1
|
Sun L, Liu J, Lu M, Zhou Y, Guo S, Qin Z, Wang Z, Sun X. Inactivation of SIAH-1 E3 ligase attenuates Aβ toxicity by suppressing ubiquitin-dependent DVE-1 degradation in C. elegans models of Alzheimer's disease. J Biol Chem 2025:110226. [PMID: 40349774 DOI: 10.1016/j.jbc.2025.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
The mitochondrial unfolded protein response (UPRmt), an evolutionarily conserved proteostasis pathway, plays a critical role in the pathogenesis of Alzheimer's disease (AD), characterized by amyloid-β peptide (Aβ) aggregation. Although the transcription factor DVE-1 regulates UPRmt activation in C. elegans and has been implicated in Aβ pathology, its regulatory mechanisms under AD-like conditions remain unclear. Here, using the classical C. elegans muscle-specific AD model (CL2006 strain), we observed UPRmt induction in young adults despite paradoxical depletion of DVE-1 protein concurrent with elevated dve-1 transcript levels. Through integrated genetic and biochemical analyses, we identified SIAH-1, a conserved E3 ubiquitin ligase that partners with the E2 enzyme UBC-25 to interact with DVE-1 and mediate its K48-linked polyubiquitination, as targeting DVE-1 for proteasomal degradation. Disruption of SIAH-1 E3 ubiquitin ligase function or overexpression of DVE-1 significantly reduced Aβ toxicity in both the muscle-expressed Aβ (CL2006) and neuronal Aβ models (gnaIs2). These interventions concurrently suppressed Aβ aggregation in the heat shock-inducible Aβ aggregation model (xchIs15). Mechanistically, this protective effect was associated with restored mitochondrial homeostasis, as evidenced by MitoTracker Red staining and TOMM-20::mCherry fluorescence imaging in muscle-expressed Aβ animals. These assays demonstrated that Aβ accumulation compromises mitochondrial integrity, a phenotype markedly rescued in siah-1 deletion mutants and DVE-1-overexpressing strains. Collectively, these findings establish the SIAH-1/DVE-1 axis as a conserved proteostasis regulator and highlight ubiquitin-dependent mitochondrial quality control as a potential therapeutic target for AD and related proteopathies.
Collapse
Affiliation(s)
- Lihua Sun
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China; Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China
| | - Jiahui Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China
| | - Menghan Lu
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China
| | - Yingying Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China
| | - Shuqi Guo
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China
| | - Zhipeng Qin
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China.
| | - Xiaojuan Sun
- The Zhongzhou Laboratory for Integrative Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 450004, PR China; Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
2
|
Coste F, Mishra A, Chapuis C, Mance L, Pukało Z, Bigot N, Goffinont S, Gaudon V, Garnier N, Talhaoui I, Castaing B, Huet S, Suskiewicz MJ. RING dimerisation drives higher-order organisation of SINA/SIAH E3 ubiquitin ligases. FEBS J 2025. [PMID: 39910688 DOI: 10.1111/febs.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
RING-type E3 ubiquitin ligases promote ubiquitylation by stabilising an active complex between a ubiquitin-loaded E2-conjugating enzyme and a protein substrate. To fulfil this function, the E3 ubiquitin-protein ligase SIAH1 and other SINA/SIAH subfamily RING-type E3 ligases employ an N-terminal catalytic RING domain and a C-terminal substrate-binding domain (SBD), separated by two zinc fingers. Here, we present the first crystal structure of the RING domain of human SIAH1, together with an adjacent zinc finger, revealing a potential RING dimer, which was validated in solution using static light scattering. RING dimerisation contributes to the E3 ligase activity of SIAH1 both in vitro and in cells. Moreover, as the RING domain is the second element, after the SBD, to independently favour homodimerisation within SINA/SIAH E3 ligases, we propose that alternating RING:RING and SBD:SBD interactions organise multiple copies of a SINA/SIAH protein into a higher-order homomultimer. In line with this hypothesis, fluorescently tagged full-length human SIAH1, human SIAH2 and fruit fly SINA show cytoplasmic clusters in human cells, whereas their distribution becomes more diffuse when RING dimerisation is disabled. The wild-type (WT) form of SIAH1, but not its RING dimerisation mutant, colocalises with aggregated synphilin-1A under proteasomal inhibition, suggesting that SIAH1 multimerisation might contribute to its reported preference for aggregated or multimeric substrates.
Collapse
Affiliation(s)
- Franck Coste
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Aanchal Mishra
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Lucija Mance
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Zofia Pukało
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- Pôle Physique, Université d'Orléans, France
| | - Ibtissam Talhaoui
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Sebastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Marcin J Suskiewicz
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| |
Collapse
|
3
|
González D, Infante A, López L, Ceschin D, Fernández-Sanchez MJ, Cañas A, Zafra-Mejía C, Rojas A. Airborne fine particulate matter exposure induces transcriptomic alterations resembling asthmatic signatures: insights from integrated omics analysis. ENVIRONMENTAL EPIGENETICS 2025; 11:dvae026. [PMID: 39850030 PMCID: PMC11753294 DOI: 10.1093/eep/dvae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
Fine particulate matter (PM2.5), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM2.5 exposure and its association with asthma in human airway epithelial cells. Differential gene expression and binding analyses identified 349 common differentially expressed genes and genes associated with differentially enriched H3K27ac regions in both conditions. Co-expression network analysis revealed three preserved modules (Protein Folding, Cell Migration, and Hypoxia Response) significantly correlated with PM2.5 exposure and preserved in asthma networks. Pathways dysregulated in both conditions included epithelial function, hypoxia response, interleukin-17 and TNF signaling, and immune/inflammatory processes. Hub genes like TGFB2, EFNA5, and PFKFB3 were implicated in airway remodeling, cell migration, and hypoxia-induced glycolysis. These findings elucidate common altered expression patterns and processes between PM2.5 exposure and asthma, helping to understand their molecular connection. This provides guidance for future research to utilize them as potential biomarkers or therapeutic targets and generates evidence supporting the need for implementing effective air quality management strategies.
Collapse
Affiliation(s)
- Daniel González
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Alexis Infante
- School of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Liliana López
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Danilo Ceschin
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba X5016KEJ, Argentina
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5016KEJ, Argentina
| | - María José Fernández-Sanchez
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alejandra Cañas
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Carlos Zafra-Mejía
- Grupo de Investigación en Ingeniería Ambiental (GIIAUD), Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá 110321, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Department of Genetics, University of Córdoba, Córdoba 14071, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba 14004, Spain
- Reina Sofía University Hospital, Córdoba 14004, Spain
| |
Collapse
|
4
|
Wang Y, Hang K, Wu X, Ying L, Wang Z, Ling Z, Hu H, Pan Z, Zou X. SLAMF8 regulates osteogenesis and adipogenesis of bone marrow mesenchymal stem cells via S100A6/Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2024; 15:349. [PMID: 39380096 PMCID: PMC11462740 DOI: 10.1186/s13287-024-03964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The inflammatory microenvironment plays an essential role in bone healing after fracture. The signaling lymphocytic activation molecule family (SLAMF) members deeply participate in inflammatory response and make a vast difference. METHODS We identified SLAMF8 in GEO datasets (GSE129165 and GSE176086) and co-expression analyses were performed to define the relationships between SLAMF8 and osteogenesis relative genes (RUNX2 and COL1A1). In vitro, we established SLAMF8 knockdown and overexpression mouse bone marrow mesenchymal stem cells (mBMSCs) lines. qPCR, Western blot, ALP staining, ARS staining, Oil Red O staining and Immunofluorescence analyses were performed to investigate the effect of SLAMF8 in mBMSCs osteogenesis and adipogenesis. In vivo, mice femoral fracture model was performed to explore the function of SLAMF8. RESULTS SLAMF8 knockdown significantly suppressed the expression of osteogenesis relative genes (RUNX2, SP7 and COL1A1), ALP activity and mineral deposition, but increased the expression of adipogenesis relative genes (PPARγ and C/EBPα). Additionally, SLAMF8 overexpression had the opposite effects. The role SLAMF8 played in mBMSCs osteogenic and adipogenic differentiation were through S100A6 and Wnt/β-Catenin signaling pathway. Moreover, SLAMF8 overexpression mBMSCs promoted the healing of femoral fracture. CONCLUSIONS SLAMF8 promotes osteogenesis and inhibits adipogenesis of mBMSCs via S100A6 and Wnt/β-Catenin signaling pathway. SLAMF8 overexpression mBMSCs effectively accelerate the healing of femoral fracture in mice.
Collapse
Affiliation(s)
- Yibo Wang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Kai Hang
- Department of Orthopaedics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xiaoyong Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310009, China
| | - Li Ying
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Zhongxiang Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310009, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhijun Pan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310009, China.
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Liu L, Tong H, Sun Y, Chen X, Yang T, Zhou G, Li XJ, Li S. Huntingtin Interacting Proteins and Pathological Implications. Int J Mol Sci 2023; 24:13060. [PMID: 37685866 PMCID: PMC10488016 DOI: 10.3390/ijms241713060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been discovered, shedding light on the functions and structure of HTT. Most of these proteins interact with the N-terminal region of HTT. Among the various HTT-interacting proteins, huntingtin-associated protein 1 (HAP1) and HTT-interacting protein 1 (HIP1) have been extensively studied. Recent research has uncovered differences in the distribution of HAP1 in monkey and human brains compared with mice. This finding suggests that there may be species-specific variations in the regulation and function of HTT-interacting proteins. Understanding these differences could provide crucial insights into the development of HD. In this review, we will focus on the recent advancements in the study of HTT-interacting proteins, with particular attention to the differential distributions of HTT and HAP1 in larger animal models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of Central Nervous System Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510623, China; (L.L.); (H.T.); (Y.S.); (X.C.); (T.Y.); (G.Z.); (X.-J.L.)
| |
Collapse
|
6
|
Leśniak W, Bohush A, Maksymowicz M, Piwowarczyk C, Karolak NK, Jurewicz E, Filipek A. Involvement of CacyBP/SIP in differentiation and the immune response of HaCaT keratinocytes. Immunobiology 2023; 228:152385. [PMID: 37156124 DOI: 10.1016/j.imbio.2023.152385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
CacyBP/SIP is a multifunctional protein present in various cells and tissues. However, its expression and role in the epidermis has not been explored so far. In this work, using RT-qPCR, Western blot analysis and three-dimensional (3D) organotypic cultures of HaCaT keratinocytes we show that CacyBP/SIP is present in the epidermis. To investigate the possible role of CacyBP/SIP in keratinocytes we obtained CacyBP/SIP knockdown cells and studied the effect of CacyBP/SIP deficiency on their differentiation and response to viral infection. We found that CacyBP/SIP knockdown results in reduced expression of epidermal differentiation markers in both undifferentiated and differentiated HaCaT cells. Since epidermis is engaged in immune defense, the impact of CacyBP/SIP knockdown on this process was also analyzed. By applying RT-qPCR and Western blot it was found that poly(I:C), a synthetic analog of double-stranded RNA that mimics viral infection, stimulated the expression of genes involved in antiviral response, such as IFIT1, IFIT2 and OASL. Interestingly, following poly(I:C) stimulation, the level of expression of these genes was significantly lower in cells with CacyBP/SIP knockdown than control ones. Since the signaling pathway mediating cellular responses to viral infection involves, among others, the STAT1 transcription factor, we measured its activity using luciferase assay and found that it was lower in CacyBP/SIP knockdown HaCaT cells. Altogether, the presented results indicate that CacyBP/SIP promotes epidermal differentiation and might be involved in response of the skin cells to viral infection.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Maksymowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Cezary Piwowarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Natalia Katarzyna Karolak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; Department of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewelina Jurewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Chen L, Liu YP, Tian LF, Li M, Yang S, Wang S, Xu W, Yan XX. Structural Basis of the Interaction between Human Axin2 and SIAH1 in the Wnt/β-Catenin Signaling Pathway. Biomolecules 2023; 13:biom13040647. [PMID: 37189394 DOI: 10.3390/biom13040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The scaffolding protein Axin is an important regulator of the Wnt signaling pathway, and its dysfunction is closely related to carcinogenesis. Axin could affect the assembly and dissociation of the β-catenin destruction complex. It can be regulated by phosphorylation, poly-ADP-ribosylation, and ubiquitination. The E3 ubiquitin ligase SIAH1 participates in the Wnt pathway by targeting various components for degradation. SIAH1 is also implicated in the regulation of Axin2 degradation, but the specific mechanism remains unclear. Here, we verified that the Axin2-GSK3 binding domain (GBD) was sufficient for SIAH1 binding by the GST pull-down assay. Our crystal structure of the Axin2/SIAH1 complex at 2.53 Å resolution reveals that one Axin2 molecule binds to one SIAH1 molecule via its GBD. These interactions critically depend on a highly conserved peptide 361EMTPVEPA368 within the Axin2-GBD, which forms a loop and binds to a deep groove formed by β1, β2, and β3 of SIAH1 by the N-terminal hydrophilic amino acids Arg361 and Thr363 and the C-terminal VxP motif. The novel binding mode indicates a promising drug-binding site for regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lianqi Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingzhou Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Molecular and immunological characterization of the calcyclin binding protein in rodent malaria parasite. Exp Parasitol 2023; 246:108475. [PMID: 36707015 DOI: 10.1016/j.exppara.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Malaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease. In this study, we have cloned CacyBP from rodent species Plasmodium yoelii nigeriensis and purified the recombinant protein to carry out its detailed molecular, biophysical and immunological characterization. Molecular characterization indicates that PyCacyBP is a ∼27 kDa protein in parasite lysate and exists in monomer and dimer forms. Bioinformatic analysis of CacyBP showed significant sequence and structural similarities between rodent and human malaria parasites. CacyBP is expressed in all blood stages of P. yoelii nigeriensis parasite. In silico studies proposed the immunogenic potential of CacyBP. The rPyCacyBP immunized mice exhibited elevated levels of IgG1, IgG2a, IgG2b and IgG3 in their serum. Notably, cellular immune response in splenocytes from immunized mice showed increased expression of pro-inflammatory cytokines such as IL-12, IFN-γ and TNF-α. This CacyBP exhibited pro-inflammatory immune response in rodent host. These finding revealed that CacyBP may have the potential to boost the host immunity for protection against malaria infection. The present study provides basis for further exploration of the biological function of CacyBP in malaria parasite.
Collapse
|
9
|
Paulussen FM, Grossmann TN. Peptide-based covalent inhibitors of protein-protein interactions. J Pept Sci 2023; 29:e3457. [PMID: 36239115 PMCID: PMC10077911 DOI: 10.1002/psc.3457] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context.
Collapse
Affiliation(s)
- Felix M Paulussen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Latoszek E, Wiweger M, Ludwiczak J, Dunin-Horkawicz S, Kuznicki J, Czeredys M. Siah-1-interacting protein regulates mutated huntingtin protein aggregation in Huntington’s disease models. Cell Biosci 2022; 12:34. [PMID: 35305696 PMCID: PMC8934500 DOI: 10.1186/s13578-022-00755-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disorder whereby mutated huntingtin protein (mHTT) aggregates when polyglutamine repeats in the N-terminal of mHTT exceeds 36 glutamines (Q). However, the mechanism of this pathology is unknown. Siah1-interacting protein (SIP) acts as an adaptor protein in the ubiquitination complex and mediates degradation of other proteins. We hypothesized that mHTT aggregation depends on the dysregulation of SIP activity in this pathway in HD. Results A higher SIP dimer/monomer ratio was observed in the striatum in young YAC128 mice, which overexpress mHTT. We found that SIP interacted with HTT. In a cellular HD model, we found that wildtype SIP increased mHTT ubiquitination, attenuated mHTT protein levels, and decreased HTT aggregation. We predicted mutations that should stabilize SIP dimerization and found that SIP mutant-overexpressing cells formed more stable dimers and had lower activity in facilitating mHTT ubiquitination and preventing exon 1 mHTT aggregation compared with wildtype SIP. Conclusions Our data suggest that an increase in SIP dimerization in HD medium spiny neurons leads to a decrease in SIP function in the degradation of mHTT through a ubiquitin–proteasome pathway and consequently an increase in mHTT aggregation. Therefore, SIP could be considered a potential target for anti-HD therapy during the early stage of HD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00755-0.
Collapse
|
11
|
Srivastava A, Tommasi C, Sessions D, Mah A, Bencomo T, Garcia JM, Jiang T, Lee M, Shen JY, Seow LW, Nguyen A, Rajapakshe K, Coarfa C, Tsai KY, Lopez-Pajares V, Lee CS. MAB21L4 Deficiency Drives Squamous Cell Carcinoma via Activation of RET. Cancer Res 2022; 82:3143-3157. [PMID: 35705526 PMCID: PMC9444977 DOI: 10.1158/0008-5472.can-22-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
Epithelial squamous cell carcinomas (SCC) most commonly originate in the skin, where they display disruptions in the normally tightly regulated homeostatic balance between keratinocyte proliferation and terminal differentiation. We performed a transcriptome-wide screen for genes of unknown function that possess inverse expression patterns in differentiating keratinocytes compared with cutaneous SCC (cSCC), leading to the identification of MAB21L4 (C2ORF54) as an enforcer of terminal differentiation that suppresses carcinogenesis. Loss of MAB21L4 in human cSCC organoids increased expression of RET to enable malignant progression. In addition to transcriptional upregulation of RET, deletion of MAB21L4 preempted recruitment of the CacyBP-Siah1 E3 ligase complex to RET and reduced its ubiquitylation. In SCC organoids and in vivo tumor models, genetic disruption of RET or selective inhibition of RET with BLU-667 (pralsetinib) suppressed SCC growth while inducing concomitant differentiation. Overall, loss of MAB21L4 early during SCC development blocks differentiation by increasing RET expression. These results suggest that targeting RET activation is a potential therapeutic strategy for treating SCC. SIGNIFICANCE Downregulation of RET mediated by MAB21L4-CacyBP interaction is required to induce epidermal differentiation and suppress carcinogenesis, suggesting RET inhibition as a potential therapeutic approach in squamous cell carcinoma.
Collapse
Affiliation(s)
- Ankit Srivastava
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm 17177, Sweden
| | - Cristina Tommasi
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Dane Sessions
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Angela Mah
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Tomas Bencomo
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Jasmine M. Garcia
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Tiffany Jiang
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Michael Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Joseph Y. Shen
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Lek Wei Seow
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Audrey Nguyen
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL 33612, USA
| | | | - Carolyn S. Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304 USA
| |
Collapse
|
12
|
Gao W, Chen L, Lin L, Yang M, Li T, Wei H, Sha C, Xing J, Zhang M, Zhao S, Chen Q, Xu W, Li Y, Zhu X. SIAH1 reverses chemoresistance in epithelial ovarian cancer via ubiquitination of YBX-1. Oncogenesis 2022; 11:13. [PMID: 35273154 PMCID: PMC8913663 DOI: 10.1038/s41389-022-00387-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/20/2023] Open
Abstract
Chemoresistance is a severe outcome among patients with epithelial ovarian cancer (EOC) that leads to a poor prognosis. YBX-1 has been shown to cause treatment failure and cancer progression in EOC. However, strategies that directly target YBX-1 are not yet conceivable. Here, we identified that SIAH1 which was downregulated in chemoresistant EOC samples and cell lines functioned as novel E3 ligases to trigger degradation of YBX-1 at cytoplasm by RING finger domain. Mechanistic studies show that YBX-1 was ubiquitinated by SIAH1 at lys304 that lead to the instability of its target m5C-modified mRNAs, thus sensitized EOC cells to cDDP. Overexpression of SIAH1 enhanced the antitumor efficacy of cisplatin in vitro and in vivo, which were partially impaired by ectopic expression of YBX-1 or depletion of YBX-1 ubiquitination. In summary, our data identify the SIAH1/YBX-1 interaction as a therapeutic target for overcoming EOC chemoresistance.
Collapse
Affiliation(s)
- Wujiang Gao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Meiling Yang
- The first people's hospital of Nantong, Nantong, China
| | - Taoqiong Li
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong Wei
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chunli Sha
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Xing
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shijie Zhao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qi Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China. .,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Schmitz ML, Dreute J, Pfisterer M, Günther S, Kracht M, Chillappagari S. SIAH ubiquitin E3 ligases as modulators of inflammatory gene expression. Heliyon 2022; 8:e09029. [PMID: 35284677 PMCID: PMC8904615 DOI: 10.1016/j.heliyon.2022.e09029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The functionally redundant ubiquitin E3 ligases SIAH1 and SIAH2 have been implicated in the regulation of metabolism and the hypoxic response, while their role in other signal-mediated processes such inflammatory gene expression remains to be defined. Here we have downregulated the expression of both SIAH proteins with specific siRNAs and investigated the functional consequences for IL-1α-induced gene expression. The knockdown of SIAH1/2 modulated the expression of approximately one third of IL-1α-regulated genes. These effects were not due to changes in the NF-κB and MAPK signaling pathways and rather employed further processes including those mediated by the coactivator p300. Most of the proteins encoded by SIAH1/2-regulated genes form a regulatory network of proinflammatory factors. Thus SIAH1/2 proteins function as variable rheostats that control the amplitude rather than the principal activation of the inflammatory gene response. SIAH1/2 function as modulators of IL-1α-triggered gene expression. SIAH1/2 do not participate in the activation of the canonical NF-κB pathway. SIAH1/2 control the stability of the coactivator p300.
Collapse
|
14
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
15
|
Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B, Levchenko O, Geuer S, Verheyen S, Johnson D, Zarate YA, Hančárová M, Amor DJ, Bebin EM, Blatterer J, Brusco A, Cappuccio G, Charrow J, Chatron N, Cooper GM, Courtin T, Dadali E, Delafontaine J, Del Giudice E, Doco M, Douglas G, Eisenkölbl A, Funari T, Giannuzzi G, Gruber-Sedlmayr U, Guex N, Heron D, Holla ØL, Hurst ACE, Juusola J, Kronn D, Lavrov A, Lee C, Lorrain S, Merckoll E, Mikhaleva A, Norman J, Pradervand S, Prchalová D, Rhodes L, Sanders VR, Sedláček Z, Seebacher HA, Sellars EA, Sirchia F, Takenouchi T, Tanaka AJ, Taska-Tench H, Tønne E, Tveten K, Vitiello G, Vlčková M, Uehara T, Nava C, Yalcin B, Kosaki K, Donnai D, Mundlos S, Brunetti-Pierri N, Chung WK, Reymond A. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy. Am J Hum Genet 2021; 108:857-873. [PMID: 33961779 DOI: 10.1016/j.ajhg.2021.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Collapse
Affiliation(s)
- Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Rhonda E Schnur
- GeneDx, Gaithersburg, MD 20877, USA; Cooper Medical School of Rowan University, Division of Genetics, Camden, NJ 08103, USA
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Olga Levchenko
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Sinje Geuer
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield S10 2TQ, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Miroslava Hančárová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - David J Amor
- Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jasmin Blatterer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino 10126, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Joel Charrow
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Genetics Department, Lyon University Hospital, Lyon 69007, France
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Courtin
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Elena Dadali
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | - Ennio Del Giudice
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Martine Doco
- Secteur Génétique, CHU Reims, EA3801, SFR CAPSANTE, 51092 Reims, France
| | | | - Astrid Eisenkölbl
- Department of Pediatrics and Adolescent Medicine, Johannes Kepler University, Kepler University Hospital Linz, Krankenhausstraße 26-30, 4020 Linz, Austria
| | | | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Ursula Gruber-Sedlmayr
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Nicolas Guex
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne 1015, Switzerland
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - David Kronn
- New York Medical College, Valhalla, NY 10595, USA
| | | | - Crystle Lee
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia
| | - Séverine Lorrain
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Protein Analysis Facility, University of Lausanne, Lausanne 1015, Switzerland
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Darina Prchalová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | | | - Victoria R Sanders
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Zdeněk Sedláček
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Heidelis A Seebacher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Elizabeth A Sellars
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Fabio Sirchia
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Toshiki Takenouchi
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Akemi J Tanaka
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Heidi Taska-Tench
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elin Tønne
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Giuseppina Vitiello
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Markéta Vlčková
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Tomoko Uehara
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Caroline Nava
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Kenjiro Kosaki
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
16
|
Fujita KI, Tomiyama T, Inoi T, Nishiyama T, Sato E, Horibe H, Takahashi R, Kitamura S, Yamaguchi Y, Ogita A, Tanaka T. Effect of pgsE expression on the molecular weight of poly(γ-glutamic acid) in fermentative production. Polym J 2020. [DOI: 10.1038/s41428-020-00413-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Zhou T, Chen Y, Zhao B, Hu S, Li J, Liu M, Liang S, Bao Z, Wu X. Characterization and functional analysis of SIAH1 during skin and hair follicle development in the angora rabbit (Oryctolagus cuniculus). Hereditas 2020; 157:10. [PMID: 32252830 PMCID: PMC7137485 DOI: 10.1186/s41065-020-00126-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Seven in absentia homolog 1 (SIAH1) is an E3 ubiquitin ligase containing a RING-finger domain and a key regulator of normal development. Skin and hair follicle development is a complex and special process of morphogenesis involving multiple signaling pathways. SIAH1 is enriched in the Wnt signaling pathway and potentially related to hair follicle cycle and skin development. This study aims to provide evidence for the role of SIAH1 in skin and hair development. RESULTS Full-length cloning and analysis of SIAH1 was conducted to better understand its function. Phylogenetically, the sequence of SIAH1 in the rabbit shares the greatest homology with Home sapiens, Pongo abelii and Mus mulatta. Based on the rabbit hair follicle synchronization model, we found that the expression level of SIAH1 in the regressive period of the rabbit hair cycle is significantly lower than in the active growth and rest periods. In addition, the mRNA expression levels of skin and hair follicle development-related genes changed significantly when SIAH1 was overexpressed and silenced. After SIAH1 overexpression, the expression levels of WNT2, LEF1 and FGF2 decreased, and those of SFRP2 and DKK1 increased (P < 0.05). After interference of SIAH1, the expression levels of WNT2, LEF1 and FGF2 increased (P < 0.05), and SFRP2 and DKK1 decreased. CONCLUSIONS SIAH1 can affect skin and hair follicle development and exert an inhibitory effect. These results could provide foundamental insights into the role of SIAH1 as a target gene in rabbit skin and hair follicle development.
Collapse
Affiliation(s)
- Tong Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuang Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.
| |
Collapse
|
18
|
SIAH2-mediated and organ-specific restriction of HO-1 expression by a dual mechanism. Sci Rep 2020; 10:2268. [PMID: 32042051 PMCID: PMC7010731 DOI: 10.1038/s41598-020-59005-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
The intracellular levels of the cytoprotective enzyme heme oxygenase-1 (HO-1) are tightly controlled. Here, we reveal a novel mechanism preventing the exaggerated expression of HO-1. The analysis of mice with a knock-out in the ubiquitin E3 ligase seven in absentia homolog 2 (SIAH2) showed elevated HO-1 protein levels in specific organs such as heart, kidney and skeletal muscle. Increased HO-1 protein amounts were also seen in human cells deleted for the SIAH2 gene. The higher HO-1 levels are not only due to an increased protein stability but also to elevated expression of the HO-1 encoding HMOX1 gene, which depends on the transcription factor nuclear factor E2-related factor 2 (NRF2), a known SIAH2 target. Dependent on its RING (really interesting new gene) domain, expression of SIAH2 mediates proteasome-dependent degradation of its interaction partner HO-1. Additionally SIAH2-deficient cells are also characterized by reduced expression levels of glutathione peroxidase 4 (GPX4), rendering the knock-out cells more sensitive to ferroptosis.
Collapse
|
19
|
Zhao B, Payne WG, Sai J, Lu Z, Olejniczak ET, Fesik SW. Structural Elucidation of Peptide Binding to KLHL-12, a Substrate Specific Adapter Protein in a Cul3-Ring E3 Ligase Complex. Biochemistry 2020; 59:964-969. [DOI: 10.1021/acs.biochem.9b01073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - William G. Payne
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Edward T. Olejniczak
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
20
|
Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, Gao J, Zhang K, Liu R, Wang S, Hou Y, Yu W, Leng S, Feng D, Liu W, Zhang X, Wang Y. Regulation of EZH2 by SMYD2-Mediated Lysine Methylation Is Implicated in Tumorigenesis. Cell Rep 2019; 29:1482-1498.e4. [DOI: 10.1016/j.celrep.2019.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/07/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
|
21
|
Identification and characterization of small molecule inhibitors of the ubiquitin ligases Siah1/2 in melanoma and prostate cancer cells. Cancer Lett 2019; 449:145-162. [PMID: 30771432 DOI: 10.1016/j.canlet.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Inhibition of ubiquitin ligases with small molecule remains a very challenging task, given the lack of catalytic activity of the target and the requirement of disruption of its interactions with other proteins. Siah1/2, which are E3 ubiquitin ligases, are implicated in melanoma and prostate cancer and represent high-value drug targets. We utilized three independent screening approaches in our efforts to identify small-molecule Siah1/2 inhibitors: Affinity Selection-Mass Spectrometry, a protein thermal shift-based assay and an in silico based screen. Inhibitors were assessed for their effect on viability of melanoma and prostate cancer cultures, colony formation, prolyl-hydroxylase-HIF1α signaling, expression of selected Siah2-related transcripts, and Siah2 ubiquitin ligase activity. Several analogs were further characterized, demonstrating improved efficacy. Combination of the top hits identified in the different assays demonstrated an additive effect, pointing to complementing mechanisms that underlie each of these Siah1/2 inhibitors.
Collapse
|
22
|
Siswanto FM, Jawi IM, Kartiko BH. The role of E3 ubiquitin ligase seven in absentia homolog in the innate immune system: An overview. Vet World 2018; 11:1551-1557. [PMID: 30587887 PMCID: PMC6303497 DOI: 10.14202/vetworld.2018.1551-1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
The innate immune system has been considered as an ancient system and less important than the adaptive immune system. However, the interest in innate immunity has grown significantly in the past few years marked by the identification of Toll-like receptors, a member of pattern recognition receptors (PRRs). The PRRs are crucial for the identification of self- and non-self-antigen and play a role in the initiation of signaling events that activate the effective immune response. These sensor signals through interweaving signaling cascades which result in the production of interferons and cytokines as the effector of immune system. Ubiquitin and ubiquitin-like modifiers (UBLs) actively mediate the rapid and versatile regulatory processes that initiate the activation of the innate immune system cascade. The seven in absentia homolog (SIAH) is a potent RING finger E3 ubiquitin ligase that is known to involve in several stress responses, including hypoxia, oxidative stress, DNA damage stress, and inflammation. In this review, the role of SIAH will be discussed as an E3 ubiquitin ligase on the regulation of innate immune.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biochemistry, Faculty of Health Science and Technology, Dhyana Pura University, Badung, Indonesia
| | - I Made Jawi
- Department of Pharmacology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - Bambang Hadi Kartiko
- Department of Biochemistry, Faculty of Health Science and Technology, Dhyana Pura University, Badung, Indonesia
| |
Collapse
|
23
|
Interaction between the cellular E3 ubiquitin ligase SIAH-1 and the viral immediate-early protein ICP0 enables efficient replication of Herpes Simplex Virus type 2 in vivo. PLoS One 2018; 13:e0201880. [PMID: 30080903 PMCID: PMC6078308 DOI: 10.1371/journal.pone.0201880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Herpes Simplex Virus type 2 (HSV-2) is a neurotropic human pathogen. Upon de novo infection, the viral infected cell protein 0 (ICP0) is immediately expressed and interacts with various cellular components during the viral replication cycle. ICP0 is a multifunctional regulatory protein that has been shown to be important for both efficient viral replication and virus reactivation from latency. In particular, as previously demonstrated in transfected tissue culture models, ICP0 interacts with the cellular E3 ubiquitin ligase SIAH-1, which targets ICP0 for proteasomal degradation. However, the consequence of this virus-host interaction during the establishment of HSV-2 infection in vivo has not yet been elucidated. Here we confirmed that ICP0 of HSV-2 interacts with SIAH-1 via two conserved PxAxVxP amino acid binding motifs. We also demonstrate in vitro that a SIAH-1 binding-deficient HSV-2 strain, constructed by homologous recombination technology, exhibits an attenuated growth curve and impaired DNA and protein synthesis. This attenuated phenotype was also confirmed in an in vivo ocular infection mouse model. Specifically, viral load of the SIAH-1 binding-deficient HSV-2 mutant was significantly reduced in the trigeminal ganglia and brain stem at day 5 and 7 post infection. Our findings indicate that the interplay between ICP0 and SIAH-1 is important for efficient HSV-2 replication in vivo, thereby affecting viral dissemination kinetics in newly infected organisms, and possibly revealing novel targets for antiviral therapy.
Collapse
|
24
|
Willot Q, Mardulyn P, Defrance M, Gueydan C, Aron S. Molecular chaperoning helps safeguarding mitochondrial integrity and motor functions in the Sahara silver ant Cataglyphis bombycina. Sci Rep 2018; 8:9220. [PMID: 29907755 PMCID: PMC6003908 DOI: 10.1038/s41598-018-27628-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
The Sahara silver ant Cataglyphis bombycina is one of the world's most thermotolerant animals. Workers forage for heat-stricken arthropods during the hottest part of the day, when temperatures exceed 50 °C. However, the physiological adaptations needed to cope with such harsh conditions remain poorly studied in this desert species. Using transcriptomics, we screened for the most heat-responsive transcripts of C. bombycina with aim to better characterize the molecular mechanisms involved with macromolecular stability and cell survival to heat-stress. We identified 67 strongly and consistently expressed transcripts, and we show evidences of both evolutionary selection and specific heat-induction of mitochondrial-related molecular chaperones that have not been documented in Formicidae so far. This indicates clear focus of the silver ant's heat-shock response in preserving mitochondrial integrity and energy production. The joined induction of small heat-shock proteins likely depicts the higher requirement of this insect for proper motor function in response to extreme burst of heat-stresses. We discuss how those physiological adaptations may effectively help workers resist and survive the scorching heat and burning ground of the midday Sahara Desert.
Collapse
Affiliation(s)
- Quentin Willot
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium.
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Cyril Gueydan
- Molecular Biology of the Gene, Université Libre de Bruxelles, Rue des Profs. Jeener et Brachet, 12, Gosselies, 6041, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium
| |
Collapse
|
25
|
Van Sciver RE, Lee MP, Lee CD, Lafever AC, Svyatova E, Kanda K, Colliver AL, Siewertsz van Reesema LL, Tang-Tan AM, Zheleva V, Bwayi MN, Bian M, Schmidt RL, Matrisian LM, Petersen GM, Tang AH. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology. Cancers (Basel) 2018; 10:142. [PMID: 29757973 PMCID: PMC5977115 DOI: 10.3390/cancers10050142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.
Collapse
Affiliation(s)
- Robert E Van Sciver
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Michael P Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Caroline Dasom Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Alex C Lafever
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Elizaveta Svyatova
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Kevin Kanda
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Amber L Colliver
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | - Angela M Tang-Tan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Vasilena Zheleva
- Department of Surgery, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Monicah N Bwayi
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Minglei Bian
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Rebecca L Schmidt
- Department of Biology, Upper Iowa University, Fayette, IA 52142, USA.
| | - Lynn M Matrisian
- Pancreatic Cancer Action Network, 1050 Connecticut Ave NW, Suite 500, Washington, DC 20036, USA.
- Pancreatic Cancer Action Network, 1500 Rosecrans Ave, Suite 200, Manhattan Beach, CA 90266, USA.
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic Cancer Center, Mayo Clinic Pancreatic Cancer SPORE, BioBusiness 5-85, 200 First Street SW, Rochester, MN 55905, USA.
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
26
|
The E3 Ubiquitin Ligase Siah-1 Suppresses Avian Reovirus Infection by Targeting p10 for Degradation. J Virol 2018; 92:JVI.02101-17. [PMID: 29321312 DOI: 10.1128/jvi.02101-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. The ARV p10 protein, a viroporin responsible for the induction of cell syncytium formation and apoptosis, is rapidly degraded in host cells. Our previous report demonstrated that cellular lysosome-associated membrane protein 1 (LAMP-1) interacted with p10 and was involved in its degradation. However, the molecular mechanism underlying LAMP-1-mediated p10 degradation remains elusive. We report here that the E3 ubiquitin ligase seven in absentia homolog 1 (Siah-1) is critical for p10 ubiquitylation. Our data show that Siah-1 ubiquitylated p10 and targeted it for proteasome degradation. Furthermore, the ubiquitylation of p10 by Siah-1 required the participation of LAMP-1 by forming a multicomponent complex. Thus, LAMP-1 promotes the proteasomal degradation of p10 via interacting with both p10 and the E3 ligase Siah-1. These data establish a novel host defense mechanism where LAMP-1 serves as a scaffold for both Siah-1 and p10 that allows the E3 ligase targeting p10 for ubiquitylation and degradation to suppress ARV infection.IMPORTANCE Avian reovirus (ARV) is an important poultry pathogen causing viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome, leading to considerable economic losses to the poultry industry across the globe. The ARV p10 protein is a virulence factor responsible for the induction of cell syncytium formation and apoptosis and is rapidly degraded in host cells. We previously found that cellular lysosome-associated membrane protein 1 (LAMP-1) interacts with p10 and is involved in its degradation. Here we report that the E3 ubiquitin ligase seven in absentia homolog 1 (Siah-1) ubiquitylated p10 and targeted it for proteasomal degradation. Furthermore, the ubiquitylation of p10 by Siah-1 required the participation of LAMP-1 by forming a multicomponent complex. Thus, LAMP-1 serves as an adaptor to allow Siah-1 to target p10 for degradation, thereby suppressing ARV growth in host cells.
Collapse
|
27
|
Scortegagna M, Berthon A, Settas N, Giannakou A, Garcia G, Li JL, James B, Liddington RC, Vilches-Moure JG, Stratakis CA, Ronai ZA. The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion. JCI Insight 2017; 2:97128. [PMID: 29212953 DOI: 10.1172/jci.insight.97128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023] Open
Abstract
Primary and secondary hypertension are major risk factors for cardiovascular disease, the leading cause of death worldwide. Elevated secretion of aldosterone resulting from primary aldosteronism (PA) is a key driver of secondary hypertension. Here, we report an unexpected role for the ubiquitin ligase Siah1 in adrenal gland development and PA. Siah1a-/- mice exhibit altered adrenal gland morphology, as reflected by a diminished X-zone, enlarged medulla, and dysregulated zonation of the glomerulosa as well as increased aldosterone levels and aldosterone target gene expression and reduced plasma potassium levels. Genes involved in catecholamine biosynthesis and cAMP signaling are upregulated in the adrenal glands of Siah1a-/- mice, while genes related to retinoic acid signaling and cholesterol biosynthesis are downregulated. Loss of Siah1 leads to increased expression of the Siah1 substrate PIAS1, an E3 SUMO protein ligase implicated in the suppression of LXR, a key regulator of cholesterol levels in the adrenal gland. In addition, SIAH1 sequence variants were identified in patients with PA; such variants impaired SIAH1 ubiquitin ligase activity, resulting in elevated PIAS1 expression. These data identify a role for the Siah1-PIAS1 axis in adrenal gland organization and function and point to possible therapeutic targets for hyperaldosteronism.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Andreas Giannakou
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Guillermina Garcia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Yan S, Li A, Liu Y. CacyBP/SIP inhibits the migration and invasion behaviors of glioblastoma cells through activating Siah1 mediated ubiquitination and degradation of cytoplasmic p27. Cell Biol Int 2017; 42:216-226. [PMID: 29024247 DOI: 10.1002/cbin.10889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/07/2017] [Indexed: 11/09/2022]
Abstract
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) has been reported to be up-regulated and plays an important role in promoting cell proliferation in human glioma. However, the effect of CacyBP/SIP on glioma cell motility is still unclear. Here, to our surprise, CacyBP/SIP was found to inhibit the migration and invasion of glioma cells U251 and U87. Silencing of CacyBP/SIP significantly promoted the migration and invasion behaviors of glioma cells. On the contrary, overexpression of CacyBP/SIP obviously suppressed them. Further investigation indicated that silencing of CacyBP/SIP significantly reduced the interaction between Siah1 and cytoplasmic p27, which in turn attenuated the ubiquitination and degradation of cytoplasmic p27. In contrast, overexpression of CacyBP/SIP promoted the interaction between Siah1 and cytoplasmic p27, which in turn increased the ubiquitination and degradation of cytoplasmic p27. Importantly, the degradation of p27 could be blocked by Siah1 knockdown. Finally, we found that CacyBP/SIP was reversely related to cytoplasmic p27 in human normal brain tissues and glioma tissues. Taken together, these results suggest that CacyBP/SIP plays an important role in inhibiting glioma cell migration and invasion through promoting the degradation of cytoplasmic p27.
Collapse
Affiliation(s)
- Shiwei Yan
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Yuguang Liu
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
29
|
Pepper IJ, Van Sciver RE, Tang AH. Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa. BMC Evol Biol 2017; 17:182. [PMID: 28784114 PMCID: PMC5547486 DOI: 10.1186/s12862-017-1024-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Background The RAS signaling pathway is a pivotal developmental pathway that controls many fundamental biological processes including cell proliferation, differentiation, movement and apoptosis. Drosophila Seven-IN-Absentia (SINA) is a ubiquitin E3 ligase that is the most downstream signaling “gatekeeper” whose biological activity is essential for proper RAS signal transduction. Vertebrate SINA homologs (SIAHs) share a high degree of amino acid identity with that of Drosophila SINA. SINA/SIAH is the most conserved signaling component in the canonical EGFR/RAS/RAF/MAPK signal transduction pathway. Results Vertebrate SIAH1, 2, and 3 are the three orthologs to invertebrate SINA protein. SINA and SIAH1 orthologs are found in all major taxa of metazoans. These proteins have four conserved functional domains, known as RING (Really Interesting New Gene), SZF (SIAH-type zinc finger), SBS (substrate binding site) and DIMER (Dimerization). In addition to the siah1 gene, most vertebrates encode two additional siah genes (siah2 and siah3) in their genomes. Vertebrate SIAH2 has a highly divergent and extended N-terminal sequence, while its RING, SZF, SBS and DIMER domains maintain high amino acid identity/similarity to that of SIAH1. But unlike vertebrate SIAH1 and SIAH2, SIAH3 lacks a functional RING domain, suggesting that SIAH3 may be an inactive E3 ligase. The SIAH3 subtree exhibits a high degree of amino acid divergence when compared to the SIAH1 and SIAH2 subtrees. We find that SIAH1 and SIAH2 are expressed in all human epithelial cell lines examined thus far, while SIAH3 is only expressed in a limited subset of cancer cell lines. Conclusion Through phylogenetic analyses of metazoan SINA and SIAH E3 ligases, we identified many invariant and divergent amino acid residues, as well as the evolutionarily conserved functional motifs in this medically relevant gene family. Our phylomedicinal study of this unique metazoan SINA/SIAH protein family has provided invaluable evolution-based support towards future effort to design logical, potent, and durable anti-SIAH-based anticancer strategies against oncogenic K-RAS-driven metastatic human cancers. Thus, this method of evolutionary study should be of interest in cancer biology. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1024-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian J Pepper
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Leroy T. Canoles Jr. Cancer Research Center, Harry T. Lester Hall, Room 454-457, 651 Colley Avenue, Norfolk, VA, 23501, USA
| | - Robert E Van Sciver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Leroy T. Canoles Jr. Cancer Research Center, Harry T. Lester Hall, Room 454-457, 651 Colley Avenue, Norfolk, VA, 23501, USA
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Leroy T. Canoles Jr. Cancer Research Center, Harry T. Lester Hall, Room 454-457, 651 Colley Avenue, Norfolk, VA, 23501, USA.
| |
Collapse
|
30
|
Zhang Q, Wang Z, Hou F, Harding R, Huang X, Dong A, Walker JR, Tong Y. The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear. Biochim Biophys Acta Gen Subj 2016; 1861:3095-3105. [PMID: 27776223 DOI: 10.1016/j.bbagen.2016.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. METHODS We used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. RESULTS We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. CONCLUSIONS The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. GENERAL SIGNIFICANCE The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.
Collapse
Affiliation(s)
- Qi Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Zhongduo Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Feng Hou
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rachel Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xinyi Huang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John R Walker
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
31
|
The potential role of CacyBP/SIP in tumorigenesis. Tumour Biol 2016; 37:10785-91. [PMID: 26873490 DOI: 10.1007/s13277-016-4871-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/14/2016] [Indexed: 01/15/2023] Open
Abstract
Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) was initially described as a binding partner of S100A6 in the Ehrlich ascites tumor cells and later as a Siah-1-interacting protein. This 30 kDa protein includes three domains and is involved in cell proliferation, differentiation, cytoskeletal rearrangement, and transcriptional regulation via binding to various proteins. Studies have also shown that the CacyBP/SIP is a critical protein in tumorigenesis. But, its promotion or suppression of cancer progression may depend on the cell type. In this review, the biological characteristics and target proteins of CacyBP/SIP have been described. Moreover, the exact role of CacyBP/SIP in various cancers is discussed.
Collapse
|
32
|
Zhao J, Wu J, Cai H, Wang D, Yu L, Zhang WH. E3 Ubiquitin Ligase Siah-1 is Down-regulated and Fails to Target Natural HBx Truncates for Degradation in Hepatocellular Carcinoma. J Cancer 2016; 7:418-426. [PMID: 26918055 PMCID: PMC4749362 DOI: 10.7150/jca.13019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/14/2015] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common worldwide malignancy with high morbidity and mortality. Hepatitis B viral (HBV)-encoded X protein (HBx) and natural HBx variants play important roles in HBV-associated HCC development. HBx is an unstable protein that can be degraded in vivo. Our previous study found that the E3 ubiquitin ligase Siah-1 could target HBx for poly-ubiquitylation and proteasomal degradation and attenuate the transcriptional activity of HBx. However, in HCC patients, high expression levels of HBx and HBx variants are frequently observed and are associated with HCC progression. The mechanism underlying their up-regulation is largely unknown. In this study, we screened for Siah-1 mutations in 270 HCC samples and 9 HCC cell lines, and examined Siah-1 mRNA and protein expression in a subset of paired HCC specimens. Our results demonstrate that Siah-1 is highly conserved, as no somatic mutation was identified, with the exception of one synonymous transition from G to A at codon 67. Both the mRNA and protein levels of Siah-1 were significantly down-regulated in HCC tissues compared with their adjacent normal counterparts. We constructed three natural HBx truncates that were identified in our HCC cases. We found that Siah-1 failed to decrease the stability of these HBx variants and was unable to inhibit the transcriptional activity of these HBx truncates at heat shock elements (HSEs). Moreover, Siah-1 had weaker association with three HBx mutants than full length HBx. Therefore, our findings suggest that down-regulation of Siah-1, but not its mutations, and natural HBx variants resistant to Siah-1-induced degradation may be a novel mechanism for HCC development.
Collapse
Affiliation(s)
- Jing Zhao
- 1. Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jing Wu
- 2. Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hao Cai
- 3. The State Key Laboratory of Genetics Engineering, Fudan University, Shanghai 200433, China
| | - Dan Wang
- 3. The State Key Laboratory of Genetics Engineering, Fudan University, Shanghai 200433, China
| | - Long Yu
- 3. The State Key Laboratory of Genetics Engineering, Fudan University, Shanghai 200433, China
| | - Wen-Hong Zhang
- 2. Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
33
|
Topolska-Woś AM, Chazin WJ, Filipek A. CacyBP/SIP--Structure and variety of functions. Biochim Biophys Acta Gen Subj 2015; 1860:79-85. [PMID: 26493724 DOI: 10.1016/j.bbagen.2015.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) is a small modular protein implicated in a wide range of cellular processes. It is expressed in different tissues of mammals but homologs are also found in some lower organisms. In mammals, a high level of CacyBP/SIP is present in tumor cells and in neurons. CacyBP/SIP binds several target proteins such as members of the S100 family, components of a ubiquitin ligase complex, and cytoskeletal proteins. SCOPE OF REVIEW CacyBP/SIP has been shown to be involved in protein de-phosphorylation, ubiquitination, cytoskeletal dynamics, regulation of gene expression, cell proliferation, differentiation, and tumorigenesis. This review focuses on very recent reports on CacyBP/SIP structure and function in these important cellular processes. MAJOR CONCLUSIONS CacyBP/SIP is a multi-domain and multi-functional protein. Altered levels of CacyBP/SIP in several cancers implicate its involvement in the maintenance of cell homeostasis. Changes in CacyBP/SIP subcellular localization in neurons of AD brains suggest that this protein is strongly linked to neurodegenerative diseases. Elucidation of CacyBP/SIP structure and cellular function is leading to greater understanding of its role in normal physiology and disease pathologies. GENERAL SIGNIFICANCE The available results suggest that CacyBP/SIP is a key player in multiple biological processes. Detailed characterization of the physical, biochemical and biological properties of CacyBP/SIP will provide better insight into the regulation of its diverse functions in vivo, and given the association with specific diseases, will help clarify the potential of therapeutic targeting of this protein.
Collapse
Affiliation(s)
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, USA; Department of Chemistry, Vanderbilt University, Nashville, USA; Center for Structural Biology, Vanderbilt University, Nashville, USA
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
34
|
Guarna MM, Melathopoulos AP, Huxter E, Iovinella I, Parker R, Stoynov N, Tam A, Moon KM, Chan QWT, Pelosi P, White R, Pernal SF, Foster LJ. A search for protein biomarkers links olfactory signal transduction to social immunity. BMC Genomics 2015; 16:63. [PMID: 25757461 PMCID: PMC4342888 DOI: 10.1186/s12864-014-1193-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background The Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees. Results After confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect. Conclusions Our data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1193-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Marta Guarna
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Andony P Melathopoulos
- Beaverlodge Research Farm, Agriculture & Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada. .,Current address: Dalhousie University, Halifax, NS, Canada.
| | | | - Immacolata Iovinella
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Robert Parker
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada. .,Current address: Macquarie University, Sydney, NSW, Australia.
| | - Nikolay Stoynov
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Amy Tam
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Queenie W T Chan
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Paolo Pelosi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Rick White
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture & Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada.
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
35
|
Topolska-Woś AM, Shell SM, Kilańczyk E, Szczepanowski RH, Chazin WJ, Filipek A. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress. FASEB J 2015; 29:1711-24. [PMID: 25609429 DOI: 10.1096/fj.14-264770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/11/2014] [Indexed: 11/11/2022]
Abstract
CacyBP/SIP [calcyclin-binding protein/Siah-1 [seven in absentia homolog 1 (Siah E3 ubiquitin protein ligase 1)] interacting protein] is a multifunctional protein whose activity includes acting as an ERK1/2 phosphatase. We analyzed dimerization of mouse CacyBP/SIP in vitro and in mouse neuroblastoma cell line (NB2a) cells, as well as the structure of a full-length protein. Moreover, we searched for the CacyBP/SIP domain important for dimerization and dephosphorylation of ERK2, and we analyzed the role of dimerization in ERK1/2 signaling in NB2a cells. Cell-based assays showed that CacyBP/SIP forms a homodimer in NB2a cell lysate, and biophysical methods demonstrated that CacyBP/SIP forms a stable dimer in vitro. Data obtained using small-angle X-ray scattering supported a model in which CacyBP/SIP occupies an anti-parallel orientation mediated by the N-terminal dimerization domain. Site-directed mutagenesis established that the N-terminal domain is indispensable for full phosphatase activity of CacyBP/SIP. We also demonstrated that the oligomerization state of CacyBP/SIP as well as the level of post-translational modifications and subcellular distribution of CacyBP/SIP change after activation of the ERK1/2 pathway in NB2a cells due to oxidative stress. Together, our results suggest that dimerization is important for controlling phosphatase activity of CacyBP/SIP and for regulating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Agnieszka M Topolska-Woś
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Steven M Shell
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Kilańczyk
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Roman H Szczepanowski
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Walter J Chazin
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna Filipek
- *Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; and International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
36
|
The CacyBP/SIP protein is sumoylated in neuroblastoma NB2a cells. Neurochem Res 2014; 38:2427-32. [PMID: 24078263 PMCID: PMC3824344 DOI: 10.1007/s11064-013-1155-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 10/31/2022]
Abstract
The Calcyclin binding protein and Siah-1 interacting protein (CacyBP/SIP) protein is highly expressed in mammalian brain as well as in neuroblastoma NB2a cells and pheochromocytoma PC12 cells. This protein interacts with several targets such as cytoskeletal proteins or ERK1/2 kinase and seems to be involved in many cellular processes. In this work we examined a post-translational modification of CacyBP/SIP which might have an effect on its function. Since theoretical analysis of the amino acid sequence of CacyBP/SIP indicated several lysine residues which could potentially be sumoylated we checked experimentally whether this protein might be modified by SUMO attachment. We have shown that indeed CacyBP/SIP bound the E2 SUMO ligase, Ubc9, in neuroblastoma NB2a cell extract and was sumoylated in these cells. By fractionation of NB2a cell extract we have found that, contrary to the majority of SUMO-modified proteins, sumoylated CacyBP/SIP is present in the cytoplasmic and not in the nuclear fraction. We have also established that lysine 16 is the residue which undergoes sumoylation in the CacyBP/SIP protein.
Collapse
|
37
|
Svala E, Thorfve AI, Ley C, Henriksson HKB, Synnergren JM, Lindahl AH, Ekman S, Skiöldebrand ESR. Effects of interleukin-6 and interleukin-1β on expression of growth differentiation factor-5 and Wnt signaling pathway genes in equine chondrocytes. Am J Vet Res 2014; 75:132-40. [DOI: 10.2460/ajvr.75.2.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Rimsa V, Eadsforth TC, Hunter WN. Two high-resolution structures of the human E3 ubiquitin ligase Siah1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1339-43. [PMID: 24316825 PMCID: PMC3855715 DOI: 10.1107/s1744309113031448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023]
Abstract
Siah1 is an E3 ubiquitin ligase that contributes to proteasome-mediated degradation of multiple targets in key cellular processes and which shows promise as a therapeutic target in oncology. Structures of a truncated Siah1 bound to peptide-based inhibitors have been reported. Here, new crystallization conditions have allowed the determination of a construct encompassing dual zinc-finger subdomains and substrate-binding domains at significantly higher resolution. Although the crystals appear isomorphous, two structures present distinct states in which the spatial orientation of one zinc-finger subdomain differs with respect to the rest of the dimeric protein. Such a difference, which is indicative of conformational freedom, infers potential biological relevance related to recognition of binding partners. The crystallization conditions and improved models of Siah1 may aid future studies investigating Siah1-ligand complexes.
Collapse
Affiliation(s)
- Vadim Rimsa
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Thomas C. Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
39
|
Stebbins JL, Santelli E, Feng Y, De SK, Purves A, Motamedchaboki K, Wu B, Ronai ZA, Liddington RC, Pellecchia M. Structure-based design of covalent Siah inhibitors. ACTA ACUST UNITED AC 2013; 20:973-82. [PMID: 23891150 DOI: 10.1016/j.chembiol.2013.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
Abstract
The E3 ubiquitin ligase Siah regulates key cellular events that are central to cancer development and progression. A promising route to Siah inhibition is disrupting its interactions with adaptor proteins. However, typical of protein-protein interactions, traditional unbiased approaches to ligand discovery did not produce viable hits against this target, despite considerable effort and a multitude of approaches. Ultimately, a rational structure-based design strategy was successful for the identification of Siah inhibitors in which peptide binding drives specific covalent bond formation with the target. X-ray crystallography, mass spectrometry, and functional data demonstrate that these peptide mimetics are efficient covalent inhibitors of Siah and antagonize Siah-dependent regulation of Erk and Hif signaling in the cell. The proposed strategy may result useful as a general approach to the design of peptide-based inhibitors of other protein-protein interactions.
Collapse
Affiliation(s)
- John L Stebbins
- Signal Transduction Program and Cell Death Program, Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ashiuchi M, Yamashiro D, Yamamoto K. Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes. Plasmid 2013; 70:209-15. [PMID: 23583563 DOI: 10.1016/j.plasmid.2013.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
Extrachromosomal DNA maintenance (EDM) is an important process in molecular breeding and for various applications in the construction of genetically engineered microbes. Here we describe a novel Bacillus subtilis gene involved in EDM function called edmS (formerly pgsE). Functional gene regions were identified using molecular genetics techniques. We found that EdmS is a membrane-associated protein that is crucial for EDM. We also determined that EdmS can change a plasmid vector with an unstable replicon and worse-than-random segregation into one with better-than-random segregation, suggesting that the protein functions in the declustering and/or partitioning of episomes. EdmS has two distinct domains: an N-terminal membrane-anchoring domain and a C-terminal assembly accelerator-like structure, and mutational analysis of edmS revealed that both domains are essential for EDM. Further studies using cells of Bacillus megaterium and itsedmS (formerly capE) gene implied that EdmS has potential as a molecular probe for exploring novel EDM systems.
Collapse
Affiliation(s)
- Makoto Ashiuchi
- Department of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | | | | |
Collapse
|
41
|
Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J 2013; 32:954-69. [PMID: 23403927 DOI: 10.1038/emboj.2013.27] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022] Open
Abstract
The presynaptic active zone (AZ) is a specialized microdomain designed for the efficient and repetitive release of neurotransmitter. Bassoon and Piccolo are two high molecular weight components of the AZ, with hypothesized roles in its assembly and structural maintenance. However, glutamatergic synapses lacking either protein exhibit relatively minor defects, presumably due to their significant functional redundancy. In the present study, we have used interference RNAs to eliminate both proteins from glutamatergic synapses, and find that they are essential for maintaining synaptic integrity. Loss of Bassoon and Piccolo leads to the aberrant degradation of multiple presynaptic proteins, culminating in synapse degeneration. This phenotype is mediated in part by the E3 ubiquitin ligase Siah1, an interacting partner of Bassoon and Piccolo whose activity is negatively regulated by their conserved zinc finger domains. Our findings demonstrate a novel role for Bassoon and Piccolo as critical regulators of presynaptic ubiquitination and proteostasis.
Collapse
|
42
|
Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK. SIAH proteins: critical roles in leukemogenesis. Leukemia 2012; 27:792-802. [PMID: 23038274 DOI: 10.1038/leu.2012.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The delicate balance between the synthesis and the degradation of proteins ensures cellular homeostasis. Proteases act in an irreversible manner and therefore have to be strictly regulated. The ubiquitin-proteasome system (UPS) is a major pathway for the proteolytic degradation of cellular proteins. As dysregulation of the UPS is observed in most cancers including leukemia, the UPS is a valid target for therapeutic intervention strategies. Ubiquitin-ligases selectively bind substrates to target them for poly-ubiquitinylation and proteasomal degradation. Therefore, pharmacological modulation of these proteins could allow a specific level of control. Increasing evidence accumulates that ubiquitin-ligases termed mammalian seven in absentia homologs (SIAHs) are not only critical for the pathogenesis of solid tumors but also for leukemogenesis. However, the relevance and therapeutic potential of SIAH-dependent processes has not been fully elucidated. Here, we summarize functions of SIAH ubiquitin-ligases in leukemias, how they select leukemia-relevant substrates for proteasomal degradation, and how the expression and activity of SIAH1 and SIAH2 can be modulated in vivo. We also discuss that epigenetic drugs belonging to the group of histone deacetylase inhibitors induce SIAH-dependent proteasomal degradation to accelerate the turnover of leukemogenic proteins. In addition, our review highlights potential areas for future research on SIAH proteins.
Collapse
Affiliation(s)
- O H Krämer
- Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
43
|
Takaesu NT, Stinchfield MJ, Shimizu K, Arase M, Quijano JC, Watabe T, Miyazono K, Newfeld SJ. Drosophila CORL is required for Smad2-mediated activation of Ecdysone Receptor expression in the mushroom body. Development 2012; 139:3392-401. [PMID: 22874913 DOI: 10.1242/dev.079442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CORL proteins (FUSSEL/SKOR proteins in humans) are related to Sno/Ski oncogenes but their developmental roles are unknown. We have cloned Drosophila CORL and show that its expression is restricted to distinct subsets of cells in the central nervous system. We generated a deletion of CORL and noted that homozygous individuals rarely survive to adulthood. Df(4)dCORL adult escapers display mushroom body (MB) defects and Df(4)dCORL larvae are lacking Ecdysone Receptor (EcR-B1) expression in MB neurons. This is phenocopied in CORL-RNAi and Smad2-RNAi clones in wild-type larvae. Furthermore, constitutively active Baboon (type I receptor upstream of Smad2) cannot stimulate EcR-B1 MB expression in Df(4)dCORL larvae, which demonstrates a formal requirement for CORL in Smad2 signaling. Studies of mouse Corl1 (Skor1) revealed that it binds specifically to Smad3. Overall, the data suggest that CORL facilitates Smad2 activity upstream of EcR-B1 in the MB. The conservation of neural expression and strong sequence homology of all CORL proteins suggests that this is a new family of Smad co-factors.
Collapse
Affiliation(s)
- Norma T Takaesu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rines AK, Burke MA, Fernandez RP, Volpert OV, Ardehali H. Snf1-related kinase inhibits colon cancer cell proliferation through calcyclin-binding protein-dependent reduction of β-catenin. FASEB J 2012; 26:4685-95. [PMID: 22874833 DOI: 10.1096/fj.12-212282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sucrose nonfermenting 1 (Snf1)-related kinase (SNRK) is a serine/threonine kinase with sequence similarity to AMP-activated protein kinase (AMPK); however, its function is not well characterized. We conducted a gene array to determine which genes are regulated by SNRK. The array demonstrated that SNRK overexpression increased the levels of genes involved in cell proliferation, including calcyclin-binding protein (CacyBP), a member of the ubiquitin ligase complex that targets nonphosphorylated β-catenin for degradation. We confirmed that SNRK increased CacyBP mRNA and protein, and decreased β-catenin protein in HCT116 and RKO colon cancer cells. Furthermore, SNRK inhibited colon cancer cell proliferation, and CacyBP down-regulation reversed the SNRK-mediated decrease in proliferation and β-catenin. SNRK overexpression also decreased β-catenin nuclear localization and target gene transcription, and β-catenin down-regulation reversed the effects of SNRK knockdown on proliferation. SNRK transcript levels were reduced in human colon tumors compared to normal tissue by 35.82%, and stable knockdown of SNRK increased colon cancer cell tumorigenicity. Our results demonstrate that SNRK is down-regulated in colon cancer and inhibits colon cancer cell proliferation through CacyBP up-regulation and β-catenin degradation, resulting in reduced proliferation signaling. These findings reveal a novel function for SNRK in the regulation of colon cancer cell proliferation and β-catenin signaling.
Collapse
Affiliation(s)
- Amy K Rines
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
45
|
S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis. PLoS One 2012; 7:e30185. [PMID: 22295074 PMCID: PMC3266240 DOI: 10.1371/journal.pone.0030185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
Calcyclin-binding protein (CacyBP/SIP), identified on the basis of its ability to interact with S100 proteins in a calcium-dependent manner, was previously found to inhibit the proliferation and tumorigenesis of gastric cancer cells in our laboratory. Importantly, the effects of S100 proteins on the biological behavior of CacyBP/SIP in gastric cancer remain unclear. Herein, we report the construction of eukaryotic expression vectors for wild-type CacyBP/SIP and a truncated mutant lacking the S100 protein binding domain (CacyBP/SIPΔS100). The expressions of the wild-type and truncated recombinant proteins were demonstrated by transfection of MKN45 gastric cancer cells. Co-immunoprecipitation assays demonstrated interaction between S100A6 and wild-type CacyBP/SIP in MKN45 cells. Removal of the S100 protein binding domain dramatically reduced the affinity of CacyBP/SIP for S100 proteins as indicated by reduced co-immunoprecipitation of S100A6 by CacyBP/SIPΔS100. The MTT assay, FACS assay, clonogenic assay and tumor xenograft experiment were performed to assess the effect of CacyBP/SIP on cell growth and tumorigenesis in vitro and in vivo. Overexpression of CacyBP/SIP inhibited the proliferation and tumorigenesis of MKN45 gastric cancer cells; the proliferation and tumorigenesis rates were even further reduced by the expression of CacyBP/SIPΔS100. We also showed that S100 proteins negatively regulate CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation, through an effect on β-catenin protein expression and transcriptional activation of Tcf/LEF. Although the underlying mechanism of action requires further investigation, this study provides new insight into the interaction between S100 proteins and CacyBP/SIP, which might enrich our knowledge of S100 proteins and be helpful for our understanding of the development of gastric cancer.
Collapse
|
46
|
Chartron JW, VanderVelde DG, Rao M, Clemons WM. Get5 carboxyl-terminal domain is a novel dimerization motif that tethers an extended Get4/Get5 complex. J Biol Chem 2012; 287:8310-7. [PMID: 22262836 DOI: 10.1074/jbc.m111.333252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tail-anchored trans-membrane proteins are targeted to membranes post-translationally. The proteins Get4 and Get5 form an obligate complex that catalyzes the transfer of tail-anchored proteins destined to the endoplasmic reticulum from Sgt2 to the cytosolic targeting factor Get3. Get5 forms a homodimer mediated by its carboxyl domain. We show here that a conserved motif exists within the carboxyl domain. A high resolution crystal structure and solution NMR structures of this motif reveal a novel and stable helical dimerization domain. We additionally determined a solution NMR structure of a divergent fungal homolog, and comparison of these structures allows annotation of specific stabilizing interactions. Using solution x-ray scattering and the structures of all folded domains, we present a model of the full-length Get4/Get5 complex.
Collapse
Affiliation(s)
- Justin W Chartron
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
47
|
Sarkar TR, Sharan S, Wang J, Pawar SA, Cantwell CA, Johnson PF, Morrison DK, Wang JM, Sterneck E. Identification of a Src tyrosine kinase/SIAH2 E3 ubiquitin ligase pathway that regulates C/EBPδ expression and contributes to transformation of breast tumor cells. Mol Cell Biol 2012; 32:320-32. [PMID: 22037769 PMCID: PMC3255785 DOI: 10.1128/mcb.05790-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023] Open
Abstract
The transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ, CEBPD) is a tumor suppressor that is downregulated during breast cancer progression but may also promote metastasis. Here, we have investigated the mechanism(s) regulating C/EBPδ expression and its role in human breast cancer cells. We describe a novel pathway by which the tyrosine kinase Src downregulates C/EBPδ through the SIAH2 E3 ubiquitin ligase. Src phosphorylates SIAH2 in vitro and leads to tyrosine phosphorylation and activation of SIAH2 in breast tumor cell lines. SIAH2 interacts with C/EBPδ, but not C/EBPβ, and promotes its polyubiquitination and proteasomal degradation. Src/SIAH2-mediated inhibition of C/EBPδ expression supports elevated cyclin D1 levels, phosphorylation of retinoblastoma protein (Rb), motility, invasive properties, and survival of transformed cells. Pharmacological inhibition of Src family kinases by SKI-606 (bosutinib) induces C/EBPδ expression in an SIAH2-dependent manner, which is necessary for "therapeutic" responses to SKI-606 in vitro. Ectopic expression of degradation-resistant mutants of C/EBPδ, which do not interact with SIAH2 and/or cannot be polyubiquitinated, prevents full transformation of MCF-10A cells by activated Src (Src truncated at amino acid 531 [Src-531]) in vitro. These data reveal that C/EBPδ expression can be regulated at the protein level by oncogenic Src kinase signals through SIAH2, thus contributing to breast epithelial cell transformation.
Collapse
Affiliation(s)
- Tapasree Roy Sarkar
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Shikha Sharan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jun Wang
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Snehalata A. Pawar
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Carrie A. Cantwell
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Peter F. Johnson
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
48
|
Zhao J, Wang C, Wang J, Yang X, Diao N, Li Q, Wang W, Xian L, Fang Z, Yu L. E3 ubiquitin ligase Siah-1 facilitates poly-ubiquitylation and proteasomal degradation of the hepatitis B viral X protein. FEBS Lett 2011; 585:2943-50. [PMID: 21878328 DOI: 10.1016/j.febslet.2011.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/23/2011] [Accepted: 08/09/2011] [Indexed: 11/15/2022]
Abstract
Hepatitis B viral X protein (HBx) is a multifunctional transactivator and implicated in hepatitis B virus (HBV) replication and hepatocarcinogenesis. HBx can be ubiquitinated and degraded through ubiquitin-proteasome pathway. However, the E3 ubiquitin ligase regulating HBx ubiquitin-dependent degradation is still unknown. In this study, we identified Siah-1 as a novel E3 ubiquitin ligase for HBx, which interacted with HBx and facilitated HBx poly-ubiquitylation and proteasomal degradation. Co-expression of Siah-1 attenuated the transcriptional transactivation of HBx on glucocorticoid response element (GRE), heat shock response element (HSE) and cAMP response element (CRE) signal pathways. Moreover, Siah-1 participated in p53-mediated HBx degradation. Therefore, Siah-1 may play important roles in ubiquitin-dependent degradation of HBx and may be involved in suppressing the progression of hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DDL, Ronai Z, Reed JC, Matsuzawa SI. Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle 2011; 10:2592-602. [PMID: 21734459 DOI: 10.4161/cc.10.15.16912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p27(kip1) has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP (-/-) embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared to wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.
Collapse
Affiliation(s)
- Yoshito Nagano
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zheng M, Cierpicki T, Burdette AJ, Utepbergenov D, Jańczyk PŁ, Derewenda U, Stukenberg TP, Caldwell KA, Derewenda ZS. Structural features and chaperone activity of the NudC protein family. J Mol Biol 2011; 409:722-41. [PMID: 21530541 PMCID: PMC3159028 DOI: 10.1016/j.jmb.2011.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
Abstract
The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member of the nud gene family that is involved in the maintenance of nuclear migration. This family also includes nudF, whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein and discuss the results in the context of structures recently deposited by structural genomics centers (i.e., NudCL and mouse NudCL2). All proteins share the same core CS domain characteristic of proteins acting either as cochaperones of Hsp90 or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit the aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins is able to form binary complexes with Lis1. The availability of structural information will be of help in further studies on the cellular functions of the NudC family.
Collapse
Affiliation(s)
- Meiying Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tomasz Cierpicki
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alexander J. Burdette
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL and Department of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL
| | - Darkhan Utepbergenov
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Paweł. Ł. Jańczyk
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Todd P. Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL and Department of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|