1
|
Yeat NY, Liu LH, Chang YH, Lai CPK, Chen RH. Bro1 proteins determine tumor immune evasion and metastasis by controlling secretion or degradation of multivesicular bodies. Dev Cell 2025:S1534-5807(25)00155-8. [PMID: 40185104 DOI: 10.1016/j.devcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/25/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Exosomes play pleiotropic tumor-promoting functions and are secreted by fusion of multivesicular bodies (MVBs) with the plasma membrane. However, MVBs are also directed to lysosomes for degradation, and the mechanism controlling different fates of MVBs remains elusive. Here, we show that the pro-tumor protein WDR4 enhances exosome secretion from mouse and human cancer cells through degrading the endosomal sorting complex required for transport (ESCRT)-associated Bro1-family protein PTPN23. Mechanistically, PTPN23 and ALIX compete for binding to syntenin, thereby directing MVBs toward degradation and secretion, respectively. ALIX, but not PTPN23, recruits actin-capping proteins CAPZA1/CAPZB to prevent branched filamentous actin (F-actin) accumulation around MVBs, thus enabling MVBs trafficking to the cell periphery for secretion. Functionally, WDR4/ALIX-dependent exosomes load a set of pro-tumor proteins through LAMP2A, thereby potentiating metastasis and immune evasion in mice. Our study highlights a previously unappreciated coupling between the biogenesis mechanism and the fate decision of MVBs and its importance in determining exosomal cargos, which have a profound impact on tumor progression.
Collapse
Affiliation(s)
- Nai Yang Yeat
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Li-Heng Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Hsuan Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Zhu Y, Li Q. Multifaceted roles of PDCD6 both within and outside the cell. J Cell Physiol 2024; 239:e31235. [PMID: 38436472 DOI: 10.1002/jcp.31235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Programmed cell death protein 6 (PDCD6) is an evolutionarily conserved Ca2+-binding protein. PDCD6 is involved in regulating multifaceted and pleiotropic cellular processes in different cellular compartments. For instance, nuclear PDCD6 regulates apoptosis and alternative splicing. PDCD6 is required for coat protein complex II-dependent endoplasmic reticulum-to-Golgi apparatus vesicular transport in the cytoplasm. Recent advances suggest that cytoplasmic PDCD6 is involved in the regulation of cytoskeletal dynamics and innate immune responses. Additionally, membranous PDCD6 participates in membrane repair through endosomal sorting complex required for transport complex-dependent membrane budding. Interestingly, extracellular vesicles are rich in PDCD6. Moreover, abnormal expression of PDCD6 is closely associated with many diseases, especially cancer. PDCD6 is therefore a multifaceted but pivotal protein in vivo. To gain a more comprehensive understanding of PDCD6 functions and to focus and stimulate PDCD6 research, this review summarizes key developments in its role in different subcellular compartments, processes, and pathologies.
Collapse
Affiliation(s)
- Yigao Zhu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Campos Y, Rodriguez-Enriquez R, Palacios G, Van de Vlekkert D, Qiu X, Weesner J, Gomero E, Demmers J, Bertorini T, Opferman JT, Grosveld GC, d'Azzo A. Mitochondrial proteostasis mediated by CRL5 Ozz and Alix maintains skeletal muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548601. [PMID: 37503076 PMCID: PMC10369959 DOI: 10.1101/2023.07.11.548601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
High energy-demanding tissues, such as skeletal muscle, require mitochondrial proteostasis to function properly. Two quality-control mechanisms, the ubiquitin proteasome system (UPS) and the release of mitochondria-derived vesicles, safeguard mitochondrial proteostasis. However, whether these processes interact is unknown. Here we show that the E3 ligase CRL5 Ozz , a member of the UPS, and its substrate Alix control the mitochondrial concentration of Slc25A4, a solute carrier that is essential for ATP production. The mitochondria in Ozz -/- or Alix -/- skeletal muscle share overt morphologic alterations (they are supernumerary, swollen, and dysmorphic) and have abnormal metabolomic profiles. We found that CRL5 Ozz ubiquitinates Slc25A4 and promotes its proteasomal degradation, while Alix facilitates SLC25A4 loading into exosomes destined for lysosomal destruction. The loss of Ozz or Alix offsets steady-state levels of Slc25A4, which disturbs mitochondrial metabolism and alters muscle fiber composition. These findings reveal hitherto unknown regulatory functions of Ozz and Alix in mitochondrial proteostasis.
Collapse
|
4
|
Qiu X, Campos Y, van de Vlekkert D, Gomero E, Tanwar AC, Kalathur R, Weesner JA, Bongiovanni A, Demmers J, d'Azzo A. Distinct functions of dimeric and monomeric scaffold protein Alix in regulating F-actin assembly and loading of exosomal cargo. J Biol Chem 2022; 298:102425. [PMID: 36030822 PMCID: PMC9531180 DOI: 10.1016/j.jbc.2022.102425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yvan Campos
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Elida Gomero
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ajay C Tanwar
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ravi Kalathur
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason A Weesner
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Antonella Bongiovanni
- Institute of Biomedical Research and Innovation (IRIB), National Research Council (CNR) of Italy, Palermo, Italy
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
5
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Myrka A, Buck L. Cytoskeletal Arrest: An Anoxia Tolerance Mechanism. Metabolites 2021; 11:metabo11080561. [PMID: 34436502 PMCID: PMC8401981 DOI: 10.3390/metabo11080561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerization of actin filaments and microtubules constitutes a ubiquitous demand for cellular adenosine-5′-triphosphate (ATP) and guanosine-5′-triphosphate (GTP). In anoxia-tolerant animals, ATP consumption is minimized during overwintering conditions, but little is known about the role of cell structure in anoxia tolerance. Studies of overwintering mammals have revealed that microtubule stability in neurites is reduced at low temperature, resulting in withdrawal of neurites and reduced abundance of excitatory synapses. Literature for turtles is consistent with a similar downregulation of peripheral cytoskeletal activity in brain and liver during anoxic overwintering. Downregulation of actin dynamics, as well as modification to microtubule organization, may play vital roles in facilitating anoxia tolerance. Mitochondrial calcium release occurs during anoxia in turtle neurons, and subsequent activation of calcium-binding proteins likely regulates cytoskeletal stability. Production of reactive oxygen species (ROS) formation can lead to catastrophic cytoskeletal damage during overwintering and ROS production can be regulated by the dynamics of mitochondrial interconnectivity. Therefore, suppression of ROS formation is likely an important aspect of cytoskeletal arrest. Furthermore, gasotransmitters can regulate ROS levels, as well as cytoskeletal contractility and rearrangement. In this review we will explore the energetic costs of cytoskeletal activity, the cellular mechanisms regulating it, and the potential for cytoskeletal arrest being an important mechanism permitting long-term anoxia survival in anoxia-tolerant species, such as the western painted turtle and goldfish.
Collapse
Affiliation(s)
- Alexander Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
| | - Leslie Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-416-978-3506
| |
Collapse
|
7
|
The Integrity of the YxxL Motif of Ebola Virus VP24 Is Important for the Transport of Nucleocapsid-Like Structures and for the Regulation of Viral RNA Synthesis. J Virol 2020; 94:JVI.02170-19. [PMID: 32102881 DOI: 10.1128/jvi.02170-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
While it is well appreciated that late domains in the viral matrix proteins are crucial to mediate efficient virus budding, little is known about roles of late domains in the viral nucleocapsid proteins. Here, we characterized the functional relevance of a YxxL motif with potential late-domain function in the Ebola virus nucleocapsid protein VP24. Mutations in the YxxL motif had two opposing effects on the functions of VP24. On the one hand, the mutation affected the regulatory function of VP24 in viral RNA transcription and replication, which correlated with an increased incorporation of minigenomes into released transcription- and replication-competent virus-like particles (trVLPs). Consequently, cells infected with those trVLPs showed higher levels of viral transcription. On the other hand, mutations of the YxxL motif greatly impaired the intracellular transport of nucleocapsid-like structures (NCLSs) composed of the viral proteins NP, VP35, and VP24 and the length of released trVLPs. Attempts to rescue recombinant Ebola virus expressing YxxL-deficient VP24 failed, underlining the importance of this motif for the viral life cycle.IMPORTANCE Ebola virus (EBOV) causes a severe fever with high case fatality rates and, so far, no available specific therapy. Understanding the interplay between viral and host proteins is important to identify new therapeutic approaches. VP24 is one of the essential nucleocapsid components and is necessary to regulate viral RNA synthesis and condense viral nucleocapsids before their transport to the plasma membrane. Our functional analyses of the YxxL motif in VP24 suggested that it serves as an interface between nucleocapsid-like structures (NCLSs) and cellular proteins, promoting intracellular transport of NCLSs in an Alix-independent manner. Moreover, the YxxL motif is necessary for the inhibitory function of VP24 in viral RNA synthesis. A failure to rescue EBOV encoding VP24 with a mutated YxxL motif indicated that the integrity of the YxxL motif is essential for EBOV growth. Thus, this motif might represent a potential target for antiviral interference.
Collapse
|
8
|
Ajasin DO, Rao VR, Wu X, Ramasamy S, Pujato M, Ruiz AP, Fiser A, Bresnick AR, Kalpana GV, Prasad VR. CCL2 mobilizes ALIX to facilitate Gag-p6 mediated HIV-1 virion release. eLife 2019; 8:35546. [PMID: 31172941 PMCID: PMC6592687 DOI: 10.7554/elife.35546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Cellular ESCRT machinery plays pivotal role in HIV-1 budding and release. Extracellular stimuli that modulate HIV-1 egress are currently unknown. We found that CCL2 induced by HIV-1 clade B (HIV-1B) infection of macrophages enhanced virus production, while CCL2 immuno-depletion reversed this effect. Additionally, HIV-1 clade C (HIV-1C) was refractory to CCL2 levels. We show that CCL2-mediated increase in virus production requires Gag late motif LYPX present in HIV-1B, but absent in HIV-1C, and ALIX protein that recruits ESCRT III complex. CCL2 immuno-depletion sequestered ALIX to F-actin structures, while CCL2 addition mobilized it to cytoplasm facilitating Gag-ALIX binding. The LYPX motif improves virus replication and its absence renders the virus less fit. Interestingly, novel variants of HIV-1C with PYRE/PYKE tetrapeptide insertions in Gag-p6 conferred ALIX binding, CCL2-responsiveness and enhanced virus replication. These results, for the first time, indicate that CCL2 mediates ALIX mobilization from F-actin and enhances HIV-1 release and fitness.
Collapse
Affiliation(s)
- David O Ajasin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Vasudev R Rao
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Xuhong Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Santhamani Ramasamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Mario Pujato
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Arthur P Ruiz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, United States
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Ganjam V Kalpana
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Vinayaka R Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
9
|
Khasa R, Vaidya A, Vrati S, Kalia M. Membrane trafficking RNA interference screen identifies a crucial role of the clathrin endocytic pathway and ARP2/3 complex for Japanese encephalitis virus infection in HeLa cells. J Gen Virol 2019; 100:176-186. [DOI: 10.1099/jgv.0.001182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Renu Khasa
- 1Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- 2Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Anuradha Vaidya
- 2Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sudhanshu Vrati
- 1Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- 3Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- 1Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- 3Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
10
|
Kaul Z, Chakrabarti O. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration. Traffic 2018; 19:485-495. [DOI: 10.1111/tra.12569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
- Homi Bhabha National Institute; Mumbai India
| |
Collapse
|
11
|
Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nat Microbiol 2017; 2:1358-1366. [PMID: 28848228 DOI: 10.1038/s41564-017-0018-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
Apicomplexan parasites are important pathogens of humans and domestic animals, including Plasmodium species (the agents of malaria) and Toxoplasma gondii, which is responsible for toxoplasmosis. They replicate within the cells of their animal hosts, to which they gain access using a unique parasite-driven invasion process. At the core of the invasion machine is a structure at the interface between the invading parasite and host cell called the moving junction (MJ) 1 . The MJ serves as both a molecular doorway to the host cell and an anchor point enabling the parasite to engage its motility machinery to drive the penetration of the host cell 2 , ultimately yielding a protective vacuole 3 . The MJ is established through self-assembly of parasite proteins at the parasite-host interface 4 . However, it is unknown whether host proteins are subverted for MJ formation. Here, we show that Toxoplasma parasite rhoptry neck proteins (RON2, RON4 and RON5) cooperate to actively recruit the host CIN85, CD2AP and the ESCRT-I components ALIX and TSG101 to the MJ during invasion. We map the interactions in detail and demonstrate that the parasite mimics and subverts conserved binding interfaces with remarkable specificity. Parasite mutants unable to recruit these host proteins show inefficient host cell invasion in culture and attenuated virulence in mice. This study reveals molecular mechanisms by which parasites subvert widely conserved host machinery to force highly efficient host cell access.
Collapse
|
12
|
Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, Han YG, Solecki D, Frase S, Bongiovanni A, d'Azzo A. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun 2016; 7:11876. [PMID: 27336173 PMCID: PMC4931029 DOI: 10.1038/ncomms11876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier.
Collapse
Affiliation(s)
- Yvan Campos
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Xiaohui Qiu
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Elida Gomero
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Randall Wakefield
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Linda Horner
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Young-Goo Han
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - David Solecki
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Sharon Frase
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology, National Research Council, 90146 Palermo, Italy
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
13
|
Iavello A, Frech VSL, Gai C, Deregibus MC, Quesenberry PJ, Camussi G. Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int J Mol Med 2016; 37:958-66. [PMID: 26935291 PMCID: PMC4790646 DOI: 10.3892/ijmm.2016.2488] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence indicates that Alix, an accessory protein of the endosomal sorting complex required for transport (ESCRT), is involved in the biogenesis of extracellular vesicles (EVs). EVs contain selected patterns of microRNAs (miRNAs or miRs); however, little is known about the mechanisms of miRNA enrichment in EVs. The aim of the present study was to evaluate whether Alix is involved in the packaging of miRNAs within EVs released by human liver stem-like cells (HLSCs). EVs released from HLSCs were enriched with miRNAs and expressed Alix and several RNA-binding proteins, including Argonaute 2 (Ago2), a member of the Argonaute family known to be involved in the transport and the processing of miRNAs. Co-immunoprecipitation experiments revealed an association between Alix and Ago2. The results from RT-qPCR indicated that in the Alix/Ago2 immunoprecipitates, miRNAs were detectable. EVs were instrumental in transferring selected miRNAs from HLSCs to human endothelial cells absent in the latter cells. Alix knockdown did not influence the number of EVs released by HLSCs, but it significantly decreased miRNA expression levels in the EVs and consequently their transfer to the endothelium. Our findings indicate that Alix binds to Ago2 and miRNAs, suggesting that it plays a key role in miRNA enrichment during EV biogenesis. These results may represent a novel function of Alix, demonstrating its involvement in the EV-mediated transfer of miRNAs.
Collapse
Affiliation(s)
- Alessandra Iavello
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Valeska S L Frech
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Chiara Gai
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Maria Chiara Deregibus
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Peter J Quesenberry
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| |
Collapse
|
14
|
Sun S, Zhou X, Corvera J, Gallick GE, Lin SH, Kuang J. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov 2015; 1:15018. [PMID: 27462417 PMCID: PMC4860835 DOI: 10.1038/celldisc.2015.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Joe Corvera
- A&G Pharmaceuticals, Inc. , Baltimore, MD, USA
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
15
|
Liew K, Yong PVC, Navaratnam V, Lim YM, Ho ASH. Differential proteomic analysis on the effects of 2-methoxy-1,4-naphthoquinone towards MDA-MB-231 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:517-527. [PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/31/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line. PURPOSE To investigate the molecular mechanism underlying the anti-metastatic effects of MNQ towards MDA-MB-231 cell line via the comparative proteomic approach. STUDY DESIGN/METHODS Differentially expressed proteins in MNQ-treated MDA-MB-231 cells were identified by using two-dimensional gel electrophoresis coupled with tandem mass spectrometry. Proteins and signalling pathways associated with the identified MNQ-altered proteins were studied by using Western blotting. RESULTS Significant modulation of MDA-MB-231 cell proteome was observed upon treatment with MNQ in which the expressions of 19 proteins were found to be downregulated whereas another eight were upregulated (>1.5 fold, p < 0.05). The altered proteins were mainly related to cytoskeletal functions and regulations, mRNA processing, protein modifications and oxidative stress response. Notably, two of the downregulated proteins, protein S100-A4 (S100A4) and laminin-binding protein (RPSA) are known to play key roles in driving metastasis and were verified using Western blotting. Further investigation using Western blotting also revealed that MNQ decreased the activations of pro-metastatic ERK1/2 and NF-κB signalling pathways. Moreover, MNQ was shown to stimulate the expression of the metastatic suppressor, E-cadherin. CONCLUSION This study reports a proposed mechanism by which MNQ exerts its anti-metastatic effects against MDA-MB-231 cell line. The findings from this study offer new insights on the potential of MNQ to be developed as a novel anti-metastatic agent.
Collapse
Affiliation(s)
- Kitson Liew
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Phelim Voon Chen Yong
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Visweswaran Navaratnam
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
| | - Anthony Siong Hock Ho
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Unravelling the pivotal role of Alix in MVB sorting and silencing of the activated EGFR. Biochem J 2015; 466:475-87. [PMID: 25510652 DOI: 10.1042/bj20141156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endosomal sorting complex required for transport (ESCRT)-III-mediated membrane invagination and scission are a critical step in multivesicular body (MVB) sorting of ubiquitinated membrane receptors, and generally thought to be required for degradation of these receptors in lysosomes. The adaptor protein Alix is critically involved in multiple ESCRT-III-mediated, membrane-remodelling processes in mammalian cells. However, Alix knockdown does not inhibit degradation of the activated epidermal growth factor receptor (EGFR) in mammalian cell lines, leading to a widely held notion that Alix is not critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells. In the present study, we demonstrate that, despite its non-essential role in degradation of the activated EGFR, Alix plays a critical role in its MVB sorting and silencing Epidermal growth factor (EGF) stimulation of mammalian cell lines induces Alix's interaction with the ubiquitinated EGFR via the Alix V domain, and increases Alix's association with membrane-bound charged multivesicular body protein 4 (CHMP4) via the Alix Bro1 domain. Under both continuous and pulse-chase EGF stimulation conditions, inhibition of Alix's interaction with membrane-bound CHMP4, inhibition of Alix dimerization through the V domain or Alix knockdown dramatically inhibits MVB sorting of the activated EGFR and promotes sustained activation of extracellular-signal regulated kinase (ERK)1/2. Under the continuous EGF stimulation conditions, these cell treatments also retard degradation of the activated EGFR. These findings indicate that Alix is critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells.
Collapse
|
17
|
Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 2015; 17:300-10. [PMID: 25686249 PMCID: PMC4344874 DOI: 10.1038/ncb3112] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/14/2015] [Indexed: 12/20/2022]
Abstract
The ubiquitin-like molecule ATG12 is required for the early steps of autophagy. Recently, we identified ATG3, the E2-like enzyme required for LC3 lipidation during autophagy, as an ATG12 conjugation target. Here, we demonstrate that cells lacking ATG12-ATG3 have impaired basal autophagic flux, accumulation of perinuclear late endosomes, and impaired endolysosomal trafficking. Furthermore, we identify an interaction between ATG12-ATG3 and the ESCRT-associated protein Alix (also known as PDCD6IP) and demonstrate that ATG12-ATG3 controls multiple Alix-dependent processes including late endosome distribution, exosome biogenesis and viral budding. Similar to ATG12-ATG3, Alix is functionally required for efficient basal, but not starvation-induced, autophagy. Overall, these results identify a link between the core autophagy and ESCRT machineries and uncover a role for ATG12-ATG3 in late endosome function that is distinct from the canonical role of either ATG in autophagosome formation.
Collapse
Affiliation(s)
- Lyndsay Murrow
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California 94143 USA
| | - Ritu Malhotra
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California 94143 USA
| |
Collapse
|
18
|
Li T, Wang W, Chen Y, Han W. Preparation and characterization of monoclonal antibodies against VSTM1. Monoclon Antib Immunodiagn Immunother 2014; 32:283-9. [PMID: 23909423 DOI: 10.1089/mab.2012.0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
VSTM1 (V-set and transmembrane domain containing 1) is a novel membrane molecule identified from immunogenomics, which has two main isoforms, VSTM1-v1 and VSTM1-v2. VSTM1-v1 is a type I transmembrane protein, and VSTM1-v2 is a classical secretory protein, lacking only the transmembrane domain compared with VSTM1-v1. This study was designed to generate VSTM1-specific monoclonal antibodies (MAbs) for further exploration of its expression and function. Mice were immunized with two recombinant prokaryotic proteins of GST-VSTM1-v2 and VSTM1-v2 without any tag. Hybridomas were generated by the fusion of the splenocytes to Sp2/0 myeloma cells. Three hybridoma cell lines (2C11, 6E11, and 7A8) stable in secreting anti-VSTM1 MAb were obtained and further characterized. All three MAbs were IgG2b isotype and effective in detecting the overexpressed VSTM1 in both Western blot and flow cytometry assays, while recognizing the endogenous VSTM1 in Western blot analysis only. These MAbs could be helpful in the basic study of VSTM1 and in revealing the interesting conformation difference between the overexpressed and endogenous proteins.
Collapse
Affiliation(s)
- Ting Li
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | | | | |
Collapse
|
19
|
Watanabe SM, Chen MH, Khan M, Ehrlich L, Kemal KS, Weiser B, Shi B, Chen C, Powell M, Anastos K, Burger H, Carter CA. The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities. Retrovirology 2013; 10:143. [PMID: 24257210 PMCID: PMC3907034 DOI: 10.1186/1742-4690-10-143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022] Open
Abstract
Background HIV-1 budding is directed primarily by two motifs in Gag p6 designated as late domain-1 and −2 that recruit ESCRT machinery by binding Tsg101 and Alix, respectively, and by poorly characterized determinants in the capsid (CA) domain. Here, we report that a conserved Gag p6 residue, S40, impacts budding mediated by all of these determinants. Results Whereas budding normally results in formation of single spherical particles ~100 nm in diameter and containing a characteristic electron-dense conical core, the substitution of Phe for S40, a change that does not alter the amino acids encoded in the overlapping pol reading frame, resulted in defective CA-SP1 cleavage, formation of strings of tethered particles or filopodia-like membrane protrusions containing Gag, and diminished infectious particle formation. The S40F-mediated release defects were exacerbated when the viral-encoded protease (PR) was inactivated or when L domain-1 function was disrupted or when budding was almost completely obliterated by the disruption of both L domain-1 and −2. S40F mutation also resulted in stronger Gag-Alix interaction, as detected by yeast 2-hybrid assay. Reducing Alix binding by mutational disruption of contact residues restored single particle release, implicating the perturbed Gag-Alix interaction in the aberrant budding events. Interestingly, introduction of S40F partially rescued the negative effects on budding of CA NTD mutations EE75,76AA and P99A, which both prevent membrane curvature and therefore block budding at an early stage. Conclusions The results indicate that the S40 residue is a novel determinant of HIV-1 egress that is most likely involved in regulation of a critical assembly event required for budding in the Tsg101-, Alix-, Nedd4- and CA N-terminal domain affected pathways.
Collapse
Affiliation(s)
- Susan M Watanabe
- Department of Molecular Genetics & Microbiology, Stony Brook University, Life Sciences Bldg, Rm 248, Stony Brook, NY 11794-5222, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chudak C, Beimforde N, George M, Zimmermann A, Lausch V, Hanke K, Bannert N. Identification of late assembly domains of the human endogenous retrovirus-K(HML-2). Retrovirology 2013; 10:140. [PMID: 24252269 PMCID: PMC3874623 DOI: 10.1186/1742-4690-10-140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background Late assembly (L)-domains are protein interaction motifs, whose dysfunction causes characteristic budding defects in enveloped viruses. Three different amino acid motifs, namely PT/SAP, PPXY and YPXnL have been shown to play a major role in the release of exogenous retroviruses. Although the L-domains of exogenous retroviruses have been studied comprehensively, little is known about these motifs in endogenous human retroviruses. Results Using a molecular clone of the human endogenous retrovirus K113 that had been engineered to reverse the presumed non-synonymous postinsertional mutations in the major genes, we identified three functional L-domains of the virus, all located in the Gag p15 protein. A consensus PTAP tetrapeptide serves as the core of a main L-domain for the virus and its inactivation reduces virus release in HEK 293T cells by over 80%. Electron microscopy of cells expressing the PTAP mutant revealed predominantly late budding structures and budding chains at the plasma membrane. The fact that this motif determines subcellular colocalization with Tsg101, an ESCRT-I complex protein known to bind to the core tetrapeptide, supports its role as an L-domain. Moreover, two YPXnL motifs providing additional L-domain function were identified in the p15 protein. One is adjacent to the PTAP sequence and the other is in the p15 N-terminus. Mutations in either motif diminishes virus release and induces an L-domain phenotype while inactivation of all three L-domains results in a complete loss of particle release in HEK 293T cells. The flexibility of the virus in the use of L-domains for gaining access to the ESCRT machinery is demonstrated by overexpression of Tsg101 which rescues the release of the YPXnL mutants. Similarly, overexpression of Alix not only enhances release of the PTAP mutant by a factor of four but also the release of a triple mutant, indicating that additional cryptic YPXnL domains with a low affinity for Alix may be present. No L-domain activity is provided by the proline-rich peptides at the Gag C-terminus. Conclusions Our data demonstrate that HERV-K(HML-2) release is predominantly mediated through a consensus PTAP motif and two auxiliary YPXnL motifs in the p15 protein of the Gag precursor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Norbert Bannert
- Department for HIV and other Retroviruses, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
21
|
Grover JR, Llewellyn GN, Soheilian F, Nagashima K, Veatch SL, Ono A. Roles played by capsid-dependent induction of membrane curvature and Gag-ESCRT interactions in tetherin recruitment to HIV-1 assembly sites. J Virol 2013; 87:4650-64. [PMID: 23408603 PMCID: PMC3624355 DOI: 10.1128/jvi.03526-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/04/2013] [Indexed: 12/17/2022] Open
Abstract
Tetherin/BST-2 (here called tetherin) is an antiviral protein that restricts release of diverse enveloped viruses from infected cells through physically tethering virus envelope and host plasma membrane. For HIV-1, specific recruitment of tetherin to assembly sites has been observed as its colocalization with the viral structural protein Gag or its accumulation in virus particles. Because of its broad range of targets, we hypothesized that tetherin is recruited through conserved features shared among various enveloped viruses, such as lipid raft association, membrane curvature, or ESCRT dependence. We observed that reduction of cellular cholesterol does not block tetherin anti-HIV-1 function, excluding an essential role for lipid rafts. In contrast, mutations in the capsid domain of Gag, which inhibit induction of membrane curvature, prevented tetherin-Gag colocalization detectable by confocal microscopy. Disruption of Gag-ESCRT interactions also inhibited tetherin-Gag colocalization when disruption was accomplished via amino acid substitutions in late domain motifs, expression of a dominant-negative Tsg101 derivative, or small interfering RNA (siRNA)-mediated depletion of Tsg101 or Alix. However, further analyses of these conditions by quantitative superresolution localization microscopy revealed that Gag-tetherin coclustering is significantly reduced but persists at intermediate levels. Notably, this residual tetherin recruitment was still sufficient for the full restriction of HIV-1 release. Unlike the late domain mutants, the capsid mutants defective in inducing membrane curvature showed little or no coclustering with tetherin in superresolution analyses. These results support a model in which both Gag-induced membrane curvature and Gag-ESCRT interactions promote tetherin recruitment, but the recruitment level achieved by the former is sufficient for full restriction.
Collapse
Affiliation(s)
- Jonathan R Grover
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
22
|
Pan S, Cheng X, Sifers RN. Golgi-situated endoplasmic reticulum α-1, 2-mannosidase contributes to the retrieval of ERAD substrates through a direct interaction with γ-COP. Mol Biol Cell 2013; 24:1111-21. [PMID: 23427261 PMCID: PMC3623633 DOI: 10.1091/mbc.e12-12-0886] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Endoplasmic reticulum (ER) α-1, 2-mannosidase and γ-COP contribute to a Golgi-based quality control module that facilitates the retrieval of captured ER-associated protein degradation substrates back to the ER. Endoplasmic reticulum (ER) α-1, 2-mannosidase (ERManI) contributes to ER-associated protein degradation (ERAD) by initiating the formation of degradation signals on misfolded N-linked glycoproteins. Despite its inferred intracellular location, we recently discovered that the mammalian homologue is actually localized to the Golgi complex. In the present study, the functional role of Golgi-situated ERManI was investigated. Mass spectrometry analysis and coimmunoprecipitation (co-IP) identified a direct interaction between ERManI and γ-COP, the gamma subunit of coat protein complex I (COPI) that is responsible for Golgi-to-ER retrograde cargo transport. The functional relationship was validated by the requirement of both ERManI and γ-COP to support efficient intracellular clearance of the classical ERAD substrate, null Hong Kong (NHK). In addition, site-directed mutagenesis of suspected γ-COP–binding motifs in the cytoplasmic tail of ERManI was sufficient to disrupt the physical interaction and ablate NHK degradation. Moreover, a physical interaction between NHK, ERManI, and γ-COP was identified by co-IP and Western blotting. RNA interference–mediated knockdown of γ-COP enhanced the association between ERManI and NHK, while diminishing the efficiency of ERAD. Based on these findings, a model is proposed in which ERManI and γ-COP contribute to a Golgi-based quality control module that facilitates the retrieval of captured ERAD substrates back to the ER.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
23
|
Romancino DP, Anello L, Morici G, d'Azzo A, Bongiovanni A, Di Bernardo M. Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus. Dev Growth Differ 2013; 55:237-46. [PMID: 23302023 DOI: 10.1111/dgd.12023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/11/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)-actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross-reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2-cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli-like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development.
Collapse
Affiliation(s)
- Daniele P Romancino
- Institute of Biomedicine and Molecular Immunology, National Research Council, via Ugo La Malfa, 153-90100, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Lambert B, Vandeputte J, Remacle S, Bergiers I, Simonis N, Twizere JC, Vidal M, Rezsohazy R. Protein interactions of the transcription factor Hoxa1. BMC DEVELOPMENTAL BIOLOGY 2012; 12:29. [PMID: 23088713 PMCID: PMC3514159 DOI: 10.1186/1471-213x-12-29] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Background Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins. Results To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments. Conclusions The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology.
Collapse
Affiliation(s)
- Barbara Lambert
- Molecular and Cellular Animal Embryology group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc Natl Acad Sci U S A 2012; 109:17424-9. [PMID: 23045692 DOI: 10.1073/pnas.1206839109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal a dimer, with a microtubule-interacting and trafficking (MIT) domain at the N terminus and a unique, unanticipated phospholipase D-like (PLD) domain at the C terminus that binds membranes. We show that the MIT domain binds to a subset of ESCRT-III subunits and that this interaction mediates MITD1 recruitment to the midbody during cytokinesis. Depletion of MITD1 causes a distinct cytokinetic phenotype consistent with destabilization of the midbody and abscission failure. These results suggest a model whereby MITD1 coordinates the activity of ESCRT-III during abscission with earlier events in the final stages of cell division.
Collapse
|
26
|
Shi X, Betzi S, Lugari A, Opi S, Restouin A, Parrot I, Martinez J, Zimmermann P, Lecine P, Huang M, Arold ST, Collette Y, Morelli X. Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix). FEBS Lett 2012; 586:1759-64. [PMID: 22641034 DOI: 10.1016/j.febslet.2012.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/23/2012] [Accepted: 05/09/2012] [Indexed: 02/05/2023]
Abstract
The functions of Src family kinases are tightly regulated through Src homology (SH) domain-mediated protein-protein interactions. We previously reported the biophysical characteristics of the apoptosis-linked gene 2-interacting protein X (Alix) in complex with the haemopoietic cell kinase (Hck) SH3 domain. In the current study, we have combined ITC, NMR, SAXS and molecular modeling to determine a 3D model of the complex. We demonstrate that Hck SH3 recognizes an extended linear proline-rich region of Alix. This particular binding mode enables Hck SH3 to sense a specific non-canonical residue situated in the SH3 RT-loop of the kinase. The resulting model helps clarify the mechanistic insights of Alix-Hck interaction.
Collapse
Affiliation(s)
- Xiaoli Shi
- CNRS UMR 7258, INSERM U 1068, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway. J Biomed Biotechnol 2012; 2012:657942. [PMID: 22500103 PMCID: PMC3303925 DOI: 10.1155/2012/657942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/03/2011] [Indexed: 12/21/2022] Open
Abstract
EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [35S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.
Collapse
|
28
|
Bongiovanni A, Romancino DP, Campos Y, Paterniti G, Qiu X, Moshiach S, Di Felice V, Vergani N, Ustek D, d'Azzo A. Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle. J Biol Chem 2012; 287:12159-71. [PMID: 22334701 DOI: 10.1074/jbc.m111.297036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(-/-) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling.
Collapse
Affiliation(s)
- Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology, National Research Council, 90146 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 2012; 8:e1002546. [PMID: 22383880 PMCID: PMC3285593 DOI: 10.1371/journal.ppat.1002546] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/09/2012] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.
Collapse
Affiliation(s)
- Irina Saraiva Franco
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.
| | | | | |
Collapse
|
30
|
Sette P, Mu R, Dussupt V, Jiang J, Snyder G, Smith P, Xiao TS, Bouamr F. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release. Structure 2011; 19:1485-95. [PMID: 21889351 PMCID: PMC3195861 DOI: 10.1016/j.str.2011.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 07/19/2011] [Indexed: 01/07/2023]
Abstract
Alix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical "boomerang" folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix.
Collapse
Affiliation(s)
- Paola Sette
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Ruiling Mu
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Vincent Dussupt
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jiansheng Jiang
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Greg Snyder
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Patrick Smith
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Tsan. Sam Xiao
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
- Corresponding authors. Laboratory of Molecular Microbiology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 496 4099, Fax: 301 402 0226, . Laboratory of Immunology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 402 9782, Fax: 301 480 1291,
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
- Corresponding authors. Laboratory of Molecular Microbiology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 496 4099, Fax: 301 402 0226, . Laboratory of Immunology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 402 9782, Fax: 301 480 1291,
| |
Collapse
|
31
|
Abstract
Most membrane-enveloped viruses bud from infected cells by hijacking the host ESCRT machinery. The ESCRTs are recruited to the budding sites by viral proteins that contain short proline (Pro)-rich motifs (PRMs) known as late domains. The late domains probably evolved by co-opting host PRMs involved in the normal functions of ESCRTs in endosomal sorting and cytokinesis. The solution and crystal structures of PRMs bound to their interaction partners explain the conserved roles of Pro and other residues that predominate in these sequences. PRMs are often grouped together in much larger Pro-rich regions (PRRs) of as many as 150 residues. The PRR of the ESCRT-associated protein, ALIX, autoregulates its conformation and activity. The robustness of different viral budding and host pathways to impairments in Pro-based interactions varies considerably. The known biology of PRM recognition in the ESCRT pathway seems, in principle, compatible with antiviral development, given our increasingly nuanced understanding of the relative weakness and robustness of the host and viral processes.
Collapse
Affiliation(s)
- Xuefeng Ren
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Martini M, Gnann A, Scheikl D, Holzmann B, Janssen KP. The candidate tumor suppressor SASH1 interacts with the actin cytoskeleton and stimulates cell-matrix adhesion. Int J Biochem Cell Biol 2011; 43:1630-40. [PMID: 21820526 DOI: 10.1016/j.biocel.2011.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 11/29/2022]
Abstract
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell-matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells.
Collapse
Affiliation(s)
- Melanie Martini
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
33
|
Pan S, Wang S, Utama B, Huang L, Blok N, Estes MK, Moremen KW, Sifers RN. Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 2011; 22:2810-22. [PMID: 21697506 PMCID: PMC3154878 DOI: 10.1091/mbc.e11-02-0118] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The current study provides mechanistic insight into the overlapping dynamics by which glycoprotein folding and quality control use distinct intracellular compartments as part of the proteostasis network in mammalian cells. The Golgi complex has been implicated as a possible component of endoplasmic reticulum (ER) glycoprotein quality control, although the elucidation of its exact role is lacking. ERManI, a putative ER resident mannosidase, plays a rate-limiting role in generating a signal that targets misfolded N-linked glycoproteins for ER-associated degradation (ERAD). Herein we demonstrate that the endogenous human homologue predominantly resides in the Golgi complex, where it is subjected to O-glycosylation. To distinguish the intracellular site where the glycoprotein ERAD signal is generated, a COPI-binding motif was appended to the N terminus of the recombinant protein to facilitate its retrograde translocation back to the ER. Partial redistribution of the modified ERManI was observed along with an accelerated rate at which N-linked glycans of misfolded α1-antitrypsin variant NHK were trimmed. Despite these observations, the rate of NHK degradation was not accelerated, implicating the Golgi complex as the site for glycoprotein ERAD substrate tagging. Taken together, these data provide a potential mechanistic explanation for the spatial separation by which glycoprotein quality control components operate in mammalian cells.
Collapse
Affiliation(s)
- Shujuan Pan
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hazard D, Fernandez X, Pinguet J, Chambon C, Letisse F, Portais JC, Wadih-Moussa Z, Rémignon H, Molette C. Functional genomics of the muscle response to restraint and transport in chickens. J Anim Sci 2011; 89:2717-30. [PMID: 21512117 DOI: 10.2527/jas.2010-3288] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the present study, we used global approaches (proteomics, transcriptomics, and metabolomics) to assess the molecular basis of the muscle response to stress in chickens. A restraint test, combined with transport for 2 h (RT test) was chosen as the potentially stressful situation. Chickens (6 wk old) were either nontreated (control chickens) or submitted to the RT test (treated chickens). The RT test induced a 6-fold increase in corticosterone concentrations, suggesting hypothalamic-pituitary-adrenal axis activation. The RT test decreased the relative abundance of several hexose phosphates [glucose-1-P (G1P), glucose-6-P (G6P), fructose-6-P (F6P), and mannose-6-P (M6P)] in thigh muscle. In addition, 55 transcripts, among which 39 corresponded to unique annotated genes, were significantly up- (12 genes) or downregulated (27 genes) by treatment. Similarly, 45 proteic spots, among which 29 corresponded to unique annotated proteins, were overexpressed (11 proteins), underexpressed (14 proteins), or only expressed in treated chickens. Integrative analysis of differentially expressed genes and proteins showed that most transcripts and proteins belong to 2 networks whose genes were mainly related with cytoskeleton structure or carbohydrate metabolism. Whereas the decrease in energetic metabolites suggested an activation of glycogenolysis and glycolysis in response to the RT test, the reduced expression of genes and proteins involved in these pathways suggested the opposite. We hypothesized that the prolonged RT test resulted in a repression of glycogenolysis and glycolysis in thigh muscle of chickens. The down-expression of genes and proteins involved in the formation of fiber stress after the RT test suggests a reinforcement of myofibrils in response to stress.
Collapse
Affiliation(s)
- D Hazard
- Université de Toulouse, INPT ENSAT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. Biochem J 2011; 432:525-34. [PMID: 20929444 DOI: 10.1042/bj20100862] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adaptor protein ALIX [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] links retroviruses to ESCRT (endosomal sorting complex required for transport) machinery during retroviral budding. This function of ALIX requires its interaction with the ESCRT-III component CHMP4 (charged multivesicular body protein 4) at the N-terminal Bro1 domain and retroviral Gag proteins at the middle V domain. Since cytoplasmic or recombinant ALIX is unable to interact with CHMP4 or retroviral Gag proteins under non-denaturing conditions, we constructed ALIX truncations and mutations to define the intrinsic mechanism through which ALIX interactions with these partner proteins are prohibited. Our results demonstrate that an intramolecular interaction between Patch 2 in the Bro1 domain and the TSG101 (tumour susceptibility gene 101 protein)-docking site in the proline-rich domain locks ALIX into a closed conformation that renders ALIX unable to interact with CHMP4 and retroviral Gag proteins. Relieving the intramolecular interaction of ALIX, by ectopically expressing a binding partner for one of the intramolecular interaction sites or by deleting one of these sites, promotes ALIX interaction with these partner proteins and facilitates ALIX association with the membrane. Ectopic expression of a GFP (green fluorescent protein)-ALIX mutant with a constitutively open conformation, but not the wild-type protein, increases EIAV (equine infectious anaemia virus) budding from HEK (human embryonic kidney)-293 cells. These findings predict that relieving the autoinhibitory intramolecular interaction of ALIX is a critical step for ALIX to participate in retroviral budding.
Collapse
|
36
|
Li LP, Lu CH, Chen ZP, Ge F, Wang T, Wang W, Xiao CL, Yin XF, Liu L, He JX, He QY. Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics 2011; 11:429-39. [PMID: 21268272 DOI: 10.1002/pmic.200900819] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 01/13/2023]
Affiliation(s)
- Li-Ping Li
- Institute of Life and Health Engineering/National Engineering and Research Center for Genetic Medicine, Jinan University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Conserved genes act as modifiers of invertebrate SMN loss of function defects. PLoS Genet 2010; 6:e1001172. [PMID: 21124729 PMCID: PMC2965752 DOI: 10.1371/journal.pgen.1001172] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/21/2010] [Indexed: 01/27/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.
Collapse
|
38
|
Quantitative proteome profiling of respiratory virus-infected lung epithelial cells. J Proteomics 2010; 73:1680-93. [PMID: 20470912 DOI: 10.1016/j.jprot.2010.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022]
Abstract
Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells. A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection. We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.
Collapse
|
39
|
Vardhana S, Choudhuri K, Varma R, Dustin ML. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 2010; 32:531-40. [PMID: 20399684 PMCID: PMC2905630 DOI: 10.1016/j.immuni.2010.04.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/18/2009] [Accepted: 02/12/2010] [Indexed: 11/21/2022]
Abstract
Agonist MHC-peptide complexes in the immunological synapse (IS) signal through T cell receptor (TCR) microclusters (MCs) that converge into a central supramolecular activation cluster (cSMAC). The determinants and function of the cSMAC remain unknown. We demonstrate an essential role for ubiquitin (Ub) and TSG101, but less so for HRS, in signal processing events at the cSMAC. Using siRNA in primary T cells, we show that Ub recognition by TSG101 is required for cSMAC formation, TCR MC signal termination, TCR downregulation, and segregation of TCR-MHC-peptide from PKC-theta-enriched signaling complexes. Weak agonist MHC-peptide induced CD80-dependent TCR MCs that dissociated in the center of the IS without recruiting TSG101. These results support TSG101-dependent recognition of CD80-independent TCR MCs as a molecular checkpoint for TCR downregulation.
Collapse
Affiliation(s)
- Santosha Vardhana
- Program in Molecular Pathogenesis, Helen L and Martin S Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, and the Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10016
| | - Kaushik Choudhuri
- Program in Molecular Pathogenesis, Helen L and Martin S Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, and the Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10016
| | | | - Michael L. Dustin
- Program in Molecular Pathogenesis, Helen L and Martin S Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, and the Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10016
| |
Collapse
|
40
|
Lenz M, Crow DJG, Joanny JF. Membrane buckling induced by curved filaments. PHYSICAL REVIEW LETTERS 2009; 103:038101. [PMID: 19659322 DOI: 10.1103/physrevlett.103.038101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Indexed: 05/28/2023]
Abstract
We present a novel buckling instability relevant to membrane budding in eukaryotic cells. In this mechanism, curved filaments bind to a lipid bilayer without changing its intrinsic curvature. As more and more filaments adsorb, newly added ones are more and more strained, which destabilizes the flat membrane. We perform a linear stability analysis of filament-dressed membranes and find that the buckling threshold is within reasonable in vivo parameter values. We account for the formation of long tubes previously observed in cells and in purified systems. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism could be validated by a simple experiment.
Collapse
Affiliation(s)
- Martin Lenz
- Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie Curie, CNRS, UMR 168, Paris, F-75248 France.
| | | | | |
Collapse
|
41
|
Hoffmann M, Kim SC, Sartor RB, Haller D. Enterococcus faecalis strains differentially regulate Alix/AIP1 protein expression and ERK 1/2 activation in intestinal epithelial cells in the context of chronic experimental colitis. J Proteome Res 2009; 8:1183-92. [PMID: 19166300 DOI: 10.1021/pr800785m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monoassociation of germfree Interleukin 10 gene deficient (IL-10-/-) 129SvEv but not wild-type mice with Enterococcus faecalis induces severe chronic colitis. Bacterial strain-specific effects on the development of chronic intestinal inflammation are not understood. We investigated the molecular mechanisms of E. faecalis OG1RF (human clinical isolate, colitogenic) and E. faecalis ms2 (endogenous isolate from an IL-10-/- mouse) in initiating chronic experimental colitis using IL-10-/- mice. Monoassociation of IL-10-/- mice for 14 weeks revealed significant differences in colonic inflammation (3.6 +/- 0.2 and 2.4 +/- 0.6 for OG1RF and ms2, respectively) (n = 5 mice in each group) (histological scoring (0-4)). Consistent with the tissue pathology, gene expression of the pro-inflammatory chemokine interferon-gamma inducible protein-10 (IP-10) was significantly higher in intestinal epithelial cells (IEC) derived from E. faecalis OG1RF monoassociated IL-10-/- mice. We further compared the differentially E. faecalis induced colitis on the epithelial level by 2D-SDS PAGE coupled with MALDI-TOF MS. Proteome analysis identified 13 proteins which were differentially regulated during disease progression in the epithelium of E. faecalis-monoassociated IL-10-/- mice. Regulation of Alix/AIP1 protein expression and ERK1/2 phosphorylation was validated in primary IEC and epithelial cell lines, suggesting a protective role for Alix/AIP1 in the process of disease progression. Alix/AIP1 protein expression was further characterized in epithelial cell lines using siRNA-mediated knock-down. Our study demonstrates E. faecalis strain-specific induction of colitis in IL-10-/- mice after 14 weeks of monoassociation. Our study suggests that Alix/AIP1 protein expression and ERK1/2 activation are decreased in severe colitis.
Collapse
Affiliation(s)
- Micha Hoffmann
- Chair for Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, Technische Universitat Munchen, 85350 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
42
|
Pires R, Hartlieb B, Signor L, Schoehn G, Lata S, Roessle M, Moriscot C, Popov S, Hinz A, Jamin M, Boyer V, Sadoul R, Forest E, Svergun DI, Göttlinger HG, Weissenhorn W. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 2009; 17:843-56. [PMID: 19523902 PMCID: PMC2699623 DOI: 10.1016/j.str.2009.04.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 04/15/2009] [Indexed: 12/20/2022]
Abstract
ALIX recruits ESCRT-III CHMP4 and is involved in membrane remodeling during endosomal receptor sorting, budding of some enveloped viruses, and cytokinesis. We show that ALIX dimerizes via the middle domain (ALIX(-V)) in solution. Structural modeling based on small angle X-ray scattering (SAXS) data reveals an elongated crescent-shaped conformation for dimeric ALIX lacking the proline-rich domain (ALIX(BRO1-V)). Mutations at the dimerization interface prevent dimerization and induce an open elongated monomeric conformation of ALIX(-V) as determined by SAXS modeling. ALIX dimerizes in vivo and dimeric ALIX colocalizes with CHMP4B upon coexpression. We show further that ALIX dimerization affects HIV-1 budding. C-terminally truncated activated CHMP4B retaining the ALIX binding site forms linear, circular, and helical filaments in vitro, which can be bridged by ALIX. Our data suggest that dimeric ALIX represents the active form that interacts with ESCRT-III CHMP4 polymers and functions as a scaffolding protein during membrane remodeling processes.
Collapse
Affiliation(s)
- R. Pires
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - B. Hartlieb
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - L. Signor
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - G. Schoehn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - S. Lata
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - M. Roessle
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg Germany
| | - C. Moriscot
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - S. Popov
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - A. Hinz
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - M. Jamin
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - V. Boyer
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - R. Sadoul
- Grenoble Institute of Neurosciences, INSERM Unit 387 and Université Joseph Fourier, Grenoble I, F-38043 Grenoble, France
| | - E. Forest
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - D. I. Svergun
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg Germany
| | - H. G. Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - W. Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| |
Collapse
|
43
|
Cauwe B, Martens E, Proost P, Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr Biol (Camb) 2009; 1:404-26. [PMID: 20023747 DOI: 10.1039/b904701h] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The action radius of matrix metalloproteinases or MMPs is not restricted to massive extracellular matrix (ECM) degradation, it extends to the proteolysis of numerous secreted and membrane-bound proteins. Although many instances exist in which cells disintegrate, often in conjunction with induction of MMPs, the intracellular MMP substrate repertoire or degradome remains relatively unexplored. We started an unbiased exploration of the proteolytic modification of intracellular proteins by MMPs, using gelatinase B/MMP-9 as a model enzyme. To this end, multidimensional degradomics technology was developed by the integration of broadly available biotechniques. In this way, 100-200 MMP-9 candidate substrates were isolated, of which 69 were identified. Integration of these results with the known biological functions of the substrates revealed many novel MMP-9 substrates from the intracellular matrix (ICM), such as actin, tubulin, gelsolin, moesin, ezrin, Arp2/3 complex subunits, filamin B and stathmin. About 2/3 of the identified candidates were autoantigens described in multiple autoimmune conditions and in cancer (e.g. annexin I, nucleolin, citrate synthase, HMGB1, alpha-enolase, histidyl-tRNA synthetase, HSP27, HSC70, HSP90, snRNP D3). These findings led to the insight that MMPs and other proteases may have novel (immuno)regulatory properties by the clearance of toxic and immunogenic burdens of abundant ICM proteins released after extensive necrosis. In line with the extracellular processing of organ-specific autoantigens, proteolysis might also assist in the generation of immunodominant 'neo-epitopes' from systemic autoantigens. The study of proteolysis of ICM molecules, autoantigens, alarmins and other crucial intracellular molecules may result in the discovery of novel roles for proteolytic modification.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | |
Collapse
|
44
|
Votteler J, Iavnilovitch E, Fingrut O, Shemesh V, Taglicht D, Erez O, Sörgel S, Walther T, Bannert N, Schubert U, Reiss Y. Exploring the functional interaction between POSH and ALIX and the relevance to HIV-1 release. BMC BIOCHEMISTRY 2009; 10:12. [PMID: 19393081 PMCID: PMC2680910 DOI: 10.1186/1471-2091-10-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/24/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ALG2-interacting protein X (ALIX)/AIP1 is an adaptor protein with multiple functions in intracellular protein trafficking that plays a central role in the biogenesis of enveloped viruses. The ubiquitin E3-ligase POSH (plenty of SH3) augments HIV-1 egress by facilitating the transport of Gag to the cell membrane. Recently, it was reported, that POSH interacts with ALIX and thereby enhances ALIX mediated phenotypes in Drosophila. RESULTS In this study we identified ALIX as a POSH ubiquitination substrate in human cells: POSH induces the ubiquitination of ALIX that is modified on several lysine residues in vivo and in vitro. This ubiquitination does not destabilize ALIX, suggesting a regulatory function. As it is well established that ALIX rescues virus release of L-domain mutant HIV-1, HIV-1DeltaPTAP, we demonstrated that wild type POSH, but not an ubiquitination inactive RING finger mutant (POSHV14A), substantially enhances ALIX-mediated release of infectious virions derived from HIV-1DeltaPTAP L-domain mutant (YPXnL-dependent HIV-1). In further agreement with the idea of a cooperative function of POSH and ALIX, mutating the YPXnL-ALIX binding site in Gag completely abrogated augmentation of virus release by overexpression of POSH. However, the effect of the POSH-mediated ubiquitination appears to be auxiliary, but not necessary, as silencing of POSH by RNAi does not disturb ALIX-augmentation of virus release. CONCLUSION Thus, the cumulative results identified ALIX as an ubiquitination substrate of POSH and indicate that POSH and ALIX cooperate to facilitate efficient virus release. However, while ALIX is obligatory for the release of YPXnL-dependent HIV-1, POSH, albeit rate-limiting, may be functionally interchangeable.
Collapse
Affiliation(s)
- Jörg Votteler
- Institute of Virology, Friedrich-Alexander University, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The CHMP4b- and Src-docking sites in the Bro1 domain are autoinhibited in the native state of Alix. Biochem J 2009; 418:277-84. [PMID: 19016654 DOI: 10.1042/bj20081388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Bro1 domain of Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], which plays important roles in endosomal sorting and multiple ESCRT (endosomal sorting complex required for transport)-linked processes, contains the docking sites for the ESCRT-III component CHMP4b (charged multivesicular body protein 4b) and the regulatory tyrosine kinase, Src. Although the structural bases for these docking sites have been defined by crystallography studies, it has not been determined whether these sites are available in the native state of Alix. In the present study, we demonstrate that these two docking sites are unavailable in recombinant Alix under native conditions and that their availabilities can be induced by detergents. In HEK (human embryonic kidney)-293 cell lysates, these two docking sites are not available in cytosolic Alix, but are available in membrane-bound Alix. These findings show that the native state of Alix does not have a functional Bro1 domain and predict that Alix's involvement in endosomal sorting and other ESCRT-linked processes requires an activation step that relieves the autoinhibition of the Bro1 domain.
Collapse
|
46
|
Abstract
The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases.
Collapse
Affiliation(s)
- Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
47
|
The HIV-1 p6/EIAV p9 docking site in Alix is autoinhibited as revealed by a conformation-sensitive anti-Alix monoclonal antibody. Biochem J 2008; 414:215-20. [PMID: 18476810 DOI: 10.1042/bj20080642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], a component of the endosomal sorting machinery, contains a three-dimensional docking site for HIV-1 p6(Gag) or EIAV (equine infectious anaemia virus) p9(Gag), and binding of the viral protein to this docking site allows the virus to hijack the host endosomal sorting machinery for budding from the plasma membrane. In the present study, we identified a monoclonal antibody that specifically recognizes the docking site for p6(Gag)/p9(Gag) and we used this antibody to probe the accessibility of the docking site in Alix. Our results show that the docking site is not available in cytosolic or recombinant Alix under native conditions and becomes available upon addition of the detergent Nonidet P40 or SDS. In HEK (human embryonic kidney)-293 cell lysates, an active p6(Gag)/p9(Gag) docking site is specifically available in Alix from the membrane fraction. The findings of the present study demonstrate that formation or exposure of the p6(Gag)/p9(Gag) docking site in Alix is a regulated event and that Alix association with the membrane may play a positive role in this process.
Collapse
|
48
|
Ammer AG, Weed SA. Cortactin branches out: roles in regulating protrusive actin dynamics. CELL MOTILITY AND THE CYTOSKELETON 2008; 65:687-707. [PMID: 18615630 PMCID: PMC2561250 DOI: 10.1002/cm.20296] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery in the early 1990's, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures.
Collapse
Affiliation(s)
- Amanda Gatesman Ammer
- Department of Neuroscience and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | |
Collapse
|
49
|
Pan S, Wang R, Zhou X, Corvera J, Kloc M, Sifers R, Gallick GE, Lin SH, Kuang J. Extracellular Alix regulates integrin-mediated cell adhesions and extracellular matrix assembly. EMBO J 2008; 27:2077-90. [PMID: 18636094 DOI: 10.1038/emboj.2008.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/19/2008] [Indexed: 01/12/2023] Open
Abstract
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in alpha5beta1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes alpha5beta1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605-709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The ESCRT pathway facilitates membrane fission events during enveloped virus budding, multivesicular body formation, and cytokinesis. To promote HIV budding and cytokinesis, the ALIX protein must bind and recruit CHMP4 subunits of the ESCRT-III complex, which in turn participate in essential membrane remodeling functions. Here, we report that the Bro1 domain of ALIX binds specifically to C-terminal residues of the human CHMP4 proteins (CHMP4A-C). Crystal structures of the complexes reveal that the CHMP4 C-terminal peptides form amphipathic helices that bind across the conserved concave surface of ALIX(Bro1). ALIX-dependent HIV-1 budding is blocked by mutations in exposed ALIX(Bro1) residues that help contribute to the binding sites for three essential hydrophobic residues that are displayed on one side of the CHMP4 recognition helix (M/L/IxxLxxW). The homologous CHMP1-3 classes of ESCRT-III proteins also have C-terminal amphipathic helices, but, in those cases, the three hydrophobic residues are arrayed with L/I/MxxxLxxL spacing. Thus, the distinct patterns of hydrophobic residues provide a "code" that allows the different ESCRT-III subunits to bind different ESCRT pathway partners, with CHMP1-3 proteins binding MIT domain-containing proteins, such as VPS4 and Vta1/LIP5, and CHMP4 proteins binding Bro1 domain-containing proteins, such as ALIX.
Collapse
|