1
|
Fitz GN, Tyska MJ. Molecular counting of myosin force generators in growing filopodia. J Biol Chem 2024:107934. [PMID: 39476958 DOI: 10.1016/j.jbc.2024.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024] Open
Abstract
Animal cells build actin-based surface protrusions to enable diverse biological activities, ranging from cell motility to mechanosensation to solute uptake. Long-standing models of protrusion growth suggest that actin filament polymerization provides the primary mechanical force for "pushing" the plasma membrane outward at the distal tip. Expanding on these actin-centric models, our recent studies used a chemically inducible system to establish that plasma membrane-bound myosin motors, which are abundant in protrusions and accumulate at the distal tips, can also power robust filopodial growth. How protrusion resident myosins coordinate with actin polymerization to drive elongation remains unclear, in part because the number of force generators and thus, the scale of their mechanical contributions remain undefined. To address this gap, we leveraged the SunTag system to count membrane-bound myosin motors in actively growing filopodia. Using this approach, we found that the number of myosins is log-normally distributed with a mean of 12.0 ± 2.5 motors [GeoMean ± GeoSD] per filopodium. Together with unitary force values and duty ratio estimates derived from biophysical studies for the motor used in these experiments, we calculate that a distal tip population of myosins could generate a time averaged force of ∼tens of pN to elongate filopodia. This range is comparable to the expected force production of actin polymerization in this system, a point that necessitates revision of popular physical models for protrusion growth.
Collapse
Affiliation(s)
- Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 528 Engineering and Science Building, 2414 Highland Ave, Nashville, TN 37232
| |
Collapse
|
2
|
Fitz GN, Tyska MJ. Molecular counting of myosin force generators in growing filopodia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593924. [PMID: 38798618 PMCID: PMC11118519 DOI: 10.1101/2024.05.14.593924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Animal cells build actin-based surface protrusions to enable biological activities ranging from cell motility to mechanosensation to solute uptake. Long-standing models of protrusion growth suggest that actin filament polymerization provides the primary mechanical force for "pushing" the plasma membrane outward at the distal tip. Expanding on these actin-centric models, our recent studies used a chemically inducible system to establish that plasma membrane-bound myosin motors, which are abundant in protrusions and accumulate at the distal tips, can also power robust filopodial growth. How protrusion resident myosins coordinate with actin polymerization to drive elongation remains unclear, in part because the number of force generators and thus, the scale of their mechanical contributions remain undefined. To address this gap, we leveraged the SunTag system to count membrane-bound myosin motors in actively growing filopodia. Using this approach, we found that the number of myosins is log-normally distributed with a mean of 12.0 ± 2.5 motors [GeoMean ± GeoSD] per filopodium. Together with unitary force values and duty ratio estimates derived from biophysical studies for the motor used in these experiments, we calculate that a distal tip population of myosins could generate a time averaged force of ∼tens of pN to elongate filopodia. This range is comparable to the expected force production of actin polymerization in this system, a point that necessitates revision of popular physical models for protrusion growth. SIGNIFICANCE STATEMENT This study describes the results of in-cell molecular counting experiments to define the number of myosin motors that are mechanically active in growing filopodia. This data should be used to constrain future physical models of the formation of actin-based protrusions.
Collapse
|
3
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Cirilo JA, Liao X, Perrin BJ, Yengo CM. The dynamics of actin protrusions can be controlled by tip-localized myosin motors. J Biol Chem 2024; 300:105516. [PMID: 38042485 PMCID: PMC10801316 DOI: 10.1016/j.jbc.2023.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Xiayi Liao
- Department of Biology, Indiana University - Purdue University, Indianapolis, Indiana, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University - Purdue University, Indianapolis, Indiana, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
5
|
Fitz GN, Weck ML, Bodnya C, Perkins OL, Tyska MJ. Protrusion growth driven by myosin-generated force. Dev Cell 2023; 58:18-33.e6. [PMID: 36626869 PMCID: PMC9940483 DOI: 10.1016/j.devcel.2022.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Actin-based protrusions extend from the surface of all eukaryotic cells, where they support diverse activities essential for life. Models of protrusion growth hypothesize that actin filament assembly exerts force for pushing the plasma membrane outward. However, membrane-associated myosin motors are also abundant in protrusions, although their potential for contributing, growth-promoting force remains unexplored. Using an inducible system that docks myosin motor domains to membrane-binding modules with temporal control, we found that application of myosin-generated force to the membrane is sufficient for driving robust protrusion elongation in human, mouse, and pig cell culture models. Protrusion growth scaled with motor accumulation, required barbed-end-directed force, and was independent of cargo delivery or recruitment of canonical elongation factors. Application of growth-promoting force was also supported by structurally distinct myosin motors and membrane-binding modules. Thus, myosin-generated force can drive protrusion growth, and this mechanism is likely active in diverse biological contexts.
Collapse
Affiliation(s)
- Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Caroline Bodnya
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Olivia L Perkins
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Liu C, Hao J, Yao LL, Wei M, Chen W, Yang Q, Li XD. Insect Sf9 cells are suitable for functional expression of insect, but not vertebrate, striated muscle myosin. Biochem Biophys Res Commun 2022; 635:259-266. [DOI: 10.1016/j.bbrc.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
|
7
|
Jiang F, Takagi Y, Shams A, Heissler SM, Friedman TB, Sellers JR, Bird JE. The ATPase mechanism of myosin 15, the molecular motor mutated in DFNB3 human deafness. J Biol Chem 2021; 296:100243. [PMID: 33372036 PMCID: PMC7948958 DOI: 10.1074/jbc.ra120.014903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Cochlear hair cells each possess an exquisite bundle of actin-based stereocilia that detect sound. Unconventional myosin 15 (MYO15) traffics and delivers critical molecules required for stereocilia development and thus is essential for building the mechanosensory hair bundle. Mutations in the human MYO15A gene interfere with stereocilia trafficking and cause hereditary hearing loss, DFNB3, but the impact of these mutations is not known, as MYO15 itself is poorly characterized. To learn more, we performed a kinetic study of the ATPase motor domain to characterize its mechanochemical cycle. Using the baculovirus-Sf9 system, we purified a recombinant minimal motor domain (S1) by coexpressing the mouse MYO15 ATPase, essential and regulatory light chains that bind its IQ domains, and UNC45 and HSP90A chaperones required for correct folding of the ATPase. MYO15 purified with either UNC45A or UNC45B coexpression had similar ATPase activities (kcat = ∼ 6 s-1 at 20 °C). Using stopped-flow and quenched-flow transient kinetic analyses, we measured the major rate constants describing the ATPase cycle, including ATP, ADP, and actin binding; hydrolysis; and phosphate release. Actin-attached ADP release was the slowest measured transition (∼12 s-1 at 20 °C), although this did not rate-limit the ATPase cycle. The kinetic analysis shows the MYO15 motor domain has a moderate duty ratio (∼0.5) and weak thermodynamic coupling between ADP and actin binding. These findings are consistent with MYO15 being kinetically adapted for processive motility when oligomerized. Our kinetic characterization enables future studies into how deafness-causing mutations affect MYO15 and disrupt stereocilia trafficking necessary for hearing.
Collapse
Affiliation(s)
- Fangfang Jiang
- Department of Pharmacology and Therapeutics, and the Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, and the Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
8
|
Porter JR, Meller A, Zimmerman MI, Greenberg MJ, Bowman GR. Conformational distributions of isolated myosin motor domains encode their mechanochemical properties. eLife 2020; 9:e55132. [PMID: 32479265 PMCID: PMC7259954 DOI: 10.7554/elife.55132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 01/25/2023] Open
Abstract
Myosin motor domains perform an extraordinary diversity of biological functions despite sharing a common mechanochemical cycle. Motors are adapted to their function, in part, by tuning the thermodynamics and kinetics of steps in this cycle. However, it remains unclear how sequence encodes these differences, since biochemically distinct motors often have nearly indistinguishable crystal structures. We hypothesized that sequences produce distinct biochemical phenotypes by modulating the relative probabilities of an ensemble of conformations primed for different functional roles. To test this hypothesis, we modeled the distribution of conformations for 12 myosin motor domains by building Markov state models (MSMs) from an unprecedented two milliseconds of all-atom, explicit-solvent molecular dynamics simulations. Comparing motors reveals shifts in the balance between nucleotide-favorable and nucleotide-unfavorable P-loop conformations that predict experimentally measured duty ratios and ADP release rates better than sequence or individual structures. This result demonstrates the power of an ensemble perspective for interrogating sequence-function relationships.
Collapse
Affiliation(s)
- Justin R Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
- Center for the Science and Engineering of Living Systems, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
9
|
Processivity and Velocity for Motors Stepping on Periodic Tracks. Biophys J 2020; 118:1537-1551. [PMID: 32367805 DOI: 10.1016/j.bpj.2020.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Processive molecular motors enable cargo transportation by assembling into dimers capable of taking several consecutive steps along a cytoskeletal filament. In the well-accepted hand-over-hand stepping mechanism, the trailing motor detaches from the track and binds the filament again in the leading position. This requires fuel consumption in the form of ATP hydrolysis and coordination of the catalytic cycles between the leading and the trailing heads. Alternate stepping pathways also exist, including inchworm-like movements, backward steps, and foot stomps. Whether all the pathways are coupled to ATP hydrolysis remains to be determined. Here, to establish the principles governing the dynamics of processive movement, we present a theoretical framework that includes all of the alternative stepping mechanisms. Our theory bridges the gap between the elemental rates describing the biochemical and structural transitions in each head and the experimentally measurable quantities such as velocity, processivity, and probability of backward stepping. Our results, obtained under the assumption that the track is periodic and infinite, provide expressions that hold regardless of the topology of the network connecting the intermediate states, and are therefore capable of describing the function of any molecular motor. We apply the theory to myosin VI, a motor that takes frequent backward steps and moves forward with a combination of hand-over-hand and inchworm-like steps. Our model quantitatively reproduces various observables of myosin VI motility reported by four experimental groups. The theory is used to predict the gating mechanism, the pathway for backward stepping, and the energy consumption as a function of ATP concentration.
Collapse
|
10
|
Caporizzo MA, Fishman CE, Sato O, Jamiolkowski RM, Ikebe M, Goldman YE. The Antiparallel Dimerization of Myosin X Imparts Bundle Selectivity for Processive Motility. Biophys J 2019; 114:1400-1410. [PMID: 29590597 DOI: 10.1016/j.bpj.2018.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Myosin X is an unconventional actin-based molecular motor involved in filopodial formation, microtubule-actin filament interaction, and cell migration. Myosin X is an important component of filopodia regulation, localizing to tips of growing filopodia by an unclear targeting mechanism. The native α-helical dimerization domain of myosin X is thought to associate with antiparallel polarity of the two amino acid chains, making myosin X the only myosin that is currently considered to form antiparallel dimers. This study aims to determine if antiparallel dimerization of myosin X imparts selectivity toward actin bundles by comparing the motility of parallel and antiparallel dimers of myosin X on single and fascin-bundled actin filaments. Antiparallel myosin X dimers exhibit selective processivity on fascin-bundled actin and are only weakly processive on single actin filaments below saturating [ATP]. Artificial forced parallel dimers of myosin X are robustly processive on both single and bundled actin, exhibiting no selectivity. To determine the relationship between gating of the reaction steps and observed differences in motility, a mathematical model was developed to correlate the parameters of motility with the biochemical and mechanical kinetics of the dimer. Results from the model, constrained by experimental data, suggest that the probability of binding forward, toward the barbed end of the actin filament, is lower in antiparallel myosin X on single actin filaments compared to fascin-actin bundles and compared to constructs of myosin X with parallel dimerization.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claire E Fishman
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas Science Center, Tyler, Texas
| | - Ryan M Jamiolkowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Science Center, Tyler, Texas
| | - Yale E Goldman
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
|
12
|
Ušaj M, Henn A. Kinetic adaptation of human Myo19 for active mitochondrial transport to growing filopodia tips. Sci Rep 2017; 7:11596. [PMID: 28912602 PMCID: PMC5599584 DOI: 10.1038/s41598-017-11984-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are actin-based molecular motors which are enzymatically adapted for their cellular functions such as transportation and membrane tethering. Human Myo19 affects mitochondrial motility, and promotes their localization to stress-induced filopodia. Therefore, studying Myo19 enzymology is essential to understand how this motor may facilitate mitochondrial motility. Towards this goal, we have purified Myo19 motor domain (Myo19-3IQ) from a human-cell expression system and utilized transient kinetics to study the Myo19-3IQ ATPase cycle. We found that Myo19-3IQ exhibits noticeable conformational changes (isomerization steps) preceding both ATP and ADP binding, which may contribute to nucleotide binding regulation. Notably, the ADP isomerization step and subsequent ADP release contribute significantly to the rate-limiting step of the Myo19-3IQ ATPase cycle. Both the slow ADP isomerization and ADP release prolong the time Myo19-3IQ spend in the strong actin binding state and hence contribute to its relatively high duty ratio. However, the predicted duty ratio is lower than required to support motility as a monomer. Therefore, it may be that several Myo19 motors are required to propel mitochondria movement on actin filaments efficiently. Finally, we provide a model explaining how Myo19 translocation may be regulated by the local ATP/ADP ratio, coupled to the mitochondria presence in the filopodia.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Arnon Henn
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
13
|
Activated full-length myosin-X moves processively on filopodia with large steps toward diverse two-dimensional directions. Sci Rep 2017; 7:44237. [PMID: 28287133 PMCID: PMC5346999 DOI: 10.1038/srep44237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Myosin-X, (Myo 10), is an unconventional myosin that transports the specific cargos to filopodial tips, and is associated with the mechanism underlying filopodia formation and extension. To clarify the innate motor characteristic, we studied the single molecule movement of a full-length myosin-X construct with leucine zipper at the C-terminal end of the tail (M10FullLZ) and the tail-truncated myosin-X without artificial dimerization motif (BAP-M101–979HMM). M10FullLZ localizes at the tip of filopodia like myosin-X full-length (M10Full). M10FullLZ moves on actin filaments in the presence of PI(3,4,5)P3, an activator of myosin-X. Single molecule motility analysis revealed that the step sizes of both M10FullLZ and BAP-M101–979HMM are widely distributed on single actin filaments that is consistent with electron microscopy observation. M10FullLZ moves on filopodial actin bundles of cells with a mean step size (~36 nm), similar to the step size on single actin filaments (~38 nm). Cartesian plot analysis revealed that M10FullLZ meandered on filopodial actin bundles to both x- and y- directions. These results suggest that the lever-arm of full-length myosin-X is flexible enough to processively steps on different actin filaments within the actin bundles of filopodia. This characteristic of myosin-X may facilitate actin filament convergence for filopodia production.
Collapse
|
14
|
Masters TA, Kendrick-Jones J, Buss F. Myosins: Domain Organisation, Motor Properties, Physiological Roles and Cellular Functions. Handb Exp Pharmacol 2017; 235:77-122. [PMID: 27757761 DOI: 10.1007/164_2016_29] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myosins are cytoskeletal motor proteins that use energy derived from ATP hydrolysis to generate force and movement along actin filaments. Humans express 38 myosin genes belonging to 12 classes that participate in a diverse range of crucial activities, including muscle contraction, intracellular trafficking, cell division, motility, actin cytoskeletal organisation and cell signalling. Myosin malfunction has been implicated a variety of disorders including deafness, hypertrophic cardiomyopathy, Usher syndrome, Griscelli syndrome and cancer. In this chapter, we will first discuss the key structural and kinetic features that are conserved across the myosin family. Thereafter, we summarise for each member in turn its unique functional and structural adaptations, cellular roles and associated pathologies. Finally, we address the broad therapeutic potential for pharmacological interventions that target myosin family members.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
15
|
Weck ML, Grega-Larson NE, Tyska MJ. MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions. Curr Opin Cell Biol 2016; 44:68-78. [PMID: 27836411 DOI: 10.1016/j.ceb.2016.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States.
| |
Collapse
|
16
|
The myosin X motor is optimized for movement on actin bundles. Nat Commun 2016; 7:12456. [PMID: 27580874 PMCID: PMC5025751 DOI: 10.1038/ncomms12456] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022] Open
Abstract
Myosin X has features not found in other myosins. Its structure must underlie its unique ability to generate filopodia, which are essential for neuritogenesis, wound healing, cancer metastasis and some pathogenic infections. By determining high-resolution structures of key components of this motor, and characterizing the in vitro behaviour of the native dimer, we identify the features that explain the myosin X dimer behaviour. Single-molecule studies demonstrate that a native myosin X dimer moves on actin bundles with higher velocities and takes larger steps than on single actin filaments. The largest steps on actin bundles are larger than previously reported for artificially dimerized myosin X constructs or any other myosin. Our model and kinetic data explain why these large steps and high velocities can only occur on bundled filaments. Thus, myosin X functions as an antiparallel dimer in cells with a unique geometry optimized for movement on actin bundles.
Collapse
|
17
|
Haraguchi T, Tominaga M, Nakano A, Yamamoto K, Ito K. Myosin XI-I is Mechanically and Enzymatically Unique Among Class-XI Myosins in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1732-1743. [PMID: 27273580 DOI: 10.1093/pcp/pcw097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Arabidopsis possesses 13 genes encoding class-XI myosins. Among these, myosin XI-I is phylogenetically distant. To examine the molecular properties of Arabidopsis thaliana myosin XI-I (At myosin XI-I), we performed in vitro mechanical and enzymatic analyses using recombinant constructs of At myosin XI-I. Unlike other biochemically studied class-XI myosins, At myosin XI-I showed extremely low actin-activated ATPase activity (Vmax = 3.7 Pi s(-1) head(-1)). The actin-sliding velocity of At myosin XI-I was 0.25 µm s(-1), >10 times lower than those of other class-XI myosins. The ADP dissociation rate from acto-At myosin XI-I was 17 s(-1), accounting for the low actin-sliding velocity. In contrast, the apparent affinity for actin in the presence of ATP, estimated from Kapp (0.61 µM) of actin-activated ATPase, was extremely high. The equilibrium dissociation constant for actin was very low in both the presence and absence of ATP, indicating a high affinity for actin. To examine At myosin XI-I motility in vivo, green fluorescent protein-fused full-length At myosin XI-I was expressed in cultured Arabidopsis cells. At myosin XI-I localized not only on the nuclear envelope but also on small dots moving slowly (0.23 µm s(-1)) along actin filaments. Our results show that the properties of At myosin XI-I differ from those of other Arabidopsis class-XI myosins. The data suggest that At myosin XI-I does not function as a driving force for cytoplasmic streaming but regulates the organelle velocity, supports processive organelle movement or acts as a tension generator.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522 Japan These authors contributed equally to this work.
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan These authors contributed equally to this work.
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Keiichi Yamamoto
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| |
Collapse
|
18
|
Heissler SM, Sellers JR. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions. Traffic 2016; 17:839-59. [PMID: 26929436 DOI: 10.1111/tra.12388] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022]
Abstract
Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| |
Collapse
|
19
|
Haraguchi T, Tominaga M, Matsumoto R, Sato K, Nakano A, Yamamoto K, Ito K. Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1. J Biol Chem 2014; 289:12343-55. [PMID: 24637024 PMCID: PMC4007431 DOI: 10.1074/jbc.m113.521716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/12/2014] [Indexed: 02/02/2023] Open
Abstract
Land plants possess myosin classes VIII and XI. Although some information is available on the molecular properties of class XI myosins, class VIII myosins are not characterized. Here, we report the first analysis of the enzymatic properties of class VIII myosin. The motor domain of Arabidopsis class VIII myosin, ATM1 (ATM1-MD), and the motor domain plus one IQ motif (ATM1-1IQ) were expressed in a baculovirus system and characterized. ATM1-MD and ATM1-1IQ had low actin-activated Mg(2+)-ATPase activity (Vmax = 4 s(-1)), although their affinities for actin were high (Kactin = 4 μM). The actin-sliding velocities of ATM1-MD and ATM1-1IQ were 0.02 and 0.089 μm/s, respectively, from which the value for full-length ATM1 is calculated to be ∼0.2 μm/s. The results of actin co-sedimentation assay showed that the duty ratio of ATM1 was ∼90%. ADP dissociation from the actin·ATM1 complex (acto-ATM1) was extremely slow, which accounts for the low actin-sliding velocity, low actin-activated ATPase activity, and high duty ratio. The rate of ADP dissociation from acto-ATM1 was markedly biphasic with fast and slow phase rates (5.1 and 0.41 s(-1), respectively). Physiological concentrations of free Mg(2+) modulated actin-sliding velocity and actin-activated ATPase activity by changing the rate of ADP dissociation from acto-ATM1. GFP-fused full-length ATM1 expressed in Arabidopsis was localized to plasmodesmata, plastids, newly formed cell walls, and actin filaments at the cell cortex. Our results suggest that ATM1 functions as a tension sensor/generator at the cell cortex and other structures in Arabidopsis.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| | - Motoki Tominaga
- the Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198
- the Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, and
| | - Rie Matsumoto
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| | - Kei Sato
- the Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- the Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198
- the Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichi Yamamoto
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| | - Kohji Ito
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| |
Collapse
|
20
|
Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. Proc Natl Acad Sci U S A 2014; 111:E1833-42. [PMID: 24753602 DOI: 10.1073/pnas.1320122111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myosin-10 is an actin-based molecular motor that participates in essential intracellular processes such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance. To study this motor protein's mechano-chemical properties, we used a recombinant, truncated form of myosin-10 consisting of the first 936 amino acids, followed by a GCN4 leucine zipper motif, to force dimerization. Negative-stain electron microscopy reveals that the majority of molecules are dimeric with a head-to-head contour distance of ∼50 nm. In vitro motility assays show that myosin-10 moves actin filaments smoothly with a velocity of ∼310 nm/s. Steady-state and transient kinetic analysis of the ATPase cycle shows that the ADP release rate (∼13 s(-1)) is similar to the maximum ATPase activity (∼12-14 s(-1)) and therefore contributes to rate limitation of the enzymatic cycle. Single molecule optical tweezers experiments show that under intermediate load (∼0.5 pN), myosin-10 interacts intermittently with actin and produces a power stroke of ∼17 nm, composed of an initial 15-nm and subsequent 2-nm movement. At low optical trap loads, we observed staircase-like processive movements of myosin-10 interacting with the actin filament, consisting of up to six ∼35-nm steps per binding interaction. We discuss the implications of this load-dependent processivity of myosin-10 as a filopodial transport motor.
Collapse
|
21
|
Lin L, Sun W, Throesch B, Kung F, Decoster JT, Berner CJ, Cheney RE, Rudy B, Hoffman DA. DPP6 regulation of dendritic morphogenesis impacts hippocampal synaptic development. Nat Commun 2014; 4:2270. [PMID: 23912628 PMCID: PMC3775611 DOI: 10.1038/ncomms3270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl-peptidase 6 (DPP6) is an auxiliary subunit of Kv4-mediated A-type K+ channels that, in addition to enhancing channel surface expression, potently accelerates their kinetics. The DPP6 gene has been associated with a number of human CNS disorders including ASDs and schizophrenia. Here we employ knockdown and genetic deletion of DPP6 to reveal its importance for the formation and stability of dendritic filopodia during early neuronal development. We find that hippocampal neurons lacking DPP6 show a sparser dendritic branching pattern along with fewer spines throughout development and into adulthood. In electrophysiological and imaging experiments we show that these deficits lead to fewer functional synapses and occur independently of the potassium channel subunit Kv4.2. We report that the extracellular domain of DPP6 interacts with a filopodia-associated myosin as well as with fibronectin in the extracellular matrix. DPP6 therefore plays an unexpected but important role in cell-adhesion and motility, impacting hippocampal synaptic development and function.
Collapse
Affiliation(s)
- Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Myosin-X (Myo10) is an unconventional myosin with MyTH4-FERM domains that is best known for its striking localization to the tips of filopodia and its ability to induce filopodia. Although the head domain of Myo10 enables it to function as an actin-based motor, its tail contains binding sites for several molecules with central roles in cell biology, including phosphatidylinositol (3,4,5)-trisphosphate, microtubules and integrins. Myo10 also undergoes fascinating long-range movements within filopodia, which appear to represent a newly recognized system of transport. Myo10 is also unusual in that it is a myosin with important roles in the spindle, a microtubule-based structure. Exciting new studies have begun to reveal the structure and single-molecule properties of this intriguing myosin, as well as its mechanisms of regulation and induction of filopodia. At the cellular and organismal level, growing evidence demonstrates that Myo10 has crucial functions in numerous processes ranging from invadopodia formation to cell migration.
Collapse
Affiliation(s)
- Michael L Kerber
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
23
|
Bloemink MJ, Geeves MA. Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Semin Cell Dev Biol 2011; 22:961-7. [PMID: 22001381 DOI: 10.1016/j.semcdb.2011.09.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022]
Abstract
Although all myosin motors follow the same basic cross-bridge cycle, they display a large variety in the rates of transition between different states in the cycle, allowing each myosin to be finely tuned for a specific task. Traditionally, myosins have been classified by sequence analysis into a large number of sub-families (∼35). Here we use a different method to classify the myosin family members which is based on biochemical and mechanical properties. The key properties that define the type of mechanical activity of the motor are duty ratio (defined as the fraction of the time myosin remains attached to actin during each cycle), thermodynamic coupling of actin and nucleotide binding to myosin and the degree of strain-sensitivity of the ADP release step. Based on these properties we propose to classify myosins into four different groups: (I) fast movers, (II) slow/efficient force holders, (III) strain sensors and (IV) gates.
Collapse
|
24
|
Umeki N, Jung HS, Sakai T, Sato O, Ikebe R, Ikebe M. Phospholipid-dependent regulation of the motor activity of myosin X. Nat Struct Mol Biol 2011; 18:783-8. [DOI: 10.1038/nsmb.2065] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 04/01/2011] [Indexed: 01/29/2023]
|
25
|
Komaba S, Watanabe S, Umeki N, Sato O, Ikebe M. Effect of phosphorylation in the motor domain of human myosin IIIA on its ATP hydrolysis cycle. Biochemistry 2010; 49:3695-702. [PMID: 20192276 DOI: 10.1021/bi902211w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous findings suggested that the motor activity of human myosin IIIA (HM3A) is influenced by phosphorylation [Kambara, T., et al. (2006) J. Biol. Chem. 281, 37291-37301]; however, how phosphorylation controls the motor activity of HM3A is obscure. In this study, we clarify the kinetic basis of the effect of phosphorylation on the ATP hydrolysis cycle of the motor domain of HM3A (huM3AMD). The affinity of human myosin IIIA for filamentous actin in the presence of ATP is more than 100-fold decreased by phosphorylation, while the maximum rate of ATP turnover is virtually unchanged. The rate of release of ADP from acto-phosphorylated huM3AMD is 6-fold greater than the overall cycle rate, and thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form is markedly increased by phosphorylation by 30-fold. The dissociation constant for dissociation of the ATP-bound form of huM3AMD from actin is greatly increased by phosphorylation, and this result agrees well with the significant increase in the K(actin) value of the steady-state ATPase reaction. The rate constant of the P(i) off step is greater than 60 s(-1), suggesting that this step does not limit the overall ATP hydrolysis cycle rate. Our kinetic model indicates that phosphorylation induces the dissociation of huM3AMD from actin during the ATP hydrolysis cycle, and this is due to the phosphorylation-dependent marked decrease in the affinity of huM3AMD.ATP for actin and the increase in the ATP hydrolysis rate of huM3AMD in the actin-dissociated state. These results suggest that the phosphorylation of myosin IIIA significantly lowers the duty ratio, which may influence the cargo transporting ability of the native form of myosin IIIA that contains the ATP-independent actin binding site in the tail.
Collapse
Affiliation(s)
- Shigeru Komaba
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0127, USA
| | | | | | | | | |
Collapse
|
26
|
Watanabe TM, Tokuo H, Gonda K, Higuchi H, Ikebe M. Myosin-X induces filopodia by multiple elongation mechanism. J Biol Chem 2010; 285:19605-14. [PMID: 20392702 DOI: 10.1074/jbc.m109.093864] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filopodia are actin-rich finger-like cytoplasmic projections extending from the leading edge of cells. Unconventional myosin-X is involved in the protrusion of filopodia. However, the underlying mechanism of myosin-X-induced filopodia formation is obscure. Here, we studied the movements of myosin-X during filopodia protrusion using a total internal reflection microscope to clarify the mechanism of myosin-X-induced filopodia formation. Myosin-X was recruited to the discrete site at the leading edge where it assembles with exponential kinetics before the filopodia extension. The myosin-X-induced filopodia showed repeated extension-retraction cycles with each extension of 2.4 microm, which was critical to produce long filopodia. Myosin-X, lacking the FERM domain, could move to the tip as does the wild type. However, it was transported toward the cell body during filopodia retraction, did not undergo multiple extension-retraction cycles, and failed to produce long filopodia. During the filopodia protrusion, the single molecules of full-length myosin-X moved within filopodia. The majority of the fluorescence spots showed two-step photobleaching, suggesting that the moving myosin-X is a dimer. Deletion of the FERM domain did not change the movement at the single molecule level with the same velocity of approximately 600 nm/s as wild-type, suggesting that the myosin-X in filopodia moves without interaction with the attached membrane via the FERM domain. Based upon these results, we have proposed a model of myosin-X-induced filopodia protrusion.
Collapse
Affiliation(s)
- Tomonobu M Watanabe
- World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
27
|
Sun Y, Sato O, Ruhnow F, Arsenault ME, Ikebe M, Goldman YE. Single-molecule stepping and structural dynamics of myosin X. Nat Struct Mol Biol 2010; 17:485-91. [PMID: 20364131 PMCID: PMC2876314 DOI: 10.1038/nsmb.1785] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/03/2010] [Indexed: 11/08/2022]
Abstract
Myosin X is an unconventional myosin with puzzling motility properties. We studied the motility of dimerized myosin X using the single-molecule fluorescence techniques polTIRF, FIONA and Parallax to measure the rotation angles and three-dimensional position of the molecule during its walk. It was found that Myosin X steps processively in a hand-over-hand manner following a left-handed helical path along both single actin filaments and bundles. Its step size and velocity are smaller on actin bundles than individual filaments, suggesting myosin X often steps onto neighboring filaments in a bundle. The data suggest that a previously postulated single alpha-helical domain mechanically extends the lever arm, which has three IQ motifs, and either the neck-tail hinge or the tail is flexible. These structural features, in conjunction with the membrane- and microtubule-binding domains, enable myosin X to perform multiple functions on varied actin structures in cells.
Collapse
Affiliation(s)
- Yujie Sun
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Osamu Sato
- University of Massachusetts Medical School, North Worcester, MA 01655
| | - Felix Ruhnow
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Mark E. Arsenault
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Mitsuo Ikebe
- University of Massachusetts Medical School, North Worcester, MA 01655
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Myosin motor function: the ins and outs of actin-based membrane protrusions. Cell Mol Life Sci 2010; 67:1239-54. [PMID: 20107861 DOI: 10.1007/s00018-009-0254-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion.
Collapse
|
29
|
Kerber ML, Jacobs DT, Campagnola L, Dunn BD, Yin T, Sousa AD, Quintero OA, Cheney RE. A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level. Curr Biol 2009; 19:967-73. [PMID: 19398338 PMCID: PMC2817954 DOI: 10.1016/j.cub.2009.03.067] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Although many proteins, receptors, and viruses are transported rearward along filopodia by retrograde actin flow, it is less clear how molecules move forward in filopodia. Myosin-X (Myo10) is an actin-based motor hypothesized to use its motor activity to move forward along actin filaments to the tips of filopodia. Here we use a sensitive total internal reflection fluorescence (TIRF) microscopy system to directly visualize the movements of GFP-Myo10. This reveals a novel form of motility at or near the single-molecule level in living cells wherein extremely faint particles of Myo10 move in a rapid and directed fashion toward the filopodial tip. These fast forward movements occur at approximately 600 nm/s over distances of up to approximately 10 microm and require Myo10 motor activity and actin filaments. As expected for imaging at the single-molecule level, the faint particles of GFP-Myo10 are diffraction limited, have an intensity range similar to single GFP molecules, and exhibit stepwise bleaching. Faint particles of GFP-Myo5a can also move toward the filopodial tip, but at a slower characteristic velocity of approximately 250 nm/s. Similar movements were not detected with GFP-Myo1a, indicating that not all myosins are capable of intrafilopodial motility. These data indicate the existence of a novel system of long-range transport based on the rapid movement of myosin molecules along filopodial actin filaments.
Collapse
Affiliation(s)
| | | | - Luke Campagnola
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Brian D. Dunn
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Taofei Yin
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | | | | | - Richard E. Cheney
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
30
|
The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA. Proc Natl Acad Sci U S A 2009; 106:8483-8. [PMID: 19423668 DOI: 10.1073/pnas.0812930106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin VIIA is an unconventional myosin, responsible for human Usher syndrome type 1B, which causes hearing and visual loss. Here, we studied the molecular mechanism of regulation of myosin VIIA, which is currently unknown. Although it was originally thought that myosin VIIA is a dimeric myosin, our electron microscopic (EM) observations revealed that full-length Drosophila myosin VIIA (DM7A) is a monomer. Interestingly, the tail domain markedly inhibits the actin-activated ATPase activity of tailless DM7A at low Ca(2+) but not high Ca(2+). By examining various deletion constructs, we found that deletion of the distal IQ domain, the C-terminal region of the tail, and the N-terminal region of the tail abolishes the tail-induced inhibition of ATPase activity. Single-particle EM analysis of full-length DM7A at low Ca(2+) suggests that the tail folds back on to the head, where it contacts both the motor core domain and the neck domain, forming an inhibited conformation. We concluded that unconventional myosin that may be present a monomer in the cell can be regulated by intramolecular interaction of the tail with the head.
Collapse
|
31
|
Woolner S, O'Brien LL, Wiese C, Bement WM. Myosin-10 and actin filaments are essential for mitotic spindle function. J Cell Biol 2008; 182:77-88. [PMID: 18606852 PMCID: PMC2447898 DOI: 10.1083/jcb.200804062] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/06/2008] [Indexed: 01/05/2023] Open
Abstract
Mitotic spindles are microtubule-based structures responsible for chromosome partitioning during cell division. Although the roles of microtubules and microtubule-based motors in mitotic spindles are well established, whether or not actin filaments (F-actin) and F-actin-based motors (myosins) are required components of mitotic spindles has long been controversial. Based on the demonstration that myosin-10 (Myo10) is important for assembly of meiotic spindles, we assessed the role of this unconventional myosin, as well as F-actin, in mitotic spindles. We find that Myo10 localizes to mitotic spindle poles and is essential for proper spindle anchoring, normal spindle length, spindle pole integrity, and progression through metaphase. Furthermore, we show that F-actin localizes to mitotic spindles in dynamic cables that surround the spindle and extend between the spindle and the cortex. Remarkably, although proper anchoring depends on both F-actin and Myo10, the requirement for Myo10 in spindle pole integrity is F-actin independent, whereas F-actin and Myo10 actually play antagonistic roles in maintenance of spindle length.
Collapse
Affiliation(s)
- Sarah Woolner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Eukaryotic cells organize their contents through trafficking along cytoskeletal filaments. The leading edge of a typical metazoan cytoskeleton consists of a dense and complex arrangement of cortical actin. A dendritic mesh is found across the broad lamellopodium, with long parallel bundles at microspikes and filopodia. It is currently unclear whether and how myosin motors identify the few actin filaments that lead to the correct destination, when presented with many similar alternatives within the cortex. Here we show that myosin X, an actin-based motor that concentrates at the distal tips of filopodia, selects the fascin-actin bundle at the filopodial core for motility. Myosin X moves individual actin filaments poorly in vitro, often supercoiling actin into plectonemes. However, single myosin X motors move robustly and processively along fascin-actin bundles. This selection requires only parallel, closely spaced filaments, as myosin X is also processive on artificial actin bundles formed by molecular crowding. Myosin X filopodial localization is perturbed in fascin-depleted HeLa cells, demonstrating that fascin bundles also direct motility in vivo. Our results demonstrate that myosin X recognizes the local structural arrangement of filaments in long bundles, providing a mechanism for sorting cargo to distant target sites.
Collapse
|
33
|
Watanabe S, Watanabe TM, Sato O, Awata J, Homma K, Umeki N, Higuchi H, Ikebe R, Ikebe M. Human myosin Vc is a low duty ratio nonprocessive motor. J Biol Chem 2007; 283:10581-92. [PMID: 18079121 DOI: 10.1074/jbc.m707657200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are three distinct members of the myosin V family in vertebrates, and each isoform is involved in different membrane trafficking pathways. Both myosin Va and Vb have demonstrated that they are high duty ratio motors that are consistent with the processive nature of these motors. Here we report that the ATPase cycle mechanism of the single-headed construct of myosin Vc is quite different from those of other vertebrate myosin V isoforms. K(ATPase) of the actin-activated ATPase was 62 microm, which is much higher than that of myosin Va ( approximately 1 mum). The rate of ADP release from actomyosin Vc was 12.7 s(-1), which was 2 times greater than the entire ATPase cycle rate, 6.5 s(-1). P(i) burst size was 0.31, indicating that the equilibrium of the ATP hydrolysis step is shifted to the prehydrolysis form. Our kinetic model, based on all kinetic data we determined in this study, suggests that myosin Vc spends the majority of the ATPase cycle time in the weak actin binding state in contrast to myosin Va and Vb. Consistently, the two-headed myosin Vc construct did not show processive movement in total internal reflection fluorescence microscope analysis, demonstrating that myosin Vc is a nonprocessive motor. Our findings suggest that myosin Vc fulfills its function as a cargo transporter by different mechanisms from other myosin V isoforms.
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tokuo H, Mabuchi K, Ikebe M. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. ACTA ACUST UNITED AC 2007; 179:229-38. [PMID: 17954606 PMCID: PMC2064759 DOI: 10.1083/jcb.200703178] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Filopodia are actin-rich fingerlike protrusions found at the leading edge of migrating cells and are believed to play a role in directional sensing. Previous studies have shown that myosin-X (myoX) promotes filopodia formation and that this is mediated through its ability to deliver specific cargoes to the cell periphery (Tokuo, H., and M. Ikebe. 2004. Biochem Biophys. Commun. 319:214-220; Zhang, H., J.S. Berg, Z. Li, Y. Wang, P. Lang, A.D. Sousa, A. Bhaskar, R.E. Cheney, and S. Stromblad. 2004. Nat. Cell Biol. 6:523-531; Bohil, A.B., B.W. Robertson, and R.E. Cheney. 2006. Proc. Natl. Acad. Sci. USA. 103:12411-12416; Zhu, X.J., C.Z. Wang, P.G. Dai, Y. Xie, N.N. Song, Y. Liu, Q.S. Du, L. Mei, Y.Q. Ding, and W.C. Xiong. 2007. Nat. Cell Biol. 9:184-192). In this study, we show that the motor function of myoX and not the cargo function is critical for initiating filopodia formation. Using a dimer-inducing technique, we find that myoX lacking its cargo-binding tail moves laterally at the leading edge of lamellipodia and induces filopodia in living cells. We conclude that the motor function of the two-headed form of myoX is critical for actin reorganization at the leading edge, leading to filopodia formation.
Collapse
Affiliation(s)
- Hiroshi Tokuo
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
35
|
Ito K, Ikebe M, Kashiyama T, Mogami T, Kon T, Yamamoto K. Kinetic mechanism of the fastest motor protein, Chara myosin. J Biol Chem 2007; 282:19534-45. [PMID: 17488711 DOI: 10.1074/jbc.m611802200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.
Collapse
Affiliation(s)
- Kohji Ito
- Department of Biology, Chiba University, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Vertebrate myosin Va is a typical processive motor with high duty ratio. Recent studies have revealed that the actin-activated ATPase activity of the full-length myosin Va (M5aFull) is inhibited at a low [Ca(2+)], which is due to the formation of a folded conformation of M5aFull. To clarify the underlying inhibitory mechanism, we analyzed the actin-activated ATP hydrolysis mechanism of the M5aFull at the inhibited and the activated states, respectively. Marked differences were found in the hydrolysis, P(i) release, and ADP release steps between the activated and the inhibited states. The kinetic constants of these steps of the activated state were similar to those of the unregulated S1 construct, in which the rate-limiting step was the ADP release step. On the other hand, the P(i) release rate from acto-M5aFull was decreased in EGTA by >1,000-fold, which makes this step the rate-limiting step for the actin-activated ATP hydrolysis cycle of M5aFull. The ADP off rate from acto-M5aFull was decreased by approximately 10-fold, and the equilibrium between the prehydrolysis state and the post hydrolysis state was shifted toward the former state in the inhibited state of M5aFull. Because of these changes, M5aFull spends a majority of the ATP hydrolysis cycling time in the weak actin binding state. The present results indicate that M5aFull molecules at a low [Ca(2+)] is inhibited as a cargo transporter not only due to the decrease in the cross-bridge cycling rate but also due to the decrease in the duty ratio thus being dissociated from actin.
Collapse
Affiliation(s)
- Osamu Sato
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachueetts 01655, USA
| | | | | |
Collapse
|
37
|
Kambara T, Komaba S, Ikebe M. Human myosin III is a motor having an extremely high affinity for actin. J Biol Chem 2006; 281:37291-301. [PMID: 17012748 DOI: 10.1074/jbc.m603823200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin IIIA is expressed in photoreceptor cells and thought to play a critical role in phototransduction processes, yet its function on a molecular basis is largely unknown. Here we clarified the kinetic mechanism of the ATPase cycle of human myosin IIIA. The steady-state ATPase activity was markedly activated approximately 10-fold with very low actin concentration. The rate of ADP off from actomyosin IIIA was 10 times greater than the overall cycling rate, thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form was very slow, but the rate was markedly accelerated by actin binding. The dissociation constant of the ATP-bound form of myosin IIIA from actin is submicromolar, which agrees well with the low K(actin). These results indicate that ATP hydrolysis predominantly takes place in the actin-bound form for actomyosin IIIA ATPase reaction. The obtained K(actin) was much lower than the previously reported one, and we found that the autophosphorylation of myosin IIIA dramatically increased the K(actin), whereas the V(max) was unchanged. Our kinetic model indicates that both the actin-attached hydrolysis and the P(i) release steps determine the overall cycle rate of the dephosphorylated form. Although the stable steady-state intermediates of actomyosin IIIA ATPase reaction are not typical strong actin-binding intermediates, the affinity of the stable intermediates for actin is much higher than conventional weak actin binding forms. The present results suggest that myosin IIIA can spend a majority of its ATP hydrolysis cycling time on actin.
Collapse
Affiliation(s)
- Taketoshi Kambara
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
38
|
Bohil AB, Robertson BW, Cheney RE. Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A 2006; 103:12411-6. [PMID: 16894163 PMCID: PMC1567893 DOI: 10.1073/pnas.0602443103] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite recent progress in understanding lamellipodia extension, the molecular mechanisms regulating filopodia formation remain largely unknown. Myo10 is a MyTH4-FERM myosin that localizes to the tips of filopodia and is hypothesized to function in filopodia formation. To determine whether endogenous Myo10 is required for filopodia formation, we have used scanning EM to assay the numerous filopodia normally present on the dorsal surfaces of HeLa cells. We show here that siRNA-mediated knockdown of Myo10 in HeLa cells leads to a dramatic loss of dorsal filopodia. Overexpressing the coiled coil region from Myo10 as a dominant- negative also leads to a loss of dorsal filopodia, thus providing independent evidence that Myo10 functions in filopodia formation. We also show that expressing Myo10 in COS-7 cells, a cell line that normally lacks dorsal filopodia, leads to a massive induction of dorsal filopodia. Because the dorsal filopodia induced by Myo10 are not attached to the substrate, Myo10 can promote filopodia by a mechanism that is independent of substrate attachment. Consistent with this observation, a Myo10 construct that lacks the FERM domain, the region that binds to integrin, retains the ability to induce dorsal filopodia. Deletion of the MyTH4-FERM region, however, completely abolishes Myo10's filopodia-promoting activity, as does deletion of the motor domain. Additional experiments on the mechanism of Myo10 action indicate that it acts downstream of Cdc42 and can promote filopodia in the absence of VASP proteins. Together, these data demonstrate that Myo10 is a molecular motor that functions in filopodia formation.
Collapse
Affiliation(s)
- Aparna B. Bohil
- Department of Cell and Molecular Physiology, Medical Biomolecular Research Building (MBRB), Room 5314, 103 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599-7545
| | - Brian W. Robertson
- Department of Cell and Molecular Physiology, Medical Biomolecular Research Building (MBRB), Room 5314, 103 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599-7545
| | - Richard E. Cheney
- Department of Cell and Molecular Physiology, Medical Biomolecular Research Building (MBRB), Room 5314, 103 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599-7545
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
O'Connell CB, Tyska MJ, Mooseker MS. Myosin at work: motor adaptations for a variety of cellular functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:615-30. [PMID: 16904206 DOI: 10.1016/j.bbamcr.2006.06.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/22/2006] [Accepted: 06/30/2006] [Indexed: 12/30/2022]
Abstract
Cells have evolved multiple mechanisms to overcome the effects of entropy and diffusion to create a highly ordered environment. For cells to function properly, some components must be anchored to provide a framework or structure. Others must be rapidly transported over long distances to generate asymmetries in cell morphology and composition. To accomplish long-range transport, cells cannot rely on diffusion alone as many large organelles and macromolecular complexes are essentially immobilized by the dense meshwork of the cytosol. One strategy used by cells to overcome diffusion is to harness the free energy liberated by ATP hydrolysis through molecular motors. Myosins are a family of actin based molecular motors that have evolved a variety of ways to contribute to cellular organization through numerous modifications to the manner they convert that free energy into mechanical work.
Collapse
|
40
|
Watanabe S, Ikebe R, Ikebe M. Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism. J Biol Chem 2006; 281:7151-60. [PMID: 16415346 DOI: 10.1074/jbc.m511592200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations of myosin VIIA cause deafness in various species from human and mice to Zebrafish and Drosophila. We analyzed the kinetic mechanism of the ATPase cycle of Drosophila myosin VIIA by using a single-headed construct with the entire neck domain. The steady-state ATPase activity (0.06 s(-1)) was markedly activated by actin to yield V(max) and K(ATPase) of 1.72 s(-1) and 3.2 microm, respectively. The most intriguing finding is that the ATP hydrolysis predominantly takes place in the actin-bound form (actin-attached hydrolysis) for the actomyosin VIIA ATPase reaction. The ATP hydrolysis rate was much faster for the actin-attached form than the dissociated form, in contrast to other myosins reported so far. Both the ATP hydrolysis step and the phosphate release step were significantly faster than the entire ATPase cycle rate, thus not rate-determining. The rate of ADP dissociation from actomyosin VIIA was 1.86 s(-1), which was comparable with the overall ATPase cycle rate, thus assigned to be a rate-determining step. The results suggest that Drosophila myosin VIIA spends the majority of the ATPase cycle in an actomyosin.ADP form, a strong actin binding state. The duty ratio calculated from our kinetic model was approximately 0.9. Therefore, myosin VIIA is classified to be a high duty ratio motor. The present results suggested that myosin VIIA can be a processive motor to serve cargo trafficking in cells once it forms a dimer structure.
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | |
Collapse
|
41
|
Kambara T, Ikebe M. A unique ATP hydrolysis mechanism of single-headed processive myosin, myosin IX. J Biol Chem 2005; 281:4949-57. [PMID: 16338935 DOI: 10.1074/jbc.m509141200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place.
Collapse
Affiliation(s)
- Taketoshi Kambara
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
42
|
Sousa AD, Cheney RE. Myosin-X: a molecular motor at the cell's fingertips. Trends Cell Biol 2005; 15:533-9. [PMID: 16140532 DOI: 10.1016/j.tcb.2005.08.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Research in several areas, including unconventional myosins and deafness genes, has converged recently on a group of myosins whose tails contain myosin tail homology 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains. Although these 'MyTH-FERM' myosins are not present in yeast and plants, they are present in slime molds, worms, flies and mammals, where they mediate interactions between the cytoskeleton and the plasma membrane. The most broadly distributed MyTH-FERM myosin in vertebrate cells appears to be myosin-X (Myo10). This myosin can act as a link to integrins and microtubules, stimulate the formation of filopodia and undergo a novel form of motility within filopodia.
Collapse
Affiliation(s)
- Aurea D Sousa
- Medical Biomolecular Research Building, Department of Cell and Molecular Physiology, CB #7545, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|