1
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Bhattacharjee A, Kar S, Ojha PK. First report on chemometrics-driven multilayered lead prioritization in addressing oxysterol-mediated overexpression of G protein-coupled receptor 183. Mol Divers 2024; 28:4199-4220. [PMID: 38460065 DOI: 10.1007/s11030-024-10811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 03/11/2024]
Abstract
Contemporary research has convincingly demonstrated that upregulation of G protein-coupled receptor 183 (GPR183), orchestrated by its endogenous agonist, 7α,25-dihydroxyxcholesterol (7α,25-OHC), leads to the development of cancer, diabetes, multiple sclerosis, infectious, and inflammatory diseases. A recent study unveiled the cryo-EM structure of 7α,25-OHC bound GPR183 complex, presenting an untapped opportunity for computational exploration of potential GPR183 inhibitors, which served as our inspiration for the current work. A predictive and validated two-dimensional QSAR model using genetic algorithm (GA) and multiple linear regression (MLR) on experimental GPR183 inhibition data was developed. QSAR study highlighted that structural features like dissimilar electronegative atoms, quaternary carbon atoms, and CH2RX fragment (X: heteroatoms) influence positively, while the existence of oxygen atoms with a topological separation of 3, negatively affects GPR183 inhibitory activity. Post assessment of true external set prediction capability, the MLR model was deployed to screen 12,449 DrugBank compounds, followed by a screening pipeline involving molecular docking, druglikeness, ADMET, protein-ligand stability assessment using deep learning algorithm, molecular dynamics, and molecular mechanics. The current findings strongly evidenced DB05790 as a potential lead for prospective interference of oxysterol-mediated GPR183 overexpression, warranting further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Arnab Bhattacharjee
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA
| | - Probir Kumar Ojha
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
von Voss L, Arora T, Assis J, Kuentzel KB, Arfelt KN, Nøhr MK, Grevengoed TJ, Arumugam M, Mandrup-Poulsen T, Rosenkilde MM. Sexual Dimorphism in the Immunometabolic Role of Gpr183 in Mice. J Endocr Soc 2024; 8:bvae188. [PMID: 39545055 PMCID: PMC11561910 DOI: 10.1210/jendso/bvae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/17/2024] Open
Abstract
Context Excessive eating and intake of a Western diet negatively affect the intestinal immune system, resulting in compromised glucose homeostasis and lower gut bacterial diversity. The G protein-coupled receptor GPR183 regulates immune cell migration and intestinal immune response and has been associated with tuberculosis, type 1 diabetes, and inflammatory bowel diseases. Objective We hypothesized that with these implications, GPR183 has an important immunometabolic role and investigated this using a global Gpr183 knockout mouse model. Methods Wild-type (WT) and Gpr183-deficient (Gpr183-/-) mice were fed a high-fat, high-sucrose diet (HFSD) for 15 weeks. We investigated changes in weight, body composition, fecal immunoglobulin A (IgA) levels, fecal microbiome, and glucose tolerance before and after the diet. Macrophage infiltration into visceral fat was determined by flow cytometry, and hepatic gene expression was measured. Results A sexual dimorphism was discovered, whereby female Gpr183-/- mice showed adverse metabolic outcomes compared to WT counterparts with inferior glucose tolerance, lower fecal IgA levels, and increased macrophage infiltration in visceral fat. In contrast, male Gpr183-/- mice had significantly lower fasting blood glucose after diet than male WT mice. Liver gene expression showed reduced inflammation and macrophage markers in Gpr183-/- livers, regardless of sex, while the pancreatic islet area did not differ between the groups. No conclusive differences were found after microbiome sequencing. Conclusion Gpr183 maintains metabolic homeostasis in female but not in male mice independent of diet. If confirmed in humans, future therapy targeting GPR183 should consider this sexual dimorphism.
Collapse
Affiliation(s)
- Liv von Voss
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Juliana Assis
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, SE 223 63 Lund, Sweden
| | - Katharina B Kuentzel
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Kristine N Arfelt
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mark K Nøhr
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Trisha J Grevengoed
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Mahardhika AB, Załuski M, Schoeder CT, Boshta NM, Schabikowski J, Perri F, Łażewska D, Neumann A, Kremers S, Oneto A, Ressemann A, Latacz G, Namasivayam V, Kieć-Kononowicz K, Müller CE. Potent, Selective Agonists for the Cannabinoid-like Orphan G Protein-Coupled Receptor GPR18: A Promising Drug Target for Cancer and Immunity. J Med Chem 2024; 67:9896-9926. [PMID: 38885438 DOI: 10.1021/acs.jmedchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in β-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| | - Michal Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Clara T Schoeder
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Nader M Boshta
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Filomena Perri
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Alexander Neumann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Sarah Kremers
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Angelo Oneto
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anastasiia Ressemann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
6
|
Hu L, An K, Zhang Y, Bai C. Exploring the Activation Mechanism of the GPR183 Receptor. J Phys Chem B 2024; 128:6071-6081. [PMID: 38877985 DOI: 10.1021/acs.jpcb.4c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The G protein-coupled receptors (GPCRs) play a pivotal role in numerous biological processes as crucial cell membrane receptors. However, the dynamic mechanisms underlying the activation of GPR183, a specific GPCR, remain largely elusive. To address this, we employed computational simulation techniques to elucidate the activation process and key events associated with GPR183, including conformational changes from inactive to active state, binding interactions with the Gi protein complex, and GDP release. Our findings demonstrate that the association between GPR183 and the Gi protein involves the formation of receptor-specific conformations, the gradual proximity of the Gi protein to the binding pocket, and fine adjustments of the protein conformation, ultimately leading to a stable GPR183-Gi complex characterized by a high energy barrier. The presence of Gi protein partially promotes GPR183 activation, which is consistent with the observation of GPCR constitutive activity test experiments, thus illustrating the reliability of our calculations. Moreover, our study suggests the existence of a stable partially activated state preceding complete activation, providing novel avenues for future investigations. In addition, the relevance of GPR183 for various diseases, such as colitis, the response of eosinophils to Mycobacterium tuberculosis infection, antiviral properties, and pulmonary inflammation, has been emphasized, underscoring its therapeutic potential. Consequently, understanding the activation process of GPR183 through molecular dynamic simulations offers valuable kinetic insights that can aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Linfeng Hu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Ke An
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| | - Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| |
Collapse
|
7
|
Xu C, Wang Y, Ni H, Yao M, Cheng L, Lin X. The role of orphan G protein-coupled receptors in pain. Heliyon 2024; 10:e28818. [PMID: 38590871 PMCID: PMC11000026 DOI: 10.1016/j.heliyon.2024.e28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
G protein-coupled receptors (GPCRs), which form the largest family of membrane protein receptors in humans, are highly complex signaling systems with intricate structures and dynamic conformations and locations. Among these receptors, a specific subset is referred to as orphan GPCRs (oGPCRs) and has garnered significant interest in pain research due to their role in both central and peripheral nervous system function. The diversity of GPCR functions is attributed to multiple factors, including allosteric modulators, signaling bias, oligomerization, constitutive signaling, and compartmentalized signaling. This review primarily focuses on the recent advances in oGPCR research on pain mechanisms, discussing the role of specific oGPCRs including GPR34, GPR37, GPR65, GPR83, GPR84, GPR85, GPR132, GPR151, GPR160, GPR171, GPR177, and GPR183. The orphan receptors among these receptors associated with central nervous system diseases are also briefly described. Understanding the functions of these oGPCRs can contribute not only to a deeper understanding of pain mechanisms but also offer a reference for discovering new targets for pain treatment.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Yahui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Xuewu Lin
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| |
Collapse
|
8
|
Zeng R, Fang M, Shen A, Chai X, Zhao Y, Liu M, Zhu L, Rui W, Feng B, Hong L, Ding C, Song Z, Lu W, Zhang A. Discovery of a Highly Potent Oxysterol Receptor GPR183 Antagonist Bearing the Benzo[ d]thiazole Structural Motif for the Treatment of Inflammatory Bowel Disease (IBD). J Med Chem 2024; 67:3520-3541. [PMID: 38417036 DOI: 10.1021/acs.jmedchem.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Accumulating evidence has demonstrated a critical pathological role of oxysterol receptor GPR183 in various inflammatory and autoimmune diseases, including inflammatory bowel disease (IBD). However, the currently reported GPR183 antagonists are very limited and not qualified for in vivo studies due to their inferior druglike properties. Herein, we conducted a structural elaboration focusing on improving its PK and safety profile based on a reference antagonist NIBR189. Of note, compound 33, bearing an aminobenzothiazole motif, exhibited reduced hERG inhibition, improved PK properties, and robust antagonistic activity (IC50 = 0.82 nM) with high selectivity against GPR183. Moreover, compound 33 displayed strong in vitro antimigration and anti-inflammatory activity in monocytes. Oral administration of compound 33 effectively improved the pathological symptoms of DSS-induced experimental colitis. All of these findings demonstrate that compound 33 is a novel and promising GPR183 antagonist suitable for further investigation to treat IBD.
Collapse
Affiliation(s)
- Ruoqing Zeng
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Meimiao Fang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ancheng Shen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yumiao Zhao
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lingfeng Zhu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Rui
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Bo Feng
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Liang Hong
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Zilan Song
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ao Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
9
|
Kjær VMS, Stępniewski TM, Medel-Lacruz B, Reinmuth L, Ciba M, Rexen Ulven E, Bonomi M, Selent J, Rosenkilde MM. Ligand entry pathways control the chemical space recognized by GPR183. Chem Sci 2023; 14:10671-10683. [PMID: 37829039 PMCID: PMC10566501 DOI: 10.1039/d2sc05962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/26/2023] [Indexed: 10/14/2023] Open
Abstract
The G protein-coupled receptor GPR183 is a chemotactic receptor with an important function in the immune system and association with a variety of diseases. It recognizes ligands with diverse physicochemical properties as both the endogenous oxysterol ligand 7α,25-OHC and synthetic molecules can activate the G protein pathway of the receptor. To better understand the ligand promiscuity of GPR183, we utilized both molecular dynamics simulations and cell-based validation experiments. Our work reveals that the receptor possesses two ligand entry channels: one lateral between transmembrane helices 4 and 5 facing the membrane, and one facing the extracellular environment. Using enhanced sampling, we provide a detailed structural model of 7α,25-OHC entry through the lateral membrane channel. Importantly, the first ligand recognition point at the receptor surface has been captured in diverse experimentally solved structures of different GPCRs. The proposed ligand binding pathway is supported by in vitro data employing GPR183 mutants with a sterically blocked lateral entrance, which display diminished binding and signaling. In addition, computer simulations and experimental validation confirm the existence of a polar water channel which might serve as an alternative entrance gate for less lipophilic ligands from the extracellular milieu. Our study reveals knowledge to understand GPR183 functionality and ligand recognition with implications for the development of drugs for this receptor. Beyond, our work provides insights into a general mechanism GPCRs may use to respond to chemically diverse ligands.
Collapse
Affiliation(s)
- Viktoria Madeline Skovgaard Kjær
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Blegdamsvej 3B 2200 København N Denmark
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM) & Pompeu Fabra University (UPF) Dr Aiguader 88 E-8003 Barcelona Spain
- InterAx Biotech AG, PARK innovAARE 5234 Villigen Switzerland
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw 02-089 Warsaw Poland
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM) & Pompeu Fabra University (UPF) Dr Aiguader 88 E-8003 Barcelona Spain
| | - Lisa Reinmuth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Blegdamsvej 3B 2200 København N Denmark
| | - Marija Ciba
- Department of Drug Design and Pharmacology, University of Copenhagen Jagtvej 160 2100 København Ø Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen Jagtvej 160 2100 København Ø Denmark
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit 75015 Paris France
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM) & Pompeu Fabra University (UPF) Dr Aiguader 88 E-8003 Barcelona Spain
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Blegdamsvej 3B 2200 København N Denmark
| |
Collapse
|
10
|
Qi Z, Zhong W, Jiao B, Chen K, Yang X, Wang L, Zeng W, Huang J, Xie J. Activation of G-protein-coupled receptor 183 initiates inflammatory pain via macrophage CCL22 secretion. Eur J Pharmacol 2023; 954:175872. [PMID: 37353188 DOI: 10.1016/j.ejphar.2023.175872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Chronic pain is a major public health problem with limited effective therapeutic options. G-protein-coupled receptors play a significant role in pain modulation; however, whether and how G-protein-coupled receptor 183 participates in pain regulation remain unclear. In the present study, we found that G-protein-coupled receptor 183 expression was specifically upregulated in the hind paws of mice in various inflammatory pain models. Activation of G-protein-coupled receptor 183 induced acute pain, whereas inhibition or silencing of this receptor alleviated mechanical allodynia and thermal hyperalgesia in complete Freund's adjuvant (CFA) model. Mechanistically, activating G-protein-coupled receptor 183 triggers pain responses via the upregulation of C-C motif chemokine 22(CCL22) in macrophages while blocking the CCL22 receptor C-C motif chemokine receptor 4 (CCR4) attenuates pain hypersensitivity. Taken together, our findings indicate that the G-protein-coupled receptor 183-CCL22 axis has a critical role in the development and maintenance of inflammatory pain.
Collapse
Affiliation(s)
- Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weiqiang Zhong
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Boyu Jiao
- Department of Acupuncture, The First Affiliated Hospital, SunYat-sen University, Guangzhou, Guangdong, 510080, China
| | - Kang Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaohua Yang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Linjie Wang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Junting Huang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Zhang F, Zhang B, Ding H, Li X, Wang X, Zhang X, Liu Q, Feng Q, Han M, Chen L, Qi L, Yang D, Li X, Zhu X, Zhao Q, Qiu J, Zhu Z, Tang H, Shen N, Wang H, Wei B. The Oxysterol Receptor EBI2 Links Innate and Adaptive Immunity to Limit IFN Response and Systemic Lupus Erythematosus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207108. [PMID: 37469011 PMCID: PMC10520634 DOI: 10.1002/advs.202207108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/19/2023] [Indexed: 07/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with abnormal activation of the immune system. Recent attention is increasing about how aberrant lipid and cholesterol metabolism is linked together with type I interferon (IFN-I) signaling in the regulation of the pathogenesis of SLE. Here, a metabonomic analysis is performed and increased plasma concentrations of oxysterols, especially 7α, 25-dihydroxycholesterol (7α, 25-OHC), are identified in SLE patients. The authors find that 7α, 25-OHC binding to its receptor Epstein-Barr virus-induced gene 2 (EBI2) in macrophages can suppress STAT activation and the production of IFN-β, chemokines, and cytokines. Importantly, monocytes/macrophages from SLE patients and mice show significantly reduced EBI2 expression, which can be triggered by IFN-γ produced in activated T cells. Previous findings suggest that EBI2 enhances immune cell migration. Opposite to this effect, the authors demonstrate that EBI2-deficient macrophages produce higher levels of chemokines and cytokines, which recruits and activates myeloid cells,T and B lymphocytes to exacerbate tetramethylpentadecane-induced SLE. Together, via sensing the oxysterol 7α, 25-OHC, EBI2 in macrophages can modulate innate and adaptive immune responses, which may be used as a potential diagnostic marker and therapeutic target for SLE.
Collapse
Affiliation(s)
- Fang Zhang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
- Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Baokai Zhang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Huihua Ding
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200127China
| | - Xiangyue Li
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Xilin Wang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Xiaomin Zhang
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
| | - Qiaojie Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
| | - Qiuyun Feng
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Mingshun Han
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Longlong Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhangjiang Fudan International Innovation CenterZhongshan HospitalFudan UniversityShanghai200032China
- Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsFudan UniversityShanghai200032China
| | - Linlin Qi
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Dan Yang
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
| | - Xiaojing Li
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Xingguo Zhu
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Qi Zhao
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| | - Huiru Tang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhangjiang Fudan International Innovation CenterZhongshan HospitalFudan UniversityShanghai200032China
- Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsFudan UniversityShanghai200032China
| | - Nan Shen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200127China
| | - Hongyan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Bin Wei
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
- Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
- Department of Laboratory MedicineGene Diagnosis Research CenterFujian Key Laboratory of Laboratory MedicineThe First Affiliated HospitalFujian Medical UniversityFuzhou350000China
| |
Collapse
|
12
|
Kjær VMS, Daugvilaite V, Stepniewski TM, Madsen CM, Jørgensen AS, Bhuskute KR, Inoue A, Ulven T, Benned-Jensen T, Hjorth SA, Hjortø GM, Moo EV, Selent J, Rosenkilde MM. Migration mediated by the oxysterol receptor GPR183 depends on arrestin coupling but not receptor internalization. Sci Signal 2023; 16:eabl4283. [PMID: 37014928 DOI: 10.1126/scisignal.abl4283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The chemotactic G protein-coupled receptor GPR183 and its most potent endogenous oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-OHC) are important for immune cell positioning in secondary lymphoid tissues. This receptor-ligand pair is associated with various diseases, in some cases contributing favorably and in other cases adversely, making GPR183 an attractive target for therapeutic intervention. We investigated the mechanisms underlying GPR183 internalization and the role of internalization in the main biological function of the receptor, chemotaxis. We found that the C terminus of the receptor was important for ligand-induced internalization but less so for constitutive (ligand-independent) internalization. β-arrestin potentiated ligand-induced internalization but was not required for ligand-induced or constitutive internalization. Caveolin and dynamin were the main mediators of both constitutive and ligand-induced receptor internalization in a mechanism independent of G protein activation. Clathrin-mediated endocytosis also contributed to constitutive GPR183 internalization in a β-arrestin-independent manner, suggesting the existence of different pools of surface-localized GPR183. Chemotaxis mediated by GPR183 depended on receptor desensitization by β-arrestins but could be uncoupled from internalization, highlighting an important biological role for the recruitment of β-arrestin to GPR183. The role of distinct pathways in internalization and chemotaxis may aid in the development of GPR183-targeting drugs for specific disease contexts.
Collapse
Affiliation(s)
- Viktoria M S Kjær
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktorija Daugvilaite
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz M Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Pompeu Fabra University (UPF), Barcelona 08003, Spain
- InterAx Biotech AG, Villigen 5234, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-089, Poland
| | - Christian M Madsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaustubh R Bhuskute
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tau Benned-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Siv A Hjorth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Pompeu Fabra University (UPF), Barcelona 08003, Spain
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Braden K, Campolo M, Li Y, Chen Z, Doyle TM, Giancotti LA, Esposito E, Zhang J, Cuzzocrea S, Arnatt CK, Salvemini D. Activation of GPR183 by 7 α,25-Dihydroxycholesterol Induces Behavioral Hypersensitivity through Mitogen-Activated Protein Kinase and Nuclear Factor- κB. J Pharmacol Exp Ther 2022; 383:172-181. [PMID: 36116795 PMCID: PMC9553113 DOI: 10.1124/jpet.122.001283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Emerging evidence implicates the G-protein coupled receptor (GPCR) GPR183 in the development of neuropathic pain. Further investigation of the signaling pathways downstream of GPR183 is needed to support the development of GPR183 antagonists as analgesics. In rodents, intrathecal injection of its ligand, 7α,25-dihydroxycholesterol (7α,25-OHC), causes time-dependent development of mechano-and cold- allodynia (behavioral hypersensitivity). These effects are blocked by the selective small molecule GPR183 antagonist, SAE-14. However, the molecular mechanisms engaged downstream of GPR183 in the spinal cord are not known. Here, we show that 7α,25-OHC-induced behavioral hypersensitivity is Gα i dependent, but not β-arrestin 2-dependent. Non-biased transcriptomic analyses of dorsal-horn spinal cord (DH-SC) tissues harvested at the time of peak hypersensitivity implicate potential contributions of mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). In support, we found that the development of 7α,25-OHC/GPR183-induced mechano-allodynia was associated with significant activation of MAPKs (extracellular signal-regulated kinase [ERK], p38) and redox-sensitive transcription factors (NF-κB) and increased formation of inflammatory and neuroexcitatory cytokines. SAE-14 blocked these effects and behavioral hypersensitivity. Our findings provide novel mechanistic insight into how GPR183 signaling in the spinal cord produces hypersensitivity through MAPK and NF-κB activation. SIGNIFICANCE STATEMENT: Using a multi-disciplinary approach, we have characterized the molecular mechanisms underpinning 7α,25-OHC/GPR183-induced hypersensitivity in mice. Intrathecal injections of the GPR183 agonist 7α,25-OHC induce behavioral hypersensitivity, and these effects are blocked by the selective GPR183 antagonist SAE-14. We found that 7α,25-OHC-induced allodynia is dependent on MAPK and NF-κB signaling pathways and results in an increase in pro-inflammatory cytokine expression. This study provides a first insight into how GPR183 signaling in the spinal cord is pronociceptive.
Collapse
Affiliation(s)
- Kathryn Braden
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Michela Campolo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Ying Li
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Zhoumou Chen
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Emanuela Esposito
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Salvatore Cuzzocrea
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Christopher Kent Arnatt
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| |
Collapse
|
14
|
Rosenkilde MM, Tsutsumi N, Knerr JM, Kildedal DF, Garcia KC. Viral G Protein-Coupled Receptors Encoded by β- and γ-Herpesviruses. Annu Rev Virol 2022; 9:329-351. [PMID: 35671566 PMCID: PMC9584139 DOI: 10.1146/annurev-virology-100220-113942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein-coupled receptors (vGPCRs), chemokines, and chemokine-binding proteins. This review focuses on the vGPCRs encoded by the human β- and γ-herpesviruses. These include receptors from human cytomegalovirus, which encodes four vGPCRs: US27, US28, UL33, and UL78; human herpesvirus 6 and 7 with two receptors: U12 and U51; Epstein-Barr virus with one: BILF1; and Kaposi's sarcoma-associated herpesvirus with one: open reading frame 74. We discuss ligand binding, signaling, and structures of the vGPCRs in light of robust differences from endogenous receptors. Finally, we briefly discuss the therapeutic targeting of vGPCRs as future treatment of acute and chronic herpesvirus infections. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Naotaka Tsutsumi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Julius M Knerr
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | | | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
15
|
Chen H, Huang W, Li X. Structures of oxysterol sensor EBI2/GPR183, a key regulator of the immune response. Structure 2022; 30:1016-1024.e5. [DOI: 10.1016/j.str.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|
16
|
de Freitas FA, Levy D, Reichert CO, Cunha-Neto E, Kalil J, Bydlowski SP. Effects of Oxysterols on Immune Cells and Related Diseases. Cells 2022; 11:cells11081251. [PMID: 35455931 PMCID: PMC9031443 DOI: 10.3390/cells11081251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are the products of cholesterol oxidation. They have a wide range of effects on several cells, organs, and systems in the body. Oxysterols also have an influence on the physiology of the immune system, from immune cell maturation and migration to innate and humoral immune responses. In this regard, oxysterols have been involved in several diseases that have an immune component, from autoimmune and neurodegenerative diseases to inflammatory diseases, atherosclerosis, and cancer. Here, we review data on the participation of oxysterols, mainly 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, in the immune system and related diseases. The effects of these oxysterols and main oxysterol receptors, LXR and EBI2, in cells of the immune system (B cells, T cells, macrophages, dendritic cells, oligodendrocytes, and astrocytes), and in immune-related diseases, such as neurodegenerative diseases, intestinal diseases, cancer, respiratory diseases, and atherosclerosis, are discussed.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy (LIM60), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil;
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
| | - Jorge Kalil
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence:
| |
Collapse
|
17
|
Ngo MD, Bartlett S, Bielefeldt-Ohmann H, Foo CX, Sinha R, Arachige BJ, Reed S, Mandrup-Poulsen T, Rosenkilde MM, Ronacher K. A blunted GPR183/oxysterol axis during dysglycemia results in delayed recruitment of macrophages to the lung during M. tuberculosis infection. J Infect Dis 2022; 225:2219-2228. [PMID: 35303091 PMCID: PMC9200159 DOI: 10.1093/infdis/jiac102] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background We previously reported that reduced GPR183 expression in blood from tuberculosis (TB) patients with diabetes is associated with more severe TB. Methods To further elucidate the role of GPR183 and its oxysterol ligands in the lung, we studied dysglycemic mice infected with Mycobacterium tuberculosis (Mtb). Results We found upregulation of the oxysterol-producing enzymes CH25H and CYP7B1 and increased concentrations of 25-hydroxycholesterol upon Mtb infection in the lungs of mice. This was associated with increased expression of GPR183 indicative of oxysterol-mediated recruitment of GPR183-expressing immune cells to the lung. CYP7B1 was predominantly expressed by macrophages in TB granulomas. CYP7B1 expression was significantly blunted in lungs from dysglycemic animals, which coincided with delayed macrophage infiltration. GPR183-deficient mice similarly had reduced macrophage recruitment during early infection. Conclusions Taken together, we demonstrate a requirement of the GPR183/oxysterol axis for positioning of macrophages to the site of infection and add an explanation to more severe TB in diabetes patients.
Collapse
Affiliation(s)
- Minh Dao Ngo
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Stacey Bartlett
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, Australia
| | - Cheng Xiang Foo
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Roma Sinha
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | | | - Sarah Reed
- Centre for Clinical Research, The Univeristy of Queensland, Brisbane, Australia
| | | | | | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Barington L, Christensen LVV, Pedersen KK, Niss Arfelt K, Roumain M, Jensen KHR, Kjær VMS, Daugvilaite V, Kearney JF, Christensen JP, Hjortø GM, Muccioli GG, Holst PJ, Rosenkilde MM. GPR183 Is Dispensable for B1 Cell Accumulation and Function, but Affects B2 Cell Abundance, in the Omentum and Peritoneal Cavity. Cells 2022; 11:cells11030494. [PMID: 35159303 PMCID: PMC8834096 DOI: 10.3390/cells11030494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
B1 cells constitute a specialized subset of B cells, best characterized in mice, which is abundant in body cavities, including the peritoneal cavity. Through natural and antigen-induced antibody production, B1 cells participate in the early defense against bacteria. The G protein-coupled receptor 183 (GPR183), also known as Epstein-Barr virus-induced gene 2 (EBI2), is an oxysterol-activated chemotactic receptor that regulates migration of B cells. We investigated the role of GPR183 in B1 cells in the peritoneal cavity and omentum. B1 cells expressed GPR183 at the mRNA level and migrated towards the GPR183 ligand 7α,25-dihydroxycholesterol (7α,25-OHC). GPR183 knock-out (KO) mice had smaller omenta, but with normal numbers of B1 cells, whereas they had fewer B2 cells in the omentum and peritoneal cavity than wildtype (WT) mice. GPR183 was not responsible for B1 cell accumulation in the omentum in response to i.p. lipopolysaccharide (LPS)-injection, in spite of a massive increase in 7α,25-OHC levels. Lack of GPR183 also did not affect B1a- or B1b cell-specific antibody responses after vaccination. In conclusion, we found that GPR183 is non-essential for the accumulation and function of B1 cells in the omentum and peritoneal cavity, but that it influences the abundance of B2 cells in these compartments.
Collapse
Affiliation(s)
- Line Barington
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Liv von Voss Christensen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Kristian Kåber Pedersen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Kristine Niss Arfelt
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Kristian Høj Reveles Jensen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Viktoria Madeline Skovgaard Kjær
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Viktorija Daugvilaite
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - John F. Kearney
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jan Pravsgaard Christensen
- Infectious Immunology Group, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Peter Johannes Holst
- Experimental Vaccinology Group, Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
- InProTher ApS, 2200 Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
- Correspondence:
| |
Collapse
|
19
|
Kjær VMS, Ieremias L, Daugvilaite V, Lückmann M, Frimurer TM, Ulven T, Rosenkilde MM, Våbenø J. Discovery of GPR183 Agonists Based on an Antagonist Scaffold. ChemMedChem 2021; 16:2623-2627. [PMID: 34270165 PMCID: PMC8518411 DOI: 10.1002/cmdc.202100301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Indexed: 11/15/2022]
Abstract
The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.
Collapse
Affiliation(s)
- Viktoria M. S. Kjær
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3B2200CopenhagenDenmark
| | - Loukas Ieremias
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenJagtvej 1622100CopenhagenDenmark
| | - Viktorija Daugvilaite
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3B2200CopenhagenDenmark
| | - Michael Lückmann
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of Copenhagen Maersk TowerBlegdamsvej 3B2200CopenhagenDenmark
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of Copenhagen Maersk TowerBlegdamsvej 3B2200CopenhagenDenmark
| | - Trond Ulven
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenJagtvej 1622100CopenhagenDenmark
| | - Mette M. Rosenkilde
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3B2200CopenhagenDenmark
| | - Jon Våbenø
- Helgeland Hospital TrustPrestmarkveien 18800SandnessjøenNorway
| |
Collapse
|
20
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
21
|
Velasco-Estevez M, Koch N, Klejbor I, Laurent S, Dev KK, Szutowicz A, Sailer AW, Rutkowska A. EBI2 Is Temporarily Upregulated in MO3.13 Oligodendrocytes during Maturation and Regulates Remyelination in the Organotypic Cerebellar Slice Model. Int J Mol Sci 2021; 22:ijms22094342. [PMID: 33919387 PMCID: PMC8122433 DOI: 10.3390/ijms22094342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The EBI2 receptor regulates the immune system and is expressed in various immune cells including B and T lymphocytes. It is also expressed in astrocytes in the central nervous system (CNS) where it regulates pro-inflammatory cytokine release, cell migration and protects from chemically induced demyelination. Its signaling and expression are implicated in various diseases including multiple sclerosis, where its expression is increased in infiltrating immune cells in the white matter lesions. Here, for the first time, the EBI2 protein in the CNS cells in the human brain was examined. The function of the receptor in MO3.13 oligodendrocytes, as well as its role in remyelination in organotypic cerebellar slices, were investigated. Human brain sections were co-stained for EBI2 receptor and various markers of CNS-specific cells and the human oligodendrocyte cell line MO3.13 was used to investigate changes in EBI2 expression and cellular migration. Organotypic cerebellar slices prepared from wild-type and cholesterol 25-hydroxylase knock-out mice were used to study remyelination following lysophosphatidylcholine (LPC)-induced demyelination. The data showed that EBI2 receptor is present in OPCs but not in myelinating oligodendrocytes in the human brain and that EBI2 expression is temporarily upregulated in maturing MO3.13 oligodendrocytes. Moreover, we show that migration of MO3.13 cells is directly regulated by EBI2 and that its signaling is necessary for remyelination in cerebellar slices post-LPC-induced demyelination. The work reported here provides new information on the expression and role of EBI2 in oligodendrocytes and myelination and provides new tools for modulation of oligodendrocyte biology and therapeutic approaches for demyelinating diseases.
Collapse
Affiliation(s)
- Maria Velasco-Estevez
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Nina Koch
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Ilona Klejbor
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Stephane Laurent
- Chemical Biology and Therapeutics/Disease Area X/Liver, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland; (S.L.); (A.W.S.)
| | - Kumlesh K. Dev
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland;
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Andreas W. Sailer
- Chemical Biology and Therapeutics/Disease Area X/Liver, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland; (S.L.); (A.W.S.)
| | - Aleksandra Rutkowska
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence:
| |
Collapse
|
22
|
Bartlett S, Gemiarto AT, Ngo MD, Sajiir H, Hailu S, Sinha R, Foo CX, Kleynhans L, Tshivhula H, Webber T, Bielefeldt-Ohmann H, West NP, Hiemstra AM, MacDonald CE, Christensen LVV, Schlesinger LS, Walzl G, Rosenkilde MM, Mandrup-Poulsen T, Ronacher K. GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium tuberculosis Infection and Is Associated With TB Disease Severity. Front Immunol 2020; 11:601534. [PMID: 33240287 PMCID: PMC7677584 DOI: 10.3389/fimmu.2020.601534] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidized cholesterols have emerged as important signaling molecules of immune function, but little is known about the role of these oxysterols during mycobacterial infections. We found that expression of the oxysterol-receptor GPR183 was reduced in blood from patients with tuberculosis (TB) and type 2 diabetes (T2D) compared to TB patients without T2D and was associated with TB disease severity on chest x-ray. GPR183 activation by 7α,25-dihydroxycholesterol (7α,25-OHC) reduced growth of Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis BCG in primary human monocytes, an effect abrogated by the GPR183 antagonist GSK682753. Growth inhibition was associated with reduced IFN-β and IL-10 expression and enhanced autophagy. Mice lacking GPR183 had significantly increased lung Mtb burden and dysregulated IFNs during early infection. Together, our data demonstrate that GPR183 is an important regulator of intracellular mycobacterial growth and interferons during mycobacterial infection.
Collapse
MESH Headings
- Animals
- Autophagy
- Bacterial Load
- Case-Control Studies
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Interferons/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium bovis/growth & development
- Mycobacterium bovis/immunology
- Mycobacterium bovis/pathogenicity
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Severity of Illness Index
- Signal Transduction
- THP-1 Cells
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/microbiology
Collapse
Affiliation(s)
- Stacey Bartlett
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adrian Tandhyka Gemiarto
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Minh Dao Ngo
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Haressh Sajiir
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Semira Hailu
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Roma Sinha
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cheng Xiang Foo
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Andriette M. Hiemstra
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice E. MacDonald
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Larry S. Schlesinger
- Host-Pathogens Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | - Katharina Ronacher
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Braden K, Giancotti LA, Chen Z, DeLeon C, Latzo N, Boehn T, D'Cunha N, Thompson BM, Doyle TM, McDonald JG, Walker JK, Kolar GR, Arnatt CK, Salvemini D. GPR183-Oxysterol Axis in Spinal Cord Contributes to Neuropathic Pain. J Pharmacol Exp Ther 2020; 375:367-375. [PMID: 32913007 PMCID: PMC7592849 DOI: 10.1124/jpet.120.000105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that Gpr183 (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7α,25-dihydroxycholesterol (7α,25-OHC). The role of GPR183 in the central nervous system is not well characterized, and its role in pain is unknown. The profile of commercially available probes for GPR183 limits their use as pharmacological tools to dissect the roles of this receptor in pathophysiological settings. Using in silico modeling, we have screened a library of 5 million compounds to identify several novel small-molecule antagonists of GPR183 with nanomolar potency. These compounds are able to antagonize 7α,25-OHC-induced calcium mobilization in vitro with IC50 values below 50 nM. In vivo intrathecal injections of these antagonists during peak pain after CCI surgery reversed allodynia in male and female mice. Acute intrathecal injection of the GPR183 ligand 7α,25-OHC in naïve mice induced dose-dependent allodynia. Importantly, this effect was blocked using our novel GPR183 antagonists, suggesting spinal GPR183 activation as pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify this receptor as a potential target for therapeutic intervention. SIGNIFICANCE STATEMENT: We have identified several novel GPR183 antagonists with nanomolar potency. Using these antagonists, we have demonstrated that GPR183 signaling in the spinal cord is pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify it as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Kathryn Braden
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Luigino Antonio Giancotti
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Zhoumou Chen
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Chelsea DeLeon
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Nick Latzo
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kasbi Chadli F, Treguier M, Briand F, Sulpice T, Ouguerram K. Ezetimibe Enhances Macrophage-to-Feces Reverse Cholesterol Transport in Golden Syrian Hamsters Fed a High-Cholesterol Diet. J Pharmacol Exp Ther 2020; 375:349-356. [PMID: 32873624 DOI: 10.1124/jpet.120.000062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work was to evaluate reverse cholesterol transport (RCT) in hamster, animal model expressing CETP under a high cholesterol diet (HF) supplemented with Ezetimibe using primary labelled macrophages. We studied three groups of hamsters (n=8/group) for 4 weeks: 1) chow diet group: Chow, 2) High cholesterol diet group: HF and 3) HF group supplemented with 0.01% of ezetimibe: HF+0.01%Ezet. Following intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages, we measured the in vivo macrophage-to-feces RCT. .HF group exhibited an increase of triglycerides (TG), cholesterol, glucose in plasma and higher TG and cholesterol content in liver (p<0.01) compared to Chow group. Ezetimibe induced a significant decrease in plasma cholesterol with a lower LDL and VLDL cholesterol (p<0.001) and in liver cholesterol (p<0.001) and TG (p<0.01) content compared to HF. In vivo RCT essay showed an increase of tracer level in plasma and liver (p<0.05) but not in feces in HF compared to Chow group. The amount of labelled total sterol and cholesterol in liver and feces was significantly reduced (p<0.05) and increased (p=0.05) respectively with Ezetimibe treatment. No significant increase was obtained for labelled feces bile acids in HF+0.01%Ezet compared to HF. Ezetimibe decreased SCD1 gene expression and increased SR-B1 (p<0.05) in liver but did not affect NPC1L1 nor ABCG5 and ABCG8 expression in jejunum. In conclusion, ezetimibe exhibited an atheroprotective effect by enhancing RCT in hamster and decreasing LDL cholesterol. Ours findings showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content. Significance Statement This work was assessed to determine the effect of ezetimibe treatment on high cholesterol diet induced disturbances and especially the effect on reverse cholesterol transport in animal model with CETP activity and using labelled primary hamster macrophages. We were able to demonstrate that ezetimibe exhibited an atheroprotective effect by enhancing RCT and by decreasing LDL cholesterol in hamster. We showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content.
Collapse
Affiliation(s)
| | - Morgan Treguier
- 1 INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hotel-Dieu, F-44 000 Nantes, France;, France
| | | | | | | |
Collapse
|
25
|
The genetics of asthma and the promise of genomics-guided drug target discovery. THE LANCET RESPIRATORY MEDICINE 2020; 8:1045-1056. [PMID: 32910899 DOI: 10.1016/s2213-2600(20)30363-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
Asthma is an inflammatory airway disease that is estimated to affect 339 million people globally. The symptoms of about 5-10% of patients with asthma are not adequately controlled with current therapy, and little success has been achieved in developing drugs that target the underlying mechanisms of asthma rather than suppressing symptoms. Over the past 3 years, well powered genetic studies of asthma have increased the number of independent asthma-associated genetic loci to 128. In this Series paper, we describe the immense progress in asthma genetics over the past 13 years and link asthma genetic variants to possible drug targets. Further studies are needed to establish the functional significance of gene variants associated with asthma in subgroups of patients and to describe the biological networks within which they function. The genomics-guided discovery of plausible drug targets for asthma could pave the way for the repurposing of existing drugs for asthma and the development of new treatments.
Collapse
|
26
|
Huang J, Lee SJ, Kang S, Choi MH, Im DS. 7 α,25-Dihydroxycholesterol Suppresses Hepatocellular Steatosis through GPR183/EBI2 in Mouse and Human Hepatocytes. J Pharmacol Exp Ther 2020; 374:142-150. [PMID: 32341017 DOI: 10.1124/jpet.120.264960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease is a chronic inflammatory liver disease. It is associated with obesity and type 2 diabetes. Oxycholesterols are metabolites of cholesterol, and several of them can act on the G protein-coupled receptor, G protein-coupled receptor 183 (GPR183)/Epstein-Barr virus-induced gene 2. We found expression of GPR183 in human hepatoma cell lines and in vivo induction of GPR183 expression in mouse livers after high-fat diet feeding. Therefore, the role of oxycholesterols and GPR183 in hepatocytes was studied using a model of hepatic steatosis induced by liver X receptor (LXR) activation. LXR activation by T0901317 resulted in fat accumulation in Hep3B human hepatoma cells. This lipid accumulation was inhibited by 7α,25-dihydroxycholesterol, the most potent agonist of GPR183. The protective effects of 7α,25-dihydroxycholesterol were suppressed by a specific GPR183 antagonist, NIBR189 [(2E)-3-(4-Bromophenyl)-1-[4-4-methoxybenzoyl)-1-piperazinyl]-2-propene-1-one]. T0901317 treatment induced expression of the major transcription factor for lipogenesis, sterol regulatory element-binding protein 1c (SREBP-1c). 7α,25-Dihydroxycholesterol inhibited the induction of SREBP-1c proteins in a GPR183-dependent manner. Using inhibitors specific for intracellular signaling molecules, 7α,25-dihydroxycholesterol-induced suppression of hepatocellular steatosis was shown to be mediated through Gi/o proteins, p38 mitogen-activated protein kinases, phosphoinositide 3-kinase, and AMP-activated protein kinase. In addition, the inhibitory effect of 7α,25-dihydroxycholesterol was validated in HepG2 cells and primary mouse hepatocytes. Therefore, the present report suggests that 7α,25-dihydroxycholesterol-GPR183 signaling may suppress hepatocellular steatosis in the liver. SIGNIFICANCE STATEMENT: Oxycholesterols, which are metabolites of cholesterol, act on the G protein-coupled receptor, G protein-coupled receptor 183 (GPR183)/Epstein-Barr virus-induced gene 2, which is expressed in human hepatoma cell lines, and its expression is induced in vivo in mouse livers after high-fat diet feeding. Activation of GPR183 inhibits fat accumulation in primary mouse hepatocytes and HepG2 cells through Gi/o proteins, p38 mitogen-activated protein kinases, phosphoinositide 3-kinase, and AMP-activated protein kinase.
Collapse
Affiliation(s)
- Jin Huang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea (J.H., S.-J.L., S.K., D.-S.I.); Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (M.H.C.); and Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Scicenses, Graduate School, Kyung Hee University, Seoul, Republic of Korea (D.-S.I.)
| | - Seung-Jin Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea (J.H., S.-J.L., S.K., D.-S.I.); Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (M.H.C.); and Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Scicenses, Graduate School, Kyung Hee University, Seoul, Republic of Korea (D.-S.I.)
| | - Saeromi Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea (J.H., S.-J.L., S.K., D.-S.I.); Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (M.H.C.); and Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Scicenses, Graduate School, Kyung Hee University, Seoul, Republic of Korea (D.-S.I.)
| | - Man Ho Choi
- College of Pharmacy, Pusan National University, Busan, Republic of Korea (J.H., S.-J.L., S.K., D.-S.I.); Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (M.H.C.); and Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Scicenses, Graduate School, Kyung Hee University, Seoul, Republic of Korea (D.-S.I.)
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea (J.H., S.-J.L., S.K., D.-S.I.); Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea (M.H.C.); and Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Scicenses, Graduate School, Kyung Hee University, Seoul, Republic of Korea (D.-S.I.)
| |
Collapse
|
27
|
Spiess K, Bagger SO, Torz LJ, Jensen KHR, Walser AL, Kvam JM, Møgelmose ASK, Daugvilaite V, Junnila RK, Hjortø GM, Rosenkilde MM. Arrestin-independent constitutive endocytosis of GPR125/ADGRA3. Ann N Y Acad Sci 2019; 1456:186-199. [PMID: 31659746 PMCID: PMC6899654 DOI: 10.1111/nyas.14263] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
The orphan receptor GPR125 (ADGRA3) belongs to subgroup III of the adhesion G protein−coupled receptor (aGPCR) family. aGPCRs, also known as class B2 GPCRs, share basic structural and functional properties with other GPCRs. Many of them couple to G proteins and activate G protein−dependent and −independent signaling pathways, but little is known about aGPCR internalization and β‐arrestin recruitment. GPR125 was originally described as a spermatogonial stem cell marker and studied for its role in Wnt signaling and cell polarity. Here, using cell‐based assays and confocal microscopy, we show that GPR125 is expressed on the cell surface and undergoes constitutive endocytosis in a β‐arrestin−independent, but clathrin‐dependent manner, as indicated by colocalization with transferrin receptor 1, an early endosome marker. These data support that the constitutive internalization of GPR125 contributes to its biological functions by controlling receptor surface expression and accessibility for ligands. Our study sheds light on a new property of aGPCRs, namely internalization; a property described to be important for signal propagation, signal termination, and desensitization of class A (rhodopsin‐like) and B1 (VIP/secretin) GPCRs.
Collapse
Affiliation(s)
- Katja Spiess
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie O Bagger
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lola J Torz
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian H R Jensen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna L Walser
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jone M Kvam
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sofie K Møgelmose
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktorija Daugvilaite
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Riia K Junnila
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Collins PL, Cella M, Porter SI, Li S, Gurewitz GL, Hong HS, Johnson RP, Oltz EM, Colonna M. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell 2019; 176:348-360.e12. [PMID: 30595449 PMCID: PMC6329660 DOI: 10.1016/j.cell.2018.11.045] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/09/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023]
Abstract
Natural killer (NK) cells develop from common progenitors but diverge into distinct subsets, which differ in cytokine production, cytotoxicity, homing, and memory traits. Given their promise in adoptive cell therapies for cancer, a deeper understanding of regulatory modules controlling clinically beneficial NK phenotypes is of high priority. We report integrated "-omics" analysis of human NK subsets, which revealed super-enhancers associated with gene cohorts that may coordinate NK functions and localization. A transcription factor-based regulatory scheme also emerged, which is evolutionarily conserved and shared by innate and adaptive lymphocytes. For both NK and T lineages, a TCF1-LEF1-MYC axis dominated the regulatory landscape of long-lived, proliferative subsets that traffic to lymph nodes. In contrast, effector populations circulating between blood and peripheral tissues shared a PRDM1-dominant landscape. This resource defines transcriptional modules, regulated by feedback loops, which may be leveraged to enhance phenotypes for NK cell-based therapies.
Collapse
Affiliation(s)
- Patrick L Collins
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sofia I Porter
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shasha Li
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Greer L Gurewitz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | - R Paul Johnson
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
29
|
Guerrero-Alba R, Barragán-Iglesias P, González-Hernández A, Valdez-Moráles EE, Granados-Soto V, Condés-Lara M, Rodríguez MG, Marichal-Cancino BA. Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Front Pharmacol 2019; 9:1496. [PMID: 30670965 PMCID: PMC6331465 DOI: 10.3389/fphar.2018.01496] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified. Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors. Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors. According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration. Methods: This article reviews select relevant information about the potential role of GPR18 and GPR55 in the pathophysiology of pain. Results: This work summarized novel data supporting that, besides cannabinoid CB1 and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment. Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Eduardo E Valdez-Moráles
- Cátedras CONACYT, Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Martín G Rodríguez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
30
|
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:169-192. [PMID: 28828731 DOI: 10.1007/5584_2017_92] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Parravicini
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
31
|
Barington L, Wanke F, Niss Arfelt K, Holst PJ, Kurschus FC, Rosenkilde MM. EBI2 in splenic and local immune responses and in autoimmunity. J Leukoc Biol 2018; 104:313-322. [DOI: 10.1002/jlb.2vmr1217-510r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- L. Barington
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - F. Wanke
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - K. Niss Arfelt
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - P. J. Holst
- Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - F. C. Kurschus
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - M. M. Rosenkilde
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
32
|
Kurschus FC, Wanke F. EBI2 - Sensor for dihydroxycholesterol gradients in neuroinflammation. Biochimie 2018; 153:52-55. [PMID: 29689289 DOI: 10.1016/j.biochi.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Dihydroxycholesterols such as 7α,25-dihydroxysterols (7α,25-OHC) and 7α,27-OHC are generated from cholesterol by the enzymes CH25H, CYP7B1 and CYP27A1 in steady state but also in the context of inflammation. The G-protein coupled receptor (GPCR) Epstein-Barr virus-induced gene 2 (EBI2), also known as GPR183, senses these oxysterols and induces chemotactic migration of immune cells towards higher concentrations of these ligands. We recently showed that these ligands are upregulated in the CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis and that EBI2 enhanced early infiltration of encephalitogenic T cells into the CNS. In this short-review we discuss the role of dihydroxysterol-sensing by immune cells in neuroinflammation.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 2017; 114:12460-12465. [PMID: 29109267 DOI: 10.1073/pnas.1704958114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the infiltration of T cell and other immune cells to the skin in response to injury or autoantigens. Conventional, as well as unconventional, γδ T cells are recruited to the dermis and epidermis by CCL20 and other chemokines. Together with its receptor CCR6, CCL20 plays a critical role in the development of psoriasiform dermatitis in mouse models. We screened a panel of CCL20 variants designed to form dimers stabilized by intermolecular disulfide bonds. A single-atom substitution yielded a CCL20 variant (CCL20 S64C) that acted as a partial agonist for the chemokine receptor CCR6. CCL20 S64C bound CCR6 and induced intracellular calcium release, consistent with G-protein activation, but exhibited minimal chemotactic activity. Instead, CCL20 S64C inhibited CCR6-mediated T cell migration with nominal impact on other chemokine receptor signaling. When given in an IL-23-dependent mouse model for psoriasis, CCL20 S64C prevented psoriatic inflammation and the up-regulation of IL-17A and IL-22. Our results validate CCR6 as a tractable therapeutic target for psoriasis and demonstrate the value of CCL20 S64C as a lead compound.
Collapse
|
34
|
Shen ZJ, Hu J, Kashi VP, Kelly EA, Denlinger LC, Lutchman K, McDonald JG, Jarjour NN, Malter JS. Epstein-Barr Virus-induced Gene 2 Mediates Allergen-induced Leukocyte Migration into Airways. Am J Respir Crit Care Med 2017; 195:1576-1585. [PMID: 28125291 DOI: 10.1164/rccm.201608-1580oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Leukocyte recruitment to sites of allergic inflammation depends on the local production of priming cytokines, chemokines, and potentially other mediators. Previously, we showed that eosinophils (Eos) express numerous orphan G-protein-coupled receptors, including Epstein-Barr virus-induced gene 2 (EBI2). Despite its contribution to inflammatory diseases, the role of EBI2 in pulmonary eosinophilia is unknown. OBJECTIVES To determine whether oxysterol ligands for EBI2 are increased in asthma exacerbation, and if or how they promote Eos pulmonary migration. METHODS EBI2 ligands and pulmonary eosinophilia were measured in the bronchoalveolar lavage fluid from patients with mild asthma 48 hours after acute allergen challenge. In vitro, the ability of EBI2 ligands alone or in combination with IL-5 priming to induce the migration of human blood Eos was assessed. MEASUREMENTS AND MAIN RESULTS EBI2 was constitutively and stably expressed in peripheral blood Eos. Eos treated with the EBI2 ligands showed significantly increased transwell migration that was enhanced by priming with physiologic doses of IL-5. Migration was suppressed by inhibitors of the prolyl isomerase Pin1 or extracellular signal-regulated kinases (ERK) 1/2 or by pertussis toxin. EBI2 signaling activated Pin1 isomerase activity through a cascade that was sensitive to ERK inhibitors and pertussis toxin. The concentration of EBI2 ligands was significantly increased in the bronchoalveolar lavage fluid 48 hours after segmental allergen challenge and strongly correlated with the increased numbers of Eos, lymphocytes, and neutrophils in the airways. CONCLUSIONS Oxysterols are increased in inflamed airways after allergen challenge and, through G-protein subunit α, ERK, and Pin1 signaling, likely participate in the regulation of Eos migration into the lung in people with asthma.
Collapse
Affiliation(s)
| | - Jie Hu
- 1 Department of Pathology and
| | | | - Elizabeth A Kelly
- 2 Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Loren C Denlinger
- 2 Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Jeffrey G McDonald
- 3 Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Nizar N Jarjour
- 2 Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | |
Collapse
|
35
|
Salter B, Sehmi R. Epstein-Barr Virus–induced Gene 2 and Leukocyte Airway Recruitment in Response to Allergen Challenge. Am J Respir Crit Care Med 2017; 195:1543-1544. [DOI: 10.1164/rccm.201701-0096ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Brittany Salter
- Department of MedicineMcMaster UniversityHamilton, Ontario, Canada
| | - Roma Sehmi
- Department of MedicineMcMaster UniversityHamilton, Ontario, Canada
| |
Collapse
|
36
|
Irving A, Abdulrazzaq G, Chan SLF, Penman J, Harvey J, Alexander SPH. Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:223-247. [PMID: 28826536 DOI: 10.1016/bs.apha.2017.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Of the druggable group of G protein-coupled receptors in the human genome, a number remain which have yet to be paired with an endogenous ligand-orphan GPCRs. Among these 100 or so entities, 3 have been linked to the cannabinoid system. GPR18, GPR55, and GPR119 exhibit limited sequence homology with the established CB1 and CB2 cannabinoid receptors. However, the pharmacology of these orphan receptors displays overlap with CB1 and CB2 receptors, particularly for GPR18 and GPR55. The linking of GPR119 to the cannabinoid receptors is less convincing and emanates from structural similarities of endogenous ligands active at these GPCRs, but which do not cross-react. This review describes the evidence for describing these orphan GPCRs as cannabinoid receptor-like receptors.
Collapse
Affiliation(s)
- Andrew Irving
- The Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - Ghayth Abdulrazzaq
- Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Sue L F Chan
- Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - June Penman
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jenni Harvey
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
37
|
Brüser A, Zimmermann A, Crews BC, Sliwoski G, Meiler J, König GM, Kostenis E, Lede V, Marnett LJ, Schöneberg T. Prostaglandin E 2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y 6. Sci Rep 2017; 7:2380. [PMID: 28539604 PMCID: PMC5443783 DOI: 10.1038/s41598-017-02414-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/10/2017] [Indexed: 11/10/2022] Open
Abstract
Cyclooxygenase-2 catalyses the biosynthesis of prostaglandins from arachidonic acid but also the biosynthesis of prostaglandin glycerol esters (PG-Gs) from 2-arachidonoylglycerol. Previous studies identified PG-Gs as signalling molecules involved in inflammation. Thus, the glyceryl ester of prostaglandin E2, PGE2-G, mobilizes Ca2+ and activates protein kinase C and ERK, suggesting the involvement of a G protein-coupled receptor (GPCR). To identify the endogenous receptor for PGE2-G, we performed a subtractive screening approach where mRNA from PGE2-G response-positive and -negative cell lines was subjected to transcriptome-wide RNA sequencing analysis. We found several GPCRs that are only expressed in the PGE2-G responder cell lines. Using a set of functional readouts in heterologous and endogenous expression systems, we identified the UDP receptor P2Y6 as the specific target of PGE2-G. We show that PGE2-G and UDP are both agonists at P2Y6, but they activate the receptor with extremely different EC50 values of ~1 pM and ~50 nM, respectively. The identification of the PGE2-G/P2Y6 pair uncovers the signalling mode of PG-Gs as previously under-appreciated products of cyclooxygenase-2.
Collapse
Affiliation(s)
- Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany.
| | - Anne Zimmermann
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Brenda C Crews
- Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Gregory Sliwoski
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232-8725, USA
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Lawrence J Marnett
- Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
38
|
Daugvilaite V, Madsen CM, Lückmann M, Echeverria CC, Sailer AW, Frimurer TM, Rosenkilde MM, Benned-Jensen T. Biased agonism and allosteric modulation of G protein-coupled receptor 183 - a 7TM receptor also known as Epstein-Barr virus-induced gene 2. Br J Pharmacol 2017; 174:2031-2042. [PMID: 28369721 DOI: 10.1111/bph.13801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The GPCR Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is activated by oxysterols and plays a pivotal role in the regulation of B cell migration during immune responses. While the molecular basis of agonist binding has been addressed in several studies, the concept of biased agonism of the EBI2 receptor has not been explored. EXPERIMENTAL APPROACH We investigated the effects of the EBI2 endogenous agonist 7α,25-dihydroxycholesterol (7α,25-OHC) on G protein-dependent and -independent pathways as well as sodium ion allosterism using site-directed mutagenesis and functional studies. Moreover, we generated a homology model of the EBI2 receptor to investigate the structural basis of the allosteric modulation by sodium. KEY RESULTS Residue N114, located in the middle of transmembrane-III at position III:11/3.35, was found to function as an efficacy switch. Thus, substituting N114 with an alanine (N114A) completely abolished heterotrimeric G protein subunit Gi α activation by 7α,25-OHC even though the specific binding of [3 H]-7α,25-OHC increased. In contrast, the N114A mutant was still able to recruit β-arrestin and even had an enhanced potency (18.7-fold) compared with EBI2 wild type. Sodium had a negative allosteric effect on oxysterol binding that was mediated via N114, verifying the key role of N114. This was further supported by molecular modelling of the ion binding site based on a EBI2 receptor homology model. CONCLUSIONS AND IMPLICATIONS Collectively, our data point to N114 as a key residue for EBI2 signalling controlling the balance between G protein-dependent and -independent pathways and facilitating sodium binding.
Collapse
Affiliation(s)
- Viktorija Daugvilaite
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Medom Madsen
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lückmann
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Clara Castello Echeverria
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Walter Sailer
- Forum 1, Novartis Campus, CH-4056, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tau Benned-Jensen
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Cornaby C, Jafek JL, Birrell C, Mayhew V, Syndergaard L, Mella J, Cheney W, Poole BD. EBI2 expression in B lymphocytes is controlled by the Epstein-Barr virus transcription factor, BRRF1 (Na), during viral infection. J Gen Virol 2017; 98:435-446. [PMID: 27902324 DOI: 10.1099/jgv.0.000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus-induced gene 2 (EBI2) is an important chemotactic receptor that is involved in proper B-cell T-cell interactions. Epstein-Barr virus (EBV) has been shown to upregulate this gene upon infection of cell lines, but the timing and mechanism of this upregulation, as well as its importance to EBV infection, remain unknown. This work investigated EBV's manipulation of EBI2 expression of primary naive B cells. EBV infection induces EBI2 expression resulting in elevated levels of EBI2 after 24 h until 7 days post-infection, followed by a dramatic decline (P=0.027). Increased EBI2 expression was not found in non-specifically stimulated B cells or when irradiated virus was used. The EBV lytic gene BRRF1 exhibited a similar expression pattern to EBI2 (R2=0.4622). BRRF1-deficient EBV could not induce EBI2. However, B cells transduced with BRRF1 showed elevated expression of EBI2 (P=0.042), a result that was not seen with transduction of a different EBV lytic transfection factor, BRLF1. Based on these results, we conclude that EBI2 expression is directly influenced by EBV infection and that BRRF1 is necessary and sufficient for EBI2 upregulation during infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Jillian L Jafek
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Cameron Birrell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Vera Mayhew
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Lauren Syndergaard
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Jeffrey Mella
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Wesley Cheney
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
40
|
Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells. J Immunol Res 2017; 2017:4069260. [PMID: 28251165 PMCID: PMC5303859 DOI: 10.1155/2017/4069260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022] Open
Abstract
Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs.
Collapse
|
41
|
Pardo J, Abba MC, Lacunza E, Francelle L, Morel GR, Outeiro TF, Goya RG. Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus 2017; 27:435-449. [DOI: 10.1002/hipo.22703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Joaquín Pardo
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| | | | | | - Laetitia Francelle
- Department of Neurodegeneration and Restorative ResearchUniversity Medical Center GöttingenGöttingen Germany
| | - Gustavo R. Morel
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| | - Tiago F. Outeiro
- Department of Neurodegeneration and Restorative ResearchUniversity Medical Center GöttingenGöttingen Germany
| | - Rodolfo G. Goya
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| |
Collapse
|
42
|
EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies. Blood 2016; 129:866-878. [PMID: 28003273 DOI: 10.1182/blood-2016-02-697185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
Human and mouse chronic lymphocytic leukemia (CLL) develops from CD5+ B cells that in mice and macaques are known to define the distinct B1a B-cell lineage. B1a cells are characterized by lack of germinal center (GC) development, and the B1a cell population is increased in mice with reduced GC formation. As a major mediator of follicular B-cell migration, the G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) directs B-cell migration in the lymphoid follicles in response to its endogenous ligands, oxysterols. Thus, upregulation of EBI2 drives the B cells toward the extrafollicular area, whereas downregulation is essential for GC formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to CLL. Here, we demonstrate that B-cell-targeted expression of human EBI2 (hEBI2) in mice reduces GC-dependent immune responses, reduces total immunoglobulin M (IgM) and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5+ B1a B-cell subset (present as early as 4 days after birth), late-onset lymphoid cancer development, and premature death. These findings are highly similar to those observed in CLL patients and identify EBI2 as a promoter of B-cell malignancies.
Collapse
|
43
|
Niss Arfelt K, Fares S, Sparre-Ulrich AH, Hjortø GM, Gasbjerg LS, Mølleskov-Jensen AS, Benned-Jensen T, Rosenkilde MM. Signaling via G proteins mediates tumorigenic effects of GPR87. Cell Signal 2016; 30:9-18. [PMID: 27865873 DOI: 10.1016/j.cellsig.2016.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/12/2016] [Accepted: 11/12/2016] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute a large protein family of seven transmembrane (7TM) spanning proteins that regulate multiple physiological functions. GPR87 is overexpressed in several cancers and plays a role in tumor cell survival. Here, the basal activity of GPR87 was investigated in transiently transfected HEK293 cells, revealing ligand-independent coupling to Gαi, Gαq and Gα12/13. Furthermore, GPR87 showed a ligand-independent G protein-dependent activation of the downstream transcription factors CREB, NFκB, NFAT and SRE. In tetracycline-induced Flp-In T-Rex-293 cells, GPR87 induced cell clustering presumably through Gα12/13 coupling. In a foci formation assay using retrovirally transduced NIH3T3 cells, GPR87 showed a strong in vitro transforming potential, which correlated to the in vivo tumor induction in nude mice. Importantly, we demonstrate that the transforming potential of GPR87 was correlated to the receptor signaling, as the signaling-impaired mutant R139A (Arg in the conserved "DRY"-motif at the bottom of transmembrane helix 3 of GPR87 substituted to Ala) showed a lower in vitro cell transformation potential. Furthermore, R139A lost the ability to induce cell clustering. In summary, we show that GPR87 is active through several signaling pathways and that the signaling activity is linked to the receptor-induced cell transformation and clustering. The robust surface expression of GPR87 and general high druggability of GPCRs make GPR87 an attractive future anticancer target for drugs that - through inhibition of the receptor signaling - will inhibit its transforming properties.
Collapse
Affiliation(s)
- Kristine Niss Arfelt
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suzan Fares
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander H Sparre-Ulrich
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sofie Mølleskov-Jensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tau Benned-Jensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Hassing HA, Fares S, Larsen O, Pad H, Hauge M, Jones RM, Schwartz TW, Hansen HS, Rosenkilde MM. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochem Pharmacol 2016; 119:66-75. [DOI: 10.1016/j.bcp.2016.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 02/08/2023]
|
45
|
Rutkowska A, O’Sullivan SA, Christen I, Zhang J, Sailer AW, Dev KK. The EBI2 signalling pathway plays a role in cellular crosstalk between astrocytes and macrophages. Sci Rep 2016; 6:25520. [PMID: 27166278 PMCID: PMC4863252 DOI: 10.1038/srep25520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
EBI2 is a G protein-coupled receptor activated by oxysterol 7α, 25-dihydroxycholesterol (7α25HC) and regulates T cell-dependant antibody response and B cell migration. We recently found EBI2 is expressed in human astrocytes, regulates intracellular signalling and modulates astrocyte migration. Here, we report that LPS treatment of mouse astrocytes alters mRNA levels of EBI2 and oxysterols suggesting that the EBI2 signalling pathway is sensitive to LPS-mediated immune challenge. We also find that conditioned media obtained from LPS-stimulated mouse astrocytes induces macrophage migration, which is inhibited by the EBI2 antagonist NIBR189. These results demonstrate a role for the EBI2 signalling pathway in astrocytes as a sensor for immune challenge and for communication with innate immune cells such as macrophages.
Collapse
Affiliation(s)
| | | | - Isabelle Christen
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Juan Zhang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas W. Sailer
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kumlesh K. Dev
- Drug Development, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
46
|
Spiess K, Jakobsen MH, Kledal TN, Rosenkilde MM. The future of antiviral immunotoxins. J Leukoc Biol 2016; 99:911-25. [PMID: 26729815 DOI: 10.1189/jlb.2mr1015-468r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023] Open
Abstract
There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval in several cases. Indeed, the design of new anticancer immunotoxins is a rapidly developing field. However, at present, several immunotoxins have been developed targeting a variety of different viruses with high specificity and efficacy. Rather than blocking a viral or cellular pathway needed for virus replication and dissemination, immunotoxins exert their effect by killing and eradicating the pool of infected cells. By targeting a virus-encoded target molecule, it is possible to obtain superior selectivity and drastically limit the side effects, which is an immunotoxin-related challenge that has hindered the success of immunotoxins in cancer treatment. Therefore, it seems beneficial to use immunotoxins for the treatment of virus infections. One recent example showed that targeting of virus-encoded 7 transmembrane (7TM) receptors by immunotoxins could be a future strategy for designing ultraspecific antiviral treatment, ensuring efficient internalization and hence efficient eradication of the pool of infected cells, both in vitro and in vivo. In this review, we provide an overview of the mechanisms of action of immunotoxins and highlight the advantages of immunotoxins as future anti-viral therapies.
Collapse
Affiliation(s)
- Katja Spiess
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Denmark; and
| | - Mette Høy Jakobsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Denmark; and
| | - Thomas N Kledal
- Section for Virology, Veterinary Institute, The Danish Technical University, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Denmark; and
| |
Collapse
|
47
|
Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, Salehi A. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacol Ther 2015; 146:61-93. [PMID: 25242198 DOI: 10.1016/j.pharmthera.2014.09.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in the regulation of adipose tissue function, but the total number of GPCRs expressed by human subcutaneous adipose tissue, as well as their function and interactions with drugs, is poorly understood. We have constructed an atlas of all GPCRs expressed by human subcutaneous adipose tissue: the 'adipose tissue GPCRome', to support the exploration of novel control nodes in metabolic and endocrine functions. This atlas describes how adipose tissue GPCRs regulate lipolysis, insulin resistance and adiponectin and leptin secretion. We also discuss how adipose tissue GPCRs interact with their endogenous ligands and with GPCR-targeting drugs, with a focus on how drug/receptor interactions may affect lipolysis, and present a model predicting how GPCRs with unknown effects on lipolysis might modulate cAMP-regulated lipolysis. Subcutaneous adipose tissue expresses 163 GPCRs, a majority of which have unknown effects on lipolysis, insulin resistance and adiponectin and leptin secretion. These GPCRs are activated by 180 different endogenous ligands, and are the targets of a large number of clinically used drugs. We identified 119 drugs, acting on 23 GPCRs, that are predicted to stimulate lipolysis and 173 drugs, acting on 25 GPCRs, that are predicted to inhibit lipolysis. This atlas highlights knowledge gaps in the current understanding of adipose tissue GPCR function, and identifies GPCR/ligand/drug interactions that might affect lipolysis, which is important for understanding and predicting metabolic side effects of drugs. This approach may aid in the design of new, safer therapeutic agents, with fewer undesired effects on lipid homeostasis.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK; Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| | - Ross Hawkes
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Shanta J Persaud
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Albert Salehi
- Department of Clinical Science, UMAS, Clinical Research Center, University of Lund, Sweden
| |
Collapse
|
48
|
Arfelt KN, Fares S, Rosenkilde MM. EBV, the Human Host, and the 7TM Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:395-427. [DOI: 10.1016/bs.pmbts.2014.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Abstract
Cholesterol and components of the cholesterol biosynthetic pathway have fundamental roles in all mammalian cells. Hydroxylated forms of cholesterol are now emerging as important regulators of immune function. This involves effects on the cholesterol biosynthetic pathway and cell membrane properties, which can have antiviral and anti-inflammatory influences. In addition, a dihydroxylated form of cholesterol functions as an immune cell guidance cue by engaging the G protein-coupled receptor EBI2, and it is required for mounting adaptive immune responses. In this Review, we summarize the current understanding of the closely related oxysterols 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, and the growing evidence that they have wide-ranging influences on innate and adaptive immunity.
Collapse
|
50
|
Daugvilaite V, Arfelt KN, Benned-Jensen T, Sailer AW, Rosenkilde MM. Oxysterol-EBI2 signaling in immune regulation and viral infection. Eur J Immunol 2014; 44:1904-12. [PMID: 24810762 PMCID: PMC4209795 DOI: 10.1002/eji.201444493] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/27/2014] [Accepted: 05/05/2014] [Indexed: 01/16/2023]
Abstract
The seven transmembrane G protein-coupled receptor Epstein-Barr virus (EBV) induced gene 2 (EBI2; also known as GPR183) was identified in 1993 on the basis of its substantial upregulation in EBV-infected cells. It is primarily expressed in lymphoid cells; most abundantly in B cells. EBI2 is central for the positioning of B cells within the lymphoid organs, a process that is regulated in part by a chemotactic gradient formed by the endogenous lipid agonists, and in part by a fine-tuned regulation of EBI2 cell surface expression. The most potent endogenous EBI2 agonist is 7α, 25-dihydroxyxcholesterol (7α,25-OHC), yet many structurally related oxysterols can bind to an EBI2 pocket that is defined by the upper parts of the transmembrane helices and extracellular receptor regions. EBI2 signals via Gαi, as well as via G protein-independent pathways like β-arrestin recruitment. The concerted action of these pathways leads to cell migration. By genetically interfering with its up- and downregulation, EBI2 was also recently shown to induce cell proliferation, an action that could be inhibited by small molecule antagonists. Here, we focus on the oxysterol-EBI2 axis in immune control, including its role in the EBV life cycle. We also summarize the structural and functional properties of EBI2 interaction with oxysterol agonists and small molecule antagonists and discuss EBI2 as therapeutic target for diseases of the immune system.
Collapse
Affiliation(s)
- Viktorija Daugvilaite
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|