1
|
Tiberio F, Polito L, Salvati M, Di Pietro L, Massimi L, Parolini O, Tamburrini G, Lattanzi W. Current Understanding of Crouzon Syndrome Pathophysiology and New Therapeutic Approaches. J Craniofac Surg 2025:00001665-990000000-02627. [PMID: 40227035 DOI: 10.1097/scs.0000000000011376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Crouzon syndrome (CS) is a rare genetic disorder characterized by the premature fusion of cranial sutures, leading to craniofacial abnormalities and potential neurological complications. CS is caused primarily by gain-of-function mutations in the FGFR2 gene and, less commonly, by mutations in the FGFR3 gene (specifically associated with CS with acanthosis nigricans). Managing CS requires a multidisciplinary approach, combining early and later surgical interventions to prevent intracranial hypertension and correct craniofacial deformities, along with ongoing care to address associated complications. Recent advancements in CS classification on the basis of cranial suture involvement have refined phenotype-genotype correlations, improving personalized therapeutic strategies. This review aims to provide a comprehensive and updated overview of CS, including detailed insights into molecular genetics and biological mechanisms underlying its pathophysiology, and a depiction of the clinical features, diagnosis, and surgical aspects of CS. In addition, we delve into innovative theranostic views, where molecular genetic testing allows the design of personalized noninvasive therapeutic approaches based on innovative biotechnologies, including RNA-interference molecules, pharmacological modulation of FGFR signaling pathways, and recombinant proteins. These advancements underscore the importance of integrating molecular studies into diagnostic and therapeutic protocols to increase the precision and effectiveness of nonsurgical treatments for CS.
Collapse
Affiliation(s)
- Federica Tiberio
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Polito
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Massimi
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianpiero Tamburrini
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
2
|
Tiberio F, Salvati M, Polito L, Tisci G, Vita A, Parolini O, Massimi L, Di Pietro L, Ceci P, Tamburrini G, Arcovito A, Falvo E, Lattanzi W. Targeted allele-specific FGFR2 knockdown via human recombinant ferritin nanoparticles for personalized treatment of Crouzon syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102427. [PMID: 39906733 PMCID: PMC11790506 DOI: 10.1016/j.omtn.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025]
Abstract
Crouzon syndrome is a rare genetic craniofacial malformation caused by heterozygous gain-of-function mutations in the FGFR2 gene. The resulting constitutive activation of the FGFR2 signaling causes the premature osteogenic differentiation of calvarial mesenchymal stromal cells in skull sutures, leading to early suture ossification. Craniectomy is the gold standard treatment, being invasive and burdened by complications. To address these issues, we developed personalized allele-specific (AS) small interfering RNA (siRNA) to knockdown the expression of the FGFR2 mutant allele in Crouzon patient-derived suture cells. The selected therapeutic siRNA mitigated FGFR2 cascade downregulating phosphorylation of FGFR2 (48%) and of its key effector ERK1/2 (77%) as RUNX2 protein levels (34%). This effect was confirmed by the reduced osteogenic commitment and differentiation of treated cells, evidenced by decreased expression of osteogenic marker genes and a 5-fold decrease in mineralized matrix deposition. We developed a highly biocompatible delivery system for siRNAs, based on human recombinant ferritin nanoparticles (NPs), combining cell targeting with improved nucleic acid encapsulation and endosomal escape properties. We demonstrated the ability of these NPs to deliver and release siRNAs within target cells, sustaining their inhibitory and AS effects. Here, we show that ferritin-mediated AS FGFR2 knockdown by siRNA represents a suitable strategy to dampen FGFR2 overactivation in patients' cells.
Collapse
Affiliation(s)
- Federica Tiberio
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luca Polito
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giada Tisci
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology, P.le Aldo Moro 7, 00185 Rome, Italy
| | - Alessia Vita
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Luca Massimi
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| | - Pierpaolo Ceci
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology, P.le Aldo Moro 7, 00185 Rome, Italy
| | - Gianpiero Tamburrini
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Elisabetta Falvo
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology, P.le Aldo Moro 7, 00185 Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1, 00168 Rome, Italy
| |
Collapse
|
3
|
Chen Y, Yao Q, Zeng X, Hao C, Li X, Zhang L, Zeng P. Determination of monosaccharide composition in human serum by an improved HPLC method and its application as candidate biomarkers for endometrial cancer. Front Oncol 2022; 12:1014159. [PMID: 36408150 PMCID: PMC9671074 DOI: 10.3389/fonc.2022.1014159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Altered glycan levels in serum have been associated with increased risk of cancer. In this study, we have developed and validated a HPLC-based method to analyze monosaccharide composition (D-mannose, Glucosamine, Galactosamine, Glucuronic acid, D-glucose, D-galactose, D-xylose, L-fucose) in human serum, with L-rhamnose, being used as internal standard. Monosaccharides obtained from hydrolyzed serum samples were derivatized by 1-Phenyl-3-methyl-5-pyrazolone. A ZORBAX XDB-C18 column(150×4.6mm) was used for chromatographic separation with 100 mM ammonium acetate buffer (NH4Ac-HAc, PH=5.5, solvent A), acetonitrile (ACN, solvent B) as a mobile phase. The calibration standard curves for the eight monosaccharides showed good linearity over the range of 2.5-500μg/mL with R2 > 0.995. The relative standard deviation values for intra-day and inter-day precision were ≤ 5.49%. Recovery was 69.01-108.96%. We observed that this column exhibited high specificity and selectivity to separate monosaccharides from serum. This method was then applied to quantitatively analyze the serum monosaccharide levels in 30 patients with endometrial cancer and 30 matched healthy controls. Statistical analysis indicated that the serum monosaccharide levels were significantly higher in patients compared with healthy controls (P value< 0.0001). Overall, we report here a simple, reliable, low-cost, and reproducible HPLC method for the separation and quantification monosaccharides in the human serum, which has potential value to serve as a screening marker for endometrial cancer.
Collapse
Affiliation(s)
- Yulong Chen
- Department of Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qin Yao
- Department of Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuan Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lijuan Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- *Correspondence: Pengjiao Zeng, ; Lijuan Zhang,
| | - Pengjiao Zeng
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- *Correspondence: Pengjiao Zeng, ; Lijuan Zhang,
| |
Collapse
|
4
|
Al-Namnam NM, Jayash SN, Hariri F, Rahman ZAA, Alshawsh MA. Insights and future directions of potential genetic therapy for Apert syndrome: A systematic review. Gene Ther 2021; 28:620-633. [PMID: 33619359 DOI: 10.1038/s41434-021-00238-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Apert syndrome is a genetic disorder characterised by craniosynostosis and structural discrepancy of the craniofacial region as well as the hands and feet. This condition is closely linked with fibroblast growth factor receptor-2 (FGFR2) gene mutations. Gene therapies are progressively being tested in advanced clinical trials, leading to a rise of its potential clinical indications. In recent years, research has made great progress in the gene therapy of craniosynostosis syndromes and several studies have investigated its influences in preventing/diminishing the complications of Apert syndrome. This article reviewed and exhibited different techniques of gene therapy and their influences in Apert syndrome progression. A systematic search was executed using electronic bibliographic databases including PubMed, EMBASE, ScienceDirect, SciFinder and Web of Science for all studies of gene therapy for Apert syndrome. The primary outcomes measurements vary from protein to gene expressions. According to the findings of included studies, we conclude that the gene therapy using FGF in Apert syndrome was critical in the regulation of suture fusion and patency, occurred via alterations in cellular proliferation. The superior outcome could be brought by biological therapies targeting the FGF/FGFR signalling. More studies in molecular genetics in Apert syndrome are recommended. This study reviews the current literature and provides insights to future possibilities of genetic therapy as intervention in Apert syndrome.
Collapse
Affiliation(s)
| | - Soher Nagi Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, UK
| | - Firdaus Hariri
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | |
Collapse
|
5
|
Thirkannad SM, Patil R. The Story of the Hand. Indian J Plast Surg 2021; 54:106-113. [PMID: 34239230 PMCID: PMC8257305 DOI: 10.1055/s-0041-1729771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
This review describes the Story of the Human Hand. It traces the functional needs that led to evolution of the human hand as well as its embryological development. The various in utero stages of formation of the human hand are covered along with a description of the various molecular and genetic factors that control this process.
Collapse
Affiliation(s)
- Sunil M. Thirkannad
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| | - Rahul Patil
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| |
Collapse
|
6
|
Lan Y, Liu Y, He Y, Liu F, Xv H, Feng K, Zhang Z, Shi Z, Zhang X, Zhang L. A single injection of bleomycin reduces glycosaminoglycan sulfation up to 30 days in the C57BL/6 mouse model of lung fibrosis. Int J Biol Macromol 2020; 160:319-327. [PMID: 32422263 DOI: 10.1016/j.ijbiomac.2020.05.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/06/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022]
Abstract
Bleomycin is a clinically used anticancer drug, but it induces lung fibrosis in certain cancer patients with unknown mechanism. Glycosaminoglycans (GAGs) are required for lung morphogenesis during animal development. In current study, GAG disaccharides including heparan sulfate (HS) and chondroitin sulfate (CS) from bleomycin-induced and control lung tissues in lung fibrosis mouse model were tagged with 1-phenyl-3-methyl-5-pyrazolone (PMP) and deuterated PMP, respectively. The differentially isotope-tagged disaccharides were quantitatively compared by LC-MS. At day 10, the amount of CS disaccharides (U0a0, U0a6, and U0a4) and non-sulfated HS disaccharide (U0A0) were increased by 1.3-, 1.6-, 11.7-, and 2.2-fold, respectively, whereas the amount of CS disaccharide (U0a2), hyaluranan disaccharide (UβA0), and six HS disaccharides (U0A6, U2A0, U0H6, U0S0, U2S0, and U2S6) were decreased from1.1- to 14.3-fold compared to that of the controls. At day 15, under-sulfation of both HS and CS disaccharides was persisted. At day 30, the CS disaccharide compositions were recovered to that of the control levels whereas the HS were still remarkably under-sulfated. In conclusion, GAGs, especially HS, from fibrotic lungs induced by a single injection of bleomycin were significantly under-sulfated up to 30 days, suggesting GAGs might be another class of defective signaling molecules involved in bleomycin-induced lung fibrosis.
Collapse
Affiliation(s)
- Ying Lan
- Systems Biology and Medicine Center for Complex Diseases, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; College of Food Science and engineering, Northwest A&F University, 712100, China
| | - Yong Liu
- Systems Biology and Medicine Center for Complex Diseases, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanli He
- Systems Biology and Medicine Center for Complex Diseases, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Feng Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Weifang Medical College, Weifang 261031, China
| | - Huixin Xv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kun Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhenkun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhaoyu Shi
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaolei Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
7
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
8
|
Lan Y, Li X, Liu Y, He Y, Hao C, Wang H, Jin L, Zhang G, Zhang S, Zhou A, Zhang L. Pingyangmycin inhibits glycosaminoglycan sulphation in both cancer cells and tumour tissues. J Cell Mol Med 2020; 24:3419-3430. [PMID: 32068946 PMCID: PMC7131950 DOI: 10.1111/jcmm.15017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Pingyangmycin is a clinically used anticancer drug and induces lung fibrosis in certain cancer patients. We previously reported that the negatively charged cell surface glycosaminoglycans are involved in the cellular uptake of the positively charged pingyangmycin. However, it is unknown if pingyangmycin affects glycosaminoglycan structures. Seven cell lines and a Lewis lung carcinoma‐injected C57BL/6 mouse model were used to understand the cytotoxicity of pingyangmycin and its effect on glycosaminoglycan biosynthesis. Stable isotope labelling coupled with LC/MS method was used to quantify glycosaminoglycan disaccharide compositions from pingyangmycin‐treated and untreated cell and tumour samples. Pingyangmycin reduced both chondroitin sulphate and heparan sulphate sulphation in cancer cells and in tumours. The effect was persistent at different pingyangmycin concentrations and at different exposure times. Moreover, the cytotoxicity of pingyangmycin was decreased in the presence of soluble glycosaminoglycans, in the glycosaminoglycan‐deficient cell line CHO745, and in the presence of chlorate. A flow cytometry‐based cell surface FGF/FGFR/glycosaminoglycan binding assay also showed that pingyangmycin changed cell surface glycosaminoglycan structures. Changes in the structures of glycosaminoglycans may be related to fibrosis induced by pingyangmycin in certain cancer patients.
Collapse
Affiliation(s)
- Ying Lan
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Liu
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanli He
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Wang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liying Jin
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqing Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufeng Zhang
- College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Rachwalski M, Khonsari RH, Paternoster G. Current Approaches in the Development of Molecular and Pharmacological Therapies in Craniosynostosis Utilizing Animal Models. Mol Syndromol 2019; 10:115-123. [PMID: 30976284 DOI: 10.1159/000493535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of the craniofacial skeleton is a spatial and temporal process where cranial sutures play a role in the regulation of morphogenesis and growth. Disruption of these cellular and molecular interactions may lead to craniosynostosis, the premature obliteration of one or more cranial sutures, yielding skull growth restriction and malformation perpendicular to the affected suture. Facial deformity and various functional CNS anomalies are other frequent complications. Cranial vault expansion and reconstructive surgery remain the mainstay of treatment but pose an elevated risk of morbidity for the infant. While the etiology of nonsyndromic craniosynostosis remains to be deciphered, gain-of-function mutations in FGFR1-3 and TWIST1 were found to be responsible for more than 3/4 of the most commonly encountered craniofacial syndromes. Animal models have been invaluable to further dissect the role of genes within the cranial sutures and for the development of alternative nonsurgical treatment strategies. In this review, we will present various molecular and pharmacological approaches for the treatment of craniosynostosis that have been tested using in vitro and in vivo assays as well as discuss their potential application in humans focusing on the case of tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Martin Rachwalski
- Imagine Institute of Genetic Diseases, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Departments of Malades, Paris, France.,Pediatric Neurosurgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Maxillofacial and Plastic Surgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Roman H Khonsari
- Imagine Institute of Genetic Diseases, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Departments of Malades, Paris, France.,Maxillofacial and Plastic Surgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Giovanna Paternoster
- Pediatric Neurosurgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
10
|
Heparin: An essential drug for modern medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:1-19. [PMID: 31030744 DOI: 10.1016/bs.pmbts.2019.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin is a life-saving drug, which belongs to few clinically used drugs without defined molecular structures in modern medicine. Heparin is the mostly negatively charged biopolymer with a broad distributions in molecular weight, charge density, and biological activities. Heparin is mainly composed of repeating trisulfated disaccharide units, which is made by mast cells that are enriched in the intestines, lungs or livers of animals. Porcine intestines and bovine lungs are two mostly used sources for heparin isolation. Heparin is well known for its anticoagulant and antithrombotic pharmacological effects. The anticoagulant activity of heparin is attributable to a 3-O-sulfate and 6-O-sulfate containing pentasaccharide sequence or a minimum eight-repeating disaccharide units containing the pentasaccharide sequence that catalyzes the suicidal inactivation of factor Xa or thrombin by a serpin or serine protease inhibitor named antithrombin III, respectively. Thus, heparin is responsible for the simultaneous inhibition of both thrombin generation and thrombin activity in the blood circulation. Moreover, heparin has many pharmacological properties such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects though high affinity interactions with a variety of proteases, protease inhibitors, chemokines, cytokines, growth factors, and their respective receptors. The one drug multiple molecular targeting properties make heparin a very special drug in that various clinical trials are still conducting worldwide even 100 years after its discovery. In this review, we will summarize the structure-function relationship and the molecular mechanisms of heparin. We will also provide an overview of different clinical and potential clinical applications of heparin.
Collapse
|
11
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
12
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [PMID: 30905465 DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Tang Y, Zhang S, Chang Y, Fan D, Agostini AD, Zhang L, Jiang T. Aglycone Ebselen and β-d-Xyloside Primed Glycosaminoglycans Co-contribute to Ebselen β-d-Xyloside-Induced Cytotoxicity. J Med Chem 2018; 61:2937-2948. [PMID: 29584939 DOI: 10.1021/acs.jmedchem.7b01835] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most β-d-xylosides with hydrophobic aglycones are nontoxic primers for glycosaminoglycan assembly in animal cells. However, when Ebselen was conjugated to d-xylose, d-glucose, d-galactose, and d-lactose (8A-D), only Ebselen β-d-xyloside (8A) showed significant cytotoxicity in human cancer cells. The following facts indicated that the aglycone Ebselen and β-d-xyloside primed glycosaminoglycans co-contributed to the observed cytotoxicity: 1. Ebselen induced S phase cell cycle arrest, whereas 8A induced G2/M cell cycle arrest; 2. 8A augmented early and late phase cancer cell apoptosis significantly compared to that of Ebselen and 8B-D; 3. Both 8A and phenyl-β-d-xyloside primed glycosaminoglycans with similar disaccharide compositions in CHO-pgsA745 cells; 4. Glycosaminoglycans could be detected inside of cells only when treated with 8A, indicating Ebselen contributed to the unique property of intracellular localization of the primed glycosaminoglycans. Thus, 8A represents a lead compound for the development of novel antitumor strategy by targeting glycosaminoglycans.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Yajing Chang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Dacheng Fan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Ariane De Agostini
- Department of Gynecology and Obstetrics , Geneva University Hospitals and University of Geneva , Geneva 14 , Switzerland
| | - Lijuan Zhang
- Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National of Laboratory for Marine Science and Technology , Qingdao 266003 , P. R. China
| |
Collapse
|
14
|
Hou N, Zhang M, Xu Y, Sun Z, Wang J, Zhang L, Zhang Q. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities. Int J Biol Macromol 2017; 105:1511-1518. [PMID: 28619642 DOI: 10.1016/j.ijbiomac.2017.06.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 06/03/2017] [Indexed: 12/21/2022]
Abstract
Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators.
Collapse
Affiliation(s)
- Ningning Hou
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Meng Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingjie Xu
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhongmin Sun
- Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Lijuan Zhang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Quanbin Zhang
- Key Laboratory of Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China.
| |
Collapse
|
15
|
Das S, Munshi A. Research advances in Apert syndrome. J Oral Biol Craniofac Res 2017; 8:194-199. [PMID: 30191107 DOI: 10.1016/j.jobcr.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Apert syndrome is one of the several genetic syndromes associated with craniosynostosis, a condition that includes premature fusion of one or multiple cranial sutures. There has been significant clinical variation among different sutural synostoses and also within particular suture synostosis. Enormous progress has been made in identifying various mutations associated with Apert Syndrome. Although a causal gene has been defined, the precise role of this mutation in producing craniofacial dysmorphology and other related abnormalities is in the process of discovery. Most of the understanding regarding this rare disorder has been possible due to mouse models that have helped in deciphering the elements of this rare human disease. Thus, molecular and cellular understanding of the disease has taken a leap and further with the advent of technology definitive diagnosis of the syndrome is no more of an issue. In this review, we have discussed and consolidated the possible molecular studies that have contributed in understanding of this rare syndrome. This article may help clinicians and researchers to inform about the latest progress in Apert syndrome.
Collapse
Affiliation(s)
- Satrupa Das
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.,Dr. NTR University of Health Sciences, Vijayawada, Andhra Pradesh, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
16
|
RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells. J Immunol Res 2017; 2017:5157626. [PMID: 28280747 PMCID: PMC5322442 DOI: 10.1155/2017/5157626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 11/26/2022] Open
Abstract
Vaccinia virus (VACV) encodes the soluble type I interferon (IFN) binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.
Collapse
|
17
|
Li Q, Zeng Y, Wang L, Guan H, Li C, Zhang L. The heparin-like activities of negatively charged derivatives of low-molecular-weight polymannuronate and polyguluronate. Carbohydr Polym 2017; 155:313-320. [DOI: 10.1016/j.carbpol.2016.08.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/29/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022]
|
18
|
He Y, Lan Y, Liu Y, Yu H, Han Z, Li X, Zhang L. Pingyangmycin and Bleomycin Share the Same Cytotoxicity Pathway. Molecules 2016; 21:molecules21070862. [PMID: 27376254 PMCID: PMC6274306 DOI: 10.3390/molecules21070862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 01/22/2023] Open
Abstract
Pingyangmycin is an anticancer drug known as bleomycin A5 (A5), discovered in the Pingyang County of Zhejiang Province of China. Bleomycin (BLM) is a mixture of mainly two compounds (A2 and B2), which is on the World Health Organization’s list of essential medicines. Both BLM and A5 are hydrophilic molecules that depend on transporters or endocytosis receptors to get inside of cells. Once inside, the anticancer activities rely on their abilities to produce DNA breaks, thus leading to cell death. Interestingly, the half maximal inhibitory concentration (IC50) of BLMs in different cancer cell lines varies from nM to μM ranges. Different cellular uptake, DNA repair rate, and/or increased drug detoxification might be some of the reasons; however, the molecules and signaling pathways responsible for these processes are largely unknown. In the current study, we purified the A2 and B2 from the BLM and tested the cytotoxicities and the molecular mechanisms of each individual compound or in combination with six different cell lines, including a Chinese hamster ovary (CHO) cell line defective in glycosaminoglycan biosynthesis. Our data suggested that glycosaminoglycans might be involved in the cellular uptake of BLMs. Moreover, both BLM and A5 shared similar signaling pathways and are involved in cell cycle and apoptosis in different cancer cell lines.
Collapse
Affiliation(s)
- Yanli He
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Ying Lan
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yong Liu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China.
| | - Zhangrun Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xiulian Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Lijuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
19
|
Katsianou MA, Adamopoulos C, Vastardis H, Basdra EK. Signaling mechanisms implicated in cranial sutures pathophysiology: Craniosynostosis. BBA CLINICAL 2016; 6:165-176. [PMID: 27957430 PMCID: PMC5144105 DOI: 10.1016/j.bbacli.2016.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/19/2023]
Abstract
Normal extension and skull expansion is a synchronized process that prevails along the osteogenic intersections of the cranial sutures. Cranial sutures operate as bone growth sites allowing swift bone generation at the edges of the bone fronts while they remain patent. Premature fusion of one or more cranial sutures can trigger craniosynostosis, a birth defect characterized by dramatic manifestations in appearance and functional impairment. Up until today, surgical correction is the only restorative measure for craniosynostosis associated with considerable mortality. Clinical studies have identified several genes implicated in the pathogenesis of craniosynostosis syndromes with useful insights into the underlying molecular signaling events that determine suture fate. In this review, we exploit the intracellular signal transduction pathways implicated in suture pathobiology, in an attempt to identify key signaling molecules for therapeutic targeting. Cranial sutures operate as bone growth sites. Premature fusion of one or more cranial sutures can trigger craniosynostosis. Several genes are involved in the pathogenesis of craniosynostosis syndromes. An array of molecular signaling events determine suture fate. Herein, the signal transduction pathways implicated in suture pathobiology are discussed.
Collapse
Affiliation(s)
- Maria A Katsianou
- Department of Biological Chemistry - Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry - Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Heleni Vastardis
- Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry - Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
20
|
Anticoagulant and FGF/FGFR signal activating activities of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides. Carbohydr Polym 2016; 136:641-8. [DOI: 10.1016/j.carbpol.2015.09.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/05/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022]
|
21
|
Peck SH, O'Donnell PJM, Kang JL, Malhotra NR, Dodge GR, Pacifici M, Shore EM, Haskins ME, Smith LJ. Delayed hypertrophic differentiation of epiphyseal chondrocytes contributes to failed secondary ossification in mucopolysaccharidosis VII dogs. Mol Genet Metab 2015; 116:195-203. [PMID: 26422116 PMCID: PMC4641049 DOI: 10.1016/j.ymgme.2015.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient β-glucuronidase activity, which leads to the accumulation of incompletely degraded glycosaminoglycans (GAGs). MPS VII patients present with severe skeletal abnormalities, which are particularly prevalent in the spine. Incomplete cartilage-to-bone conversion in MPS VII vertebrae during postnatal development is associated with progressive spinal deformity and spinal cord compression. The objectives of this study were to determine the earliest postnatal developmental stage at which vertebral bone disease manifests in MPS VII and to identify the underlying cellular basis of impaired cartilage-to-bone conversion, using the naturally-occurring canine model. Control and MPS VII dogs were euthanized at 9 and 14 days-of-age, and vertebral secondary ossification centers analyzed using micro-computed tomography, histology, qPCR, and protein immunoblotting. Imaging studies and mRNA analysis of bone formation markers established that secondary ossification commences between 9 and 14 days in control animals, but not in MPS VII animals. mRNA analysis of differentiation markers revealed that MPS VII epiphyseal chondrocytes are unable to successfully transition from proliferation to hypertrophy during this critical developmental window. Immunoblotting demonstrated abnormal persistence of Sox9 protein in MPS VII cells between 9 and 14 days-of-age, and biochemical assays revealed abnormally high intra and extracellular GAG content in MPS VII epiphyseal cartilage at as early as 9 days-of-age. In contrast, assessment of vertebral growth plates and primary ossification centers revealed no significant abnormalities at either age. The results of this study establish that failed vertebral bone formation in MPS VII can be traced to the failure of epiphyseal chondrocytes to undergo hypertrophic differentiation at the appropriate developmental stage, and suggest that aberrant processing of Sox9 protein may contribute to this cellular dysfunction. These results also highlight the importance of early diagnosis and therapeutic intervention to prevent the progression of debilitating skeletal disease in MPS patients.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip J M O'Donnell
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer L Kang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George R Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Division of Orthopedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Hong L, Han Y, Liu J, Fan D. Keratinocyte growth factor receptor: a therapeutic target in solid cancer. Expert Opin Ther Targets 2015. [PMID: 26200212 DOI: 10.1517/14728222.2015.1062474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The treatment effects of advanced solid cancer are unsatisfactory, and novel therapeutic approaches are much needed. Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase that is primarily localized on epithelial cells. KGFR may play important roles in epithelial cell proliferation and differentiation, epithelial wound repair, embryonic development, immunity, tumor formation and development. AREAS COVERED This review summarizes the expression, function and mechanism of KGFR in solid cancer, and analyzes its value for the cancer therapy. Furthermore, this study discusses the limitations of KGFR-based therapy, and envisages future developments in the clinical applications of KGFR. EXPERT OPINION KGFR may function as an ideal therapeutic target for solid cancer. Continued basic investigation of KGFR-mediated pathways will push insight into the novel strategies of target therapy. More in vivo studies and clinical trials should be performed to promote the translational bridging of the latest research into clinical application.
Collapse
Affiliation(s)
- Liu Hong
- a 1 Fourth Military Medical University, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province, China +86 29 84771531 ; +86 29 82539041 ;
| | - Yu Han
- b 2 Fourth Military Medical University, Xijing Hospital, Department of Otolaryngology , Xi'an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- a 1 Fourth Military Medical University, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province, China +86 29 84771531 ; +86 29 82539041 ;
| | - Daiming Fan
- a 1 Fourth Military Medical University, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province, China +86 29 84771531 ; +86 29 82539041 ;
| |
Collapse
|
23
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|
24
|
Abstract
OBJECTIVES Urinary tract infections (UTIs), commonly caused by uropathogenic Escherichia coli (UPEC), confer significant morbidity among postmenopausal women. Glycosaminoglycans (GAGs) comprise the first line of defense at the bladder's luminal surface. Our objective was to use a murine model of menopause to determine whether estrogen status affects the GAG layer in response to UPEC infection. METHODS Adult female mice underwent sham surgery (SHAM, n = 18) or oophorectomy (OVX, n = 66) to establish a murine model of menopause. A subset of oophorectomized mice underwent hormone therapy (HT, n = 33) with 17β-estradiol. Mice were inoculated with UPEC and killed at various time points; bladders were collected and GAG layer thickness was assessed in multiple bladder sections. Sixteen measurements were made per bladder. A repeated-measures 2-way analysis of variance was performed to determine the effect of time after infection and hormonal condition on GAG thickness. We also investigated the molecular underpinnings of GAG biosynthesis in response to alterations in estrogen status and infection. RESULTS We did not observe significant difference of GAG thickness among the 3 hormonal conditions; however, the time course of GAG thickness was significantly different (P < 0.05). The OVX mice demonstrated significantly greater thickness at 72 hours after infection (P = 0.0001), and this effect was shifted earlier (24 hours after infection) on the addition of HT (P = 0.001). At 2 to 4 weeks after infection, GAG thickness among all cohorts was not significantly different from baseline. In addition, quantitative reverse transcription-polymerase chain reaction analysis revealed that GAG biosynthesis is altered by estrogen status at basal level and on infection. CONCLUSIONS The GAG layer is dynamically altered during the course of UTI. Our data show that HT positively regulates GAG layer thickness over time, as well as the composition of the GAGs. In addition, the GAG sulfation status can be influenced by estrogen levels in response to UPEC infection. The protective effects of the GAG layer in UTI may represent pharmacologic targets for the treatment and prevention of postmenopausal UTI.
Collapse
|
25
|
Zhou X, O'Leary TR, Xu Y, Sheng J, Liu J. Chemoenzymatic synthesis of heparan sulfate and heparin. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.681852] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Abstract
Fibroblast growth factors (FGFs) are important molecules that control bone formation. FGF act by activating FGF receptors (FGFRs) and downstream signaling pathways that control cells of the osteoblast lineage. Recent advances have been made in the identification of FGF/FGFR signaling pathways that control osteogenesis. Indeed, studies of mouse and human models provided novel insights into the signaling pathways that control bone formation. Genomic studies also highlighted the implication of molecular targets of FGF/FGFR signaling regulating osteoblastogenesis. Recent studies further revealed the important role of crosstalks between FGF/FGFR signaling and other signaling pathways in the regulation of osteogenesis. Finally, the importance of the mechanisms modulating FGFR degradation in the control of osteoblast differentiation has been recently revealed. This short review summarizes the recently described mechanisms underlying FGF/FGFR signaling that are involved in the control of osteoblastogenesis. This knowledge may have potential therapeutic implications in skeletal disorders characterized by abnormal bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- Laboratory of Osteoblast Biology and Pathology, INSERM UMR-606 and University Paris Diderot, Paris F-75475, France.
| | | | | |
Collapse
|
27
|
Marie PJ. Fibroblast growth factor signaling controlling bone formation: An update. Gene 2012; 498:1-4. [DOI: 10.1016/j.gene.2012.01.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/23/2012] [Accepted: 01/29/2012] [Indexed: 10/14/2022]
|
28
|
Oussoren E, Brands M, Ruijter G, der Ploeg AV, Reuser A. Bone, joint and tooth development in mucopolysaccharidoses: Relevance to therapeutic options. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1542-56. [DOI: 10.1016/j.bbadis.2011.07.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/09/2023]
|
29
|
Abstract
Heparan sulfate is a highly sulfated polysaccharide that exhibits important physiological and pathological functions. The glucosamine residue of heparan sulfate can carry sulfo groups at the 2-N, 3-O, and 6-O positions, leading to diverse polysaccharide structures. 6-O-Sulfation at the glucosamine residue contributes to a wide range of biological functions. Here, we report a method for controlling the positioning of 6-O-sulfo groups in oligosaccharides. This was achieved by synthesizing oligosaccharide backbones from a disaccharide building block utilizing glycosyltransferases followed by modifications using heparan sulfate N-sulfotransferase and 6-O-sulfotransferases. This method offers a viable approach for preparing heparan sulfate oligosaccharides with precisely located 6-O-sulfo groups.
Collapse
Affiliation(s)
- Renpeng Liu
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | | |
Collapse
|
30
|
Melville H, Wang Y, Taub PJ, Jabs EW. Genetic basis of potential therapeutic strategies for craniosynostosis. Am J Med Genet A 2011; 152A:3007-15. [PMID: 21082653 DOI: 10.1002/ajmg.a.33703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures, is a common malformation of the skull that can result in facial deformity and increased intracranial pressure. Syndromic craniosynostosis is present in ∼15% of craniosynostosis patients and often is clinically diagnosed by neurocranial phenotype as well as various other skeletal abnormalities. The most common genetic mutations identified in syndromic craniosynostosis involve the fibroblast growth factor receptor (FGFR) family with other mutations occurring in genes for transcription factors TWIST, MSX2, and GLI3, and other proteins EFNB1, RAB23, RECQL4, and POR, presumed to be involved either upstream or downstream of the FGFR signaling pathway. Both syndromic and nonsyndromic craniosynostosis patients require early diagnosis and intervention. The premature suture fusion can impose pressure on the growing brain and cause continued abnormal postnatal craniofacial development. Currently, treatment options for craniosynostosis are almost exclusively surgical. Serious complications can occur in infants requiring either open or endoscopic repair and therefore the development of nonsurgical techniques is highly desirable although arguably difficult to design and implement. Genetic studies of aberrant signaling caused by mutations underlying craniosynostosis in in vitro calvarial culture and in vivo animal model systems have provided promising targets in designing genetic and pharmacologic strategies for systemic or adjuvant nonsurgical treatment. Here we will review the current literature and provide insights to future possibilities and limitations of therapeutic applications.
Collapse
Affiliation(s)
- Heather Melville
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
31
|
Oberg KC, Feenstra JM, Manske PR, Tonkin MA. Developmental biology and classification of congenital anomalies of the hand and upper extremity. J Hand Surg Am 2010; 35:2066-76. [PMID: 21134615 DOI: 10.1016/j.jhsa.2010.09.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 02/02/2023]
Abstract
Recent investigations into the mechanism of limb development have clarified the roles of several molecules, their pathways, and interactions. Characterization of the molecular pathways that orchestrate limb development has provided insight into the etiology of many limb malformations. In this review, we describe how the insights from developmental biology are related to clinically relevant anomalies and the current classification schemes used to define, categorize, and communicate patterns of upper limb malformations. We advocate an updated classification scheme for upper limb anomalies that incorporates our current molecular perspective of limb development and the pathogenetic basis for malformations using dysmorphology terminology. We anticipate that this scheme will improve the utility of a classification as a basis for diagnosis, treatment, and research.
Collapse
Affiliation(s)
- Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | | | | | | |
Collapse
|
32
|
Tomanek RJ, Christensen LP, Simons M, Murakami M, Zheng W, Schatteman GC. Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Dev Dyn 2010; 239:3182-91. [PMID: 20981833 PMCID: PMC2991485 DOI: 10.1002/dvdy.22460] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In embryonic hearts explanted on collagen gels, epicardial cells delaminate and form vascular tubes, thus providing a model for coronary tubulogenesis. Using this model, we show that fibroblast growth factors (FGFs) 1, 2, 4, 8, 9, and 18 contribute to tubulogenesis and that the availability of multiple FGFs provides the optimal tubulogenic response. Moreover, the FGF effects are vascular endothelial growth factor (VEGF) -dependent, while VEGF-induced tubulogenesis requires FGF signaling. The number of endothelial cells (ECs) is increased by all of the FGFs, while EC migration is significantly enhanced only by FGF-2 and FGF-18. Finally, addition of embryonic mesenchymal stem cells (EMSC) to the explants markedly enhances EC numbers and a 23-fold increase in stromal derived factor-1α (SDF-1α), which is FGF dependent. Both explants and EMSCs produce SDF-1α. In conclusion, coronary tubulogenesis of embryonic epicardium: (1) is responsive to many FGF family members, (2) requires both FGF and VEGFA signaling, and (3) is responsive to EMSCs.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, The University of Iowa Carver College of Medicine and The Cardiovascular Center, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Dong J, Yao S, Zhou X, Zhang L, Xu Y. Synthesis of N-heteroaroyl aminosaccharide derivatives as fibroblast growth factor 2 signaling modulators. Chem Pharm Bull (Tokyo) 2010; 58:1210-5. [PMID: 20823601 DOI: 10.1248/cpb.58.1210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor 2 (FGF2) signaling plays an important role in angiogenesis. Heparin/heparan sulfate (HS) is required for FGF2 signaling but heparin mimics either promotes or inhibits FGF2 signaling. To take advantage such properties of heparin mimics, a series of N-heteroaroyl aminosaccharide derivatives were designed and synthesized as FGF2 signaling modulators. The bioactivity was determined in a FGF2 and heparin-dependent cell proliferation assay using FGFR1c expressing BaF3 cells. We found that most of the compounds inhibited heparin- and FGF2-dependent BaF3 cell proliferation while three compounds promoted the cell proliferation. These results suggest that the small molecular heparin mimics approach might be useful in developing novel anti-angiogenic agents.
Collapse
Affiliation(s)
- Jin Dong
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
34
|
Peterson SB, Liu J. Unraveling the specificity of heparanase utilizing synthetic substrates. J Biol Chem 2010; 285:14504-13. [PMID: 20181948 PMCID: PMC2863188 DOI: 10.1074/jbc.m110.104166] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Indexed: 11/06/2022] Open
Abstract
Heparanase is a promising anticancer target because of its involvement in cancer invasion and metastasis. Heparanase cleaves heparan sulfate (HS), a sulfated polysaccharide, and activates a series of HS-mediated cell proliferation and angiogenesis processes. Understanding the substrate specificity of heparanase will aid the discovery of heparanase inhibitors. Here, we sought to determine the specificity of heparanase using synthetic polysaccharide substrates. The substrates were prepared using purified HS biosynthetic enzymes. Using these substrates, we were able to dissect the structural moieties required for heparanase. Our data suggest that heparanase cleaves the linkage between a GlcA unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group. In addition, heparanase cleaves the linkage of a GlcA unit and N-sulfo glucosamine unit with a 2-O-sulfated GlcA residue, not a 2-O-sulfated IdoA residue, in proximity. We also discovered that the polysaccharide with repeating disaccharide units of IdoA2S-GlcNS inhibits the activity of heparanase. Our findings advance the understanding of the substrate specificity of heparanase and identify a lead compound for developing polysaccharide-based heparanase inhibitors.
Collapse
Affiliation(s)
- Sherket B. Peterson
- From the Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jian Liu
- From the Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
35
|
Pan J, Qian Y, Zhou X, Lu H, Ramacciotti E, Zhang L. Chemically oversulfated glycosaminoglycans are potent modulators of contact system activation and different cell signaling pathways. J Biol Chem 2010; 285:22966-75. [PMID: 20418371 DOI: 10.1074/jbc.m109.063735] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contaminated heparin was associated with adverse reactions by activating the contact system. Chemically oversulfated/modified glycosaminoglycans (GAGs) consisting of heparan sulfate, dermatan sulfate, and chondroitin sulfate have been identified as heparin contaminants. Current studies demonstrated that each component of oversulfated GAGs was comparable with oversulfated chondroitin sulfate in activating the contact system. By testing a series of unrelated negatively charged compounds, we found that the contact system recognized negative charges rather than specific chemical structures. We further tested how oversulfated GAGs and contaminated heparins affect different cell signaling pathways. Our data showed that chemically oversulfated GAGs and contaminated heparin had higher activity than the parent compounds and authentic heparin, indicative of sulfation-dominant and GAG sequence-dependent activities in BaF cell-based models of fibroblast growth factor/fibroblast growth factor receptor, glial cell line-derived neurotrophic factor/c-Ret, and hepatocyte growth factor/c-Met signaling. In summary, these data indicate that contaminated heparins intended for blood anticoagulation not only activated the contact system but also modified different GAG-dependent cell signaling pathways.
Collapse
Affiliation(s)
- Jing Pan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Analysis of a gain-of-function FGFR2 Crouzon mutation provides evidence of loss of function activity in the etiology of cleft palate. Proc Natl Acad Sci U S A 2010; 107:2515-20. [PMID: 20133659 DOI: 10.1073/pnas.0913985107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cleft palate is a common birth defect in humans and is a common phenotype associated with syndromic mutations in fibroblast growth factor receptor 2 (Fgfr2). Cleft palate occurred in nearly all mice homozygous for the Crouzon syndrome mutation C342Y in the mesenchymal splice form of Fgfr2. Mutant embryos showed delayed palate elevation, stage-specific biphasic changes in palate mesenchymal proliferation, and reduced levels of mesenchymal glycosaminoglycans (GAGs). Reduced levels of feedback regulators of FGF signaling suggest that this gain-of-function mutation in FGFR2 ultimately resembles loss of FGF function in palate mesenchyme. Knowledge of how mesenchymal FGF signaling regulates palatal shelf development may ultimately lead to pharmacological approaches to reduce cleft palate incidence in genetically predisposed humans.
Collapse
|
37
|
Zhang L. Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:1-17. [PMID: 20807638 DOI: 10.1016/s1877-1173(10)93001-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two major types of glycosaminoglycan (GAG) polysaccharides, heparan sulfate and chondroitin sulfate, are polymerized and modified by enzymes that are encoded by more than 40 genes in animal cells. Because of the expression repertoire of the GAG assembly and modification enzymes, each heparan sulfate and chondroitin sulfate chain has a sulfation pattern, chain length, and fine structure that is potentially unique to each animal cell. GAGs interact with hundreds of proteins. Such interactions protect growth factors, chemokines, and cytokines against proteolysis. GAGs catalyze protease (such as thrombin) inhibition by serpins. GAGs regulate multiple signaling pathways including, but not limited to, fibroblast growth factor (FGF)/FGFR, hepatocyte growth factor (HGF)/c-Met, glial cell line-derived neurotrophic factor (GDNF)/c-Ret/GFRalpha1, vascular endothelial growth factor (VEGF)/VEGFR, platelet derived growth factor (PDGF)/PDGFR, BAFF/TACI, Indian hedgehog, Wnt, and BMP signaling pathways,where genetic studies have revealed an absolute requirement for GAGs in these pathways. Most importantly, protein/GAG aggregates induce thrombin generation and immune system upregulation by activating the contact system. Abnormal protein/GAG aggregates are associated with a variety of devastating human diseases including, but not limited to, Alzheimer's, diabetes, prion or transmissible spongiform encephalopathies, Lupus, heparin-induced thrombocytopenia/thrombosis, and different kinds of cancers. Therefore, GAGs are essential components of modern molecular biology and human physiology. Understanding GAG structure and function at molecular level with regard to development and health represents a unique opportunity in combating different kinds of human diseases.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO, USA
| |
Collapse
|
38
|
Metcalf JA, Zhang Y, Hilton MJ, Long F, Ponder KP. Mechanism of shortened bones in mucopolysaccharidosis VII. Mol Genet Metab 2009; 97:202-11. [PMID: 19375967 PMCID: PMC2775472 DOI: 10.1016/j.ymgme.2009.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 11/15/2022]
Abstract
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease in which deficiency in beta-glucuronidase results in glycosaminoglycan (GAG) accumulation in and around cells, causing shortened long bones through mechanisms that remain largely unclear. We demonstrate here that MPS VII mice accumulate massive amounts of the GAG chondroitin-4-sulfate (C4S) in their growth plates, the cartilaginous region near the ends of long bones responsible for growth. MPS VII mice also have only 60% of the normal number of chondrocytes in the growth plate and 55% of normal chondrocyte proliferation at 3weeks of age. We hypothesized that this reduction in proliferation was due to C4S-mediated overactivation of fibroblast growth factor receptor 3 (FGFR3). However, MPS VII mice that were FGFR3-deficient still had shortened bones, suggesting that FGFR3 is not required for the bone defect. Further study revealed that MPS VII growth plates had reduced tyrosine phosphorylation of STAT3, a pro-proliferative transcription factor. This was accompanied by a decrease in expression of leukemia inhibitory factor (LIF) and other interleukin 6 family cytokines, and a reduction in phosphorylated tyrosine kinase 2 (TYK2), Janus kinase 1 (JAK1), and JAK2, known activators of STAT3 phosphorylation. Intriguingly, loss of function mutations in LIF and its receptor leads to shortened bones. This suggests that accumulation of C4S in the growth plate leads to reduced expression of LIF and reduced STAT3 tyrosine phosphorylation, which results in reduced chondrocyte proliferation and ultimately shortened bones.
Collapse
Affiliation(s)
- Jason A Metcalf
- Department of Medicine, Washington University School of Medicine, Campus Box 8125, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
39
|
Kwan MD, Wan DC, Lorenz HP, Longaker MT. Re: differential effects of FGFR2 mutation in ophthalmologic findings in Apert syndrome. J Craniofac Surg 2007; 18:459-60. [PMID: 17414305 DOI: 10.1097/01.scs.0000249354.81967.d9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Matthew D Kwan
- Children's Surgical Research Program, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | |
Collapse
|