1
|
Orientational Preferences of GPI-Anchored Ly6/uPAR Proteins. Int J Mol Sci 2022; 24:ijms24010011. [PMID: 36613456 PMCID: PMC9819746 DOI: 10.3390/ijms24010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ly6/uPAR proteins regulate many essential functions in the nervous and immune systems and epithelium. Most of these proteins contain single β-structural LU domains with three protruding loops and are glycosylphosphatidylinositol (GPI)-anchored to a membrane. The GPI-anchor role is currently poorly studied. Here, we investigated the positional and orientational preferences of six GPI-anchored proteins in the receptor-unbound state by molecular dynamics simulations. Regardless of the linker length between the LU domain and GPI-anchor, the proteins interacted with the membrane by polypeptide parts and N-/O-glycans. Lynx1, Lynx2, Lypd6B, and Ly6H contacted the membrane by the loop regions responsible for interactions with nicotinic acetylcholine receptors, while Lypd6 and CD59 demonstrated unique orientations with accessible receptor-binding sites. Thus, GPI-anchoring does not guarantee an optimal 'pre-orientation' of the LU domain for the receptor interaction.
Collapse
|
2
|
Bispecific mAb2 Antibodies Targeting CD59 Enhance the Complement-Dependent Cytotoxicity Mediated by Rituximab. Int J Mol Sci 2022; 23:ijms23095208. [PMID: 35563599 PMCID: PMC9103234 DOI: 10.3390/ijms23095208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Inhibition of complement activation via the overexpression of complement-regulatory proteins (CRPs), most notably CD46, CD55 and CD59, is an efficient mechanism of disguise of cancer cells from a host immune system. This phenomenon extends to counteract the potency of therapeutic antibodies that could lyse target cells by eliciting complement cascade. The manifold functions and ubiquitous expression of CRPs preclude their systemic specific inhibition. We selected CD59-specific Fc fragments with a novel antigen binding site (Fcabs) from yeast display libraries using recombinant antigens expressed in bacterial or mammalian cells. To produce a bispecific antibody, we endowed rituximab, a clinically applied anti-CD20 antibody, used for therapy of various lymphoid malignancies, with an anti-CD59 Fcab. This bispecific antibody was able to induce more potent complement-dependent cytotoxicity for CD20 and CD59 expressing Raji cell line measured with lactate dehydrogenase-release assay, but had no effect on the cells with lower levels of the primary CD20 antigen or CD20-negative cells. Such molecules are promising candidates for future therapeutic development as they elicit a higher specific cytotoxicity at a lower concentration and hence cause a lower exhaustion of complement components.
Collapse
|
3
|
Li L, Yang W, Shen Y, Xu X, Li J. Fish complement C8 evolution, functional network analyses, and the theoretical interaction between C8 alpha chain and CD59. Mol Immunol 2020; 128:235-248. [PMID: 33160183 DOI: 10.1016/j.molimm.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Complement C8, as a main component of the membrane attack complex, has only been identified in vertebrates. C8 comprises three subunits encoded by individual genes: C8a (alpha chain), C8b (beta chain), and C8g (gamma chain). However, in fish, there have been limited studies on the evolutionary history and systematic function of C8. In the present study, phylogenetic analysis indicated the complete divergence of C8 genes in different fish species. Codon usage bias analysis revealed the evolutionary complexity of C8 genes. Selective pressure analysis found that C8 genes have been affected by negative selection during evolution. Sequence alignment identified the sites that are under selective pressure. The systematic functions of C8 were revealed by gene co-expression and protein-protein interaction (PPI) network analyses. Notably, gene ontology enrichment analysis suggested that C8 proteins in zebrafish function mainly in the neuroendocrine system. Protein structural comparisons showed that putative functional residues and domains were conserved between the C8 subunits of human and grass carp. A preliminary study on the theoretical interaction between C8a and CD59 was performed according to the simulated protein stereo structure. The first functionally-related site was absent in the simulated conformation of the grass carp (Ctenopharyngodon idella) C8a-CD59 protein complex. We speculated that Tyr63 is involved in the functional loss of CD59 binding. The docking of CD59 to four potential sites (Met390, Ser391, Leu392, and Val405) in grass carp C8a was analyzed. The results of the present study provide a deeper understanding of the evolution and function of fish complement C8.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Plasma CD59 concentrations are increased in preeclampsia with severe features and correlate with laboratory measures of end-organ injury. Pregnancy Hypertens 2020; 22:204-209. [PMID: 33091682 DOI: 10.1016/j.preghy.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Dysregulation of CD59 may lead to increased complement-mediated end-organ injury in preeclampsia. We sought to determine if soluble CD59 concentrations are altered in preeclampsia with severe features. STUDY DESIGN Observational case-control study, which enrolled subjects prospectively from six centers in Colombia from 2015 to 2016. Cases had preeclampsia with severe features and controls were either healthy or had chronic hypertension, gestational hypertension, or preeclampsia without severe features. Trained coordinators collected clinical data, blood and urine. Analyses were by test of medians and Spearman's correlation. MAIN OUTCOME MEASURES Soluble CD59 concentration in plasma and urine, using enzyme linked immunosorbent assays. RESULTS In total, 352 subjects were enrolled (104 cases; 248 controls). Compared to healthy women or those with other hypertensive disorders of pregnancy, women with preeclampsia with severe features had increased concentration of CD59 in plasma (P < 0.001) and decreased CD59 in urine (P = 0.01). In sub-group analyses, plasma CD59 concentrations were increased in preeclampsia with severe features compared to healthy controls (P < 0.001) or controls with either chronic hypertension (P = 0.002) or gestational hypertension (P = 0.02). Increased plasma CD59 concentrations correlated with decreased platelet count and increased lactate dehydrogenase, creatinine, aspartate transaminase, urine protein/creatinine ratio, systolic blood pressure and diastolic blood pressure (P < 0.01, all correlations). CONCLUSION In women with preeclampsia with severe features, soluble CD59 concentrations were increased in plasma and decreased in urine, and plasma levels correlated with increased blood pressure and end-organ injury. Soluble CD59 concentrations may help identify a subset of women with preeclampsia that have altered regulation of terminal complement proteins.
Collapse
|
5
|
Jiang Y, Lin L, Chen S, Jiang L, Kriegbaum MC, Gårdsvoll H, Hansen LV, Li J, Ploug M, Yuan C, Huang M. Crystal Structures of Human C4.4A Reveal the Unique Association of Ly6/uPAR/α-neurotoxin Domain. Int J Biol Sci 2020; 16:981-993. [PMID: 32140067 PMCID: PMC7053344 DOI: 10.7150/ijbs.39919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/26/2019] [Indexed: 01/26/2023] Open
Abstract
Ly6/uPAR/α-neurotoxin domain (LU-domain) is characterized by the presence of 4-5 disulfide bonds and three flexible loops that extend from a core stacked by several conversed disulfide bonds (thus also named three-fingered protein domain). This highly structurally stable protein domain is typically a protein-binder at extracellular space. Most LU proteins contain only single LU-domain as represented by Ly6 proteins in immunology and α-neurotoxins in snake venom. For Ly6 proteins, many are expressed in specific cell lineages and in differentiation stages, and are used as markers. In this study, we report the crystal structures of the two LU-domains of human C4.4A alone and its complex with a Fab fragment of a monoclonal anti-C4.4A antibody. Interestingly, both structures showed that C4.4A forms a very compact globule with two LU-domain packed face to face. This is in contrast to the flexible nature of most LU-domain-containing proteins in mammals. The Fab combining site of C4.4A involves both LU-domains, and appears to be the binding site for AGR2, a reported ligand of C4.4A. This work reports the first structure that contain two LU-domains and provides insights on how LU-domains fold into a compact protein and interacts with ligands.
Collapse
Affiliation(s)
- Yunbin Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Mette C Kriegbaum
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Line V Hansen
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD - From hypothesis to clinical trials. Exp Eye Res 2019; 184:266-277. [PMID: 31082363 DOI: 10.1016/j.exer.2019.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Data from human dry and wet age-related macular degeneration (AMD) eyes support the hypothesis that constant 'tickover' of the alternative complement pathway results in chronic deposition of the complement membrane attack complex (MAC) on the choriocapillaris and the retinal pigment epithelium (RPE). Sub-lytic levels of MAC lead to cell signaling associated with tissue remodeling and the production of cytokines and inflammatory molecules. Lytic levels of MAC lead to cell death. CD59 is a naturally occurring inhibitor of the assembly of MAC. CD59 may thus be therapeutically efficacious against the pathophysiology of dry and wet AMD. The first gene therapy clinical trial for geographic atrophy - the advanced form of dry AMD has recently completed recruitment. This trial is studying the safety and tolerability of expressing CD59 from an adeno-associated virus (AAV) vector injected once into the vitreous. A second clinical trial assessing the efficacy of CD59 in wet AMD patients is also under way. Herein, the evidence for the role of MAC in the pathophysiology of dry as well as wet AMD and the scientific rationale underlying the use of AAV- delivered CD59 for the treatment of dry and wet AMD is discussed.
Collapse
Affiliation(s)
- Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Karbian N, Eshed-Eisenbach Y, Tabib A, Hoizman H, Morgan BP, Schueler-Furman O, Peles E, Mevorach D. Molecular pathogenesis of human CD59 deficiency. NEUROLOGY-GENETICS 2018; 4:e280. [PMID: 30533526 PMCID: PMC6244018 DOI: 10.1212/nxg.0000000000000280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 11/15/2022]
Abstract
Objective To characterize all 4 mutations described for CD59 congenital deficiency. Methods The 4 mutations, p.Cys64Tyr, p.Asp24Val, p.Asp24Valfs*, and p.Ala16Alafs*, were described in 13 individuals with CD59 malfunction. All 13 presented with recurrent Guillain-Barré syndrome or chronic inflammatory demyelinating polyneuropathy, recurrent strokes, and chronic hemolysis. Here, we track the molecular consequences of the 4 mutations and their effects on CD59 expression, localization, glycosylation, degradation, secretion, and function. Mutants were cloned and inserted into plasmids to analyze their expression, localization, and functionality. Results Immunolabeling of myc-tagged wild-type (WT) and mutant CD59 proteins revealed cell surface expression of p.Cys64Tyr and p.Asp24Val detected with the myc antibody, but no labeling by anti-CD59 antibodies. In contrast, frameshift mutants p.Asp24Valfs* and p.Ala16Alafs* were detected only intracellularly and did not reach the cell surface. Western blot analysis showed normal glycosylation but mutant-specific secretion patterns. All mutants significantly increased MAC-dependent cell lysis compared with WT. In contrast to CD59 knockout mice previously used to characterize phenotypic effects of CD59 perturbation, all 4 hCD59 mutations generate CD59 proteins that are expressed and may function intracellularly (4) or on the cell membrane (2). None of the 4 CD59 mutants are detected by known anti-CD59 antibodies, including the 2 variants present on the cell membrane. None of the 4 inhibits membrane attack complex (MAC) formation. Conclusions All 4 mutants generate nonfunctional CD59, 2 are expressed as cell surface proteins that may function in non-MAC-related interactions and 2 are expressed only intracellularly. Distinct secretion of soluble CD59 may have also a role in disease pathogenesis.
Collapse
Affiliation(s)
- Netanel Karbian
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Yael Eshed-Eisenbach
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Adi Tabib
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Hila Hoizman
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - B Paul Morgan
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Ora Schueler-Furman
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Elior Peles
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| |
Collapse
|
8
|
Morgan BP, Boyd C, Bubeck D. Molecular cell biology of complement membrane attack. Semin Cell Dev Biol 2017; 72:124-132. [PMID: 28647534 DOI: 10.1016/j.semcdb.2017.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
The membrane attack complex (MAC) is the pore-forming toxin of the complement system, a relatively early evolutionary acquisition that confers upon complement the capacity to directly kill pathogens. The MAC is more than just a bactericidal missile, having the capacity when formed on self-cells to initiate a host of cell activation events that can have profound consequences for tissue homeostasis in the face of infection or injury. Although the capacity of complement to directly kill pathogens has been recognised for over a century, and the pore-forming killing mechanism for at least 50 years, there remains considerable uncertainty regarding precisely how MAC mediates its killing and cell activation activities. A recent burst of new information on MAC structure provides context and opportunity to re-assess the ways in which MAC kills bacteria and modulates cell functions. In this brief review we will describe key aspects of MAC evolution, function and structure and seek to use the new structural information to better explain how the MAC works.
Collapse
Affiliation(s)
- B Paul Morgan
- Systems Immunity University Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF144XN, UK.
| | - Courtney Boyd
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, 506 Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, 506 Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
9
|
Tan WM, Lau SF, Ajat M, Mansor R, Abd Rani PAM, Rahmad NB. Proteomic Analysis of Synovial Fluid Obtained From a Dog Diagnosed With Idiopathic Immune-Mediated Polyarthritis. Top Companion Anim Med 2017; 32:24-27. [DOI: 10.1053/j.tcam.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 11/11/2022]
|
10
|
Cagliani R, Forni D, Filippi G, Mozzi A, De Gioia L, Pontremoli C, Pozzoli U, Bresolin N, Clerici M, Sironi M. The mammalian complement system as an epitome of host-pathogen genetic conflicts. Mol Ecol 2016; 25:1324-39. [PMID: 26836579 DOI: 10.1111/mec.13558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
The complement system is an innate immunity effector mechanism; its action is antagonized by a wide array of pathogens and complement evasion determines the virulence of several infections. We investigated the evolutionary history of the complement system and of bacterial-encoded complement-interacting proteins. Complement components targeted by several pathogens evolved under strong selective pressure in primates, with selection acting on residues at the contact interface with microbial/viral proteins. Positively selected sites in CFH and C4BPA account for the human specificity of gonococcal infection. Bacterial interactors, evolved adaptively as well, with selected sites located at interaction surfaces with primate complement proteins. These results epitomize the expectation under a genetic conflict scenario whereby the host's and the pathogen's genes evolve within binding avoidance-binding seeking dynamics. In silico mutagenesis and protein-protein docking analyses supported this by showing that positively selected sites, both in the host's and in the pathogen's interacting partner, modulate binding.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.,Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| |
Collapse
|
11
|
Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol Sci 2014; 36:109-23. [PMID: 25528970 DOI: 10.1016/j.tips.2014.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
Abstract
Snake venom neurotoxins and lymphocyte antigen 6 (Ly6) proteins, most of the latter being membrane tethered by a glycosylphosphatidylinositol (GPI) anchor, have a variety of biological activities, but their three-finger (3F) folding combines them in one Ly6/neurotoxin family. Subsets of two groups, represented by α-neurotoxins and Lynx1, respectively, interact with nicotinic acetylcholine receptors (nAChR) and, hence, are of therapeutic interest for the treatment of neurodegenerative diseases, pain, and cancer. Information on the mechanisms of action and 3D structure of the binding sites, which is required for drug design, is available from the 3D structure of α-neurotoxin complexes with nAChR models. Here, I compare the structural and functional features of α-neurotoxins versus Lynx1 and its homologs to get a clearer picture of Lynx1-nAChR interactions that is necessary for fundamental science and practical applications.
Collapse
|
12
|
Abstract
The complement terminal pathway clears pathogens by generating cytotoxic membrane attack complex (MAC) pores on target cells. For more than 40 years, biochemical and cellular assays have been used to characterize the lytic nature of the MAC and to define its protein composition. Although models for pore formation have been inferred from structures of bacterial cytolysins, it was only recently that we were able to visualize how complement components come together during MAC assembly. This review highlights structural analyses of terminal pathway complexes to explore molecular mechanisms underlying MAC formation.
Collapse
Affiliation(s)
- Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
13
|
Abstract
The complement system is an intricate network of serum proteins that mediates humoral innate immunity through an amplification cascade that ultimately leads to recruitment of inflammatory cells or opsonisation or killing of pathogens. One effector arm of this network is the terminal pathway of complement, which leads to the formation of the membrane attack complex (MAC) composed of complement components C5b, C6, C7, C8 and C9. Upon formation of C5 convertases via the classical or alternative pathways of complement activation, C5b is generated from C5 by proteolytic cleavage, nucleating a series of association and polymerisation reactions of the MAC-constituting complement components that culminate in pore formation of pathogenic membranes. Recent structures of MAC components and homologous proteins significantly increased our understanding of oligomerisation, membrane association and integration, shedding light onto the molecular mechanism of this important branch of the innate immune system.
Collapse
|
14
|
On the three-finger protein domain fold and CD59-like proteins in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2482. [PMID: 24205416 PMCID: PMC3812095 DOI: 10.1371/journal.pntd.0002482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined. Schistosomes are parasites that reside for many years in the blood stream, demanding efficient mechanisms of evading immune response effectors such as complement deposition. A group of genes similar to human CD59, an important complement inhibitor in mammals, were identified in the schistosome genome. Computer predictions of protein structure indicated substantial similarity of the schistosome proteins and the mammalian CD59 family of proteins, which due to their three-finger-shaped spatial conformation are members of the Three-Finger Protein Domain fold superfamily (TFPD). Members of this family of schistosome proteins were also shown to be expressed predominantly during the mammalian stages when worms are exposed to complement and found to be present at the host-interactive surface of schistosomes. Three different methods were employed to test the possible involvement of these proteins in complement inhibition. Our results strongly suggest that these proteins are not involved in the inhibition of complement and that further studies are needed to establish their functional role(s) in schistosomes.
Collapse
|
15
|
Ghosh P, Sahoo R, Vaidya A, Cantel S, Kavishwar A, Goldfine A, Herring N, Bry L, Chorev M, Halperin JA. A specific and sensitive assay for blood levels of glycated CD59: a novel biomarker for diabetes. Am J Hematol 2013; 88:670-6. [PMID: 23670858 DOI: 10.1002/ajh.23478] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 02/04/2023]
Abstract
Increasing evidence links the complement system with complications of human diabetes. The complement regulatory protein CD59, an inhibitor of formation of membrane attack complex (MAC), is inhibited by hyperglycemia-induced glycation fostering increased deposition of MAC, a major effector of complement-mediated tissue damage. CD59, an ubiquitous GPI-anchored membrane protein, is shed from cell membranes by phospholipases generating a soluble form present in blood and urine. We established an enzyme-linked immunosorbent assay (ELISA) to measure serum/plasma glycated human CD59 (hCD59) (GCD59) and evaluated its potential as a diabetes biomarker. We used a synthetic peptide strategy to generate (a) a mouse monoclonal antibody to capture hCD59, (b) a rabbit monoclonal antibody to detect GCD59, and (c) a GCD59 surrogate for assay standardization. ELISA conditions were optimized for precision, reproducibility, and clinical sensitivity. The clinical utility of the assay was initially evaluated in 24 subjects with or without diabetes and further validated in a study that included 100 subjects with and 90 subjects without a diagnosis of diabetes. GCD59 (a) was significantly higher in individuals with than in individual without diabetes, (b) was independently associated with HbA1c, and (c) identified individuals with diabetes with high specificity and sensitivity. We report the development and standardization of a novel, sensitive, and specific ELISA for measuring GCD59 in blood. The assay distinguished individuals with diabetes from those without, and showed strong correlation between GCD59 and HbA1c. Because GCD59 likely contributes to the pathogenesis of diabetes complications, measurement of blood levels of GCD59 may be useful in the diagnosis and management of diabetes.
Collapse
Affiliation(s)
- Pamela Ghosh
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Rupam Sahoo
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Anand Vaidya
- Division of Endocrinology; Diabetes and Hypertension; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Sonia Cantel
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Amol Kavishwar
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | | | - Neil Herring
- Crimson Biospecimen Core, Partners Healthcare System; Boston; Massachusetts
| | - Lynn Bry
- Crimson Biospecimen Core, Partners Healthcare System; Boston; Massachusetts
| | - Michael Chorev
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Jose A. Halperin
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| |
Collapse
|
16
|
Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 2013; 3:1369-77. [PMID: 23665225 PMCID: PMC3675674 DOI: 10.1016/j.celrep.2013.04.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/03/2022] Open
Abstract
Pore-forming proteins containing the structurally conserved membrane attack complex/perforin fold play an important role in immunity and host-pathogen interactions. Intermedilysin (ILY) is an archetypal member of a cholesterol-dependent cytolysin subclass that hijacks the complement receptor CD59 to make cytotoxic pores in human cells. ILY directly competes for the membrane attack complex binding site on CD59, rendering cells susceptible to complement lysis. To understand how these bacterial pores form in lipid bilayers and the role CD59 plays in complement regulation, we determined the crystal structure of human CD59 bound to ILY. Here, we show the ILY-CD59 complex at 3.5 Å resolution and identify two interfaces mediating this host-pathogen interaction. An ILY-derived peptide based on the binding site inhibits pore formation in a CD59-containing liposome model system. These data provide insight into how CD59 coordinates ILY monomers, nucleating an early prepore state, and suggest a potential mechanism of inhibition for the complement terminal pathway. Crystal structure of the ILY-CD59 complex defines two interfaces Our two binding interfaces are supported by previous mutagenesis studies An ILY-derived peptide competes for binding in a liposome model system Our model provides a structural basis for CD59 nucleation of an ILY early prepore
Collapse
|
17
|
Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:55-81. [PMID: 23402019 DOI: 10.1007/978-1-4614-4118-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE.
Collapse
|
18
|
The effects of CD59 gene as a target gene on breast cancer cells. Cell Immunol 2011; 272:61-70. [PMID: 22000275 DOI: 10.1016/j.cellimm.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 01/03/2023]
Abstract
The retroviral-vector-targeted CD59 gene (pSUPER-siCD59) was constructed and transfected into breast cells (MCF-7). The results demonstrated that the retroviral vector-mediated RNAi successfully suppressed human CD59 gene. The expression of CD59 decreased at both mRNA and protein levels. Knockdown of CD59 abrogated its protective effect on complement-mediated cytolysis. Fas and caspase-3 were remarkably upregulated, which induced apoptosis and tumor growth suppression in MCF-7 cells. In addition, overexpression of CD59 promoted the proliferation of MCF-7 cells and inhibited anti-apoptotic Bcl-2 expression. In conclusion, CD59 may be a promising target in the gene therapy of breast cancer.
Collapse
|
19
|
Wickham SE, Hotze EM, Farrand AJ, Polekhina G, Nero TL, Tomlinson S, Parker MW, Tweten RK. Mapping the intermedilysin-human CD59 receptor interface reveals a deep correspondence with the binding site on CD59 for complement binding proteins C8alpha and C9. J Biol Chem 2011; 286:20952-62. [PMID: 21507937 DOI: 10.1074/jbc.m111.237446] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD59 is a glycosylphosphatidylinositol-anchored protein that inhibits the assembly of the terminal complement membrane attack complex (MAC) pore, whereas Streptococcus intermedius intermedilysin (ILY), a pore forming cholesterol-dependent cytolysin (CDC), specifically binds to human CD59 (hCD59) to initiate the formation of its pore. The identification of the residues of ILY and hCD59 that form their binding interface revealed a remarkably deep correspondence between the hCD59 binding site for ILY and that for the MAC proteins C8α and C9. ILY disengages from hCD59 during the prepore to pore transition, suggesting that loss of this interaction is necessary to accommodate specific structural changes associated with this transition. Consistent with this scenario, mutants of hCD59 or ILY that increased the affinity of this interaction decreased the cytolytic activity by slowing the transition of the prepore to pore but not the assembly of the prepore oligomer. A signature motif was also identified in the hCD59 binding CDCs that revealed a new hCD59-binding member of the CDC family. Although the binding site on hCD59 for ILY, C8α, and C9 exhibits significant homology, no similarity exists in their binding sites for hCD59. Hence, ILY and the MAC proteins interact with common amino acids of hCD59 but lack detectable conservation in their binding sites for hCD59.
Collapse
Affiliation(s)
- Stephanie E Wickham
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen X, Liu J, Yang P, Chen D. Identifying functional residues in Arabidopsis thaliana zeta class glutathione S-transferase through screening inactive point mutants. BIOCHEMISTRY (MOSCOW) 2010; 75:110-20. [DOI: 10.1134/s0006297910010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
LaChapelle S, Tweten RK, Hotze EM. Intermedilysin-receptor interactions during assembly of the pore complex: assembly intermediates increase host cell susceptibility to complement-mediated lysis. J Biol Chem 2009; 284:12719-26. [PMID: 19293153 DOI: 10.1074/jbc.m900772200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intermedilysin (ILY) is an unusual member of the family of cholesterol-dependent cytolysins because it binds to human CD59 (hCD59) rather than directly to cholesterol-rich membranes. Binding of ILY to hCD59 initiates a series of conformational changes within the toxin that result in the conversion of the soluble monomer into an oligomeric membrane-embedded pore complex. In this study the association of ILY with its membrane receptor has been examined throughout the assembly and formation of the pore complex. Using ILY mutants trapped at various stages of pore assembly, we show ILY remains engaged with hCD59 throughout the assembly of the prepore oligomer, but it disengages from the receptor upon the conversion to the pore complex. We further show that the assembly intermediates increase the sensitivity of the host cell to lysis by its complement membrane attack complex, apparently by blocking the hCD59-binding site for complement proteins C8alpha and C9.
Collapse
Affiliation(s)
- Stephanie LaChapelle
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
22
|
Stahel PF, Flierl MA, Morgan BP, Persigehl I, Stoll C, Conrad C, Touban BM, Smith WR, Beauchamp K, Schmidt OI, Ertel W, Leinhase I. Absence of the complement regulatory molecule CD59a leads to exacerbated neuropathology after traumatic brain injury in mice. J Neuroinflammation 2009; 6:2. [PMID: 19133139 PMCID: PMC2631471 DOI: 10.1186/1742-2094-6-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 01/08/2009] [Indexed: 12/02/2022] Open
Abstract
Background Complement represents a crucial mediator of neuroinflammation and neurodegeneration after traumatic brain injury. The role of the terminal complement activation pathway, leading to generation of the membrane attack complex (MAC), has not been thoroughly investigated. CD59 is the major regulator of MAC formation and represents an essential protector from homologous cell injury after complement activation in the injured brain. Methods Mice deleted in the Cd59a gene (CD59a-/-) and wild-type littermates (n = 60) were subjected to focal closed head injury. Sham-operated (n = 60) and normal untreated mice (n = 14) served as negative controls. The posttraumatic neurological impairment was assessed for up to one week after trauma, using a standardized Neurological Severity Score (NSS). The extent of neuronal cell death was determined by serum levels of neuron-specific enolase (NSE) and by staining of brain tissue sections in TUNEL technique. The expression profiles of pro-apoptotic (Fas, FasL, Bax) and anti-apoptotic (Bcl-2) mediators were determined at the gene and protein level by real-time RT-PCR and Western blot, respectively. Results Clinically, the brain-injured CD59a-/- mice showed a significantly impaired neurological outcome within 7 days, as determined by a higher NSS, compared to wild-type controls. The NSE serum levels, an indirect marker of neuronal cell death, were significantly elevated in CD59a-/- mice at 4 h and 24 h after trauma, compared to wild-type littermates. At the tissue level, increased neuronal cell death and brain tissue destruction was detected by TUNEL histochemistry in CD59a-/- mice within 24 hours to 7 days after head trauma. The analysis of brain homogenates for potential mediators and regulators of cell death other than the complement MAC (Fas, FasL, Bax, Bcl-2) revealed no difference in gene expression and protein levels between CD59a-/- and wild-type mice. Conclusion These data emphasize an important role of CD59 in mediating protection from secondary neuronal cell death and further underscore the key role of the terminal complement pathway in the pathophysiology of traumatic brain injury. The exact mechanisms of complement MAC-induced secondary neuronal cell death after head injury require further investigation.
Collapse
Affiliation(s)
- Philip F Stahel
- Department of Orthopedic Surgery, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO 80204, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Varela JC, Imai M, Atkinson C, Ohta R, Rapisardo M, Tomlinson S. Modulation of protective T cell immunity by complement inhibitor expression on tumor cells. Cancer Res 2008; 68:6734-42. [PMID: 18701498 PMCID: PMC2681227 DOI: 10.1158/0008-5472.can-08-0502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complement-inhibitory proteins expressed on cancer cells can provide protection from antitumor antibodies and may potentially modulate the induction of an immune response to tumor-associated antigens. In the current study, we investigated the consequences of complement inhibitor down-regulation on the effector and inductive phases of an immune response. Stable small interfering RNA-mediated down-regulation of the complement inhibitor Crry on MB49 murine bladder cancer cells increased their susceptibility to monoclonal antibody and complement in vitro. In a syngeneic model of metastatic cancer, the down-regulation of Crry on i.v.-injected MB49 cells was associated with a significant decrease in tumor burden and an increase in the survival of challenged mice. However, monoclonal antibody therapy had no additional benefit. There was an antitumor IgG response, but the response was not effected by Crry down-regulation on inoculated tumor cells. Down-regulation of Crry on MB49 cells resulted in an enhanced antitumor T-cell response in challenged mice (measured by lymphocyte IFN-gamma secretion), and CD8+ T cell depletion of mice prior to injection of MB49 cells completely abrogated the effect of Crry down-regulation on tumor burden and survival. Deficiency of C3 also abrogated the effect of Crry down-regulation on the survival of MB49-challenged mice, indicating a complement-dependent mechanism. These data indicate that complement inhibitors expressed on a tumor cell can suppress a T cell response and that enhancing complement activation on a tumor cell surface can promote protective T cell immunity.
Collapse
Affiliation(s)
- Juan C Varela
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
24
|
Gong Y, Peng M, Zhou W, Zhang Y. Evolution of cd59 gene in mammals. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2007; 50:773-9. [PMID: 17914642 DOI: 10.1007/s11427-007-0095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/07/2007] [Indexed: 05/17/2023]
Abstract
The CD59-coding sequences were obtained from 5 mammals by PCR and BLAST, and combined with the available sequences in GenBank, the nucleotide substitution rates of mammalian cd59 were calculated. Results of synonymous and nonsynonymous substitution rates revealed that cd59 experienced negative selection in mammals overall. Four sites experiencing positive selection were found by using "site-specific" model in PAML software. These sites were distributed on the molecular surface, of which 2 sites located in the key functional domain. Furthermore, "branch-site-specific" model detected 1 positive site in cd59a and cd59b lineages which underwent accelerated evolution caused by positive selection after gene duplication in mouse.
Collapse
Affiliation(s)
- YuanYing Gong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | | | | | | |
Collapse
|
25
|
Leath KJ, Johnson S, Roversi P, Hughes TR, Smith RAG, Mackenzie L, Morgan BP, Lea SM. High-resolution structures of bacterially expressed soluble human CD59. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:648-52. [PMID: 17671359 PMCID: PMC2335151 DOI: 10.1107/s1744309107033477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/09/2007] [Indexed: 11/10/2022]
Abstract
CD59 is a membrane-bound glycoprotein that protects host cells from lysis by inhibiting the terminal pathway of complement, preventing the formation and insertion of the membrane attack complex (MAC). Crystals of bacterially expressed and nonglycosylated recombinant soluble human CD59 have been obtained from three crystallization conditions, each of which gave rise to a distinct crystal form. Each crystal form led to a crystal structure at high resolution (1.15, 1.35 and 1.8 A). In one of these structures the electron-density map shows an as yet unidentified small molecule in the predicted C8/C9-binding site. The presence/absence of this ligand is linked to alternate conformations of the amino acids implicated in C8/C9 binding.
Collapse
Affiliation(s)
- Kirstin J. Leath
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England
| | - Pietro Roversi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England
| | - Timothy R. Hughes
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales
| | - Richard A. G. Smith
- Department of Medicine, University of Cambridge, Level 5 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, England
| | - Lloyd Mackenzie
- Inflazyme Pharmaceuticals, 425-5600 Parkwood Way, Richmond, British Columbia, V6V 2M2, Canada
| | - B. Paul Morgan
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England
| |
Collapse
|
26
|
Abstract
The involvement of the immune system in the response to tissue injury has raised the possibility that it might influence tissue, organ or appendage regeneration following injury. One hypothesis that has been discussed is that inflammatory aspects may preclude the occurrence of regeneration, but there is also evidence for more positive roles of immune components. The vertebrate eye is an immunoprivileged site where inflammatory aspects are inhibited by several immunomodulatory mechanisms. In various newt species the ocular tissues such as the lens are regenerative and it has recently been shown that the response to local injury of the lens involves activation of antigen-presenting cells which traffic to the spleen and return to displace and engulf the lens, thereby inducing regeneration from the dorsal iris. The activation of thrombin from prothrombin in the dorsal iris is one aspect of the injury response that is important in the initiation of regeneration. The possible relationships between the immune response and the regenerative response are considered with respect to phylogenetic variation of regeneration in general, and lens regeneration in particular.
Collapse
Affiliation(s)
- James W Godwin
- Department of Biochemistry & Molecular Biology, University College London, UK
| | | |
Collapse
|
27
|
Huang Y, Qiao F, Abagyan R, Hazard S, Tomlinson S. Defining the CD59-C9 binding interaction. J Biol Chem 2006; 281:27398-404. [PMID: 16844690 DOI: 10.1074/jbc.m603690200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD59 is a membrane glycoprotein that regulates formation of the cytolytic membrane attack complex (MAC or C5b-9) on host cell membranes. It functions by binding to C8 (alpha chain) and C9 after their structural rearrangement during MAC assembly. Previous studies indicated that the CD59 binding site in C9 was located within a 25-residue disulfide-bonded loop, and in C8alpha was located within a 51-residue sequence that overlaps the CD59 binding region of C9. By peptide screens and the use of peptides in binding assays, functional assays, and computer modeling and docking studies, we have identified a 6-residue sequence of human C9, spanning residues 365-371, as the primary CD59 recognition domain involved in CD59-mediated regulation of MAC formation. The data also indicate that both C8alpha and C9 bind to a similar or overlapping site on CD59. Furthermore, data from CD59-peptide docking models are consistent with the C9 binding site on CD59 located at a hydrophobic pocket, putatively identified previously by CD59 mutational and modeling studies.
Collapse
Affiliation(s)
- Yuxiang Huang
- Department of Microbiology and Immunology, Medical University of South Carolina, South Carolina 29403, USA
| | | | | | | | | |
Collapse
|