1
|
Díaz-Rodríguez SM, Ivorra I, Espinosa J, Vegar C, Herrero-Turrión MJ, López DE, Gómez-Nieto R, Alberola-Die A. Enhanced Membrane Incorporation of H289Y Mutant GluK1 Receptors from the Audiogenic Seizure-Prone GASH/Sal Model: Functional and Morphological Impacts on Xenopus Oocytes. Int J Mol Sci 2023; 24:16852. [PMID: 38069190 PMCID: PMC10706347 DOI: 10.3390/ijms242316852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.
Collapse
Affiliation(s)
- Sandra M. Díaz-Rodríguez
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Isabel Ivorra
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - Javier Espinosa
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - Celia Vegar
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - M. Javier Herrero-Turrión
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
- Neurological Tissue Bank INCYL (BTN-INCYL), University of Salamanca, E-37007 Salamanca, Spain
| | - Dolores E. López
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Armando Alberola-Die
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| |
Collapse
|
2
|
Custer SK, Gilson T, Astroski JW, Nanguneri SR, Iurillo AM, Androphy EJ. COPI coatomer subunit α-COP interacts with the RNA binding protein Nucleolin via a C-terminal dilysine motif. Hum Mol Genet 2023; 32:3263-3275. [PMID: 37658769 PMCID: PMC10656708 DOI: 10.1093/hmg/ddad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not β-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.
Collapse
Affiliation(s)
- Sara K Custer
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Timra Gilson
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Jacob W Astroski
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Siddarth R Nanguneri
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Alyssa M Iurillo
- Indiana University School of Medicine, 340 West 10 St, Indianapolis, IN 46202, United States
| | - Elliot J Androphy
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| |
Collapse
|
3
|
Wu D, Xu L, Cai WM, Zhan SY, Wan G, Xu Y, Shi YS. A splicing-dependent ER retention signal regulates surface expression of the mechanosensitive TMEM63B cation channel. J Biol Chem 2022; 299:102781. [PMID: 36496074 PMCID: PMC9830214 DOI: 10.1016/j.jbc.2022.102781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.
Collapse
Affiliation(s)
- Dan Wu
- Department of Neurology, Drum Tower Hospital, Ministry of Education Key -Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China; Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Lushan Xu
- Department of Neurology, Drum Tower Hospital, Ministry of Education Key -Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China; Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Min Cai
- Department of Neurology, Drum Tower Hospital, Ministry of Education Key -Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Shi-Yu Zhan
- Department of Neurology, Drum Tower Hospital, Ministry of Education Key -Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- Department of Neurology, Drum Tower Hospital, Ministry of Education Key -Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Ministry of Education Key -Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Yun Stone Shi
- Department of Neurology, Drum Tower Hospital, Ministry of Education Key -Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China; Guangdong Institute of Intelligence Science and Technology, Zhuhai, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Abstract
Neural communication and modulation are complex processes. Ionotropic glutamate receptors (iGluRs) significantly contribute to mediating the fast-excitatory branch of neurotransmission in the mammalian brain. Kainate receptors (KARs), a subfamily of the iGluRs, act as modulators of the neuronal circuitry by playing important roles at both the post- and presynaptic sites of specific neurons. The functional tetrameric receptors are formed by two different gene families, low agonist affinity (GluK1-GluK3) and high agonist affinity (GluK4-GluK5) subunits. These receptors garnered attention in the past three decades, and since then, much work has been done to understand their localization, interactome, physiological functions, and regulation. Cloning of the receptor subunits (GluK1-GluK5) in the early 1990s led to recombinant expression of kainate receptors in heterologous systems. This facilitated understanding of the functional differences between subunit combinations, splice variants, trafficking, and drug discovery. Structural studies of individual domains and recent full-length homomeric and heteromeric kainate receptors have revealed unique functional mechanisms, which have answered several long-standing questions in the field of kainate receptor biology. In this chapter, we review the current understanding of kainate receptors and associated disorders.
Collapse
Affiliation(s)
- Surbhi Dhingra
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India
| | - Juhi Yadav
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India.
| |
Collapse
|
5
|
Lee GS, Zhang J, Wu Y, Zhou Y. 14-3-3 proteins promote synaptic localization of N-methyl d-aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons. PLoS One 2021; 16:e0261791. [PMID: 34962957 PMCID: PMC8714094 DOI: 10.1371/journal.pone.0261791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
One of the core pathogenic mechanisms for schizophrenia is believed to be dysfunction in glutamatergic synaptic transmissions, particularly hypofunction of N-methyl d-aspartate receptors (NMDARs). Previously we showed that 14-3-3 functional knockout mice exhibit schizophrenia-associated behaviors accompanied by reduced synaptic NMDARs in forebrain excitatory neurons. To investigate how 14-3-3 proteins regulate synaptic localization of NMDARs, here we examined changes in levels of synaptic NMDARs upon 14-3-3 inhibition in primary neurons. Expression of 14-3-3 protein inhibitor (difopein) in primary glutamatergic cortical and hippocampal neurons resulted in lower number of synaptic puncta containing NMDARs, including the GluN1, GluN2A, or GluN2B subunits. In heterologous cells, 14-3-3 proteins enhanced surface expression of these NMDAR subunits. Furthermore, we identified that 14-3-3ζ and ε isoforms interact with NMDARs via binding to GluN2A and GluN2B subunits. Taken together, our results demonstrate that 14-3-3 proteins play a critical role in NMDAR synaptic trafficking by promoting surface delivery of NMDAR subunits GluN1, GluN2A, and GluN2B. As NMDAR hypofunctionality is known to act as a convergence point for progression of symptoms of schizophrenia, further studies on these signaling pathways may help understand how dysfunction of 14-3-3 proteins can cause NMDAR hypofunctionality and lead to schizophrenia-associated behaviors.
Collapse
Affiliation(s)
- Gloria S. Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jiajing Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
6
|
Astroski JW, Akporyoe LK, Androphy EJ, Custer SK. Mutations in the COPI coatomer subunit α-COP induce release of Aβ-42 and amyloid precursor protein intracellular domain and increase tau oligomerization and release. Neurobiol Aging 2021; 101:57-69. [PMID: 33582567 DOI: 10.1016/j.neurobiolaging.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/02/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Understanding the cellular processes that lead to Alzheimer's disease (AD) is critical, and one key lies in the genetics of families with histories of AD. Mutations a complex known as COPI were found in families with AD. The COPI complex is involved in protein processing and trafficking. Intriguingly, several recent publications have found components of the COPI complex can affect the metabolism of pathogenic AD proteins. We reduced levels of the COPI subunit α-COP, altering maturation and cleavage of amyloid precursor protein (APP), resulting in decreased release of Aβ-42 and decreased accumulation of the AICD. Depletion of α-COP reduced uptake of proteopathic Tau seeds and reduces intracellular Tau self-association. Expression of AD-associated mutant α-COP altered APP processing, resulting in increased release of Aβ-42 and increased intracellular Tau aggregation and release of Tau oligomers. These results show that COPI coatomer function modulates processing of both APP and Tau, and expression of AD-associated α-COP confers a toxic gain of function, resulting in potentially pathogenic changes in both APP and Tau.
Collapse
Affiliation(s)
- Jacob W Astroski
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara K Custer
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Custer SK, Foster JN, Astroski JW, Androphy EJ. Abnormal Golgi morphology and decreased COPI function in cells with low levels of SMN. Brain Res 2018; 1706:135-146. [PMID: 30408476 DOI: 10.1016/j.brainres.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022]
Abstract
We report here the finding of abnormal Golgi apparatus morphology in motor neuron like cells depleted of SMN as well as Golgi apparatus morphology in SMA patient fibroblasts. Rescue experiments demonstrate that this abnormality is dependent on SMN, but can also be rescued by expression of the COPI coatomer subunit alpha-COP. A motor neuron-like cell line containing an inducible alpha-COP shRNA was created to generate a parallel system to study knockdown of SMN or alpha-COP. Multiple assays of COPI-dependent intracellular trafficking in cells depleted of SMN demonstrate that alpha-COP function is suboptimal, including failed sequestration of plasma membrane proteins, altered binding of mRNA, and defective targeting and transport of Golgi-resident proteins.
Collapse
Affiliation(s)
- S K Custer
- Walther Hall, R3 C636, 980 West Walnut Street, Indianapolis, IN 46202, United States.
| | - J N Foster
- Walther Hall, R3 C636, 980 West Walnut Street, Indianapolis, IN 46202, United States.
| | - J W Astroski
- Walther Hall, R3 C636, 980 West Walnut Street, Indianapolis, IN 46202, United States.
| | - E J Androphy
- Walther Hall, R3 C636, 980 West Walnut Street, Indianapolis, IN 46202, United States.
| |
Collapse
|
8
|
Hong X, Jeyifous O, Ronilo M, Marshall J, Green WN, Standley S. A novel function for the ER retention signals in the C-terminus of kainate receptor subunit, GluK5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:459-473. [PMID: 30339823 DOI: 10.1016/j.bbamcr.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022]
Abstract
Classically, endoplasmic reticulum (ER) retention signals in secreted integral membrane proteins impose the requirement to assemble with other cognate subunits to form functional assemblies before they can exit the ER. We report that GluK5 has two ER retention signals in its cytoplasmic C-terminus: an arginine-based signal and a di-leucine motif previously thought to be an endocytic motif. GluK5 assembles with GluK2, but surprisingly GluK2 association does little to block the ER retention signals. We find instead that the ER retention signals are blocked by two proteins involved in intracellular trafficking, SAP97 and CASK. We show that SAP97, in the presence of CASK and the receptor complex, assumes an extended conformation. In the extended conformation, SAP97 makes its SH3 and GuK domains available to bind and sterically mask the ER retention signals in the GluK5 C-terminus. SAP97 and CASK are also necessary for sorting receptor cargoes into the local dendritic secretory pathway in neurons. We show that the ER retention signals of GluK5 play a vital role in sorting the receptor complex in the local dendritic secretory pathway in neurons. These data suggest a new role for ER retention signals in trafficking integral membrane proteins in neurons. SIGNIFICANCE: We present evidence that the ER retention signals in the kainate receptors containing GluK5 impose a requirement for sorting into local dendritic secretory pathways in neurons, as opposed to traversing the somatic Golgi apparatus. There are two ER retention signals in the C-terminus of GluK5. We show that both are blocked by physical association with SAP97 and CASK. The SH3 and GuK domains of SAP97, in the presence of CASK, bind directly to each ER retention signal and form a complex. These results support an entirely new function for ER retention signals in the C-termini of neuronal receptors, such as NMDA and kainate receptors, and define a mechanism for selective entry of receptors into local secretory pathways.
Collapse
Affiliation(s)
- Xiaoqi Hong
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91711, United States of America
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States of America
| | - Mason Ronilo
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91711, United States of America
| | - John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, United States of America
| | - William N Green
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States of America
| | - Steve Standley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91711, United States of America.
| |
Collapse
|
9
|
Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res 2017; 44:572-584. [PMID: 29270706 PMCID: PMC6420428 DOI: 10.1007/s11064-017-2450-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.
Collapse
|
10
|
Hsiao JJ, Smits MM, Ng BH, Lee J, Wright ME. Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription. J Biol Chem 2016; 291:18818-42. [PMID: 27365400 PMCID: PMC5009256 DOI: 10.1074/jbc.m116.732313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR-interacting proteins influence AR activation and contribute to aberrant AR-dependent transcription that underlies the majority of human prostate cancers.
Collapse
Affiliation(s)
- Jordy J Hsiao
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, Iowa 52242
| | - Melinda M Smits
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, Iowa 52242
| | - Brandon H Ng
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, Iowa 52242
| | - Jinhee Lee
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, Iowa 52242
| | - Michael E Wright
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
11
|
A proteomic analysis reveals the interaction of GluK1 ionotropic kainate receptor subunits with Go proteins. J Neurosci 2015; 35:5171-9. [PMID: 25834043 DOI: 10.1523/jneurosci.5059-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kainate receptors (KARs) are found ubiquitously in the CNS and are present presynaptically and postsynaptically regulating synaptic transmission and excitability. Functional studies have proven that KARs act as ion channels as well as potentially activating G-proteins, thus indicating the existance of a dual signaling system for KARs. Nevertheless, it is not clear how these ion channels activate G-proteins and which of the KAR subunits is involved. Here we performed a proteomic analysis to define proteins that interact with the C-terminal domain of GluK1 and we identified a variety of proteins with many different functions, including a Go α subunit. These interactions were verified through distinct in vitro and in vivo assays, and the activation of the Go protein by GluK1 was validated in bioluminescence resonance energy transfer experiments, while the specificity of this association was confirmed in GluK1-deficient mice. These data reveal components of the KAR interactome, and they show that GluK1 and Go proteins are natural partners, accounting for the metabotropic effects of KARs.
Collapse
|
12
|
Pahl S, Tapken D, Haering SC, Hollmann M. Trafficking of kainate receptors. MEMBRANES 2014; 4:565-95. [PMID: 25141211 PMCID: PMC4194049 DOI: 10.3390/membranes4030565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 11/17/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the vast majority of excitatory neurotransmission in the central nervous system of vertebrates. In the protein family of iGluRs, kainate receptors (KARs) comprise the probably least well understood receptor class. Although KARs act as key players in the regulation of synaptic network activity, many properties and functions of these proteins remain elusive until now. Especially the precise pre-, extra-, and postsynaptic localization of KARs plays a critical role for neuronal function, as an unbalanced localization of KARs would ultimately lead to dysregulated neuronal excitability. Recently, important advances in the understanding of the regulation of surface expression, function, and agonist-dependent endocytosis of KARs have been achieved. Post-translational modifications like PKC-mediated phosphorylation and SUMOylation have been reported to critically influence surface expression and endocytosis, while newly discovered auxiliary proteins were shown to shape the functional properties of KARs.
Collapse
Affiliation(s)
- Steffen Pahl
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Daniel Tapken
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Simon C Haering
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Michael Hollmann
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
13
|
Depletion of 14-3-3γ reduces the surface expression of Transient Receptor Potential Melastatin 4b (TRPM4b) channels and attenuates TRPM4b-mediated glutamate-induced neuronal cell death. Mol Brain 2014; 7:52. [PMID: 25047048 PMCID: PMC4115172 DOI: 10.1186/s13041-014-0052-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND TRPM4 channels are Ca2+-activated nonselective cation channels which are deeply involved in physiological and pathological conditions. However, their trafficking mechanism and binding partners are still elusive. RESULTS We have found the 14-3-3γ as a binding partner for TRPM4b using its N-terminal fragment from the yeast-two hybrid screening. Ser88 at the N-terminus of TRPM4b is critical for 14-3-3γ binding by showing GST pull-down and co-immunoprecipitation. Heterologous overexpression of 14-3-3γ in HEK293T cells increased TRPM4b expression on the plasma membrane which was measured by whole-cell recordings and cell surface biotinylation experiment. Surface expression of TRPM4b was greatly reduced by short hairpin RNA (shRNA) against 14-3-3γ. Next, endogenous TRPM4b-mediated currents were electrophysiologically characterized by application of glutamate and 9-phenanthrol, a TRPM4b specific antagonist in HT-22 cells which originated from mouse hippocampal neurons. Glutamate-induced TRPM4b currents were significantly attenuated by shRNAs against 14-3-3γ or TRPM4b in these cells. Finally, glutamate-induced cell death was greatly prevented by treatment of 9-phenanthrol or 14-3-3γ shRNA. CONCLUSION These results showed that the cell surface expression of TRPM4 channels is mediated by 14-3-3γ binding, and the specific inhibition of this trafficking process can be a potential therapeutic target for glutamate-induced neuronal cell death.
Collapse
|
14
|
Tsumuraya T, Matsushita M. COPA and SLC4A4 are required for cellular entry of arginine-rich peptides. PLoS One 2014; 9:e86639. [PMID: 24489756 PMCID: PMC3904941 DOI: 10.1371/journal.pone.0086639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/11/2013] [Indexed: 01/20/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have gained attention as promising tools to enable the delivery of various molecules in a non-invasive manner. Among the CPPs, TAT and poly-arginine have been extensively utilized in numerous studies for the delivery of functional proteins, peptides, and macromolecules to analyze cellular signaling. However, the molecular mechanisms of cellular entry remain largely unknown. Here, we applied siRNA library screening to identify the regulatory genes for the cellular entry of poly-arginine peptide based on microscopic observation of the entry of fluorescent peptides in siRNA-treated cells. In this screening, we identified the cell membrane gene SLC4A4 and the trafficking regulator gene COPA, which also plays an important role in early endosome maturation. These results demonstrated that cellular entry of poly-arginine requires at least two different steps, probably binding on the cell surface and endosomal entry. The identification of genes for cellular entry of poly-arginine provides insights into its mechanisms and should further aid in the development of highly efficient cell-penetrating peptides.
Collapse
Affiliation(s)
- Tomoyuki Tsumuraya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- * E-mail:
| |
Collapse
|
15
|
Abstract
Our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms underlying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic receptors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins.
Collapse
|
16
|
Isacoff EY, Jan LY, Minor DL. Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Neuron 2013; 80:658-74. [PMID: 24183018 DOI: 10.1016/j.neuron.2013.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heartbeats, muscle twitches, and lightning-fast thoughts are all manifestations of bioelectricity and rely on the activity of a class of membrane proteins known as ion channels. The basic function of an ion channel can be distilled into, "The hole opens. Ions go through. The hole closes." Studies of the fundamental mechanisms by which this process happens and the consequences of such activity in the setting of excitable cells remains the central focus of much of the field. One might wonder after so many years of detailed poking at such a seemingly simple process, is there anything left to learn?
Collapse
Affiliation(s)
- Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
17
|
Sun C, Qiao H, Zhou Q, Wang Y, Wu Y, Zhou Y, Li Y. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins. J Biol Chem 2013; 288:24676-90. [PMID: 23861400 PMCID: PMC3750165 DOI: 10.1074/jbc.m113.462069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/11/2013] [Indexed: 11/06/2022] Open
Abstract
Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs.
Collapse
Affiliation(s)
- Changcheng Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Molina L, Fasquelle L, Nouvian R, Salvetat N, Scott HS, Guipponi M, Molina F, Puel JL, Delprat B. Tmprss3 loss of function impairs cochlear inner hair cell Kcnma1 channel membrane expression. Hum Mol Genet 2012; 22:1289-99. [PMID: 23255163 DOI: 10.1093/hmg/dds532] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Before acquiring their mature state, cochlear hair cells undergo a series of changes in expression of ion channels. How this complex mechanism is achieved is not fully understood. Tmprss3, a type II serine protease expressed in hair cells, is required for their proper functioning at the onset of hearing. To unravel the role of Tmprss3 in the acquisition of mature K(+) currents, we compared their function by patch-clamp technique in wild-type Tmprss3(WT) and Tmprss3(Y260X)-mutant mice. Interestingly, only outward K(+) currents were altered in Tmprss3(Y260X)-mutant mice. To determine by which mechanism this occurred, we compared the protein network of Tmprss3(WT) and Tmprss3(Y260X)-mutant mice using proteomic analysis. This led to the identification of a pathway related to potassium Kcnma1 channels. This pathway was validated by immunohistochemistry, focusing on the most downregulated protein that was identified as a cochlear Kcnma1-associated protein, APOA1. Finally, we show that, in contrast to Tmprss3(WT), Kcnma1 channels were absent at the neck of inner hair cells (IHCs) in Tmprss3(Y260X)-mutant mice. In conclusion, our data suggest that lack of Tmprss3 leads to a decrease in Kcnma1 potassium channels expression in (IHCs).
Collapse
Affiliation(s)
- Laurence Molina
- SysDiag UMR 3145 CNRS/Bio-Rad, Cap Delta/Parc Euromédecine, 1682 rue de la Valsière, Cedex 4,Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci 2012; 13:675-86. [PMID: 22948074 DOI: 10.1038/nrn3335] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kainate receptors are a family of ionotropic glutamate receptors whose physiological roles differ from those of other subtypes of glutamate receptors in that they predominantly serve as modulators, rather than mediators, of synaptic transmission. Neuronal kainate receptors exhibit unusually slow kinetic properties that have been difficult to reconcile with the behaviour of recombinant kainate receptors. Recently, however, the neuropilin and tolloid-like 1 (NETO1) and NETO2 proteins were identified as auxiliary kainate receptor subunits that shape both the biophysical properties and synaptic localization of these receptors.
Collapse
|
20
|
Abstract
Ionotropic glutamate receptors assemble as homo- or heterotetramers. One well-studied heteromeric complex is formed by the kainate receptor subunits GluK2 and GluK5. Retention motifs prevent trafficking of GluK5 homomers to the plasma membrane, but coassembly with GluK2 yields functional heteromeric receptors. Additional control over GluK2/GluK5 assembly seems to be exerted by the aminoterminal domains, which preferentially assemble into heterodimers as isolated domains. However,the stoichiometry of the full-length GluK2/GluK5 receptor complex has yet to be determined, as is the case for all non-NMDA glutamate receptors. Here, we address this question, using a single-molecule imaging technique that enables direct counting of the number of each GluK subunit type in homomeric and heteromeric receptors in the plasma membranes of live cells. We show that GluK2 and GluK5 assemble with 2:2 stoichiometry. This is an important step toward understanding the assembly mechanism, architecture, and functional consequences of heteromer formation in ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Ryan J. Arant
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
21
|
Cunningham MR, McIntosh KA, Pediani JD, Robben J, Cooke AE, Nilsson M, Gould GW, Mundell S, Milligan G, Plevin R. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4). J Biol Chem 2012; 287:16656-69. [PMID: 22411985 PMCID: PMC3351358 DOI: 10.1074/jbc.m111.315911] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteinase-activated receptors 4 (PAR4) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR4 remain unknown. Here, we report novel features of the intracellular trafficking of PAR4 to the plasma membrane. PAR4 was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR4 protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R183AR → A183AA), mutation of which allowed efficient membrane delivery of PAR4. Interestingly, co-expression with PAR2 facilitated plasma membrane delivery of PAR4, an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR2 and PAR4. PAR2 also enhanced glycosylation of PAR4 and activation of PAR4 signaling. Our results identify a novel regulatory role for PAR2 in the anterograde traffic of PAR4. PAR2 was shown to both facilitate and abrogate protein interactions with PAR4, impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR4 in normal physiology and disease.
Collapse
Affiliation(s)
- Margaret R Cunningham
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, Univesity of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liang X, Da Paula AC, Bozóky Z, Zhang H, Bertrand CA, Peters KW, Forman-Kay JD, Frizzell RA. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Mol Biol Cell 2012; 23:996-1009. [PMID: 22278744 PMCID: PMC3302758 DOI: 10.1091/mbc.e11-08-0662] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
cAMP/PKA stimulation elicited posttranslational increases in CFTR expression and the interaction of specific 14-3-3 proteins with phosphorylated sites within the R region. This improved the efficiency of nascent CFTR biogenesis and reduced its interaction with the COPI retrograde retrieval mechanism, making more CFTR available for anion secretion. Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)–regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.
Collapse
Affiliation(s)
- Xiubin Liang
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
González-González IM, Konopacki FA, Rocca DL, Doherty AJ, Jaafari N, Wilkinson KA, Henley JM. Kainate receptor trafficking. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Smith AJ, Daut J, Schwappach B. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport. Physiology (Bethesda) 2011; 26:181-91. [PMID: 21670164 DOI: 10.1152/physiol.00042.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
14-3-3 proteins regulate the function and subcellular sorting of membrane proteins. Often, 14-3-3 binding to client proteins requires phosphorylation of the client, but the relevant kinase is unknown in most cases. We summarize current progress in identifying kinases that target membrane proteins with 14-3-3 binding sites and discuss the molecular mechanisms of 14-3-3 action. One of the kinases involved is Akt/PKB, which has recently been shown to activate the 14-3-3-dependent switch in a number of client membrane proteins.
Collapse
Affiliation(s)
- Andrew J Smith
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
25
|
Huyghe D, Veran J, Labrousse VF, Perrais D, Mulle C, Coussen F. Endocytosis of the glutamate receptor subunit GluK3 controls polarized trafficking. J Neurosci 2011; 31:11645-54. [PMID: 21832194 PMCID: PMC6623111 DOI: 10.1523/jneurosci.2206-11.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/21/2022] Open
Abstract
Kainate receptors (KARs) are widely expressed in the brain and are present at both presynaptic and postsynaptic sites. GluK3-containing KARs are thought to compose presynaptic autoreceptors that facilitate hippocampal mossy fiber synaptic transmission. Here we identify molecular mechanisms that underlie the polarized trafficking of KARs composed of the GluK3b splice variant. Endocytosis followed by degradation is driven by a dileucine motif on the cytoplasmic C-terminal domain of GluK3b in heterologous cells, in cultured hippocampal neurons, and in dentate granule cells from organotypic slice cultures. The internalization of GluK3b is clathrin and dynamin2 dependent. GluK3b is differentially endocytosed in dendrites as compared to the axons. These data suggest that the polarized trafficking of KARs in neurons could be controlled by the regulation of receptor endocytosis.
Collapse
Affiliation(s)
- Deborah Huyghe
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Julien Veran
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Virginie F. Labrousse
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - David Perrais
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Christophe Mulle
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Françoise Coussen
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
26
|
Chotani MA, Flavahan NA. Intracellular α(2C)-adrenoceptors: storage depot, stunted development or signaling domain? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1495-503. [PMID: 21605601 PMCID: PMC3123388 DOI: 10.1016/j.bbamcr.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
G-protein coupled receptors (GPCRs) are generally considered to function as cell surface signaling structures that respond to extracellular mediators, many of which do not readily access the cell's interior. Indeed, most GPCRs are preferentially targeted to the plasma membrane. However, some receptors, including α(2C)-Adrenoceptors, challenge conventional concepts of GPCR activity by being preferentially retained and localized within intracellular organelles. This review will address the issues associated with this unusual GPCR localization and discuss whether it represents a novel sub-cellular niche for GPCR signaling, whether these receptors are being stored for rapid deployment to the cell surface, or whether they represent immature or incomplete receptor systems.
Collapse
Affiliation(s)
- Maqsood A Chotani
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | |
Collapse
|
27
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2714] [Impact Index Per Article: 180.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mathie A, Rees KA, El Hachmane MF, Veale EL. Trafficking of neuronal two pore domain potassium channels. Curr Neuropharmacol 2010; 8:276-86. [PMID: 21358977 PMCID: PMC3001220 DOI: 10.2174/157015910792246146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 01/05/2023] Open
Abstract
The activity of two pore domain potassium (K2P) channels regulates neuronal excitability and cell firing. Post-translational regulation of K2P channel trafficking to the membrane controls the number of functional channels at the neuronal membrane affecting the functional properties of neurons. In this review, we describe the general features of K channel trafficking from the endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus then focus on established regulatory mechanisms for K2P channel trafficking. We describe the regulation of trafficking of TASK channels from the ER or their retention within the ER and consider the competing hypotheses for the roles of the chaperone proteins 14-3-3, COP1 and p11 in these processes and where these proteins bind to TASK channels. We also describe the localisation of TREK channels to particular regions of the neuronal membrane and the involvement of the TREK channel binding partners AKAP150 and Mtap2 in this localisation. We describe the roles of other K2P channel binding partners including Arf6, EFA6 and SUMO for TWIK1 channels and Vpu for TASK1 channels. Finally, we consider the potential importance of K2P channel trafficking in a number of disease states such as neuropathic pain and cancer and the protection of neurons from ischemic damage. We suggest that a better understanding of the mechanisms and regulations that underpin the trafficking of K2P channels to the plasma membrane and to localised regions therein may considerably enhance the probability of future therapeutic advances in these areas.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, Universities of Kent and Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | | | | |
Collapse
|
29
|
Ma-Högemeier ZL, Körber C, Werner M, Racine D, Muth-Köhne E, Tapken D, Hollmann M. Oligomerization in the endoplasmic reticulum and intracellular trafficking of kainate receptors are subunit-dependent but not editing-dependent. J Neurochem 2009; 113:1403-15. [PMID: 20050975 DOI: 10.1111/j.1471-4159.2009.06559.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating subunit assembly of ionotropic glutamate receptor complexes and their trafficking to the plasma membrane under physiological conditions in live cells has been challenging. By confocal imaging of fluorescently labeled kainate receptor (KAR) subunits combined with digital co-localization and fluorescence resonance energy (FRET) transfer analyses, we investigated the assembly of homomeric and heteromeric receptor complexes and identified the subcellular location of subunit interactions. Our data provide direct evidence for oligomerization of KAR subunits as early as following their biosynthesis in the endoplasmic reticulum (ER). These oligomeric assemblies pass through the Golgi apparatus en route to the plasma membrane. We show that the amino acid at the Q/R editing site of the KAR subunit GluR6 neither determines subunit oligomerization in the ER nor ER exit or plasma membrane expression, and that it does not alter GluR6 interaction with KA2. This finding sets KARs apart from alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, where in the absence of auxiliary proteins Q isoforms exit the ER much more efficiently than R isoforms. Furthermore, although KA2 subunits do not form functional homotetrameric complexes, we visualized their oligomerization (at least dimerization) in the ER. Finally, we demonstrate that plasma membrane expression of GluR6/KA2 heteromeric complexes is modulated not only by GluR6 but also KA2.
Collapse
Affiliation(s)
- Zhan-Lu Ma-Högemeier
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Sun S, Wong EWP, Li MWM, Lee WM, Cheng CY. 14-3-3 and its binding partners are regulators of protein-protein interactions during spermatogenesis. J Endocrinol 2009; 202:327-36. [PMID: 19366886 PMCID: PMC2804912 DOI: 10.1677/joe-09-0041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During spermatogenesis, spermiation takes place at the adluminal edge of the seminiferous epithelium at stage VIII of the epithelial cycle during which fully developed spermatids (i.e. spermatozoa) detach from the epithelium in adult rat testes. This event coincides with the migration of preleptotene/leptotene spermatocytes across the blood-testis barrier from the basal to the apical (or adluminal) compartment. At stage XIV of the epithelial cycle, Pachytene spermatocytes (diploid, 2n) differentiate into diplotene spermatocytes (tetraploid, 4n) in the apical compartment of the epithelium, which begin meiosis I to be followed by meiosis II to form spermatids (haploid, 1n) at stage XIV of the epithelial cycle. These spermatids, in turn, undergo extensive morphological changes and traverse the seminiferous epithelium until they differentiate into elongated spermatids. Thus, there are extensive changes at the Sertoli-Sertoli and Sertoli-germ cell interface via protein 'coupling' and 'uncoupling' between cell adhesion protein complexes, as well as changes in interactions between integral membrane proteins and their peripheral adaptors, regulatory protein kinases and phosphatases, and the cytoskeletal proteins. These precisely coordinated protein-protein interactions affect cell adhesion and cell movement. In this review, we focus on the 14-3-3 protein family, whose members have different binding partners in the seminiferous epithelium. Recent studies have illustrated that 14-3-3 affects protein-protein interactions in the seminiferous epithelium, and regulates cell adhesion possibly via its effects on intracellular protein trafficking and cell-polarity proteins. This review provides a summary on the latest findings regarding the role of 14-3-3 family of proteins and their potential implications on spermatogenesis. We also highlight research areas that deserve attentions by investigators.
Collapse
Affiliation(s)
- Shengyi Sun
- The Mary M Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
31
|
Denmark DL, Buck KJ. Molecular analyses and identification of promising candidate genes for loci on mouse chromosome 1 affecting alcohol physical dependence and associated withdrawal. GENES BRAIN AND BEHAVIOR 2008; 7:599-608. [PMID: 18363851 DOI: 10.1111/j.1601-183x.2008.00396.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently mapped quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal severity following chronic and acute alcohol exposure (Alcdp1/Alcw1) to a 1.1-Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. Here, we provide a detailed analysis of the genes within this interval and show that it contains 40 coding genes, 17 of which show validated genotype-dependent transcript expression and/or non-synonymous coding sequence variation that may underlie the influence of Alcdp1/Alcw1 on ethanol dependence and associated withdrawal. These high priority candidates are involved in diverse cellular functions including intracellular trafficking, oxidative homeostasis, mitochondrial respiration, and extracellular matrix dynamics, and indicate both established and novel aspects of the neurobiological response to ethanol. This work represents a substantial advancement toward identification of the gene(s) that underlies the phenotypic effects of Alcdp1/Alcw1. Additionally, a multitude of QTLs for a variety of complex traits, including diverse behavioral responses to ethanol, have been mapped in the vicinity of Alcdp1/Alcw1, and as many as four QTLs on human chromosome 1q have been implicated in human mapping studies for alcoholism and associated endophenotypes. Thus, our results will be primary to further efforts to identify genes involved in a wide variety of behavioral responses to alcohol and may directly facilitate progress in human alcoholism genetics.
Collapse
Affiliation(s)
- D L Denmark
- Department of Behavioral Neuroscience, Neuroscience Graduate Program, and Portland Alcohol Research Center, Veterans Affairs Medical Center and Oregon Health and Science University, Portland, OR, USA.
| | | |
Collapse
|
32
|
HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 2008; 4:e1000131. [PMID: 18725938 PMCID: PMC2515349 DOI: 10.1371/journal.ppat.1000131] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/22/2008] [Indexed: 01/28/2023] Open
Abstract
To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7(+) vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, beta-COP. Moreover, we demonstrate that Nef contains two separable beta-COP binding sites. One site, an arginine (RXR) motif in the N-terminal alpha helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.
Collapse
|
33
|
Garbarini N, Delpire E. The RCC1 domain of protein associated with Myc (PAM) interacts with and regulates KCC2. Cell Physiol Biochem 2008; 22:31-44. [PMID: 18769030 PMCID: PMC2535904 DOI: 10.1159/000149781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2008] [Indexed: 12/16/2022] Open
Abstract
GABAergic and glycinergic function is dependent on neuronal intracellular chloride. The neuron-specific electroneutral potassium (K(+)) and chloride (Cl(-)) cotransporter (KCC2), is a key regulator of neuronal Cl(-), yet little is known about KCC2 regulation. Using yeast two-hybrid, we identified Protein Associated with Myc (PAM) as a binding partner of KCC2. The RCC1 (Regulator of Chromatin Condensation) domain of PAM binds to the carboxyl terminus of KCC2, as demonstrated through yeast two-hybrid and GST-pull-down assays. RCC1/PAM and full-length KCC2 coimmunoprecipitate following heterologous co-expression in HEK293 cells. Additionally, (86)Rb/K(+) uptake assays in this model system show that RCC1/PAM causes increased KCC2-mediated flux. After narrowing down RCC1/PAM binding to a 20 amino acid region on the KCC2 carboxyl terminus, we created a point mutant in this region to eliminate interaction between the KCC2 carboxyl terminus and RCC1/PAM. This same mutation abolishes N-ethylmaleimide activation of KCC2, suggesting that PAM plays a role in modulating KCC2 function.
Collapse
Affiliation(s)
- Nicole Garbarini
- Neuroscience Graduate Program and Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
34
|
Schwappach B. An overview of trafficking and assembly of neurotransmitter receptors and ion channels (Review). Mol Membr Biol 2008; 25:270-8. [PMID: 18446613 DOI: 10.1080/09687680801960998] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ionotropic neurotransmitter receptors and voltage-gated ion channels assemble from several homologous and non-homologous subunits. Assembly of these multimeric membrane proteins is a tightly controlled process subject to primary and secondary quality control mechanisms. An assembly pathway involving a dimerization of dimers has been demonstrated for a voltage-gated potassium channel and for different types of glutamate receptors. While many novel C-terminal assembly domains have been identified in various members of the voltage-gated cation channel superfamily, the assembly pathways followed by these proteins remain largely elusive. Recent progress on the recognition of polar residues in the transmembrane segments of membrane proteins by the retrieval factor Rer1 is likely to be relevant for the further investigation of trafficking defects in channelopathies. This mechanism might also contribute to controlling the assembly of ion channels by retrieving unassembled subunits to the endoplasmic reticulum. The endoplasmic reticulum is a metabolic compartment studded with small molecule transporters. This environment provides ligands that have recently been shown to act as pharmacological chaperones in the biogenesis of ligand-gated ion channels. Future progress depends on the improvement of tools, in particular the antibodies used by the field, and the continued exploitation of genetically tractable model organisms in screens and physiological experiments.
Collapse
|
35
|
Murphy N, Bonner HP, Ward MW, Murphy BM, Prehn JHM, Henshall DC. Depletion of 14-3-3 zeta elicits endoplasmic reticulum stress and cell death, and increases vulnerability to kainate-induced injury in mouse hippocampal cultures. J Neurochem 2008; 106:978-88. [PMID: 18466333 DOI: 10.1111/j.1471-4159.2008.05447.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
14-3-3 proteins are ubiquitous signalling molecules that regulate development and survival pathways in brain. Altered expression and cellular localization of 14-3-3 proteins has been implicated in neurodegenerative diseases and in neuronal death after acute neurological insults, including seizures. Presently, we examined expression and function of 14-3-3 isoforms in vitro using mouse organotypic hippocampal cultures. Treatment of cultures with the endoplasmic reticulum (ER) stressor tunicamycin caused an increase in levels of 14-3-3 zeta within the ER-containing microsomal fraction, along with up-regulation of Lys-Asp-Glu-Leu-containing proteins and calnexin, and the selective death of dentate granule cells. Depletion of 14-3-3 zeta levels using small interfering RNA induced both ER stress proteins and death of granule cells. Treatment of hippocampal cultures with the excitotoxin kainic acid increased levels of Lys-Asp-Glu-Leu-containing proteins and microsomal 14-3-3 zeta levels and caused cell death within the CA1, CA3 and dentate gyrus of the hippocampus. Kainic acid-induced damage was significantly increased in each hippocampal subfield of cultures treated with small interfering RNA targeting 14-3-3 zeta. The present data indicate a role for 14-3-3 zeta in survival responses following ER stress and possibly protection against seizure injury to the hippocampus.
Collapse
Affiliation(s)
- Niamh Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland, UK
| | | | | | | | | | | |
Collapse
|
36
|
Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G, Simmen T. The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 2008; 19:2777-88. [PMID: 18417615 DOI: 10.1091/mbc.e07-10-0995] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.
Collapse
Affiliation(s)
- Nathan Myhill
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, T6G2H7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Coussen F. Molecular determinants of kainate receptor trafficking. Neuroscience 2008; 158:25-35. [PMID: 18358623 DOI: 10.1016/j.neuroscience.2007.12.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/19/2022]
Abstract
Glutamate receptors of the kainate subtype are ionotropic receptors that play a key role in the modulation of neuronal network activity. The role of kainate receptors depends on their precise membrane and subcellular localization in presynaptic, extrasynaptic and postsynaptic domains. These receptors are composed of the combination of five subunits, three of them having several splice variants. The subunits and splice variants show great divergence in their C-terminal cytoplasmic tail domains, which have been implicated in intracellular trafficking of homomeric and heteromeric receptors. Differential trafficking of kainate receptors to specific neuronal compartments likely relies on interactions between the different kainate receptor subunits with distinct subsets of protein partners that interact with C-terminal domains. These C-terminal domains have also been implicated in the degradation of kainate receptors. Finally, the phosphorylation of the C-terminal domain regulates receptor trafficking and function. This review summarizes our knowledge on the regulation of membrane delivery and trafficking of kainate receptors implicating C-terminal domains of the different isoforms and focuses on the identification and characterization of the function of interacting partners.
Collapse
Affiliation(s)
- F Coussen
- CNRS UMR 5091, Laboratoire "Physiologie Cellulaire de la Synapse," Bordeaux Neuroscience Institute, University of Bordeaux 2, Bordeaux, France.
| |
Collapse
|
38
|
Abstract
Surface expression of the K(2P)3.1 two-pore domain potassium channel is regulated by phosphorylation-dependent binding of 14-3-3, leading to suppression of coatomer coat protein I (COPI)-mediated retention in endoplasmic reticulum (ER). Here, we investigate the nature of the macromolecular regulatory complexes that mediate forward and retrograde transport. We demonstrate that (i) the channel employs two separate but interacting COPI binding sites on the N- and C-termini; (ii) disrupting COPI binding to either site interferes with the ER retention; (iii) p11 and 14-3-3 do not interact on their own; (iv) p11 binding to the C-terminal retention motif is dependent on 14-3-3; and (v) p11 is coexpressed in only a subset of tissues with K(2P)3.1, while 14-3-3 expression is ubiquitous. We conclude that K(2P)3.1 forward transport requires 14-3-3 suppression of COPI binding, whereas p11 serves a modulatory role.
Collapse
Affiliation(s)
- Ita O'Kelly
- The Faculty of Life Sciences, The University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK. ita.o'
| | | |
Collapse
|
39
|
Rong J, Li S, Sheng G, Wu M, Coblitz B, Li M, Fu H, Li XJ. 14-3-3 protein interacts with Huntingtin-associated protein 1 and regulates its trafficking. J Biol Chem 2006; 282:4748-4756. [PMID: 17166838 DOI: 10.1074/jbc.m609057200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HAP1 (Huntingtin-associated protein 1) consists of two alternately spliced isoforms (HAP1A and HAP1B, which have unique C-terminal sequences) and participates in intracellular trafficking. The C terminus of HAP1A is phosphorylated, and this phosphorylation was found to decrease the association of HAP1A with kinesin light chain, a protein involved in anterograde transport in cells. It remains unclear how this phosphorylation functions to regulate the association of HAP1 with trafficking proteins. Using the yeast two-hybrid system, we found that HAP1 also interacts with 14-3-3 proteins, which are involved in the assembly of protein complexes and the regulation of protein trafficking. The interaction of HAP1 with 14-3-3 is confirmed by their immunoprecipitation and colocalization in mouse brain. Moreover, this interaction is specific to HAP1A and is increased by the phosphorylation of the C terminus of HAP1A. We also found that expression of 14-3-3 decreases the association of HAP1A with kinesin light chain. As a result, there is less HAP1A distributed in neurite tips of PC12 cells that overexpress 14-3-3. Also, overexpression of 14-3-3 reduces the effect of HAP1A in promoting neurite outgrowth of PC12 cells. We propose that the phosphorylation-dependent interaction of HAP1A with 14-3-3 regulates HAP1 function by influencing its association with kinesin light chain and trafficking in neuronal processes.
Collapse
Affiliation(s)
- Juan Rong
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shihua Li
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322
| | - Guoqing Sheng
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322
| | - Meng Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Brian Coblitz
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Min Li
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322 and the
| | - Xiao-Jiang Li
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
40
|
Abstract
Kainate receptors are composed of several subunits and splice variants, but the relevance of this diversity is still not well understood. The subunits and splice variants show great divergence in their C-terminal cytoplasmic tail region, which has been identified as a region of interaction with a number of protein partners. Differential trafficking of kainate receptors to neuronal compartments is likely to rely on interactions with distinct subsets of protein partners. This review summarizes our knowledge of the regulation of trafficking of kainate receptors and focuses on the identification and characterization of functions of interacting partners.
Collapse
Affiliation(s)
- F Coussen
- CNRS UMR 5091, Laboratoire Physiologie Cellulaire de la Synapse, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
41
|
Abstract
Kainate receptors form a family of ionotropic glutamate receptors that appear to play a special role in the regulation of the activity of synaptic networks. This review first describes briefly the molecular and pharmacological properties of native and recombinant kainate receptors. It then attempts to outline the general principles that appear to govern the function of kainate receptors in the activity of synaptic networks under physiological conditions. It subsequently describes the way that kainate receptors are involved in synaptic integration, synaptic plasticity, the regulation of neurotransmitter release and the control of neuronal excitability, and the manner in which they might play an important role in synaptogenesis and synaptic maturation. These functions require the proper subcellular localization of kainate receptors in specific functional domains of the neuron, necessitating complex cellular and molecular trafficking events. We show that our comprehension of these mechanisms is just starting to emerge. Finally, this review presents evidence that implicates kainate receptors in pathophysiological conditions such as epilepsy, excitotoxicity and pain, and that shows that these receptors represent promising therapeutic targets.
Collapse
Affiliation(s)
- Paulo Pinheiro
- CNRS UMR 5091, Laboratoire "Physiologie Cellulaire de la Synapse", Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
42
|
Abstract
14-3-3 proteins affect the cell surface expression of several unrelated cargo membrane proteins, e.g., MHC II invariant chain, the two-pore potassium channels KCNK3 and KCNK9, and a number of different reporter proteins exposing Arg-based endoplasmic reticulum localization signals in mammalian and yeast cells. These multimeric membrane proteins have a common feature in that they all expose coatomer protein complex I (COPI)- and 14-3-3-binding motifs. 14-3-3 binding depends on phosphorylation of the membrane protein in some and on multimerization of the membrane protein in other cases. Evidence from mutant proteins that are unable to interact with either COPI or 14-3-3 and from yeast cells with an altered 14-3-3 content suggests that 14-3-3 proteins affect forward transport in the secretory pathway. Mechanistically, this could be explained by clamping, masking, or scaffolding. In the clamping mechanism, 14-3-3 binding alters the conformation of the signal-exposing tail of the membrane protein, whereas masking or scaffolding would abolish or allow the interaction of the membrane protein with other proteins or complexes. Interaction partners identified as putative 14-3-3 binding partners in affinity purification approaches constitute a pool of candidate proteins for downstream effectors, such as coat components, coat recruitment GTPases, Rab GTPases, GTPase-activating proteins (GAPs), guanine-nucleotide exchange factors (GEFs) and motor proteins.
Collapse
Affiliation(s)
- Thomas Mrowiec
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|