inhibitor THZ1 blocked CDK9 phosphorylation at Ser-175, and in vitro kinase assays confirmed that CDK7 activity is principally responsible for Ser-175 phosphorylation. Mutation of Ser-175 to Lys had no effect on CDK9 kinase activity or P-TEFb assembly but strongly suppressed both HIV expression and BRD4 binding. We conclude that the transfer of CDK9 from the Hsp90/Cdc37 complex induced by Thr-186 phosphorylation is a key step in P-TEFb biogenesis. Furthermore, we demonstrate that CDK7-mediated Ser-175 phosphorylation is a downstream nuclear event essential for facilitating CDK9 T-loop interactions with Tat.
Collapse
Affiliation(s)
- Uri Mbonye
- From the Department of Molecular Biology and Microbiology and
| | - Benlian Wang
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Giridharan Gokulrangan
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Wuxian Shi
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Sichun Yang
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jonathan Karn
- From the Department of Molecular Biology and Microbiology and
| |
Collapse
|
48
|
Abstract
Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.
Collapse
Affiliation(s)
- Annemieke A Michels
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| | - Olivier Bensaude
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| |
Collapse
|
49
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Su YT, Chen R, Wang H, Song H, Zhang Q, Chen LY, Lappin H, Vasconcelos G, Lita A, Maric D, Li A, Celiku O, Zhang W, Meetze K, Estok T, Larion M, Abu-Asab M, Zhuang Z, Yang C, Gilbert MR, Wu J. Novel Targeting of Transcription and Metabolism in Glioblastoma. Clin Cancer Res 2017; 24:1124-1137. [PMID: 29254993 DOI: 10.1158/1078-0432.ccr-17-2032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/31/2017] [Accepted: 12/13/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Glioblastoma (GBM) is highly resistant to treatment, largely due to disease heterogeneity and resistance mechanisms. We sought to investigate a promising drug that can inhibit multiple aspects of cancer cell survival mechanisms and become an effective therapeutic for GBM patients.Experimental Design: To investigate TG02, an agent with known penetration of the blood-brain barrier, we examined the effects as single agent and in combination with temozolomide, a commonly used chemotherapy in GBM. We used human GBM cells and a syngeneic mouse orthotopic GBM model, evaluating survival and the pharmacodynamics of TG02. Mechanistic studies included TG02-induced transcriptional regulation, apoptosis, and RNA sequencing in treated GBM cells as well as the investigation of mitochondrial and glycolytic function assays.Results: We demonstrated that TG02 inhibited cell proliferation, induced cell death, and synergized with temozolomide in GBM cells with different genetic background but not in astrocytes. TG02-induced cytotoxicity was blocked by the overexpression of phosphorylated CDK9, suggesting a CDK9-dependent cell killing. TG02 suppressed transcriptional progression of antiapoptotic proteins and induced apoptosis in GBM cells. We further demonstrated that TG02 caused mitochondrial dysfunction and glycolytic suppression and ultimately ATP depletion in GBM. A prolonged survival was observed in GBM mice receiving combined treatment of TG02 and temozolomide. The TG02-induced decrease of CDK9 phosphorylation was confirmed in the brain tumor tissue.Conclusions: TG02 inhibits multiple survival mechanisms and synergistically decreases energy production with temozolomide, representing a promising therapeutic strategy in GBM, currently under investigation in an ongoing clinical trial. Clin Cancer Res; 24(5); 1124-37. ©2017 AACR.
Collapse
Affiliation(s)
- Yu-Ting Su
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Robert Chen
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Qi Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Li-Yuan Chen
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland
| | - Hallie Lappin
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Gabriel Vasconcelos
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Adrian Lita
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Aiguo Li
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Orieta Celiku
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | | | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, NIH, Bethesda, Maryland
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|