1
|
Romeo S, Vidal-Puig A, Husain M, Ahima R, Arca M, Bhatt DL, Diehl AM, Fontana L, Foo R, Frühbeck G, Kozlitina J, Lonn E, Pattou F, Plat J, Quaggin SE, Ridker PM, Rydén M, Segata N, Tuttle KR, Verma S, Roeters van Lennep J, Benn M, Binder CJ, Jamialahmadi O, Perkins R, Catapano AL, Tokgözoğlu L, Ray KK. Clinical staging to guide management of metabolic disorders and their sequelae: a European Atherosclerosis Society consensus statement. Eur Heart J 2025:ehaf314. [PMID: 40331343 DOI: 10.1093/eurheartj/ehaf314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Obesity rates have surged since 1990 worldwide. This rise is paralleled by increases in pathological processes affecting organs such as the heart, liver, and kidneys, here termed systemic metabolic disorders (SMDs). For clinical management of SMD, the European Atherosclerosis Society proposes a pathophysiology-based system comprising three stages: Stage 1, where metabolic abnormalities such as dysfunctional adiposity and dyslipidaemia occur without detectable organ damage; Stage 2, which involves early organ damage manifested as Type 2 diabetes, asymptomatic diastolic dysfunction, metabolic-associated steatohepatitis (MASH), and chronic kidney disease (CKD); and Stage 3, characterized by more advanced organ damage affecting multiple organs. Various forms of high-risk obesity, driven by maintained positive energy balance, are the most common cause of SMD, leading to ectopic lipid accumulation and insulin resistance. This progression affects various organs, promoting comorbidities such as hypertension and atherogenic dyslipidaemia. Genetic factors influence SMD susceptibility, and ethnic disparities in SMD are attributable to genetic and socioeconomic factors. Key SMD features include insulin resistance, inflammation, pre-diabetes, Type 2 diabetes, MASH, hypertension, CKD, atherogenic dyslipidaemia, and heart failure. Management strategies involve lifestyle changes, pharmacotherapy, and metabolic surgery in severe cases, with emerging treatments focusing on genetic approaches. The staging system provides a structured approach to understanding and addressing the multi-faceted nature of SMD, which is crucial for improving health outcomes. Categorization of SMD abnormalities by presence and progression is aimed to improve awareness of a multi-system trait and encourage a tailored and global approach to treatment, ultimately aiming to reduce the burden of obesity-related comorbidities.
Collapse
Affiliation(s)
- Stefano Romeo
- Department of Medicine, H7 Medicin, Huddinge, H7 Endokrinologi och Diabetes Romeo, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital Huddinge, 141 57 Huddinge, Stockholm, Sweden
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- Centro de Investigacion Principe Felipe, C/ d'Eduardo Primo Yufera, 3, 46012 Valencia, Spain
- Cambridge University Nanjing Centre of Technology and Innovation, No. 23, Rongyue Road, Jiangbei New Area, Nanjing, Jiangsu, China
| | - Mansoor Husain
- Ted Rogers Centre for Heart Research, Department of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, Canada M5G 1M1
| | - Rexford Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Internal Medicine and Metabolic Diseases, Hospital Policlinico Umberto I, Rome, Italy
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Luigi Fontana
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- Metabolic Research Laboratory, CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Julia Kozlitina
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eva Lonn
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Francois Pattou
- Department of Endocrine and Metabolic Surgery, CHU Lille, University of Lille, Inserm, Institut Pasteur Lille, Lille, France
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Susan E Quaggin
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Katherine R Tuttle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
| | - Subodh Verma
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Jeanine Roeters van Lennep
- Department of Internal Medicine, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marianne Benn
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Centre of Diagnostic Investigation, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Alberico L Catapano
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London, UK
| |
Collapse
|
2
|
Chen L, Tian L, Zhang Y, Shi Y, Yuan W, Zou Y, Zhang Q, Chen M, Zeng P. Updated Insights into Probiotic Interventions for Metabolic Syndrome: Mechanisms and Evidence. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10554-x. [PMID: 40332670 DOI: 10.1007/s12602-025-10554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Metabolic syndrome (MetS) is a disease with complex and diverse etiologies. Extrinsic factors such as diet and lifestyle can induce dysbiosis of gut microbes, compromising intestinal barrier integrity and leading to inflammation and insulin resistance, thereby advancing MetS. Probiotic interventions have shown potential in ameliorating gut microbiota dysbiosis and regulating host metabolism by assimilating lipids, metabolizing carbohydrates, and producing short-chain fatty acids (SCFA), indole compounds, secondary bile acids, conjugated linoleic acid (CLA), and other active ingredients. An increasing number of new strains are being isolated and validated for their effective roles intervening on MetS in animal and population studies. This review aims to provide updated insights into the pathogenic mechanisms of MetS, highlight the newly identified probiotic strains that have demonstrated improvements in MetS, and elucidate their mechanisms of action, with the aim of offering contemporary perspectives for the future use of probiotics in mitigating MetS.
Collapse
Affiliation(s)
- Lili Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Ying Shi
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Wenyi Yuan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yue Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Qin Zhang
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong 510070, Guangzhou, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
3
|
Yang S, Su X, Lai M, Liu X, Cheng Y. Angiopoietin-Like Protein Family-Mediated Functions in Modulating Triglyceride Metabolism and Related Metabolic Diseases. FRONT BIOSCI-LANDMRK 2025; 30:25862. [PMID: 40302331 DOI: 10.31083/fbl25862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 05/02/2025]
Abstract
Hypertriglyceridemia, characterized by increased triglyceride (TG) concentrations, is considered the most important risk factor for cardiometabolic disorders, including dyslipidemia, atherosclerotic cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Recently, the angiopoietin-like protein (ANGPTL) family, which comprises ANGPTL1 to ANGPTL8, was confirmed to play an important role in modulating lipoprotein lipase (LPL) activity. However, understanding of the underlying mechanisms remains limited. Importantly, emerging evidence has linked several transcriptional and post-transcriptional factors to the potential alteration of TG metabolism via ANGPTL proteins. This review focused on the similarities and differences in the expression, structural features, and modulatory profile of three ANGPTLs: ANGPTL3, ANGPTL4, and ANGPTL8. In addition, the regulatory functions of those three ANGPTLs in modulating LPL were summarized to provide potential therapeutic and clinical strategies for hypertriglyceridemia and its related cardiometabolic disorders.
Collapse
Affiliation(s)
- Sen Yang
- Department of Anesthesia Surgery Center, The West China Xiamen Hospital of Sichuan University, 361021 Xiamen, Fujian, China
| | - Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Min Lai
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Xiaoxi Liu
- Department of Anesthesia Surgery Center, The West China Xiamen Hospital of Sichuan University, 361021 Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| |
Collapse
|
4
|
Li Y, Zhang Y, Cao M, Yuan T, Ou S. Angiopoietin-like protein 4 dysregulation in kidney diseases: a promising biomarker and therapeutic target. Front Pharmacol 2025; 15:1475198. [PMID: 39840089 PMCID: PMC11747783 DOI: 10.3389/fphar.2024.1475198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
The global burden of renal diseases is increasingly severe, underscoring the need for in-depth exploration of the molecular mechanisms underlying renal disease progression and the development of potential novel biomarkers or therapeutic targets. Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine involved in the regulation of key biological processes, such as glucose and lipid metabolism, inflammation, vascular permeability, and angiogenesis, all of which play crucial roles in the pathogenesis of kidney diseases. Over the past 2 decades, ANGPTL4 has been regarded as playing a pivotal role in the progression of various kidney diseases, prompting significant interest from the scientific community regarding its potential clinical utility in renal disorders. This review synthesizes the available literature, provides a concise overview of the molecular biological effects of ANGPTL4, and highlights its relationship with multiple renal diseases and recent research advancements. These findings underscore the important gaps that warrant further investigation to develop novel targets for the prediction or treatment of various renal diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Yuxin Zhang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Mengxia Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Tingting Yuan
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Santao Ou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
5
|
Yen IW, Chen SC, Lin CH, Fan KC, Yang CY, Hsu CY, Kuo CH, Lin MS, Lyu YP, Juan HC, Heng-Huei L, Li HY. Precision medicine in diabetes prediction: Exploring a subgroup-specific biomarker strategy for risk stratification. J Diabetes Investig 2025; 16:43-50. [PMID: 39535373 DOI: 10.1111/jdi.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The early detection of high-risk individuals is crucial to delay and reduce the incidence of type 2 diabetes. In this study, we aimed to explore the performance of a novel subgroup-specific biomarker strategy in the prediction of incident diabetes. MATERIALS AND METHODS In the Taiwan Lifestyle Cohort Study, adult subjects without diabetes were included and followed for the incidence of diabetes in 2006-2019. The biomarkers measured included blood secretogranin III (SCG3), vascular adhesion protein-1 (VAP-1), fibrinogen-like protein 1 (FGL1), angiopoietin-like protein 6 (ANGPTL6), and angiopoietin-like protein 4 (ANGPTL4). RESULTS Among the 1,287 subjects, 12.2% developed diabetes during a 6 year follow-up. Blood VAP-1 was significantly associated with incident diabetes in the overall population (HR = 0.724, P < 0.05), participants under 65 years old (HR = 0.685, P < 0.05), those with a BMI of ≥24 kg/m2 (HR = 0.673, P < 0.05), and females (HR = 0.635, P < 0.05). Blood ANGPTL6 was significantly correlated with incident diabetes in participants aged 65 and older (HR = 0.314, P < 0.05), and blood SCG3 was associated with incident diabetes in those with a BMI of <24 kg/m2 (HR = 1.296, P < 0.05). Two subgroup-specific biomarker strategies were developed. The gender and BMI-specific biomarker strategy, using traditional risk factors and blood SCG3 or VAP-1 in different subgroups, could improve prediction performance, especially the specificity and positive prediction value, compared with the whole-population strategy using only traditional risk factors or traditional risk factors plus blood VAP-1. CONCLUSION Gender- and BMI-specific biomarker strategy can improve the prediction of incident diabetes. A subgroup-specific biomarker strategy is a novel approach in the prediction of incident diabetes.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chi Chen
- Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Yi Yang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Medical Imaging, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Yao Hsu
- Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chun-Heng Kuo
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Pin Lyu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lin Heng-Huei
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Gadiraju B, Magisetty J, Kondreddy V. Transcription factor ETV4 plays a critical role in the development of non-alcoholic fatty liver disease. Int J Biol Macromol 2024; 282:137235. [PMID: 39500423 DOI: 10.1016/j.ijbiomac.2024.137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/12/2024]
Abstract
The Angiopoietin-like 4 (ANGPTL4) and ETS Variant Transcription Factor 4 (ETV4) are involved in the metabolic transition and carcinogenesis in the liver. However, the role of ETV4 in the development of non-alcoholic fatty liver disease (NAFLD) is currently unknown. Our study reveals that ETV4 expression was upregulated in the diet-induced non-alcoholic fatty liver disease, and plays a critical role in the dysregulated lipid metabolism. We demonstrate a mechanism by which ANGPTL4 regulates lipid homeostasis via involving the AMPK/ETV4 axis. Transient knockdown of ETV4 abolished the ANGPTL4-induced expression of Srebp1c, Acc and Fasn. Insulin treatment potentially increased the physical association of ETV4 with SREBP1, and promotes nuclear translocation and transcriptional activity of SREBP1. In addition, we show that combined therapy with omega-3 fatty acids and diacylglycerol O-acyltransferase inhibitor 1 (DGAT1) inhibitor (A-922500) counteracted the ANGPTL4-ETV4 axis-induced lipogenesis in vitro, and in vivo in obese mice via activation of GPR120-βarrestin2-AMPK pathway. Finally, we demonstrate that targeted pharmacologic therapy using GalNac-ETV4 siRNA that specifically inhibits ETV4 gene expression in the liver protects against diet-induced NAFLD, obesity and dyslipidemia. Hence, our study reveal previously unrecognized role of ETV4 in the NAFLD, and provides rationale targeting ETV4 to treat NAFLD.
Collapse
Affiliation(s)
- Bhavani Gadiraju
- Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Jhansi Magisetty
- Department of Zoology, Central University of Punjab, Bathinda., India.
| | - Vijay Kondreddy
- Department of Biochemistry, Central University of Punjab, Bathinda, India.
| |
Collapse
|
7
|
Xu Z, Jiang G. ANGPTL4-A protein involved in glucose metabolism, lipid metabolism, and tumor development. J Gene Med 2024; 26:e3740. [PMID: 39467822 DOI: 10.1002/jgm.3740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/30/2024] Open
Abstract
Since ANGPTL4 was discovered to be involved in lipid metabolism in 2000 for the first time, Angptl4 has attracted the attention of researchers. With the further research, it was found that angptl4 was also involved in many biological activities (glucose metabolism, angiogenesis, wound healing, tumor growth, etc.) in vivo. In this review, we provide an overview of the fundamental role of ANGPTL4 in metabolic regulation and its impact on tumor growth. These insights may provide a way for exploring ANGPTL4 as a potential therapeutic target for future disease treatments.
Collapse
Affiliation(s)
- Zhilong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Fiorenza M, Onslev J, Henríquez-Olguín C, Persson KW, Hesselager SA, Jensen TE, Wojtaszewski JFP, Hostrup M, Bangsbo J. Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans. SCIENCE ADVANCES 2024; 10:eadq4461. [PMID: 39475607 PMCID: PMC11524190 DOI: 10.1126/sciadv.adq4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H2O2 emission. These findings provide translational and mechanistic evidence implicating mitochondrial oxidants in the development of lipid-induced muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Matteo Fiorenza
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Henríquez-Olguín
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 1509, Chile
| | - Kaspar W. Persson
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sofie A. Hesselager
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Thomas E. Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F. P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jens Bangsbo
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
9
|
Kuo CH, Wang SH, Juan HC, Chen SC, Kuo CH, Kuo HC, Lin SY, Li HY. Angiopoietin-like protein 4 induces growth hormone variant secretion and aggravates insulin resistance during pregnancy, linking obesity to gestational diabetes mellitus. Biofactors 2024; 50:1176-1191. [PMID: 38760159 DOI: 10.1002/biof.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 05/19/2024]
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a secretory glycoprotein involved in regulating glucose homeostasis in non-pregnant subjects. However, its role in glucose metabolism during pregnancy and the pathophysiology of gestational diabetes mellitus (GDM) remains elusive. Thus, this study aimed to clarify the relationship between ANGPTL4 and GDM and investigate the pathophysiology of placental ANGPTL4 in glucose metabolism. We investigated this issue using blood and placenta samples in 957 pregnant women, the human 3A-sub-E trophoblast cell line, and the L6 skeletal muscle cell line. We found that ANGPTL4 expression in the placenta was higher in obese pregnant women than in lean controls. Palmitic acid significantly induced ANGPTL4 expression in trophoblast cells in a dose-response manner. ANGPTL4 overexpression in trophoblast cells resulted in endoplasmic reticulum (ER) stress, which stimulated the expression and secretion of growth hormone-variant (GH2) but not human placental lactogen. In L6 skeletal muscle cells, soluble ANGPTL4 suppressed insulin-mediated glucose uptake through the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinases 1/2 (ERK 1/2) pathways. In pregnant women, plasma ANGPTL4 concentrations in the first trimester predicted the incidence of GDM and were positively associated with BMI, plasma triglyceride, and plasma GH2 in the first trimester. However, they were negatively associated with insulin sensitivity index ISI0,120 in the second trimester. Overall, placental ANGPTL4 is induced by obesity and is involved in the pathophysiology of GDM via the induction of ER stress and GH2 secretion. Soluble ANGPTL4 can lead to insulin resistance in skeletal muscle cells and is an early biomarker for predicting GDM.
Collapse
Affiliation(s)
- Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Chi Chen
- Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Luo F, Das A, Khetarpal SA, Fang Z, Zelniker TA, Rosenson RS, Qamar A. ANGPTL3 inhibition, dyslipidemia, and cardiovascular diseases. Trends Cardiovasc Med 2024; 34:215-222. [PMID: 36746257 DOI: 10.1016/j.tcm.2023.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Optimal management of low-density lipoprotein cholesterol (LDL-C) is a central tenet in the primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD). However, significant residual cardiovascular risk remains despite achieving guideline-directed LDL-C levels, in part due to mixed hyperlipidemia with elevated fasting and non-fasting triglyceride-rich lipoprotein levels. Advances in human genetics have identified angiopoietin-like 3 (ANGPTL3) as a promising therapeutic target to lower cardiovascular risk. Evidence accrued from genetic epidemiological studies demonstrate that ANGPTL3 loss of function is strongly associated with lowering of circulating LDL-C, triglyceride-rich lipoproteins and concurrent risk reduction in development of coronary artery disease. Pharmacological inhibition of ANGPTL3 with monoclonal antibodies, antisense oligonucleotides and gene editing are in development with early studies showing their safety and efficacy in lowering in both, LDL-C and TGs, circumventing a key limitation of previous therapies. Monoclonal antibodies targeting ANGPTL3 are approved for clinical use in homozygous familial hypercholesteremia in USA and Europe. Although promising, future studies focusing on long-term beneficial effect in reducing cardiovascular events with inhibition of ANGPTL3 are warranted.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sumeet A Khetarpal
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Thomas A Zelniker
- Division of Cardiology, Vienna General Hospital and Medical University of Vienna, Austria
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, NY, United States
| | - Arman Qamar
- Section of Interventional Cardiology & Vascular Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, 2650 Ridge Avenue, Evanston, IL, United States.
| |
Collapse
|
12
|
Deng M, Kersten S. Characterization of sexual dimorphism in ANGPTL4 levels and function. J Lipid Res 2024; 65:100526. [PMID: 38431115 PMCID: PMC10973588 DOI: 10.1016/j.jlr.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.
Collapse
Affiliation(s)
- Mingjuan Deng
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Yang L, Wang Y, Xu Y, Li K, Yin R, Zhang L, Wang D, Wei L, Lang J, Cheng Y, Wang L, Ke J, Zhao D. ANGPTL3 is a novel HDL component that regulates HDL function. J Transl Med 2024; 22:263. [PMID: 38462608 PMCID: PMC10926621 DOI: 10.1186/s12967-024-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/24/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Angiopoietin-like protein 3 (ANGPTL3) is secreted by hepatocytes and inhibits lipoprotein lipase and endothelial lipase activity. Previous studies reported the correlation between plasma ANGPTL3 levels and high-density lipoprotein (HDL). Recently ANGPTL3 was found to preferentially bind to HDL in healthy human circulation. Here, we examined whether ANGPTL3, as a component of HDL, modulates HDL function and affects HDL other components in human and mice with non-diabetes or type 2 diabetes mellitus. METHODS HDL was isolated from the plasma of female non-diabetic subjects and type-2 diabetic mellitus (T2DM) patients. Immunoprecipitation, western blot, and ELISA assays were used to examine ANGPTL3 levels in HDL. Db/m and db/db mice, AAV virus mediated ANGPTL3 overexpression and knockdown models and ANGPTL3 knockout mice were used. The cholesterol efflux capacity induced by HDL was analyzed in macrophages preloaded with fluorescent cholesterol. The anti-inflammation capacity of HDL was assessed using flow cytometry to measure VCAM-1 and ICAM-1 expression levels in TNF-α-stimulated endothelial cells pretreated with HDL. RESULTS ANGPTL3 was found to bind to HDL and be a component of HDL in both non-diabetic subjects and T2DM patients. Flag-ANGPTL3 was found in the HDL of transgenic mice overexpressing Flag-ANGPTL3. ANGPLT3 of HDL was positively associated with cholesterol efflux in female non-diabetic controls (r = 0.4102, p = 0.0117) but not in female T2DM patients (r = - 0.1725, p = 0.3224). Lower ANGPTL3 levels of HDL were found in diabetic (db/db) mice compared to control (db/m) mice and were associated with reduced cholesterol efflux and inhibition of VCAM-1 and ICAM-1 expression in endothelial cells (p < 0.05 for all). Following AAV-mediated ANGPTL3 cDNA transfer in db/db mice, ANGPTL3 levels were found to be increased in HDL, and corresponded to increased cholesterol efflux and decreased ICAM-1 expression. In contrast, knockdown of ANGPTL3 levels in HDL by AAV-mediated shRNA transfer led to a reduction in HDL function (p < 0.05 for both). Plasma total cholesterol, total triglycerides, HDL-c, protein components of HDL and the cholesterol efflux function of HDL were lower in ANGPTL3-/- mice than ANGPTL3+/+ mice, suggesting that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. CONCLUSION ANGPTL3 was identified as a component of HDL in humans and mice. ANGPTL3 of HDL regulated cholesterol efflux and the anti-inflammatory functions of HDL in T2DM mice. Both the protein components of HDL and cholesterol efflux capacity of HDL were decreased in ANGPTL3-/- mice. Our findings suggest that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. Our study contributes to a more comprehensive understanding of the role of ANGPTL3 in lipid metabolism.
Collapse
Affiliation(s)
- Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Yan Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Yongsong Xu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Kun Li
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Ruili Yin
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Lijie Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Di Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Lingling Wei
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jianan Lang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Yanan Cheng
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Lu Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China.
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China.
| |
Collapse
|
14
|
Prater MC, Scheurell AR, Paton CM, Cooper JA. Eight weeks of daily cottonseed oil intake attenuates postprandial angiopoietin-like proteins 3 and 4 responses compared to olive oil in adults with hypercholesterolemia: A secondary analysis of a randomized clinical trial. Nutr Res 2024; 123:88-100. [PMID: 38295507 DOI: 10.1016/j.nutres.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Angiopoietin-like proteins (ANGPTLs) -3, -4, and -8 are regulators of lipid metabolism and have been shown to respond to changes in dietary fats. It is unknown how ANGPTLs respond to cottonseed oil (CSO) and olive oil (OO) consumption in a population with hypercholesterolemia. The purpose of this study was to determine the impact of CSO vs. OO consumption on fasting and postprandial ANGPTL responses in adults with hypercholesterolemia. We hypothesized that CSO would have lower fasting and postprandial ANGPTL responses compared with OO. Forty-two adults with high cholesterol completed a single-blind, randomized trial comparing CSO (n = 21) vs. OO (n = 21) diet enrichment. An 8-week partial outpatient feeding intervention provided ∼60% of the volunteers' total energy expenditure (∼30% of total energy expenditure as CSO or OO). The remaining 40% was not controlled. Fasting blood draws were taken at pre-, mid-, and postintervention visits. Volunteers consumed a high saturated fat meal followed by 5 hours of blood draws pre- and postvisits. Fasting ANGPTL3 had a marginally significant treatment by visit interaction (P = .06) showing an increase from pre- to postintervention in CSO vs. OO (CSO: 385.1 ± 27.7 to 440.3 ± 33.9 ng/mL; OO: 468.2 ± 38.3 to 449.2 ± 49.5 ng/mL). Both postprandial ANGPTL3 (P = .02) and ANGPTL4 (P < .01) had treatment by visit interactions suggesting increases from pre- to postintervention in OO vs. CSO with no differences between groups in ANGPTL8. These data show a worsening (increase) of postprandial ANGPTLs after the OO, but not CSO, intervention. This aligns with previously reported data in which postprandial triglycerides were protected from increases compared with OO. ANGPTLs may mediate protective effects of CSO consumption on lipid control. This trial was registered at clinicaltrials.gov (NCT04397055).
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Alex R Scheurell
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Chad M Paton
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA; Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Ling M, Qian H, Guo H. Knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy. In Vitro Cell Dev Biol Anim 2024; 60:258-265. [PMID: 38424378 DOI: 10.1007/s11626-024-00861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
It has been demonstrated that angiopoietin-like protein 4 (ANGPTL4) plays an important regulatory role in lipid metabolism and backfat deposition appears to vary in different pig breeds. However, the correlation between ANGPTL4 and backfat deposition have not been well characterized and the role of ANGPTL4 in regulating adipogenesis remains unclear. Therefore, this study aimed to investigate correlation between ANGPTL4 and backfat deposition and to explore the effects of ANGPTL4 on preadipocyte differentiation and the underlying mechanism. Our results showed that the backfat thickness and the ANGPTL4 gene expression of Laiwu pigs were significantly higher than those in DLY pigs and the ANGPTL4 gene expression was positively correlated with backfat thickness both in DLY pigs and Laiwu pigs. Moreover, an increase in ANGPTL4 expression and activation of autophagy were observed during the differentiation of stromal vascular fraction cells. In addition, knockdown of ANGPTL4 inhibited the differentiation of 3T3-L1 cells with decreased expression of LC3-II and ATG5 and increased expression of SQSTM1, suggesting the involvement of autophagy in ANGPTL4-mediated adipogenesis. In conclusion, these results suggested that ANGPTL4 is positively correlated with backfat deposition in pigs and knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy, providing new insights into the regulation of fat deposition and to improve the carcass quality and meat quality of porcine.
Collapse
Affiliation(s)
- Mingfa Ling
- Jiangsu Key laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Heying Qian
- Jiangsu Key laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Huiduo Guo
- Jiangsu Key laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
16
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial lipase variant T111I does not alter inhibition by angiopoietin-like proteins. Sci Rep 2024; 14:4246. [PMID: 38379026 PMCID: PMC10879187 DOI: 10.1038/s41598-024-54705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA
| | - Kaleb C Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Michael J Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Brandon S J Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA.
| |
Collapse
|
17
|
Yang B, Shen F, Zhu Y, Cai H. Downregulating ANGPTL3 by miR-144-3p promoted TGF-β1-induced renal interstitial fibrosis via activating PI3K/AKT signaling pathway. Heliyon 2024; 10:e24204. [PMID: 38322878 PMCID: PMC10845249 DOI: 10.1016/j.heliyon.2024.e24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Despite observations of decreased ANGPTL3 (angiopoietin-like protein 3) levels in tubular atrophy and renal interstitial fibrosis (RIF), its functional implications and regulatory mechanisms in RIF remain unclear. This investigation employed unilateral ureteral obstruction (UUO) mice as in vivo model and human proximal kidney tubuloepithelial HK-2 cells under TGF-β1 treatment as in vitro model to explore RIF. The RIF extent was evaluated using H & E staining and Masson's trichrome staining. There was a significant decrease in ANGPTL3 levels and an increase in miR-144-3p, accompanied by heightened expressions of α-SMA, p-PI3K, p-AKT, Collagen I, and Fibronectin in the UUO mice and HK-2 cells treated with TGF-β1. Enhancing ANGPTL3 expression or suppressing miR-144-3p mitigated TGF-β1-induced cellular apoptosis, inflammation, and PI3K/AKT signaling pathway activation, as evidenced by altered levels of α-SMA, Collagen I, Fibronectin, and associated signaling markers. Using a bioinformatics approach, a miR-144-3p binding site was discovered on the ANGPTL3 mRNA, and this finding was subsequently confirmed through luciferase reporter assay. In HK-2 cells stimulated with TGF-β1, the suppression of ANGPTL3 negated the effects of inhibiting miR-144-3p. Under comparable conditions, the use of LY294002, an inhibitor of the PI3K/AKT pathway, nullified the effects caused by the knockdown of ANGPTL3. Collectively, these findings indicate that miR-144-3p exacerbates RIF through PI3K/AKT pathway activation by targeting ANGPTL3, highlighting a novel potential therapeutic target for RIF management.
Collapse
Affiliation(s)
- Bin Yang
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Fengxian Shen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yi Zhu
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Haolei Cai
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
18
|
Fortunato IM, Pereira QC, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Metabolic Insights into Caffeine's Anti-Adipogenic Effects: An Exploration through Intestinal Microbiota Modulation in Obesity. Int J Mol Sci 2024; 25:1803. [PMID: 38339081 PMCID: PMC10855966 DOI: 10.3390/ijms25031803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity, a chronic condition marked by the excessive accumulation of adipose tissue, not only affects individual well-being but also significantly inflates healthcare costs. The physiological excess of fat manifests as triglyceride (TG) deposition within adipose tissue, with white adipose tissue (WAT) expansion via adipocyte hyperplasia being a key adipogenesis mechanism. As efforts intensify to address this global health crisis, understanding the complex interplay of contributing factors becomes critical for effective public health interventions and improved patient outcomes. In this context, gut microbiota-derived metabolites play an important role in orchestrating obesity modulation. Microbial lipopolysaccharides (LPS), secondary bile acids (BA), short-chain fatty acids (SCFAs), and trimethylamine (TMA) are the main intestinal metabolites in dyslipidemic states. Emerging evidence highlights the microbiota's substantial role in influencing host metabolism and subsequent health outcomes, presenting new avenues for therapeutic strategies, including polyphenol-based manipulations of these microbial populations. Among various agents, caffeine emerges as a potent modulator of metabolic pathways, exhibiting anti-inflammatory, antioxidant, and obesity-mitigating properties. Notably, caffeine's anti-adipogenic potential, attributed to the downregulation of key adipogenesis regulators, has been established. Recent findings further indicate that caffeine's influence on obesity may be mediated through alterations in the gut microbiota and its metabolic byproducts. Therefore, the present review summarizes the anti-adipogenic effect of caffeine in modulating obesity through the intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
19
|
Yen IW, Lin SY, Lin MW, Lee CN, Kuo CH, Chen SC, Tai YY, Kuo CH, Kuo HC, Lin HH, Juan HC, Lin CH, Fan KC, Wang CY, Li HY. The association between plasma angiopoietin-like protein 4, glucose and lipid metabolism during pregnancy, placental function, and risk of delivering large-for-gestational-age neonates. Clin Chim Acta 2024; 554:117775. [PMID: 38220135 DOI: 10.1016/j.cca.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Large-for-gestational-age (LGA) neonates have increased risk of adverse pregnancy outcomes and adult metabolic diseases. We aimed to investigate the relationship between plasma angiopoietin-like protein 4 (ANGPTL4), a protein involved in lipid and glucose metabolism during pregnancy, placental function, growth factors, and the risk of LGA. METHODS We conducted a prospective cohort study and recruited women with singleton pregnancies at the National Taiwan University Hospital between 2013 and 2018. First trimester maternal plasma ANGPTL4 concentrations were measured. RESULTS Among 353 pregnant women recruited, the LGA group had higher first trimester plasma ANGPTL4 concentrations than the appropriate-for-gestational-age group. Plasma ANGPTL4 was associated with hemoglobin A1c, post-load plasma glucose, plasma triglyceride, plasma free fatty acid concentrations, plasma growth hormone variant (GH-V), and birth weight, but was not associated with cord blood growth factors. After adjusting for age, body mass index, hemoglobin A1c, and plasma triglyceride concentrations, plasma ANGPTL4 concentrations were significantly associated with LGA risk, and its predictive performance, as measured by the area under the receiver operating characteristic curve, outperformed traditional risk factors for LGA. CONCLUSIONS Plasma ANGPTL4 is associated with glucose and lipid metabolism during pregnancy, plasma GH-V, and birth weight, and is an early biomarker for predicting the risk of LGA.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu County, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Heng-Huei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yuan Wang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
20
|
Zhuang Z, Zhou P, Wang J, Lu X, Chen Y. The Characteristics, Mechanisms and Therapeutics: Exploring the Role of Gut Microbiota in Obesity. Diabetes Metab Syndr Obes 2023; 16:3691-3705. [PMID: 38028999 PMCID: PMC10674108 DOI: 10.2147/dmso.s432344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Presently, obesity has emerged as a significant global public health concern due to its escalating prevalence and incidence rates. The gut microbiota, being a crucial environmental factor, has emerged as a key player in the etiology of obesity. Nevertheless, the intricate and specific interactions between obesity and gut microbiota, along with the underlying mechanisms, remain incompletely understood. This review comprehensively summarizes the gut microbiota characteristics in obesity, the mechanisms by which it induces obesity, and explores targeted therapies centered on gut microbiota restoration.
Collapse
Affiliation(s)
- Zequn Zhuang
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Peng Zhou
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Jing Wang
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Xiaojing Lu
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yigang Chen
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
- Wuxi Clinical College, Nantong University, Wuxi, People’s Republic of China
| |
Collapse
|
21
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial Lipase Variant, T111I, Does Not Alter Inhibition by Angiopoietin-like Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553740. [PMID: 37693454 PMCID: PMC10491130 DOI: 10.1101/2023.08.18.553740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L. Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| | - Kaleb C. Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Michael J. Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Brandon S. J. Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
23
|
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77:1797-1835. [PMID: 36727674 PMCID: PMC10735173 DOI: 10.1097/hep.0000000000000323] [Citation(s) in RCA: 992] [Impact Index Per Article: 496.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Mary E. Rinella
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | - Stephen Caldwell
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Barb
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Rohit Loomba
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
24
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
25
|
Gomes D, Sobolewski C, Conzelmann S, Schaer T, Lefai E, Alfaiate D, Tseligka ED, Goossens N, Tapparel C, Negro F, Foti M, Clément S. ANGPTL4 is a potential driver of HCV-induced peripheral insulin resistance. Sci Rep 2023; 13:6767. [PMID: 37185283 PMCID: PMC10130097 DOI: 10.1038/s41598-023-33728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic hepatitis C (CHC) is associated with the development of metabolic disorders, including both hepatic and extra-hepatic insulin resistance (IR). Here, we aimed at identifying liver-derived factor(s) potentially inducing peripheral IR and uncovering the mechanisms whereby HCV can regulate the action of these factors. We found ANGPTL4 (Angiopoietin Like 4) mRNA expression levels to positively correlate with HCV RNA (r = 0.46, p < 0.03) and HOMA-IR score (r = 0.51, p = 0.01) in liver biopsies of lean CHC patients. Moreover, we observed an upregulation of ANGPTL4 expression in two models recapitulating HCV-induced peripheral IR, i.e. mice expressing core protein of HCV genotype 3a (HCV-3a core) in hepatocytes and hepatoma cells transduced with HCV-3a core. Treatment of differentiated myocytes with recombinant ANGPTL4 reduced insulin-induced Akt-Ser473 phosphorylation. In contrast, conditioned medium from ANGPTL4-KO hepatoma cells prevented muscle cells from HCV-3a core induced IR. Treatment of HCV-3a core expressing HepG2 cells with PPARγ antagonist resulted in a decrease of HCV-core induced ANGPTL4 upregulation. Together, our data identified ANGPTL4 as a potential driver of HCV-induced IR and may provide working hypotheses aimed at understanding the pathogenesis of IR in the setting of other chronic liver disorders.
Collapse
Affiliation(s)
- Diana Gomes
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cyril Sobolewski
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- U1286-INFINITE-Institute for Translational Research in Inflammation, CHU Lille, Inserm, University Lille, 59000, Lille, France
| | - Stéphanie Conzelmann
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tifany Schaer
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Etienne Lefai
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Dulce Alfaiate
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Infectious Diseases, Hôpital de la Croix Rousse, Lyon University Hospitals, Lyon, France
| | - Eirini D Tseligka
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Goossens
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Negro
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland
| | - Michelangelo Foti
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
26
|
Nemoto S, Kubota T, Ohno H. Exploring body weight-influencing gut microbiota by elucidating the association with diet and host gene expression. Sci Rep 2023; 13:5593. [PMID: 37019989 PMCID: PMC10076326 DOI: 10.1038/s41598-023-32411-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
We aimed to identify gut microbiota that influences body weight by elucidating the association with diets and host genes. Germ-free (GF) mice with and without fecal microbiota transplant (FMT) were fed a normal, high-carbohydrate, or high-fat diet. FMT mice exhibited greater total body weight; adipose tissue and liver weights; blood glucose, insulin, and total cholesterol levels; and oil droplet size than the GF mice, regardless of diet. However, the extent of weight gain and metabolic parameter levels associated with gut microbiota depended on the nutrients ingested. For example, a disaccharide- or polysaccharide-rich diet caused more weight gain than a monosaccharide-rich diet. An unsaturated fatty acid-rich diet had a greater microbial insulin-increasing effect than a saturated fatty acid-rich diet. Perhaps the difference in microbial metabolites produced from substances taken up by the host created metabolic differences. Therefore, we analyzed such dietary influences on gut microbiota, differentially expressed genes between GF and FMT mice, and metabolic factors, including body weight. The results revealed a correlation between increased weight gain, a fat-rich diet, increased Ruminococcaceae abundance, and decreased claudin 22 gene expression. These findings suggest that weight regulation might be possible through the manipulation of the gut microbiota metabolism using the host's diet.
Collapse
Affiliation(s)
- Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
27
|
Yuri G, Sanhueza S, Paredes A, Morales G, Cifuentes M, Ormazabal P. Deleterious liver-adipose crosstalk in obesity: Hydroethanolic extract of Lampaya medicinalis Phil. (Verbenaceae) counteracts fatty acid-induced fibrotic marker expression in human hepatocytes. Mol Cell Endocrinol 2023; 564:111882. [PMID: 36736687 DOI: 10.1016/j.mce.2023.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Elevated circulating fatty acids in obesity may induce hepatic steatosis, leading to liver inflammation, fibrosis and nonalcoholic fatty liver disease (NAFLD). On the other hand, impaired communication between hepatocytes and adipose tissue (AT) in obesity influences adipose lipolysis and fibrosis, negatively affecting metabolic function. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in Chilean folk medicine to treat inflammatory diseases. Hydroethanolic extract of lampaya (HEL) contains flavonoids that may explain its anti-inflammatory effect, but it is unknown whether HEL modulates fibrogenic processes in hepatocytes. We studied lipolysis and expression of fibrosis markers after exposure of visceral AT explants from subjects with obesity to HepG2-secreted factors. In addition, we evaluated the effect of HEL on palmitic acid (PA, C16:0) and oleic acid (OA; C18:1)-induced fibrotic marker expression in HepG2 hepatocytes. Results: Exposure to HepG2-secreted factors increased visceral AT lipolysis and expression of CTGF and collagen I. Exposure to OA/PA elevated collagen I, CTGF, fibronectin, α-smooth muscle actin, MMP-2 and MMP-9 expression in HepG2 cells, and these effects were prevented by HEL co-treatment. Conclusion: HEL effect counteracting OA/PA-induced fibrotic marker expression in HepG2 hepatocytes may represent a preventive approach against hepatic fibrosis and deleterious liver-adipose crosstalk in obesity.
Collapse
Affiliation(s)
- Gabriela Yuri
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000, Rancagua, Chile; Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Sofía Sanhueza
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000, Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000, Antofagasta, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.
| | - Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000, Rancagua, Chile; Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile.
| |
Collapse
|
28
|
Hepatokines and Adipokines in Metabolic Syndrome. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2023. [DOI: 10.1055/s-0042-1760087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
AbstractHepatokines and adipokines are secretory proteins derived from hepatocytes and adipocytes, respectively. These proteins play a main role in the pathogenesis of metabolic syndrome (MetS), characterized by obesity, dysglycemia, insulin resistance, dyslipidemia, and hypertension. Adipose tissue and liver are important endocrine organs because they regulate metabolic homeostasis as well as inflammation because they secrete adipokines and hepatokines, respectively. These adipokines and hepatokines communicate their action through different autocrine, paracrine and endocrine pathways. Liver regulates systemic homeostasis and also glucose and lipid metabolism through hepatokines. Dysregulation of hepatokines can lead to progression toward MetS, type 2 diabetes (T2D), inflammation, hypertension, and other diseases. Obesity is now a worldwide epidemic. Increasing cases of obesity and obesity-associated metabolic syndrome has brought the focus on understanding the biology of adipocytes and the mechanisms occurring in adipose tissue of obese individuals. A lot of facts are now available on adipose tissue as well. Adipose tissue is now given the status of an endocrine organ. Recent evidence indicates that obesity contributes to systemic metabolic dysfunction. Adipose tissue plays a significant role in systemic metabolism by communicating with other central and peripheral organs via the production and secretion of a group of proteins known as adipokines. Adipokine levels regulate metabolic state of our body and are potent enough to have a direct impact upon energy homeostasis and systemic metabolism. Dysregulation of adipokines contribute to obesity, T2D, hypertension and several other pathological changes in various organs. This makes characterization of hepatokines and adipokines extremely important to understand the pathogenesis of MetS. Hepatokines such as fetuin-A and leukocyte cell-derived chemotaxin 2, and adipokines such as resistin, leptin, TNF-α, and adiponectin are some of the most studied proteins and they can modulate the manifestations of MetS. Detailed insight into the function and mechanism of these adipokines and hepatokines in the pathogenesis of MetS can show the path for devising better preventative and therapeutic strategies against this present-day pandemic.
Collapse
|
29
|
Pregnancy Toxemia in Ewes: A Review of Molecular Metabolic Mechanisms and Management Strategies. Metabolites 2023; 13:metabo13020149. [PMID: 36837768 PMCID: PMC9961611 DOI: 10.3390/metabo13020149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pregnancy toxemia is a nutritional metabolic disease during late gestation in small ruminants. The condition is characterized by disorders in carbohydrate and fat metabolism. Obese and multiparous ewes are particularly susceptible to pregnancy toxemia, which may lead to maternal death, abortion, or premature birth. Highly productive multiparous meat ewes are major breeding animals, which has led to an increased incidence of the disease. However, the pathogenesis of pregnancy toxemia remains unclear and adequate disease prevention and treatment strategies are absent. Investigating the pathogenesis of pregnancy toxemia, especially the metabolic pathways of hepatic lipids, is key to an improved understanding of the condition. This review provides a snapshot of the genes that are associated with lipid metabolism in the ovine liver, including genes involved in fatty acid oxidation, acetyl coenzyme metabolism, and triglyceride synthesis; describes the interrelationships between these genes; and summarizes the diagnosis, prevention, and treatment of pregnancy toxemia.
Collapse
|
30
|
Kim H, Song Z, Zhang R, Davies BSJ, Zhang K. A hepatokine derived from the ER protein CREBH promotes triglyceride metabolism by stimulating lipoprotein lipase activity. Sci Signal 2023; 16:eadd6702. [PMID: 36649378 PMCID: PMC10080946 DOI: 10.1126/scisignal.add6702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
The endoplasmic reticulum (ER)-tethered, liver-enriched stress sensor CREBH is processed in response to increased energy demands or hepatic stress to release an amino-terminal fragment that functions as a transcription factor for hepatic genes encoding lipid and glucose metabolic factors. Here, we discovered that the carboxyl-terminal fragment of CREBH (CREBH-C) derived from membrane-bound, full-length CREBH was secreted as a hepatokine in response to fasting or hepatic stress. Phosphorylation of CREBH-C mediated by the kinase CaMKII was required for efficient secretion of CREBH-C through exocytosis. Lipoprotein lipase (LPL) mediates the lipolysis of circulating triglycerides for tissue uptake and is inhibited by a complex consisting of angiopoietin-like (ANGPTL) 3 and ANGPTL8. Secreted CREBH-C blocked the formation of ANGPTL3-ANGPTL8 complexes, leading to increased LPL activity in plasma and metabolic tissues in mice. CREBH-C administration promoted plasma triglyceride clearance and partitioning into peripheral tissues and mitigated hypertriglyceridemia and hepatic steatosis in mice fed a high-fat diet. Individuals with obesity had higher circulating amounts of CREBH-C than control individuals, and human CREBH loss-of-function variants were associated with dysregulated plasma triglycerides. These results identify a stress-induced, secreted protein fragment derived from CREBH that functions as a hepatokine to stimulate LPL activity and triglyceride homeostasis.
Collapse
Affiliation(s)
- Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Brandon S. J. Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
31
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
32
|
Rabezanahary ANA, Piette M, Missawi O, Garigliany MM, Kestemont P, Cornet V. Microplastics alter development, behavior, and innate immunity responses following bacterial infection during zebrafish embryo-larval development. CHEMOSPHERE 2023; 311:136969. [PMID: 36306963 DOI: 10.1016/j.chemosphere.2022.136969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Although the hazards of microplastics (MPs) have been explored, no complete data exists on the effect of MPs on the egg chorion. This study aims to evaluate the modification of immune responses, metabolism, and behavior of zebrafish larvae (Danio rerio) depending on the moment of exposure. Larvae were exposed to 5 μm polystyrene microbeads at a concentration of 0, 100, or 1000 μg/l, according to a specified times of exposure (0-4, 4-8, 0-8 days postfertilization (dpf)), followed by a bacterial challenge at 8 dpf. After every 4 and 8 dpf, swimming activity, gene expression related to oxidative stress and immune system responses were assessed. During embryonic development, larvae exposed to a concentration of 1000 μg/l MPs already showed a significantly reduced tail coiling frequency, yolk sac resorption and heartbeat. At 8 dpf, swimming activity was altered, even without ingestion and a few days after the end of MP exposure. Our results indicated a difference in immune system (nfkb, il1β) and apoptosis (casp3a, bcl2) related gene expression depending on the timing of MP exposure, which highlighted a contrasting sensitivity according to the exposure time in MP studies. This study brings new insight into how MPs might affect zebrafish larvae health and development even without ingestion.
Collapse
Affiliation(s)
- Andry Ny Aina Rabezanahary
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Mathilde Piette
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Omayma Missawi
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Mutien-Marie Garigliany
- University of Liège, Laboratory of Veterinary Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Liège, Belgium
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Valérie Cornet
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium.
| |
Collapse
|
33
|
Landfors F, Chorell E, Kersten S. Genetic Mimicry Analysis Reveals the Specific Lipases Targeted by the ANGPTL3-ANGPTL8 Complex and ANGPTL4. J Lipid Res 2023; 64:100313. [PMID: 36372100 PMCID: PMC9852701 DOI: 10.1016/j.jlr.2022.100313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations. ANGPTL4 suppression was highly concordant with LPL enhancement but not HL or EL, suggesting ANGPTL4 impacts plasma metabolic parameters exclusively via LPL. The LPL-independent effects of ANGPTL3 suppression on plasma metabolic parameters showed a striking inverse resemblance with EL suppression, suggesting ANGPTL3 not only targets LPL but also targets EL. Investigation of the impact of the ANGPTL3-ANGPTL8 complex on plasma metabolite traits via the ANGPTL8 R59W substitution as an instrumental variable showed a much higher concordance between R59W and EL activity than between R59W and LPL activity, suggesting the R59W substitution more strongly affects EL inhibition than LPL inhibition. Meanwhile, when using a rare and deleterious protein-truncating ANGPTL8 variant as an instrumental variable, the ANGPTL3-ANGPTL8 complex was very LPL specific. In conclusion, our analysis provides strong human genetic evidence that the ANGPTL3-ANGPTL8 complex regulates plasma metabolic parameters, which is achieved by impacting LPL and EL. By contrast, ANGPTL4 influences plasma metabolic parameters exclusively via LPL.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden.
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
34
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
35
|
Jamshidi S, Masoumi SJ, Abiri B, Sarbakhsh P, Sarrafzadeh J, Nasimi N, Vafa M. The effect of synbiotic and vitamin D co-supplementation on body composition and quality of life in middle-aged overweight and obese women: A randomized controlled trial. Clin Nutr ESPEN 2022; 52:270-276. [PMID: 36513465 DOI: 10.1016/j.clnesp.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Obesity is a worldwide problem which has involved large populations. Since some dietary factors might modify obesity through various signaling pathways, the aim of this study was to investigate the effect of synbiotic plus vitamin D co-supplementation on body composition parameters and quality of life, in middle-aged overweight and obese women. METHODS A randomized, controlled, double-blinded trial was performed and 88 overweight and obese women were assigned to 4 groups (22 per group), receiving synbiotic plus vitamin D, synbiotic, vitamin D and placebo for 8 weeks. At the beginning and at the end of the trial, anthropometric indices, body composition indicators, physical activity level, dietary intake, and quality of life score were measured by trained nutritionists. Statistical analysis was performed with SPSS version 22. RESULTS The results showed significant difference between 4 groups in waist circumference (WC), fat mass (FM), body fat percentage (BFP) and visceral fat area (VFA) values after 8 weeks of treatment (P = 0.005, P = 0.007, P = 0.003, and P = 0.009, respectively), with the greatest reduction in synbiotic plus vitamin D group compare to placebo. No significant results were demonstrated between groups in relation to other body composition variables. In addition, there were no significant differences between the 4 groups regarding physical, mental and total aspects of life quality over time. CONCLUSIONS Our study demonstrated that synbiotic and vitamin D co-supplementation for 8 weeks, had favorable effect on various anthropometric indices and body composition indicators, but no desirable change in life quality score. CLINICAL TRIAL REGISTRY IRCT (registration no. IRCT20090822002365N25).
Collapse
Affiliation(s)
- Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Sarrafzadeh
- Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Nasimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Górecka M, Krzemiński K, Mikulski T, Ziemba AW. ANGPTL4, IL-6 and TNF-α as regulators of lipid metabolism during a marathon run. Sci Rep 2022; 12:19940. [PMID: 36402848 PMCID: PMC9675781 DOI: 10.1038/s41598-022-17439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to reveal whether marathon running influences regulators of lipid metabolism i.e. angiopoietin-like protein 4 (ANGPTL4), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Plasma concentration of ANGPTL4, IL-6, TNF-α and lipids were determined in samples collected from 11 male runners before the marathon, immediately after the run and at 90 min of recovery. Plasma ANGPTL4 increased during exercise from 55.5 ± 13.4 to 78.1 ± 15.0 ng/ml (P < 0.001). This was accompanied by a significant increase in IL-6, TNF-α, free fatty acids (FFA) and glycerol (Gly) and a decrease in triacylglycerols (TG). After 90 min of recovery ANGPTL4 and TG did not differ from the exercise values, while plasma IL-6, TNF-α, FFA and Gly concentration were significantly lower. The exercise-induced increase in plasma concentration of ANGPTL4 correlated positively with the rise in plasma IL-6, TNF-α, FFA and Gly and negatively with the duration of the run. The increase in plasma IL-6 and TNF-α correlated positively with the rise in Gly. Summarizing, marathon running induced an increase in plasma ANGPTL4 and the value was higher in faster runners. The increase in plasma FFA, IL-6 and TNF-α concentration during a marathon run may be involved in plasma ANGPTL4 release, which could be a compensatory mechanism against FFA-induced lipotoxicity and oxidative stress. All of the analyzed cytokines may stimulate lipolysis during exercise.
Collapse
Affiliation(s)
- Monika Górecka
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Krzysztof Krzemiński
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Tomasz Mikulski
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Andrzej Wojciech Ziemba
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
37
|
Meszaros M, Bikov A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022; 10:2754. [PMID: 36359273 PMCID: PMC9687681 DOI: 10.3390/biomedicines10112754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with cardiovascular and metabolic comorbidities, including hypertension, dyslipidaemia, insulin resistance and atherosclerosis. Strong evidence suggests that OSA is associated with an altered lipid profile including elevated levels of triglyceride-rich lipoproteins and decreased levels of high-density lipoprotein (HDL). Intermittent hypoxia; sleep fragmentation; and consequential surges in the sympathetic activity, enhanced oxidative stress and systemic inflammation are the postulated mechanisms leading to metabolic alterations in OSA. Although the exact mechanisms of OSA-associated dyslipidaemia have not been fully elucidated, three main points have been found to be impaired: activated lipolysis in the adipose tissue, decreased lipid clearance from the circulation and accelerated de novo lipid synthesis. This is further complicated by the oxidisation of atherogenic lipoproteins, adipose tissue dysfunction, hormonal changes, and the reduced function of HDL particles in OSA. In this comprehensive review, we summarise and critically evaluate the current evidence about the possible mechanisms involved in OSA-associated dyslipidaemia.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
| |
Collapse
|
38
|
Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh) 2022; 6:e2200093. [PMID: 35676229 DOI: 10.1002/adbi.202200093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Indexed: 01/28/2023]
Abstract
Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
39
|
Zhu J, Lyu W, Wang W, Ma L, Lu L, Yang H, Xiao Y. Molecular characterisation, temporal expression and involvement of ANGPTL4 in fat deposition in Muscovy ducks. Br Poult Sci 2022; 63:795-803. [DOI: 10.1080/00071668.2022.2102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jiang Zhu
- College of Animal Science, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
40
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
41
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
42
|
Deng M, Kutrolli E, Sadewasser A, Michel S, Joibari MM, Jaschinski F, Olivecrona G, Nilsson SK, Kersten S. ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy. J Lipid Res 2022; 63:100237. [PMID: 35667416 PMCID: PMC9270256 DOI: 10.1016/j.jlr.2022.100237] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.
Collapse
Affiliation(s)
- Mingjuan Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | - Elda Kutrolli
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden
| | - Anne Sadewasser
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | | | - Frank Jaschinski
- Secarna Pharmaceuticals GmbH & Co. KG, Am Klopferspitz 19, 82152 Planegg, Germany
| | - Gunilla Olivecrona
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden; Department of Medical Biosciences, Umeå University, SE-901 87, Umeå, Sweden
| | - Stefan K Nilsson
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, 907 36, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
43
|
Peng Y, Hu D, Luo Q, Peng D. Angiopoietin-Like Protein 4 May Be an Interplay Between Serum Uric Acid and Triglyceride-Rich Lipoprotein Cholesterol. Front Cardiovasc Med 2022; 9:863687. [PMID: 35711366 PMCID: PMC9197440 DOI: 10.3389/fcvm.2022.863687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although the available evidence has indicated a link between elevated serum uric acid (SUA) level and dyslipidemia, the potential contribution of SUA on lipid profiles remains unclear. Experimental and clinical studies have revealed several mechanisms through which high serum angiopoietin-like protein 4 (ANGPTL4) level exerts deleterious effects on lipid metabolism, but the role of ANGPTL4 in SUA-associated dyslipidemia has not been well studied, so far. Methods A total of 80 subjects were classified into high SUA group (n = 40) and low SUA group (n = 40) by the median value of SUA in the whole study population. Serum ANGPTL4 levels were determined by enzyme-linked immunosorbent assays. Results In our study, we observed that not only serum triglyceride level [1.03 (0.78, 1.50) mmol/L vs. 1.59 (1.18, 2.37) mmol/L, p = 0.001] but also serum triglyceride-rich lipoprotein cholesterol (TRL-C) level [0.38 (0.32, 0.45) mmol/L vs. 0.46 (0.34, 0.54) mmol/L, p = 0.012] were significantly elevated in high SUA group. Additionally, serum ANGPTL4 in high SUA group was higher than in low SUA group [15.81 (11.88, 20.82) ng/ml vs. 22.13 (17.88, 32.09) ng/ml, p = 0.000]. Moreover, in all subjects, TRL-C levels were positively associated with SUA (r = 0.26, p = 0.023, n = 80) and ANGPTL4 levels (r = 0.24, p = 0.036, n = 80). Using stepwise multiple regression analysis to adjust for potential confounders, SUA was discovered to be an independent contributor to serum ANGPTL4 (p = 0.023). At the same time, serum ANGPTL4 was an independent contributor to the level of TRL-C (p = 0.000). However, the correlation between SUA and TRL-C disappeared after controlling for ANGPTL4 level. Conclusion Serum uric acid was positively correlated to TRL-C. ANGPTL4 may be an interplay between SUA and associated elevation of TRL-C.
Collapse
Affiliation(s)
- Yani Peng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yani Peng,
| | - Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
| | - Qingting Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Daoquan Peng,
| |
Collapse
|
44
|
Katanasaka Y, Saito A, Sunagawa Y, Sari N, Funamoto M, Shimizu S, Shimizu K, Akimoto T, Ueki C, Kitano M, Hasegawa K, Sakaguchi G, Morimoto T. ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. J Clin Med 2022; 11:jcm11092449. [PMID: 35566578 PMCID: PMC9099928 DOI: 10.3390/jcm11092449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Epicardial adipose tissue (EAT) is known to affect atherosclerosis and coronary artery disease (CAD) pathogenesis, persistently releasing pro-inflammatory adipokines that affect the myocardium and coronary arteries. Angiopoietin-like 4 (ANGPTL4) is a protein secreted from adipose tissue and plays a critical role in the progression of atherosclerosis. Here, the expression of ANGPTL4 in EAT was investigated in CAD subjects. Thirty-four consecutive patients (13 patients with significant CAD; 21 patients without CAD) undergoing elective open-heart surgery were recruited. EAT and pericardial fluid were obtained at the time of surgery. mRNA expression and ANGPTL4 and IL-1β levels were evaluated by qRT-PCR and ELISA. The expression of ANGPTL4 (p = 0.0180) and IL-1β (p < 0.0001) in EAT significantly increased in the CAD group compared to that in the non-CAD group and positively correlated (p = 0.004). Multiple regression analysis indicated that CAD is a contributing factor for ANGPTL4 expression in EAT. IL-1β level in the pericardial fluid was significantly increased in patients with CAD (p = 0.020). Moreover, the expression of ANGPTL4 (p = 0.004) and IL-1β (p < 0.001) in EAT was significantly increased in non-obese patients with CAD. In summary, ANGPTL4 expression in EAT was increased in CAD patients.
Collapse
Affiliation(s)
- Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
- Laboratory of Clinical Cardiovascular Pharmacology, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka 420-8527, Japan
| | - Ayumi Saito
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
- Laboratory of Clinical Cardiovascular Pharmacology, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka 420-8527, Japan
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
| | - Takehide Akimoto
- Department of Cardiovascular Surgery, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka 420-8527, Japan; (T.A.); (C.U.); (M.K.)
| | - Chikara Ueki
- Department of Cardiovascular Surgery, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka 420-8527, Japan; (T.A.); (C.U.); (M.K.)
| | - Mitsuru Kitano
- Department of Cardiovascular Surgery, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka 420-8527, Japan; (T.A.); (C.U.); (M.K.)
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
| | - Genichi Sakaguchi
- Department of Cardiovascular Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.K.); (A.S.); (Y.S.); (N.S.); (M.F.); (S.S.); (K.S.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
- Laboratory of Clinical Cardiovascular Pharmacology, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka 420-8527, Japan
- Correspondence: ; Tel.: +81-54-264-5763
| |
Collapse
|
45
|
Berthou F, Sobolewski C, Abegg D, Fournier M, Maeder C, Dolicka D, Correia de Sousa M, Adibekian A, Foti M. Hepatic PTEN Signaling Regulates Systemic Metabolic Homeostasis through Hepatokines-Mediated Liver-to-Peripheral Organs Crosstalk. Int J Mol Sci 2022; 23:ijms23073959. [PMID: 35409319 PMCID: PMC8999584 DOI: 10.3390/ijms23073959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Flavien Berthou
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Cyril Sobolewski
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Margot Fournier
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Christine Maeder
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Dobrochna Dolicka
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Marta Correia de Sousa
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(22)-379-52-04
| |
Collapse
|
46
|
van Eenige R, In Het Panhuis W, Schönke M, Jouffe C, Devilee TH, Siebeler R, Streefland TCM, Sips HCM, Pronk ACM, Vorderman RHP, Mei H, van Klinken JB, van Weeghel M, Uhlenhaut NH, Kersten S, Rensen PCN, Kooijman S. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Mol Metab 2022; 60:101497. [PMID: 35413480 PMCID: PMC9048098 DOI: 10.1016/j.molmet.2022.101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. Methods RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. Results We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. Conclusions Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health. The transcriptome and lipidome of brown fat show clusters with distinct circadian phases. The peak in metabolic brown fat activity is defined by activation of lipolytic processes. PPARγ shows oscillating binding to lipolytic genes and may drive diurnal brown fat activity. Genetic modulation of the lipoprotein lipase inhibitor Angptl4 flattens rhythmic activity in brown fat. Time of day should be considered when studying the metabolic benefits of targeting brown fat.
Collapse
Affiliation(s)
- Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Munich, Germany
| | - Thomas H Devilee
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ricky Siebeler
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C M Sips
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina H Uhlenhaut
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Metabolic Programming, Technical University of Munich School of Life Sciences, Freising, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
47
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
48
|
Boeckmans J, Gatzios A, Heymans A, Rombaut M, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Transcriptomics Reveals Discordant Lipid Metabolism Effects between In Vitro Models Exposed to Elafibranor and Liver Samples of NAFLD Patients after Bariatric Surgery. Cells 2022; 11:893. [PMID: 35269515 PMCID: PMC8909190 DOI: 10.3390/cells11050893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. METHODS Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. RESULTS Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. CONCLUSION Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy.
Collapse
Affiliation(s)
- Joost Boeckmans
- Correspondence: (J.B.); (R.M.R.); Tel.: +32-(0)-2-477-45-19 (R.M.R.)
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
50
|
|