1
|
Ma N, Sun Y, Ding C, Li Y, Yu L, Chen L. pUS6 in pseudorabies virus participates in the process of inhibiting antigen presentation by inhibiting the assembly of peptide loading complex. BMC Vet Res 2024; 20:454. [PMID: 39379944 PMCID: PMC11463114 DOI: 10.1186/s12917-024-04294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Pseudorabies virus (PRV) can establish lifelong latent infection in peripheral nervous ganglion, and persistent infections in peripheral blood lymphocytes. Establishing an infection in the lymphocytes does not only enable the PRV to escape host immune surveillance but pass through the placental barrier, leading to fetal death and abortion. Due to the pathogenicity of the PRV, it poses a huge challenge in its prevention and control. The PRV escapes host immunity through downregulation of swine leukocyte antigen class I (SLA I) molecules on infected cells. However, data on the molecular mechanisms of the SLA I suppression remains scant. Here, in order to verify the effect of candidate proteins PRV pUL44 and pUS6 on PRV immune escape related molecules SLA I and peptide loading complex (PLC), we detected the expression of SLA I and PLC components after expressing PRV pUL44 and pUS6. The effects of pUS6 and pUL44 on SLA I and PLC were analyzed by qRT-PCR and Western blot at mRNA and protein level, respectively. Cells expressing pUS6 or pUL44 genes showed a significantly suppressed expression of surface and total SLA I molecules. In addition, unlike UL44, the US6 gene was shown to downregulate the transporter associated with antigen processing 1 (TAP1), TAP2 and Tapasin molecules. The results show that PRV pUS6 may participate in virus immune escape by directly regulating the SLA I, TAP dimer and Tapasin molecules, thus blocking the transportation of TAP-bound peptides to the ER to bind SLA I molecules. We provide a theoretical basis on the mechanism of TAP mediated immune escape by the PRV.
Collapse
Affiliation(s)
- Ningning Ma
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Yawei Sun
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Chenmeng Ding
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Linyang Yu
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
| | - Lu Chen
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
| |
Collapse
|
2
|
Swanepoel J, van Zyl G, Hesseling AC, Johnson SM, Moore DAJ, Seddon JA. Human Cytomegalovirus Immunoglobulin G Response and Pulmonary Tuberculosis in Adolescents: A Case-Control Study. Open Forum Infect Dis 2023; 10:ofad487. [PMID: 37937044 PMCID: PMC10627337 DOI: 10.1093/ofid/ofad487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Background Emerging evidence suggests a link between infection with herpes viruses, particularly human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV), and progression to tuberculosis disease. Methods An unmatched case-control study was conducted among adolescents aged 10-19 years enrolled in an observational study (Teen TB) between November 2020 and November 2021, in Cape Town, South Africa. Fifty individuals with pulmonary tuberculosis and 51 healthy tuberculosis-exposed individuals without tuberculosis were included. Demographics and clinical data were obtained, and serum samples collected at enrolment were tested for HCMV immunoglobulin G (IgG) and EBV nuclear antigen (EBNA) IgG using 2 automated enzyme immunoassays. Odds ratios were estimated using unconditional logistic regression. Results The median age of 101 participants was 15 years (interquartile range, 13-17 years); 55 (54%) were female. All participants were HCMV IgG seropositive, and 95% were EBNA IgG seropositive. Individuals with tuberculosis had higher HCMV IgG titers than healthy controls (P = .04). Individuals with upper-tertile HCMV IgG titers had 3.67 times greater odds of pulmonary tuberculosis than those with IgG titers in the lower tertile (95% confidence interval, 1.05-12.84; P = .04). There was a trend for increasing odds of pulmonary tuberculosis with increasing titers of HCMV IgG (P = .04). In contrast, there was no association between tuberculosis and higher EBNA IgG values. Conclusions There is a high prevalence of sensitization to HCMV and EBV among adolescents in this high-tuberculosis-burden setting. Higher HCMV IgG titers were associated with pulmonary tuberculosis in adolescents.
Collapse
Affiliation(s)
- Jeremi Swanepoel
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gert van Zyl
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sarah M Johnson
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - David A J Moore
- TB Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Structure and function of the porcine TAP protein and its inhibition by the viral immune evasion protein ICP47. Int J Biol Macromol 2021; 178:514-526. [PMID: 33662419 DOI: 10.1016/j.ijbiomac.2021.02.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
The binding mode to TAP (i.e., the peptide transporter associated with antigen processing) from a viral peptide thus far has been unknown in the field of antiviral immunity, but an interfering mode from a virus-encoded TAP inhibitor has been well documented with respect to blocking the TAP function. In the current study, we predicted the structure of the pig TAP transporter and its inhibition complex by the small viral protein ICP47 of the herpes simplex virus (HSV) encoded by the TAP inhibitor to exploit inhibition of the TAP transporter as the host's immune evasion strategy. We found that the hot spots (residues Leu5, Tyr22, and Leu51) on the ICP47 inhibitor interface tended to prevail over the favored Leu and Tyr, which contributed to significant functional binding at the C-termini recognition principle of the TAP. We further characterized the specificity determinants of the peptide transporter from the pig TAP by the ICP47 inhibitor effects and multidrug TmrAB transporter from the Thermus thermophillus and its immunity regarding its structural homolog of the pig TAP. The specialized structure-function relationship from the pig TAP exporter could provide insight into substrate specificity of the unique immunological properties from the host organism. The TAP disarming capacity from all five viral inhibitors (i.e., the five virus-encoded TAP inhibitors of ICP47, UL49.5, U6, BNLF2a, and CPXV012 proteins) was linked to the infiltration of the TAP functional structure in an unstable conformation and the mounting susceptibility caused by the host's TAP polymorphism. It is anticipated that the functional characterization of the pig TAP transporter based on the pig genomic variants will lead to additional insights into the genotype and single nucleotide polymorphism (SNP) in relation to antiviral resistance and disease susceptibility.
Collapse
|
4
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
5
|
Wąchalska M, Graul M, Praest P, Luteijn RD, Babnis AW, Wiertz EJHJ, Bieńkowska-Szewczyk K, Lipińska AD. Fluorescent TAP as a Platform for Virus-Induced Degradation of the Antigenic Peptide Transporter. Cells 2019; 8:cells8121590. [PMID: 31817841 PMCID: PMC6952996 DOI: 10.3390/cells8121590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/20/2023] Open
Abstract
Transporter associated with antigen processing (TAP), a key player in the major histocompatibility complex class I-restricted antigen presentation, makes an attractive target for viruses that aim to escape the immune system. Mechanisms of TAP inhibition vary among virus species. Bovine herpesvirus 1 (BoHV-1) is unique in its ability to target TAP for proteasomal degradation following conformational arrest by the UL49.5 gene product. The exact mechanism of TAP removal still requires elucidation. For this purpose, a TAP-GFP (green fluorescent protein) fusion protein is instrumental, yet GFP-tagging may affect UL49.5-induced degradation. Therefore, we constructed a series of TAP-GFP variants using various linkers to obtain an optimal cellular fluorescent TAP platform. Mel JuSo (MJS) cells with CRISPR/Cas9 TAP1 or TAP2 knockouts were reconstituted with TAP-GFP constructs. Our results point towards a critical role of GFP localization on fluorescent properties of the fusion proteins and, in concert with the type of a linker, on the susceptibility to virally-induced inhibition and degradation. The fluorescent TAP platform was also used to re-evaluate TAP stability in the presence of other known viral TAP inhibitors, among which only UL49.5 was able to reduce TAP levels. Finally, we provide evidence that BoHV-1 UL49.5-induced TAP removal is p97-dependent, which indicates its degradation via endoplasmic reticulum-associated degradation (ERAD).
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 3/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 3/metabolism
- Acetanilides/pharmacology
- Animals
- Antigen Presentation/drug effects
- Antigen Presentation/genetics
- Benzothiazoles/pharmacology
- Cattle
- Cell Line
- Cell Line, Tumor
- Flow Cytometry
- Fluorescent Antibody Technique
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Herpesvirus 1, Bovine/pathogenicity
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoblotting
- Immunoprecipitation
- Plasmids/genetics
Collapse
Affiliation(s)
- Magda Wąchalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Patrique Praest
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (P.P.); (R.D.L.); (E.J.H.J.W.)
| | - Rutger D. Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (P.P.); (R.D.L.); (E.J.H.J.W.)
| | - Aleksandra W. Babnis
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (P.P.); (R.D.L.); (E.J.H.J.W.)
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Andrea D. Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
- Correspondence: ; Tel.: +48-585236383
| |
Collapse
|
6
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
7
|
Shao W, Chen X, Samulski RJ, Hirsch ML, Li C. Inhibition of antigen presentation during AAV gene therapy using virus peptides. Hum Mol Genet 2019; 27:601-613. [PMID: 29272432 DOI: 10.1093/hmg/ddx427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/12/2017] [Indexed: 11/14/2022] Open
Abstract
The clinical trial using adeno-associated virus (AAV) vector delivery of mini-dystrophin in patients with Duchenne Muscular Dystrophy (DMD) demonstrated a cytotoxic lymphocyte (CTL) response targeting the transgene product. These mini-dystrophin-specific T-cells have the potential to clear all transduced muscle, presenting the general gene therapy concern of overcoming the CTL response to foreign proteins that provide therapeutic benefit. In this study, we exploited a natural immunosuppression strategy employed by some viruses that results in CTL evasion only in transduced cells. After transfection of the plasmids encoding viral peptides and ovalbumin, which includes the immune-domain epitope SIINFEKL, several viral small peptides (ICP47 and US6) inhibited the SIINFEKL peptide presentation. A single AAV vector genome that consisted of either transgene AAT fused with SIINFEKL epitope and, separately, ICP47 expressed from different promoters or a single fusion protein with ICP47 linked by a furin cleavage peptide (AATOVA-ICP47) decreased antigen presentation. Compared with AAV/AATOVA in which decreased AAT expression was observed at late time points, persistent transgene expression was obtained after systemic administration of AAV/AATOVA-ICP47 vectors in mice. We extended this strategy to DMD gene therapy. After administration of AAV vector encoding human mini-dystrophin fusion protein with ICP47 into mdx mice, a lower mini-dystrophin-specific CTL response was induced. Importantly, the ICP47 fusion to mini-dystrophin inhibited CTLs mediated cytotoxicity. Although demonstrated herein using AAT and mini-dystrophin transgenes in an AAV context, the collective results have implications for all gene therapy applications resulting in foreign peptides by immune suppression in only genetically modified cells.
Collapse
Affiliation(s)
- Wenwei Shao
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaojing Chen
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard J Samulski
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew L Hirsch
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol Immunol 2018; 101:55-64. [DOI: 10.1016/j.molimm.2018.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023]
|
9
|
A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Sci Rep 2017; 7:2933. [PMID: 28592828 PMCID: PMC5462769 DOI: 10.1038/s41598-017-02994-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates antigenic peptides into the endoplasmic reticulum (ER) lumen for loading onto MHC class I molecules. This is a key step in the control of viral infections through CD8+ T-cells. The herpes simplex virus type-1 encodes an 88 amino acid long species-specific TAP inhibitor, ICP47, that functions as a high affinity competitor for the peptide binding site on TAP. It has previously been suggested that the inhibitory function of ICP47 resides within the N-terminal region (residues 1–35). Here we show that mutation of the highly conserved 50PLL52 motif within the central region of ICP47 attenuates its inhibitory capacity. Taking advantage of the human cytomegalovirus-encoded TAP inhibitor US6 as a luminal sensor for conformational changes of TAP, we demonstrated that the 50PLL52 motif is essential for freezing of the TAP conformation. Moreover, hierarchical functional interaction sites on TAP dependent on 50PLL52 could be defined using a comprehensive set of human-rat TAP chimeras. This data broadens our understanding of the molecular mechanism underpinning TAP inhibition by ICP47, to include the 50PLL52 sequence as a stabilizer that tethers the TAP-ICP47 complex in an inward-facing conformation.
Collapse
|
10
|
Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJHJ. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog 2015; 11:e1004743. [PMID: 25880312 PMCID: PMC4399834 DOI: 10.1371/journal.ppat.1004743] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.
Collapse
Affiliation(s)
- Marieke C. Verweij
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bryan D. Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger D. Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Maaike E. Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
12
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
13
|
Luteijn RD, Hoelen H, Kruse E, van Leeuwen WF, Grootens J, Horst D, Koorengevel M, Drijfhout JW, Kremmer E, Früh K, Neefjes JJ, Killian A, Lebbink RJ, Ressing ME, Wiertz EJHJ. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. THE JOURNAL OF IMMUNOLOGY 2014; 193:1578-89. [PMID: 25024387 DOI: 10.4049/jimmunol.1400964] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hanneke Hoelen
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wouter F van Leeuwen
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jennine Grootens
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Martijn Koorengevel
- Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Elisabeth Kremmer
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Molecular Immunology, 81377 Munich, Germany
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; and
| | - Jacques J Neefjes
- Department of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Antoinette Killian
- Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
14
|
Beutler N, Hauka S, Niepel A, Kowalewski DJ, Uhlmann J, Ghanem E, Erkelenz S, Wiek C, Hanenberg H, Schaal H, Stevanović S, Springer S, Momburg F, Hengel H, Halenius A. A natural tapasin isoform lacking exon 3 modifies peptide loading complex function. Eur J Immunol 2013; 43:1459-69. [DOI: 10.1002/eji.201242725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 02/01/2013] [Accepted: 03/15/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Nele Beutler
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Sebastian Hauka
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Alexandra Niepel
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | | | - Julia Uhlmann
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Esther Ghanem
- Department of Biochemistry and Cell Biology; Jacobs University Bremen; Bremen; Germany
| | - Steffen Erkelenz
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | | | - Heiner Schaal
- Institute for Virology; Heinrich-Heine-University Düsseldorf; Düsseldorf; Germany
| | - Stefan Stevanović
- Department of Immunology; Institute for Cell Biology; University of Tübingen; Tübingen; Germany
| | - Sebastian Springer
- Department of Biochemistry and Cell Biology; Jacobs University Bremen; Bremen; Germany
| | - Frank Momburg
- Division of Translational Immunology (D015); German Cancer Research Center (DKFZ); Heidelberg; Germany
| | | | | |
Collapse
|
15
|
Hesse J, Ameres S, Besold K, Krauter S, Moosmann A, Plachter B. Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol 2012; 94:376-386. [PMID: 23100361 DOI: 10.1099/vir.0.045682-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) interferes with MHC class I-restricted antigen presentation and thereby reduces recognition by CD8(+) T-cells. This interference is mediated primarily by endoplasmic reticulum-resident glycoproteins that are encoded in the US2-11 region of the viral genome. Such a suppression of recognition would be of particular importance immediately after infection, because several immunodominant viral antigens are already present in the cell in this phase. However, which of the evasion proteins gpUS2-11 interfere(s) with antigen presentation to CD8(+) T-cells at this time of infection is not known. Here we address this question, using recombinant viruses (RV) that express only one of the immunoevasins gpUS2, gpUS3 or gpUS11. Infection with RV-US3 had only a limited impact on the presentation of peptides from the CD8(+) T-cell antigens IE1 and pp65 under immediate-early (IE) conditions imposed by cycloheximide/actinomycin D blocking. Unexpectedly, both RV-US2 and RV-US11 considerably impaired the recognition of IE1 and pp65 by CD8(+) T-cells, and both US2 and, to a lesser extent, US11 were transcribed under IE conditions. Thus, gpUS2 and gpUS11 are key effectors of MHC class I immunoevasion immediately after HCMV infection.
Collapse
Affiliation(s)
- Julia Hesse
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Besold
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
16
|
Panter MS, Jain A, Leonhardt RM, Ha T, Cresswell P. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex. J Biol Chem 2012; 287:31172-84. [PMID: 22829594 PMCID: PMC3438949 DOI: 10.1074/jbc.m112.387704] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.
Collapse
Affiliation(s)
- Michaela S Panter
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Collapse
Affiliation(s)
- Andreas Hinz
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/M., Germany
| | | |
Collapse
|
18
|
Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other. J Virol 2012; 86:8059-71. [PMID: 22623773 DOI: 10.1128/jvi.00891-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.
Collapse
|
19
|
The TAP translocation machinery in adaptive immunity and viral escape mechanisms. Essays Biochem 2012; 50:249-64. [PMID: 21967061 DOI: 10.1042/bse0500249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adaptive immune system plays an essential role in protecting vertebrates against a broad range of pathogens and cancer. The MHC class I-dependent pathway of antigen presentation represents a sophisticated cellular machinery to recognize and eliminate infected or malignantly transformed cells, taking advantage of the proteasomal turnover of the cell's proteome. TAP (transporter associated with antigen processing) 1/2 (ABCB2/3, where ABC is ATP-binding cassette) is the principal component in the recognition, translocation, chaperoning, editing and final loading of antigenic peptides on to MHC I complexes in the ER (endoplasmic reticulum) lumen. These different tasks are co-ordinated within a dynamic macromolecular peptide-loading complex consisting of TAP1/2 and various auxiliary factors, such as the adapter protein tapasin, the oxidoreductase ERp57, the lectin chaperone calreticulin, and the final peptide acceptor the MHC I heavy chain associated with β2-microglobulin. In this chapter, we summarize the structural organization and molecular mechanism of the antigen-translocation machinery as well as various modes of regulation by viral factors and in genetic diseases and tumour development.
Collapse
|
20
|
Sun N, Liu D, Chen H, Liu X, Meng F, Zhang X, Chen H, Xie S, Li X, Wu Z. Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene. Int J Biol Sci 2011; 8:49-58. [PMID: 22211104 PMCID: PMC3226032 DOI: 10.7150/ijbs.8.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/01/2011] [Indexed: 12/22/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the lumen of the endoplasmic reticular and plays a critical role in the major histocompatibility complex (MHC) class I molecule-mediated antigenic presentation pathway. In this study, the porcine TAP1 gene was mapped to the pig chromosome 7 (SSC7) and was closely linked to the marker SSC2B02 (retention fraction=43%, LOD=15.18). Subcellular localization of TAP1 by transient transfection of PK15 cells indicated that the TAP1 protein might be located in the endoplasmic reticulum (ER) in pig kidney epithelial cells (PK-15). Gene expression analysis by semi-quantitative RT-PCR revealed that TAP1 was selectively expressed in some immune and immune-related tissues. Quantitative real-time PCR (qRT-PCR) analysis revealed that this gene was up-regulated after treatments that mimic viral and bacterial infection (polyriboinosinic-polyribocytidylic acid (poly(I:C)) and lipopolysaccharide (LPS), respectively). In addition, elevated TAP1 expression was detected after porcine reproductive and respiratory syndrome virus (PRRSV) infection in porcine white blood cells (WBCs). One single nucleotide polymorphism (SNP) in exon 3 of TAP1 was detected in a Landrace pig population by Bsp143I restriction enzyme digestion. Different genotypes of this SNP had significant associations (P<0.05) with the red blood cell distribution width (RDW) of 1-day-old (1 d) pigs (P=0.0168), the PRRSV antibody level (PRRSV Ab) (P=0.0445) and the absolute lymphocyte count (LYM#) (P=0.024) of 17 d pigs. Our results showed that the TAP1 gene might have important roles in swine immune responses, and these results provide useful information for further functional studies.
Collapse
Affiliation(s)
- Nunu Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Verweij MC, Lipińska AD, Koppers-Lalic D, Quinten E, Funke J, van Leeuwen HC, Bieńkowska-Szewczyk K, Koch J, Ressing ME, Wiertz EJHJ. Structural and functional analysis of the TAP-inhibiting UL49.5 proteins of varicelloviruses. Mol Immunol 2011; 48:2038-51. [PMID: 21764135 DOI: 10.1016/j.molimm.2011.06.438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 01/06/2023]
Abstract
Viral infections are counteracted by virus-specific cytotoxic T cells that recognize the infected cell via MHC class I (MHC I) molecules presenting virus-derived peptides. The loading of the peptides onto MHC I molecules occurs in the endoplasmic reticulum (ER) and is facilitated by the peptide loading complex. A key player in this complex is the transporter associated with antigen processing (TAP), which translocates the viral peptides from the cytosol into the ER. Herpesviruses have developed many strategies to evade cytotoxic T cells. Several members of the genus Varicellovirus encode a UL49.5 protein that prevents peptide transport through TAP. These include bovine herpesvirus (BoHV) 1, BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, pseudorabies virus, felid herpesvirus 1, and equine herpesvirus 1 and 4. BoHV-1 UL49.5 inhibits TAP by preventing conformational changes essential for peptide transport and by inducing degradation of the TAP complex. UL49.5 consists of an ER luminal N-terminal domain, a transmembrane domain and a cytosolic C-terminal tail domain. In this study, the following features of UL49.5 were deciphered: (1) chimeric constructs of BoHV-1 and VZV UL49.5 attribute the lack of TAP inhibition by VZV UL49.5 to its ER-luminal domain, (2) the ER-luminal and TM domains of UL49.5 are required for efficient interaction with and inhibition of TAP, (3) the C-terminal RXRX sequence is essential for TAP degradation by BoHV-1 UL49.5, and (4) in addition to the RXRX sequence, the cytoplasmic tail of BoHV-1 UL49.5 carries a motif that is required for efficient TAP inhibition by the protein. A model is presented depicting how the different domains of UL49.5 may block the translocation of peptides by TAP and target TAP for proteasomal degradation.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The cytoplasmic domain of rhesus cytomegalovirus Rh178 interrupts translation of major histocompatibility class I leader peptide-containing proteins prior to translocation. J Virol 2011; 85:8766-76. [PMID: 21715474 DOI: 10.1128/jvi.05021-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cytomegalovirus (CMV) efficiently evades many host immune defenses and encodes a number of proteins that prevent antigen presentation by major histocompatibility complex class I (MHC-I) molecules in order to evade recognition and killing of infected cells by cytotoxic CD8(+) T cells. We recently showed that rhesus CMV-specific Rh178 intercepts MHC-I protein translation before interference of MHC-I maturation by homologues of the human CMV US6 family. Here, we demonstrate that Rh178 localizes to the membrane of the endoplasmic reticulum, displaying a short luminal and large cytosolic domain, and that the membrane-proximal cytosolic portion is essential for inhibition of MHC-I expression. We further observed that Rh178 does not require synthesis of full-length MHC-I heavy chains but is capable of inhibiting the translation of short, unstable amino-terminal fragments of MHC-I. Moreover, the transfer of amino-terminal fragments containing the MHC-I signal peptide renders recipient proteins susceptible to targeting by Rh178. The cytosolic orientation of Rh178 and its ability to target protein fragments carrying the MHC-I signal peptide are consistent with Rh178 intercepting partially translated MHC-I heavy chains after signal recognition particle-dependent transfer to the endoplasmic reticulum membrane. However, interference with MHC-I translation by Rh178 seems to occur prior to SEC61-dependent protein translocation, since inhibition of MHC-I translocation by eeyarestatin 1 resulted in a full-length degradation intermediate that can be stabilized by proteasome inhibitors. These data are consistent with Rh178 blocking protein translation of MHC-I heavy chains at a step prior to the start of translocation, thereby downregulating MHC-I at a very early stage of translation.
Collapse
|
23
|
Verweij MC, Lipińska AD, Koppers-Lalic D, van Leeuwen WF, Cohen JI, Kinchington PR, Messaoudi I, Bieńkowska-Szewczyk K, Ressing ME, Rijsewijk FAM, Wiertz EJHJ. The capacity of UL49.5 proteins to inhibit TAP is widely distributed among members of the genus Varicellovirus. J Virol 2011; 85:2351-63. [PMID: 21159875 PMCID: PMC3067808 DOI: 10.1128/jvi.01621-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/19/2010] [Indexed: 11/20/2022] Open
Abstract
The lifelong infection by varicelloviruses is characterized by a fine balance between the host immune response and immune evasion strategies used by these viruses. Virus-derived peptides are presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The transporter associated with antigen processing (TAP) transports the peptides from the cytosol into the endoplasmic reticulum, where the loading of MHC-I molecules occurs. The varicelloviruses bovine herpesvirus 1 (BoHV-1), pseudorabies virus, and equid herpesviruses 1 and 4 have been found to encode a UL49.5 protein that inhibits TAP-mediated peptide transport. To investigate to what extent UL49.5-mediated TAP inhibition is conserved within the family of Alphaherpesvirinae, the homologs of another five varicelloviruses, one mardivirus, and one iltovirus were studied. The UL49.5 proteins of BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, and felid herpesvirus 1 were identified as potent TAP inhibitors. The varicella-zoster virus and simian varicellovirus UL49.5 proteins fail to block TAP; this is not due to the absence of viral cofactors that might assist in this process, since cells infected with these viruses did not show reduced TAP function either. The UL49.5 homologs of the mardivirus Marek's disease virus 1 and the iltovirus infectious laryngotracheitis virus did not block TAP, suggesting that the capacity to inhibit TAP via UL49.5 has been acquired by varicelloviruses only. A phylogenetic analysis of viruses that inhibit TAP through their UL49.5 proteins reveals an interesting hereditary pattern, pointing toward the presence of this capacity in defined clades within the genus Varicellovirus.
Collapse
Affiliation(s)
- Marieke C. Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea D. Lipińska
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Danijela Koppers-Lalic
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Wouter F. van Leeuwen
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeffrey I. Cohen
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paul R. Kinchington
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ilhem Messaoudi
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Krystyna Bieńkowska-Szewczyk
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maaike E. Ressing
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Frans A. M. Rijsewijk
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands, Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Vaccine and Gene Therapy Institute, Division of Pathobiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, Department of Microbiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Verweij MC, Ressing ME, Knetsch W, Quinten E, Halenius A, van Bel N, Hengel H, Drijfhout JW, van Hall T, Wiertz EJHJ. Inhibition of mouse TAP by immune evasion molecules encoded by non-murine herpesviruses. Mol Immunol 2011; 48:835-45. [PMID: 21292324 DOI: 10.1016/j.molimm.2010.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 12/26/2022]
Abstract
Herpesviruses escape elimination by cytotoxic T lymphocytes through specific interference with the antigen-presenting function of MHC class I (MHC I) molecules. The transporter associated with antigen processing (TAP) forms a bottleneck in the MHC I antigen presentation pathway. The fact that multiple viruses, especially herpesviruses, encode molecules blocking TAP function is a case in point. The action of these viral immuno evasins is usually potent and very specific, making these proteins valuable tools for studying the cell biology of antigen presentation, including alternative antigen processing pathways. Yet, no dedicated TAP inhibitor has been described for any of the mouse herpesviruses. To permit the use of immuno evasins derived from non-mouse herpesviruses in mouse models, we assessed the cross-species activity of four TAP inhibitors and one tapasin inhibitor in the context of three different mouse haplotypes, H-2(b), H-2(d), and H-2(k). Two of the four TAP inhibitors, the bovine herpesvirus 1-encoded UL49.5 and the human cytomegalovirus (HCMV)-encoded US6 protein, potently inhibited mouse TAP. ICP47 and BNLF2a, encoded by herpes simplexvirus 1 and Epstein-Barr virus, respectively, failed to inhibit TAP in all mouse cells tested. Previous work, however, demonstrated that US6 did not cross the mouse species barrier. We now show that substitution of the cysteine residue at position 108 was responsible for this lack of activity. The HCMV-encoded tapasin inhibitor US3 efficiently downregulated H-2(d) molecules on 3T3 cells, but not in other cell lines tested. Finally, we show that synthetic peptides comprising the functional domain of US6 can be exploited as a versatile TAP inhibitor. In conclusion, a complete overview is presented of the applicability of herpesvirus-encoded TAP and tapasin inhibitors in mouse cells of different genetic background.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. J Virol 2011. [PMID: 21248040 DOI: 10.1128/jvi.01923-10.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides for CD8(+) T-cell recognition. Prior to cell surface expression, proper MHC I loading is conducted by the peptide-loading complex (PLC), composed of the MHC I heavy chain (HC) and β(2)-microglobulin (β(2)m), the peptide transporter TAP, and several chaperones, including tapasin. Tapasin connects peptide-receptive MHC I molecules to the PLC, thereby facilitating loading of high-affinity peptides onto MHC I. To cope with CD8(+) T-cell responses, human cytomegalovirus (HCMV) encodes several posttranslational strategies inhibiting peptide transport and MHC I biogenesis which have been studied extensively in transfected cells. Here we analyzed assembly of the PLC in naturally HCMV-infected fibroblasts throughout the protracted replication cycle. MHC I incorporation into the PLC was absent early in HCMV infection. Subsequently, tapasin neosynthesis became strongly reduced, while tapasin steady-state levels diminished only slowly in infected cells, revealing a blocked synthesis rather than degradation. Tapasin mRNA levels were continuously downregulated during infection, while tapasin transcripts remained stable and long-lived. Taking advantage of a novel method by which de novo transcribed RNA is selectively labeled and analyzed, an immediate decline of tapasin transcription was seen, followed by downregulation of TAP2 and TAP1 gene expression. However, upon forced expression of tapasin in HCMV-infected cells, repair of MHC I incorporation into the PLC was relatively inefficient, suggesting an additional level of HCMV interference. The data presented here document a two-pronged coordinated attack on tapasin function by HCMV.
Collapse
|
26
|
Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. J Virol 2011; 85:3473-85. [PMID: 21248040 DOI: 10.1128/jvi.01923-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides for CD8(+) T-cell recognition. Prior to cell surface expression, proper MHC I loading is conducted by the peptide-loading complex (PLC), composed of the MHC I heavy chain (HC) and β(2)-microglobulin (β(2)m), the peptide transporter TAP, and several chaperones, including tapasin. Tapasin connects peptide-receptive MHC I molecules to the PLC, thereby facilitating loading of high-affinity peptides onto MHC I. To cope with CD8(+) T-cell responses, human cytomegalovirus (HCMV) encodes several posttranslational strategies inhibiting peptide transport and MHC I biogenesis which have been studied extensively in transfected cells. Here we analyzed assembly of the PLC in naturally HCMV-infected fibroblasts throughout the protracted replication cycle. MHC I incorporation into the PLC was absent early in HCMV infection. Subsequently, tapasin neosynthesis became strongly reduced, while tapasin steady-state levels diminished only slowly in infected cells, revealing a blocked synthesis rather than degradation. Tapasin mRNA levels were continuously downregulated during infection, while tapasin transcripts remained stable and long-lived. Taking advantage of a novel method by which de novo transcribed RNA is selectively labeled and analyzed, an immediate decline of tapasin transcription was seen, followed by downregulation of TAP2 and TAP1 gene expression. However, upon forced expression of tapasin in HCMV-infected cells, repair of MHC I incorporation into the PLC was relatively inefficient, suggesting an additional level of HCMV interference. The data presented here document a two-pronged coordinated attack on tapasin function by HCMV.
Collapse
|
27
|
Inhibition of swine leukocyte antigen-I presentation in transgenic mini-pig cell lines by expressing human cytomegalovirus US6. Transplant Proc 2010; 42:4648-50. [PMID: 21168753 DOI: 10.1016/j.transproceed.2010.09.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
Abstract
Xenotransplantation using porcine organs may resolve the chronic shortage of donor organs for clinical transplantation if significant immunologic barriers can be overcome. A xenograft can be rejected by T cells, especially CD8(+) cytotoxic T lymphocytes (CTL)-mediated responses, as these cells show cytotoxicity against xenografts by recognition of swine leukocyte antigen (SLA)-I. Peptide translocation is inhibited by the endoplasmic reticulum-resident human cytomegalovirus (HCMV) glycoprotein unique short (US) 6, due to alterations of the transporter associated with antigen processing loading onto MHC class I for antigen presentation to CD8(+) CTL. In this study we transfected the US6 gene into minipig fetal fibroblasts establishing three US6 clonal cell lines. Flow cytometry analysis of US6 clonal cell lines demonstrated a substantial reduction in SLA-I expression. The level of SLA-I expression in US6 clones was decreased to 56.3% compared with the control 42.7%. In CTL assays, the rate of CD8(+) CTL-mediated cytotoxicity was significantly reduced to 35.2% ± 11.7% compared with the control, 79.9% ± 6.5%, (P < .01). These results suggested that HCMV viral protein US6 suppresses the presentation of SLA-I on pig fetal fibroblast cells. This strategy might be used in transgenic pig production to protect porcine organs from CTL-mediated immune rejection.
Collapse
|
28
|
Abstract
Herpesviruses have evolved several effective strategies to counter the host immune response. Chief among these is inhibition of the host MHC class I antigen processing and presentation pathway, thereby reducing the presentation of virus-derived epitopes on the surface of the infected cell. This review summarizes the mechanisms used by herpesviruses to achieve this goal, including shut-down of MHC class I molecule synthesis, blockage of proteasome-mediated peptide generation and prevention of TAP-mediated peptide transport. Furthermore, herpesvirus proteins can retain MHC class I molecules in the endoplasmic reticulum, or direct their retrograde translocation from the endoplasmic reticulum or endocytosis from the plasma membrane, with subsequent degradation. The resulting down-regulation of cell surface MHC class I peptide complexes thwarts the ability of cytotoxic T lymphocytes to recognize and eliminate virus-infected cells. The subversion of the natural killer cell response by herpesvirus proteins and microRNAs is also discussed.
Collapse
Affiliation(s)
- Bryan D Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
29
|
MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503-13. [PMID: 19498380 DOI: 10.1038/nri2575] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
Collapse
|
30
|
Abele R, Tampé R. Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Curr Opin Cell Biol 2009; 21:508-15. [PMID: 19443191 DOI: 10.1016/j.ceb.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 01/03/2023]
Abstract
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt aM, Germany
| | | |
Collapse
|
31
|
Horst D, van Leeuwen D, Croft NP, Garstka MA, Hislop AD, Kremmer E, Rickinson AB, Wiertz EJHJ, Ressing ME. Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2313-24. [PMID: 19201886 DOI: 10.4049/jimmunol.0803218] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
EBV persists for life in the human host while facing vigorous antiviral responses that are induced upon primary infection. This persistence supports the idea that herpesviruses have acquired dedicated functions to avoid immune elimination. The recently identified EBV gene product BNLF2a blocks TAP. As a result, reduced amounts of peptides are transported by TAP from the cytoplasm into the endoplasmic reticulum (ER) lumen for binding to newly synthesized HLA class I molecules. Thus, BNLF2a perturbs detection by cytotoxic T cells. The 60-aa-long BNLF2a protein prevents the binding of both peptides and ATP to TAP, yet further mechanistic insight is, to date, lacking. In this study, we report that EBV BNLF2a represents a membrane-associated protein that colocalizes with its target TAP in subcellular compartments, primarily the ER. In cells devoid of TAP, expression levels of BNLF2a protein are greatly diminished, while ER localization of the remaining BNLF2a is retained. For interactions of BNLF2a with the HLA class I peptide-loading complex, the presence of TAP2 is essential, whereas tapasin is dispensible. Importantly, we now show that in B cells supporting EBV lytic replication, the BNLF2a protein is expressed early in infection, colocalizing and associating with the peptide-loading complex. These results imply that, during productive EBV infection, BNLF2a contributes to TAP inhibition and surface HLA class I down-regulation. In this way, EBV BNLF2a-mediated evasion from HLA class I-restricted T cell immunity contributes to creating a window for undetected virus production.
Collapse
Affiliation(s)
- Daniëlle Horst
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
33
|
Koppers-Lalic D, Verweij MC, Lipińska AD, Wang Y, Quinten E, Reits EA, Koch J, Loch S, Rezende MM, Daus F, Bieńkowska-Szewczyk K, Osterrieder N, Mettenleiter TC, Heemskerk MHM, Tampé R, Neefjes JJ, Chowdhury SI, Ressing ME, Rijsewijk FAM, Wiertz EJHJ. Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP. PLoS Pathog 2008; 4:e1000080. [PMID: 18516302 PMCID: PMC2386557 DOI: 10.1371/journal.ppat.1000080] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 04/28/2008] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms. Herpesviruses have the conspicuous property that they persist for life in the infected host. This is also the case for varicelloviruses, a large subfamily of herpesviruses with representatives in humans (varicella zoster virus or VZV), cattle (bovine herpesvirus 1 or BHV-1), pigs (pseudorabies virus or PRV), and horses (equine herpesvirus or EHV type 1 and 4), among many others. Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in this process, as TAP imports peptides into the compartment where peptide loading of the MHC class I molecules takes place. In this study, we show that the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 all block the supply of peptides through the inhibition of TAP, but that the mechanisms employed by these proteins to inhibit TAP function exhibit surprising diversity. VZV UL49.5, on the other hand, binds to TAP, but does not interfere with peptide transport. Our study classifies the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.
Collapse
Affiliation(s)
- Danijela Koppers-Lalic
- Center of Infectious Diseases and Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke C. Verweij
- Center of Infectious Diseases and Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ying Wang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Edwin Quinten
- Center of Infectious Diseases and Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric A. Reits
- Department of Cell Biology and Histology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Joachim Koch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Sandra Loch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Marisa Marcondes Rezende
- Center of Infectious Diseases and Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Franz Daus
- Virus Discovery Unit, ASG-Lelystad, Lelystad, The Netherlands
| | | | - Nikolaus Osterrieder
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Institute for Virology, Berlin, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Jacques J. Neefjes
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shafiqul I. Chowdhury
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Maaike E. Ressing
- Center of Infectious Diseases and Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Emmanuel J. H. J. Wiertz
- Center of Infectious Diseases and Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82:8246-52. [PMID: 18448533 DOI: 10.1128/jvi.00207-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
35
|
Structural and Functional Dissection of the Human Cytomegalovirus Immune Evasion Protein US6. J Virol 2008; 82:3271-82. [PMID: 18199642 DOI: 10.1128/jvi.01705-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) protein US6 inhibits the transporter associated with antigen processing (TAP). Since TAP transports antigenic peptides into the endoplasmic reticulum for binding to major histocompatibility class I molecules, inhibition of the transporter by HCMV US6 impairs the presentation of viral antigens to cytotoxic T lymphocytes. HCMV US6 inhibits ATP binding by TAP, hence depriving TAP of the energy source it requires for peptide translocation, yet the molecular basis for the interaction between US6 and TAP is poorly understood. In this study we demonstrate that residues 89 to 108 of the HCMV US6 luminal domain are required for TAP inhibition, whereas sequences that flank this region stabilize the binding of the viral protein to TAP. In parallel, we demonstrate that chimpanzee cytomegalovirus (CCMV) US6 binds, but does not inhibit, human TAP. The sequence of CCMV US6 differs from that of HCMV US6 in the region corresponding to residues 89 to 108 of the HCMV protein. The substitution of this region of CCMV US6 with the corresponding residues from HCMV US6 generates a chimeric protein that inhibits human TAP and provides further evidence for the pivotal role of residues 89 to 108 of HCMV US6 in the inhibition of TAP. On the basis of these observations, we propose that there is a hierarchy of interactions between HCMV US6 and TAP, in which residues 89 to 108 of HCMV US6 interact with and inhibit TAP, whereas other parts of the viral protein also bind to TAP and stabilize this inhibitory interaction.
Collapse
|
36
|
Besold K, Frankenberg N, Pepperl-Klindworth S, Kuball J, Theobald M, Hahn G, Plachter B. Processing and MHC class I presentation of human cytomegalovirus pp65-derived peptides persist despite gpUS2–11-mediated immune evasion. J Gen Virol 2007; 88:1429-1439. [PMID: 17412970 DOI: 10.1099/vir.0.82686-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune control of human cytomegalovirus (HCMV) infection can be mediated by CD8+cytolytic T lymphocytes (CTL). Adoptive transfer of antiviral CTL confers protection against HCMV reactivation and disease. The tegument protein pp65 and the immediate-early 1 protein (IE1) are recognized to be major CTL targets, even though during productive infection the viral immunoevasion proteins gpUS2–11 act to suppress major histocompatibility complex (MHC) class I-restricted antigen presentation. Thus it was not clear how infected cells could be labelled with antigenic peptides in the face of immunoevasion. We show here that the immunodominant peptide pp65NLVwas presented by MHC class I in cells infected with a gpUS2–11-competent virus. Presentation of pp65NLVwas still detectable at 96 h post-infection, although at low levels. Partial suppression of pp65NLVpresentation was dependent on the ability of the infecting strain to express gpUS2–11. MHC class I-restricted antigen presentation in HCMV-infected cells (encoding gpUS2–11) exhibited specificity for pp65-derived peptides, as infected fibroblasts did not present the IE1-derived nonapeptide IE1TMY. Remarkably, infected cells could restore pp65NLVpeptide presentation after acid removal of MHC class I despite gpUS2–11 expression. This recovery was shown to be dependent on proteasome functionality. In contrast to IE1, pp65 peptides are loaded on MHC class I molecules to be transported to the cell surface at early and late times after infection in the face of gpUS2–11-mediated immunoevasion. pp65 is therefore the first example of an HCMV protein only incompletely subjected to gpUS2–11-mediated immunoevasion.
Collapse
Affiliation(s)
- Katrin Besold
- Institute of Virology, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | - Jürgen Kuball
- Department of Hematology and Oncology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Oncology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Gabriele Hahn
- Max von Pettenkofer Institut, Department of Virology, Ludwig-Maximilians-Universität München, Germany
| | - Bodo Plachter
- Institute of Virology, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
37
|
van Hall T, Laban S, Koppers-Lalic D, Koch J, Precup C, Asmawidjaja P, Offringa R, Wiertz EJHJ. The varicellovirus-encoded TAP inhibitor UL49.5 regulates the presentation of CTL epitopes by Qa-1b1. THE JOURNAL OF IMMUNOLOGY 2007; 178:657-62. [PMID: 17202325 DOI: 10.4049/jimmunol.178.2.657] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Impairment of MHC class I Ag processing is a commonly observed mechanism that allows viruses and tumors to escape immune destruction by CTL. The peptide transporter TAP that is responsible for the delivery of MHC class I-binding peptides into the endoplasmic reticulum is a pivotal target of viral-immune evasion molecules, and expression of this transporter is frequently lost in advanced cancers. We recently described a novel population of CTL that intriguingly exhibits reactivity against such tumor-immune escape variants and that recognizes self-peptides emerging at the cell surface due to defects in the processing machinery. Investigations of this new type of CTL epitopes are hampered by the lack of an efficient inhibitor for peptide transport in mouse cells. In this article, we demonstrate that the varicellovirus protein UL49.5, in contrast to ICP47 and US6, strongly impairs the activity of the mouse transporter and mediates degradation of mouse TAP1 and TAP2. Inhibition of TAP was witnessed by a strong reduction of surface MHC class I display and a decrease in recognition of conventional tumor-specific CTL. Analysis of CTL reactivity through the nonclassical molecule Qa-1(b) revealed that the presentation of the predominant leader peptide was inhibited. Interestingly, expression of UL49.5 in processing competent tumor cells induced the presentation of the new category of peptides. Our data show that the varicellovirus UL49.5 protein is a universal TAP inhibitor that can be exploited for preclinical studies on CTL-based immune intervention.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well-adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)-proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub-proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)-encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)-membrane into the cytosol, a process termed ER dislocation. US2- and US11-mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER-associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co-opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)-68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen-exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)-proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub-dependent processes. We add a few examples of manipulation of the Ub-proteasome system by pathogens in the context of the immune system and such diverse aspects of the host-pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen-encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host-pathogen interactions.
Collapse
Affiliation(s)
- Joana Loureiro
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts, USA
| | | |
Collapse
|