1
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Front Pharmacol 2020; 11:1216. [PMID: 32903404 PMCID: PMC7435011 DOI: 10.3389/fphar.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-activated Inwardly Rectifying K+-channel (GIRK) modulates heart rate and neuronal excitability. Following G-Protein Coupled Receptor (GPCR)-mediated activation of heterotrimeric G proteins (Gαβγ), opening of the channel is obtained by direct binding of Gβγ subunits. Interestingly, GIRKs are solely activated by Gβγ subunits released from Gαi/o-coupled GPCRs, despite the fact that all receptor types, for instance Gαq-coupled, are also able to provide Gβγ subunits. It is proposed that this specificity and fast kinetics of activation stem from pre-coupling (or pre-assembly) of proteins within this signaling cascade. However, many studies, including our own, point towards a diffusion-limited mechanism, namely collision coupling. Here, we set out to address this long-standing question by combining electrophysiology, imaging, and mathematical modeling. Muscarinic-2 receptors (M2R) and neuronal GIRK1/2 channels were coexpressed in Xenopus laevis oocytes, where we monitored protein surface expression, current amplitude, and activation kinetics. Densities of expressed M2R were assessed using a fluorescently labeled GIRK channel as a molecular ruler. We then incorporated our results, along with available kinetic data reported for the G-protein cycle and for GIRK1/2 activation, to generate a comprehensive mathematical model for the M2R-G-protein-GIRK1/2 signaling cascade. We find that, without assuming any irreversible interactions, our collision coupling kinetic model faithfully reproduces the rate of channel activation, the changes in agonist-evoked currents and the acceleration of channel activation by increased receptor densities.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Etay Artzy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Hanna Parnas
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Department of Neonatology, Schneider Children's Hospital, Petah Tikva, Israel
| |
Collapse
|
4
|
He Z, Yu L, Luo S, Li Q, Huang S, An Y. RGS4 Regulates Proliferation And Apoptosis Of NSCLC Cells Via microRNA-16 And Brain-Derived Neurotrophic Factor. Onco Targets Ther 2019; 12:8701-8714. [PMID: 31695428 PMCID: PMC6821062 DOI: 10.2147/ott.s221657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Regulator of G-protein signaling (RGS) proteins are GTPase-activating proteins that target the α-subunit of heterotrimeric G proteins. Many studies have shown that RGS proteins contribute to tumorigenesis and metastasis. However, the mechanism in which RGS proteins, especially RGS4, affect the development of non-small cell lung cancer (NSCLC) remains unclear. The aim of this study was to characterize the role of RGS4 in NSCLC. METHODS RGS4 expression in NSCLC tissues was assessed using an immunohistochemistry tissue microarray. Additionally, RGS4 was knocked down using short-hairpin RNA to assess the regulatory function of RGS4 in the biological behaviors of human NSCLC cell lines. A xenograft lung cancer model in nude BALB/c mice was established to study whether RGS4 knockdown inhibits cancer cell proliferation in vivo. RESULTS We observed an increase in RGS4 protein levels in NSCLC samples. RGS4 knockdown inhibited cell proliferation and induced apoptosis in H1299 and PC9 cell lines, but did not affect cell migration. Moreover, we found that RGS4 negatively regulated the expression of microRNA-16 (miR-16), a tumor suppressor. The inhibition of miR-16 resulted in upregulated RGS4 expression. We also found that RGS4 regulated the expression of brain-derived neurotrophic factor (BDNF) and activated the BDNF-tropomyosin receptor kinase B signaling pathway. CONCLUSION This study revealed that RGS4 overexpression positively correlated with the development of NSCLC. TDownstream RGS4 targets (eg, miR-16 and BDNF) might be involved in the development of NSCLC and may serve as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Zheng He
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
- Department of Clinical Laboratory, Chinese People’s Liberation Army General Hospital, Beijing100853, People’s Republic of China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou318000, People’s Republic of China
| | - Shiyi Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong250062, People’s Republic of China
| | - Yunhe An
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
| |
Collapse
|
5
|
Heblinski M, Bladen C, Connor M. Regulation of heterologously expressed 5-HT 1B receptors coupling to potassium channels in AtT-20 cells. Br J Pharmacol 2018; 176:451-465. [PMID: 30447001 DOI: 10.1111/bph.14547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE 5-HT1B receptors are widely expressed GPCRs and a target of triptans, the most commonly prescribed anti-migraine drugs. There is very limited information about the acute, agonist-induced regulation of 5-HT1B receptor signalling and so we sought to characterize this in a neuron-like system. EXPERIMENTAL APPROACH Epitope-tagged human 5-HT1B receptors were expressed in mouse AtT20 cells. 5-HT1B receptor signalling was assessed using whole-cell patch-clamp recordings of endogenous G protein-gated inwardly rectified potassium (GIRK) channels, and receptor localization measured using immunofluorescence. KEY RESULTS 5-HT (EC50 65 nM) and sumatriptan (EC50 165 nM) activated GIRK channels in AtT20 cells expressing 5-HT1B receptors. Continuous application of both 5-HT (EC50 120 nM) and sumatriptan (EC50 280 nM) produced profound desensitization of 5-HT1B receptor signalling within a few minutes. Complete recovery from desensitization was observed after 10 min. Both 5-HT and sumatriptan induced significant heterologous desensitization of SRIF (somatostatin)-activated GIRK currents, with the 5-HT-induced heterologous desensitization being blocked by the protein kinase inhibitor staurosporine. Both agonists induced modest 5-HT1B receptor internalization, with a time course much slower than receptor desensitization. CONCLUSIONS AND IMPLICATIONS In AtT-20 cells, 5-HT1B receptors undergo rapid and reversible desensitization at concentrations of agonist similar to those required to activate the receptor. Desensitization is incomplete, and the continued signalling of the receptor in the presence of the agonist may lead to cellular adaptations. Finally, 5-HT1B receptor activation causes significant heterologous desensitization, which may lead to a reduced effectiveness of unrelated drugs in vivo.
Collapse
Affiliation(s)
- Marika Heblinski
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Christopher Bladen
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Perschbacher KJ, Deng G, Fisher RA, Gibson-Corley KN, Santillan MK, Grobe JL. Regulators of G protein signaling in cardiovascular function during pregnancy. Physiol Genomics 2018; 50:590-604. [PMID: 29702036 PMCID: PMC6139632 DOI: 10.1152/physiolgenomics.00037.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor signaling mechanisms are implicated in many aspects of cardiovascular control, and dysfunction of such signaling mechanisms is commonly associated with disease states. Investigators have identified a large number of regulator of G protein signaling (RGS) proteins that variously contribute to the modulation of intracellular second-messenger signaling kinetics. These many RGS proteins each interact with a specific set of second-messenger cascades and receptor types and exhibit tissue-specific expression patterns. Increasing evidence supports the contribution of RGS proteins, or their loss, in the pathogenesis of cardiovascular dysfunctions. This review summarizes the current understanding of the functional contributions of RGS proteins, particularly within the B/R4 family, in cardiovascular disorders of pregnancy including gestational hypertension, uterine artery dysfunction, and preeclampsia.
Collapse
Affiliation(s)
| | - Guorui Deng
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
- Obesity Education & Research Initiative, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|
7
|
Differential association of GABA B receptors with their effector ion channels in Purkinje cells. Brain Struct Funct 2017; 223:1565-1587. [PMID: 29177691 PMCID: PMC5869904 DOI: 10.1007/s00429-017-1568-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022]
Abstract
Metabotropic GABAB receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABAB receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABAB1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABAB receptors with two key effector ion channels, the G protein-gated inwardly rectifying K+ (GIRK/Kir3) channel and the voltage-dependent Ca2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABAB receptors co-assembled with GIRK and CaV2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABAB1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABAB1 and CaV2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABAB1 and GIRK2 or CaV2.1 channels was detected, inter-cluster distance for GABAB1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABAB1 and CaV2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABAB receptors are associated with GIRK and CaV2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABAB receptors and their effector ion channels in the cerebellar network.
Collapse
|
8
|
Doupnik CA. RGS Redundancy and Implications in GPCR-GIRK Signaling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:87-116. [PMID: 26422983 DOI: 10.1016/bs.irn.2015.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Regulators of G protein signaling (RGS proteins) are key components of GPCR complexes, interacting directly with G protein α-subunits to enhance their intrinsic GTPase activity. The functional consequence is an accelerated termination of G protein effectors including certain ion channels. RGS proteins have a profound impact on the membrane-delimited gating behavior of G-protein-activated inwardly rectifying K(+) (GIRK) channels as demonstrated in reconstitution assays and recent RGS knockout mice studies. Akin to GPCRs and G protein αβγ subunits, multiple RGS isoforms are expressed within single GIRK-expressing neurons, suggesting functional redundancy and/or specificity in GPCR-GIRK channel signaling. The extent and impact of RGS redundancy in neuronal GPCR-GIRK channel signaling is currently not fully appreciated; however, recent studies from RGS knockout mice are providing important new clues on the impact of individual endogenous RGS proteins and the extent of RGS functional redundancy. Incorporating "tools" such as engineered RGS-resistant Gαi/o subunits provide an important assessment method for determining the impact of all endogenous RGS proteins on a given GPCR response and an accounting benchmark to assess the impact of individual RGS knockouts on overall RGS redundancy within a given neuron. Elucidating the degree of regulation attributable to specific RGS proteins in GIRK channel function will aid in the assessment of individual RGS proteins as viable therapeutic targets in epilepsy, ataxia's, memory disorders, and a growing list of neurological disorders.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
9
|
Stewart A, Maity B, Fisher RA. Two for the Price of One: G Protein-Dependent and -Independent Functions of RGS6 In Vivo. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:123-51. [PMID: 26123305 DOI: 10.1016/bs.pmbts.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Regulator of G protein signaling 6 (RGS6) is unique among the members of the RGS protein family as it remains the only protein with the demonstrated capacity to control G protein-dependent and -independent signaling cascades in vivo. RGS6 inhibits signaling mediated by γ-aminobutyric acid B receptors, serotonin 1A receptors, μ opioid receptors, and muscarinic acetylcholine 2 receptors. RGS6 deletion triggers distinct behavioral phenotypes resulting from potentiated signaling by these G protein-coupled receptors namely ataxia, a reduction in anxiety and depression, enhanced analgesia, and increased parasympathetic tone, respectively. In addition, RGS6 possesses potent proapoptotic and growth suppressive actions. In heart, RGS6-dependent reactive oxygen species (ROS) production promotes doxorubicin (Dox)-induced cardiomyopathy, while in cancer cells RGS6/ROS signaling is necessary for activation of the ataxia telangiectasia mutated/p53/apoptosis pathway required for the chemotherapeutic efficacy of Dox. Further, by facilitating Tip60 (trans-acting regulator protein of HIV type 1-interacting protein 60 kDa)-dependent DNA methyltransferase 1 degradation, RGS6 suppresses cellular transformation in response to oncogenic Ras. The culmination of these G protein-independent actions results in potent tumor suppressor actions of RGS6 in the murine mammary epithelium. This work summarizes evidence from human genetic studies and model animals implicating RGS6 in normal physiology, disease, and the pharmacological actions of multiple drugs. Though efforts by multiple laboratories have contributed to the ever-growing RGS6 oeuvre, the pleiotropic nature of this gene will likely lead to additional work detailing the importance of RGS6 in neuropsychiatric disorders, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Biswanath Maity
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
10
|
Chen IS, Furutani K, Inanobe A, Kurachi Y. RGS4 regulates partial agonism of the M2 muscarinic receptor-activated K+ currents. J Physiol 2014; 592:1237-48. [PMID: 24421355 PMCID: PMC3961084 DOI: 10.1113/jphysiol.2013.269803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022] Open
Abstract
Partial agonists are used clinically to avoid overstimulation of receptor-mediated signalling, as they produce a submaximal response even at 100% receptor occupancy. The submaximal efficacy of partial agonists is due to conformational change of the agonist-receptor complex, which reduces effector activation. In addition to signalling activators, several regulators help control intracellular signal transductions. However, it remains unclear whether these signalling regulators contribute to partial agonism. Here we show that regulator of G-protein signalling (RGS) 4 is a determinant for partial agonism of the M2 muscarinic receptor (M2R). In rat atrial myocytes, pilocarpine evoked smaller G-protein-gated K(+) inwardly rectifying (KG) currents than those evoked by ACh. In a Xenopus oocyte expression system, pilocarpine acted as a partial agonist in the presence of RGS4 as it did in atrial myocytes, while it acted like a full agonist in the absence of RGS4. Functional couplings within the agonist-receptor complex/G-protein/RGS4 system controlled the efficacy of pilocarpine relative to ACh. The pilocarpine-M2R complex suppressed G-protein-mediated activation of KG currents via RGS4. Our results demonstrate that partial agonism of M2R is regulated by the RGS4-mediated inhibition of G-protein signalling. This finding helps us to understand the molecular components and mechanism underlying the partial agonism of M2R-mediated physiological responses.
Collapse
Affiliation(s)
- I-Shan Chen
- Department of Pharmacology, Graduate School of MedicineJapan
| | - Kazuharu Furutani
- Department of Pharmacology, Graduate School of MedicineJapan
- Center for Advanced Medical Engineering and Informatics, Osaka UniversityJapan
| | - Atsushi Inanobe
- Department of Pharmacology, Graduate School of MedicineJapan
- Center for Advanced Medical Engineering and Informatics, Osaka UniversityJapan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of MedicineJapan
- Center for Advanced Medical Engineering and Informatics, Osaka UniversityJapan
| |
Collapse
|
11
|
Wydeven N, Posokhova E, Xia Z, Martemyanov KA, Wickman K. RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate. J Biol Chem 2013; 289:2440-9. [PMID: 24318880 DOI: 10.1074/jbc.m113.520742] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K(+) channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4(-/-), Rgs6(-/-), and Rgs4(-/-):Rgs6(-/-) mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6(-/-) mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6(-/-) and Gβ5(-/-) mice, suggest that the partial rescue of phenotypes in Rgs4(-/-):Rgs6(-/-) mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.
Collapse
Affiliation(s)
- Nicole Wydeven
- From the Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455 and
| | | | | | | | | |
Collapse
|
12
|
Membrane channels as integrators of G-protein-mediated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:521-31. [PMID: 24028827 DOI: 10.1016/j.bbamem.2013.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/14/2013] [Accepted: 08/21/2013] [Indexed: 01/03/2023]
Abstract
A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca(2+) concentrations in both excitatory and non-excitatory cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
13
|
Bastin G, Heximer SP. Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013; 288:21836-49. [PMID: 23733193 DOI: 10.1074/jbc.m113.466888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
14
|
GIRK channel modulation by assembly with allosterically regulated RGS proteins. Proc Natl Acad Sci U S A 2012; 109:19977-82. [PMID: 23169654 DOI: 10.1073/pnas.1214337109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
G-protein-activated inward-rectifying K(+) (GIRK) channels hyperpolarize neurons to inhibit synaptic transmission throughout the nervous system. By accelerating G-protein deactivation kinetics, the regulator of G-protein signaling (RGS) protein family modulates the timing of GIRK activity. Despite many investigations, whether RGS proteins modulate GIRK activity in neurons by mechanisms involving kinetic coupling, collision coupling, or macromolecular complex formation has remained unknown. Here we show that GIRK modulation occurs by channel assembly with R7-RGS/Gβ5 complexes under allosteric control of R7 RGS-binding protein (R7BP). Elimination of R7BP occludes the Gβ5 subunit that interacts with GIRK channels. R7BP-bound R7-RGS/Gβ5 complexes and Gβγ dimers interact noncompetitively with the intracellular domain of GIRK channels to facilitate rapid activation and deactivation of GIRK currents. By disrupting this allosterically regulated assembly mechanism, R7BP ablation augments GIRK activity. This enhanced GIRK activity increases the drug effects of agonists acting at G-protein-coupled receptors that signal via GIRK channels, as indicated by greater antinociceptive effects of GABA(B) or μ-opioid receptor agonists. These findings show that GIRK current modulation in vivo requires channel assembly with allosterically regulated RGS protein complexes, which provide a target for modulating GIRK activity in neurological disorders in which these channels have crucial roles, including pain, epilepsy, Parkinson's disease and Down syndrome.
Collapse
|
15
|
Yang D, Lyashkov AE, Li Y, Ziman BD, Lakatta EG. RGS2 overexpression or G(i) inhibition rescues the impaired PKA signaling and slow AP firing of cultured adult rabbit pacemaker cells. J Mol Cell Cardiol 2012; 53:687-94. [PMID: 22921807 DOI: 10.1016/j.yjmcc.2012.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 07/23/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022]
Abstract
Freshly isolated adult rabbit sinoatrial node cells (f-SANC) are an excellent model for studies of autonomic signaling, but are not amenable to genetic manipulation. We have developed and characterized a stable cultured rabbit SANC (c-SANC) model that is suitable for genetic manipulation to probe mechanisms of spontaneous action potential (AP) firing. After 48 h in culture, c-SANC generate stable, rhythmic APs at 34±0.5°C, at a rate that is 50% less than f-SANC. In c- vs. f-SANC: AP duration is prolonged; phosphorylation of phospholamban at Ser(16) and type2 ryanodine receptor (RyR2) at Ser(2809) are reduced; and the level of type2 regulator of G-protein signaling (RGS2), that facilitates adenylyl cyclases/cAMP/protein kinase A (PKA) via G(i) inhibition, is substantially reduced. Consistent with the interpretation that cAMP/PKA signaling becomes impaired in c-SANC, acute β-adrenergic receptor stimulation increases phospholamban and RyR2 phosphorylation, enhances RGS2-labeling density, and accelerates the AP firing rate to the similar maximum in c- and f-SANC. Specific PKA inhibition completely inhibits all β-adrenergic receptor effects. Adv-RGS2 infection, or pertussis toxin treatment to disable G(i)-signaling, each partially rescues the c-SANC spontaneous AP firing rate. Thus, a G(i)-dependent reduction in PKA-dependent protein phosphorylation, including that of Ca(2+) cycling proteins, reduces the spontaneous AP firing rate of c-SANC, and can be reversed by genetic or pharmacologic manipulation of PKA signaling.
Collapse
Affiliation(s)
- Dongmei Yang
- Laboratory of Cardiovascular Science, IRP, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | | | | | | | | |
Collapse
|
16
|
Mighiu AS, Heximer SP. Controlling Parasympathetic Regulation of Heart Rate: A Gatekeeper Role for RGS Proteins in the Sinoatrial Node. Front Physiol 2012; 3:204. [PMID: 22707940 PMCID: PMC3374348 DOI: 10.3389/fphys.2012.00204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/23/2012] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitters released from sympathetic and parasympathetic nerve terminals in the sinoatrial node (SAN) exert their effects via G-protein-coupled receptors. Integration of these different G-protein signals within pacemaker cells of the SAN is critical for proper regulation of heart rate and function. For example, excessive parasympathetic signaling can be associated with sinus node dysfunction (SND) and supraventricular arrhythmias. Our previous work has shown that one member of the regulator of G-protein signaling (RGS) protein family, RGS4, is highly and selectively expressed in pacemaker cells of the SAN. Consistent with its role as an inhibitor of parasympathetic signaling, RGS4-knockout mice have reduced basal heart rates and enhanced negative chronotropic responses to parasympathetic agonists. Moreover, RGS4 appears to be an important part of SA nodal myocyte signaling pathways that mediate G-protein-coupled inwardly rectifying potassium channel (GIRK) channel activation/deactivation and desensitization. Since RGS4 acts immediately downstream of M2 muscarinic receptors, it is tempting to speculate that RGS4 functions as a master regulator of parasympathetic signaling upstream of GIRKs, HCNs, and L-type Ca2+ channels in the SAN. Thus, loss of RGS4 function may lead to increased susceptibility to conditions associated with increased parasympathetic signaling, including bradyarrhythmia, SND, and atrial fibrillation.
Collapse
Affiliation(s)
- Alexandra S Mighiu
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
17
|
Schwendt M, Sigmon SA, McGinty JF. RGS4 overexpression in the rat dorsal striatum modulates mGluR5- and amphetamine-mediated behavior and signaling. Psychopharmacology (Berl) 2012; 221:621-35. [PMID: 22193724 PMCID: PMC4507824 DOI: 10.1007/s00213-011-2606-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/30/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE Regulator of G-protein signaling 4 (RGS4) is a brain-enriched negative modulator of G-protein-coupled receptor signaling. Decreased availability of RGS4 in the frontal cortex and striatum has been described in animal models of schizophrenia and drug addiction. However, cellular and behavioral consequences of dysregulated RGS4-dependent receptor signaling in the brain remain poorly understood. OBJECTIVE This study aims to investigate whether RGS4, through inhibiting the function of mGluR5 receptors in the dorsal striatum (dSTR), regulates cellular and behavioral responses to acute amphetamine. METHODS After herpes simplex virus-RGS4 was infused into the dSTR, RGS4 overexpression as well as binding of recombinant RGS4 to mGluR5 was assessed. The effect of RGS4 overexpression on behavioral activity induced by the intrastriatal mGluR5 agonist, DHPG, or amphetamine was recorded. Activation of extracellular signal-regulated kinase (ERK) and Akt (protein kinase B) was measured in the dSTR tissue at the end of each behavioral experiment. RESULTS RGS4 overexpressed in the dSTR coimmunoprecipitated with mGluR5 receptors and suppressed both behavioral activity and phospho-ERK levels induced by DHPG. RGS4 overexpression or the mGluR5 antagonist, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (MTEP), attenuated amphetamine-induced phospho-ERK (but not phospho-Akt) levels. RGS4 suppressed amphetamine-induced vertical activity and augmented horizontal activity over 90 min. Similarly, MTEP augmented amphetamine-induced horizontal activity, but did not affect vertical activity. CONCLUSIONS The present data demonstrate that RGS4 in the dSTR attenuates amphetamine-induced ERK signaling and decreases the behavioral efficacy of acute amphetamine likely by limiting mGluR5 function.
Collapse
Affiliation(s)
| | | | - Jacqueline F. McGinty
- Address all correspondence and reprint requests to: Jacqueline McGinty, Ph.D., Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, MSC 510, Charleston, SC 29425-5100, tel 843-792-9036, fax 843-792-4423,
| |
Collapse
|
18
|
Stewart A, Huang J, Fisher RA. RGS Proteins in Heart: Brakes on the Vagus. Front Physiol 2012; 3:95. [PMID: 22685433 PMCID: PMC3368389 DOI: 10.3389/fphys.2012.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/27/2012] [Indexed: 12/14/2022] Open
Abstract
It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh) release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of G(i/o)-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK) channels via Gβγ resulting in membrane hyperpolarization and inhibition of action potential (AP) firing. However, expression of M2R-GIRK signaling components in heterologous systems failed to recapitulate native channel gating kinetics. The missing link was identified with the discovery of regulator of G protein signaling (RGS) proteins, which act as GTPase-activating proteins to accelerate the intrinsic GTPase activity of Gα resulting in termination of Gα- and Gβγ-mediated signaling to downstream effectors. Studies in mice expressing an RGS-insensitive Gα(i2) mutant (G184S) implicated endogenous RGS proteins as key regulators of parasympathetic signaling in heart. Recently, two RGS proteins have been identified as critical regulators of M2R signaling in heart. RGS6 exhibits a uniquely robust expression in heart, especially in sinoatrial (SAN) and atrioventricular nodal regions. Mice lacking RGS6 exhibit increased bradycardia and inhibition of SAN AP firing in response to CCh as well as a loss of rapid activation and deactivation kinetics and current desensitization for ACh-induced GIRK current (I(KACh)). Similar findings were observed in mice lacking RGS4. Thus, dysregulation in RGS protein expression or function may contribute to pathologies involving aberrant electrical activity in cardiac pacemaker cells. Moreover, RGS6 expression was found to be up-regulated in heart under certain pathological conditions, including doxorubicin treatment, which is known to cause life-threatening cardiotoxicity and atrial fibrillation in cancer patients. On the other hand, increased vagal tone may be cardioprotective in heart failure where acetylcholinesterase inhibitors and vagal stimulation have been proposed as potential therapeutics. Together, these studies identify RGS proteins, especially RGS6, as new therapeutic targets for diseases such as sick sinus syndrome or other maladies involving abnormal autonomic control of the heart.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
19
|
Abstract
Voltage-gated ion channels are transmembrane proteins that control nerve impulses and cell homeostasis. Signaling molecules that regulate ion channel activity and density at the plasma membrane must be specifically and efficiently coupled to these channels in order to control critical physiological functions such as action potential propagation. Although their regulation by G-protein receptor activation has been extensively explored, the assembly of ion channels into signaling complexes of GPCRs plays a fundamental role, engaging specific downstream -signaling pathways that trigger precise downstream effectors. Recent work has confirmed that GPCRs can intimately interact with ion channels and serve as -chaperone proteins that finely control their gating and trafficking in subcellular microdomains. This chapter aims to describe examples of GPCR-ion channel co-assembly, focusing mainly on signaling complexes between GPCRs and voltage-gated calcium channels.
Collapse
|
20
|
Maurice P, Benleulmi-Chaachoua A, Jockers R. Differential assembly of GPCR signaling complexes determines signaling specificity. Subcell Biochem 2012; 63:225-40. [PMID: 23161141 DOI: 10.1007/978-94-007-4765-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent proteomic and biochemical evidence indicates that cellular -signaling is organized in protein modules. G protein-coupled receptors (GPCRs) are privileged entry points for extracellular signals that are transmitted through the plasma membrane into the cell. The adequate cellular response and signaling specificity is regulated by GPCR-associated protein modules. The composition of these modules is dynamic and might depend on receptor stimulation, the proteome of a given cellular context, the subcellular localization of receptor-associated modules, the formation of GPCR oligomers and the variation of expression levels of components of these modules under physiological, for example circadian rhythm, or pathological conditions. The current article will highlight the importance of GPCR-associated protein modules as a biochemical basis for signaling specificity.
Collapse
Affiliation(s)
- Pascal Maurice
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France
| | | | | |
Collapse
|
21
|
Sahlholm K. The role of RGS protein in agonist-dependent relaxation of GIRK currents in Xenopus oocytes. Biochem Biophys Res Commun 2011; 415:509-14. [PMID: 22068057 DOI: 10.1016/j.bbrc.2011.10.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 01/28/2023]
Abstract
G protein coupled inward rectifier K(+) channels (GIRK) are activated by the G(βγ) subunits of G proteins upon activation of G protein coupled receptors (GPCRs). Receptor-stimulated GIRK currents are known to possess a curious property, termed "agonist-dependent relaxation," denoting a slow current increase upon stepping the membrane voltage from positive to negative potentials. Regulators of G protein signaling (RGS) proteins have earlier been implicated in this phenomenon since RGS coexpression was required for relaxation to be observed in heterologous expression systems. However, a recent study presented contrasting evidence that GIRK current relaxation reflects voltage sensitive agonist binding to the GPCR. The present study re-examined the role of RGS protein in agonist-dependent relaxation and found that RGS coexpression is not necessary for the relaxation phenomenon. However, RGS4 speeds up relaxation kinetics, allowing the phenomenon to be observed using shorter voltage steps. These findings resolve the controversy regarding the role of RGS protein vs. GPCR voltage sensitivity in mediating agonist-dependent relaxation of GIRK currents.
Collapse
Affiliation(s)
- Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
22
|
Autocrine signaling via A(1) adenosine receptors causes downregulation of M(2) receptors in adult rat atrial myocytes in vitro. Pflugers Arch 2011; 461:165-76. [PMID: 21061016 DOI: 10.1007/s00424-010-0897-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
G protein-activated K(+) channels composed of Kir3 (GIRK) subunits contribute to regulation of heart rate and excitability. Opening of these channels in myocytes is increased by binding of G(βγ) upon activation of muscarinic M(2) receptors (M(2)-R) or A(1) adenosine receptors (A(1)-R). It has been shown that saturating activation of A(1)-R resulted in a smaller GIRK current than activation of M(2)-R. Adenovirus-driven overexpression of the A(1)-R caused an increase in current induced by adenosine (I(K(Ado))), whereas the M(2)-R-activated current (I(K(ACh))) was reduced. Here, we sought to get deeper insight into the mechanism causing this negative crosstalk. GIRK current in cultured rat atrial myocytes was recorded in whole cell mode. Adenovirus-driven RNA interference targeting the M(2)-R resulted in a reduction in I(K(ACh)) without affecting I(K(Ado)), arguing against a competition of the two receptors for common signaling complexes. The negative effect of A(1)-R overexpression on I(K(ACh)) was reduced by the A(1)-R antagonist DPCPX and augmented by the agonist chloro-N6-cyclopentyladenosin (CCPA). In native myocytes incubation with either CCPA or the muscarinic agonist carbachol resulted in reduction in I(K(ACh)) and I(K(Ado)), suggesting common pathways of A(1)-R and M(2)-R downregulation. In the absence of agonist, inhibition of adenosine deaminase by EHNA or exposure to AMP, less to ADP, but not ATP resulted in reduction of I(K(ACh)) and I(K(Ado)). Our data indicate that atrial myocytes generate adenosine from extracellular AMP, which activates A(1)-R in an autocrine fashion. Chronic activation of A(1)-R causes parallel downregulation of both A(1)-R and M(2)-R.
Collapse
|
23
|
Ciruela F, Fernández-Dueñas V, Sahlholm K, Fernández-Alacid L, Nicolau JC, Watanabe M, Luján R. Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Eur J Neurosci 2010; 32:1265-77. [PMID: 20846323 DOI: 10.1111/j.1460-9568.2010.07356.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The stimulation of inhibitory neurotransmitter receptors, such as γ-aminobutyric acid type B (GABA(B) ) receptors, activates G protein-gated inwardly-rectifying K(+) (GIRK) channels, which influence membrane excitability. There is now evidence suggesting that G protein-coupled receptors and G protein-gated inwardly-rectifying K(+) [GIRK/family 3 of inwardly-rectifying K(+) (Kir3)] channels do not diffuse freely within the plasma membrane, but instead there are direct protein-protein interactions between them. Here, we used bioluminescence resonance energy transfer, co-immunoprecipitation, confocal and electron microscopy techniques to investigate the oligomerization of GABA(B) receptors with GIRK channels containing the GIRK3 subunit, whose contribution to functional channels is still unresolved. Co-expression of GABA(B) receptors and GIRK channels in human embryonic kidney-293 cells in combination with co-immunoprecipitation experiments established that the metabotropic receptor forms stable complexes with GIRK channels. Using bioluminescence resonance energy transfer, we have shown that, in living cells under physiological conditions, GABA(B) receptors interact directly with GIRK1/GIRK3 heterotetramers. In addition, we have provided evidence that the receptor-effector complexes are also found in vivo and identified that the cerebellar granule cells are one neuron population where the interaction probably takes place. Altogether, our data show that signalling complexes containing GABA(B) receptors and GIRK channels are formed shortly after biosynthesis, probably in the endoplasmic reticulum and/or endoplasmic reticulum/Golgi apparatus complex, suggesting that this might be a general feature of receptor-effector ion channel signal transduction and supporting a channel-forming role for the GIRK3 subunit.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia (4102), Departament Patologia i Terapèutica Experimental, Facultat de Medicina-Bellvitge, Universitat de IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
24
|
Szpara ML, Kobiler O, Enquist LW. A common neuronal response to alphaherpesvirus infection. J Neuroimmune Pharmacol 2010; 5:418-27. [PMID: 20401540 PMCID: PMC2990883 DOI: 10.1007/s11481-010-9212-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/12/2010] [Indexed: 12/11/2022]
Abstract
Alphaherpesviruses are a subfamily of the Herpesviridae that can invade the nervous system and establish either lytic or latent infections. The establishment of latent infection can occur only in neurons, indicating a unique virus-host interaction in these cells. Here, we compare results from seven microarray studies that focused on the host response of either neural tissue or isolated neurons to alphaherpesvirus infection. These studies utilized either herpes simplex virus type 1 or pseudorabies virus as the infectious agent. From these data, we have found common host responses spanning a variety of infection models in different species, with different herpesvirus strains, and during all phases of infection including lytic, latent, and reactivation. The repeated observation of transcriptional effects on these genes and gene families indicates their likely importance in host defenses or the viral infectious process. We discuss the possible role of these different genes and genes families in alphaherpesvirus infection.
Collapse
Affiliation(s)
- Moriah L. Szpara
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 314 Schultz Laboratory, Princeton NJ 08544, USA,
| | - Oren Kobiler
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 314 Schultz Laboratory, Princeton NJ 08544, USA,
| | - Lynn W. Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 314 Schultz Laboratory, Princeton NJ 08544, USA,
| |
Collapse
|
25
|
Vardya I, Drasbek KR, Gibson KM, Jensen K. Plasticity of postsynaptic, but not presynaptic, GABAB receptors in SSADH deficient mice. Exp Neurol 2010; 225:114-22. [PMID: 20570675 PMCID: PMC3654531 DOI: 10.1016/j.expneurol.2010.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/26/2010] [Accepted: 05/27/2010] [Indexed: 12/28/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal-recessively inherited disorder of gamma-aminobutyrate (GABA) catabolism characterized by ataxia and epilepsy. Since SSADH is responsible for GABA break-down downstream of GABA transaminase, patients manifest high extracellular levels of GABA, as well as the GABA(B) receptor (GABA(B)R) agonist gamma-hydroxybutyrate (GHB). SSADH knockout (KO) mice display absence seizures, which progress into lethal tonic-clonic seizures at around 3weeks of age. It is hypothesized that desensitization of GABA(B)Rs plays an important role in the disease, although detailed studies of pre- and postsynaptic GABA(B)Rs are not available. We performed patch-clamp recordings from layer 2/3 pyramidal neurons in neocortical brain slices of wild-type (WT) and SSADH KO mice. Electrical stimulation of GABAergic fibers during wash in of the GABA(B)R agonist baclofen revealed no difference in presynaptic GABA(B)R mediated inhibition of GABA release between WT and SSADH KO mice. In contrast, a significant decrease in postsynaptic baclofen-induced potassium currents was seen in SSADH KO mice. This reduction was unlikely to be caused by accumulation of potassium, GABA or GHB in the brain slices, or an altered expression of regulators of G-protein signaling (RGS) proteins. Finally, adenosine-induced potassium currents were also reduced in SSADH KO mice, which could suggest heterologous desensitization of the G-protein dependent effectors, leading to a reduction in G-protein coupled inwardly rectifying potassium (GIRK) channel responses. Our findings indicate that high GABA and GHB levels desensitize postsynaptic, but not certain presynaptic, GABA(B)Rs, promoting a decrease in GIRK channel function. These changes could contribute to the development of seizures in SSADH KO mice and potentially also in affected patients.
Collapse
Affiliation(s)
- Irina Vardya
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Denmark
| | - Kim R. Drasbek
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Denmark
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, USA
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Denmark
- Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| |
Collapse
|
26
|
Lambert NA, Johnston CA, Cappell SD, Kuravi S, Kimple AJ, Willard FS, Siderovski DP. Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proc Natl Acad Sci U S A 2010; 107:7066-71. [PMID: 20351284 PMCID: PMC2872438 DOI: 10.1073/pnas.0912934107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
G-protein heterotrimers, composed of a guanine nucleotide-binding G alpha subunit and an obligate G betagamma dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by G alpha-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a G alpha switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP x AlF(4)(-)-bound conformation of the G202A mutant was found to be nearly identical to wild-type, G alpha(i1)(G202A) x GDP assumed a divergent conformation more closely resembling the GDP x AlF(4)(-)-bound state. When placed within Saccharomyces cerevisiae G alpha subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus G alpha-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.
Collapse
Affiliation(s)
- Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912; and
| | - Christopher A. Johnston
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - Steven D. Cappell
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - Sudhakiranmayi Kuravi
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912; and
| | - Adam J. Kimple
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - Francis S. Willard
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - David P. Siderovski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
27
|
Brinks HL, Eckhart AD. Regulation of GPCR signaling in hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1268-75. [PMID: 20060896 DOI: 10.1016/j.bbadis.2010.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 01/04/2010] [Indexed: 01/08/2023]
Abstract
Hypertension represents a complex, multifactorial disease and contributes to the major causes of morbidity and mortality in industrialized countries: ischemic and hypertensive heart disease, stroke, peripheral atherosclerosis and renal failure. Current pharmacological therapy of essential hypertension focuses on the regulation of vascular resistance by inhibition of hormones such as catecholamines and angiotensin II, blocking them from receptor activation. Interaction of G-protein coupled receptor kinases (GRKs) and regulator of G-protein signaling (RGS) proteins with activated G-protein coupled receptors (GPCRs) effect the phosphorylation state of the receptor leading to desensitization and can profoundly impair signaling. Defects in GPCR regulation via these modulators have severe consequences affecting GPCR-stimulated biological responses in pathological situations such as hypertension, since they fine-tune and balance the major transmitters of vessel constriction versus dilatation, thus representing valuable new targets for anti-hypertensive therapeutic strategies. Elevated levels of GRKs are associated with human hypertensive disease and are relevant modulators of blood pressure in animal models of hypertension. This implies therapeutic perspective in a disease that has a prevalence of 65million in the United States while being directly correlated with occurrence of major adverse cardiac and vascular events. Therefore, therapeutic approaches using the inhibition of GRKs to regulate GPCRs are intriguing novel targets for treatment of hypertension and heart failure.
Collapse
Affiliation(s)
- Henriette L Brinks
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
28
|
Rubinstein M, Peleg S, Berlin S, Brass D, Keren-Raifman T, Dessauer CW, Ivanina T, Dascal N. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma. J Physiol 2009; 587:3473-91. [PMID: 19470775 PMCID: PMC2742276 DOI: 10.1113/jphysiol.2009.173229] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/19/2009] [Indexed: 12/15/2022] Open
Abstract
G protein activated K+ channels (GIRK, Kir3) are switched on by direct binding of Gbetagamma following activation of Gi/o proteins via G protein-coupled receptors (GPCRs). Although Galphai subunits do not activate GIRKs, they interact with the channels and regulate the gating pattern of the neuronal heterotetrameric GIRK1/2 channel (composed of GIRK1 and GIRK2 subunits) expressed in Xenopus oocytes. Coexpressed Galphai3 decreases the basal activity (Ibasal) and increases the extent of activation by purified or coexpressed Gbegagamma. Here we show that this regulation is exerted by the 'inactive' GDP-bound Galphai3GDP and involves the formation of Galphai3betagamma heterotrimers, by a mechanism distinct from mere sequestration of Gbetagamma 'away' from the channel. The regulation of basal and Gbetagamma-evoked current was produced by the 'constitutively inactive' mutant of Galphai3, Galphai3G203A, which strongly binds Gbetagamma, but not by the 'constitutively active' mutant, Galphai3Q204L, or by Gbetagamma-scavenging proteins. Furthermore, regulation by Galphai3G203A was unique to the GIRK1 subunit; it was not observed in homomeric GIRK2 channels. In vitro protein interaction experiments showed that purified Gbetagamma enhanced the binding of Galphai3GDP to the cytosolic domain of GIRK1, but not GIRK2. Homomeric GIRK2 channels behaved as a 'classical' Gbetagamma effector, showing low Ibasal and strong Gbetagamma-dependent activation. Expression of Galphai3G203A did not affect either Ibasal or Gbetagamma-induced activation. In contrast, homomeric GIRK1* (a pore mutant able to form functional homomeric channels) exhibited large Ibasal and was poorly activated by Gbegagamma. Expression of Galphai3GDP reduced Ibasal and restored the ability of Gbetagamma to activate GIRK1*, like in GIRK1/2. Transferring the unique distal segment of the C terminus of GIRK1 to GIRK2 rendered the latter functionally similar to GIRK1*. These results demonstrate that GIRK1 containing channels are regulated by both Galphai3GDP and Gbetagamma, while GIRK2 is a Gbetagamma-effector insensitive to Galphai3GDP.
Collapse
Affiliation(s)
- Moran Rubinstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Pacey LKK, Heximer SP, Hampson DR. Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol Pharmacol 2009; 76:18-24. [PMID: 19351745 DOI: 10.1124/mol.109.056127] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Mice lacking the gene encoding fragile X mental retardation protein (FMR1) are susceptible to audiogenic seizures, and antagonists of the group I metabotropic glutamate receptors (mGluRs) have been shown to block seizures in FMR1 knockout mice. We investigated whether the G-protein-inhibitory activity of the regulator of G-protein signaling protein, RGS4, could also alter the susceptibility to audiogenic seizures in FMR1 mice. We were surprised to find that male FMR1/RGS4 double-knockout mice showed reduced susceptibility to audiogenic seizures compared with age-matched FMR1 mice. These data raised the intriguing possibility that loss of RGS4 increased signaling through another G-protein pathway that reduces seizure susceptibility in FMR1 mice. Indeed, administration of the GABA(B) receptor agonist baclofen to FMR1 mice inhibited seizures, whereas the GABA(B) receptor antagonist (3-aminopropyl)(cyclohexylmethyl)phosphinic acid (CGP 46381) increased seizure incidence in double-knockout mice but not in wild-type mice. Finally, audiogenic seizures could be induced in wild-type mice by coadministering CGP 46381 and the mGluR5-positive allosteric modulator 3-cyano-N-(1,2 diphenyl-1H-pyrazol-5-yl) benzamide. These data show for the first time that GABA(B) receptor-mediated signaling antagonizes the seizure-promoting effects of the mGluRs in FMR1 knockout mice and point to the potential therapeutic benefit of GABA(B) agonists for the treatment of fragile X syndrome.
Collapse
Affiliation(s)
- Laura K K Pacey
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
RGS proteins: identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function. Clin Sci (Lond) 2009; 116:391-9. [PMID: 19175357 DOI: 10.1042/cs20080272] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the mechanisms that underlie BP (blood pressure) variation in humans and animal models may provide important clues for reducing the burden of uncontrolled hypertension in industrialized societies. High BP is often associated with increased signalling via G-protein-coupled receptors. Three members of the RGS (regulator of G-protein signalling) superfamily RGS2, RGS4 and RGS5 have been implicated in the attenuation of G-protein signalling pathways in vascular and cardiac myocytes, as well as cells of the kidney and autonomic nervous system. In the present review, we discuss the current state of knowledge regarding their differential expression and function in cardiovascular tissues, and the likelihood that one or more of these alleles are candidate hypertension genes. Together, findings from the studies described herein suggest that development of methods to modulate the expression and function of RGS proteins may be a possible strategy for the treatment and prevention of hypertension and cardiovascular disease.
Collapse
|
32
|
Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes. Cell Signal 2009; 21:488-501. [DOI: 10.1016/j.cellsig.2008.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/13/2008] [Accepted: 11/15/2008] [Indexed: 12/27/2022]
|
33
|
Leontiadis LJ, Papakonstantinou MP, Georgoussi Z. Regulator of G protein signaling 4 confers selectivity to specific G proteins to modulate mu- and delta-opioid receptor signaling. Cell Signal 2009; 21:1218-28. [PMID: 19324084 DOI: 10.1016/j.cellsig.2009.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/12/2009] [Accepted: 03/15/2009] [Indexed: 10/21/2022]
Abstract
In vitro studies have shown that the Regulator of G protein Signaling 4 (RGS4) interacts with the C-termini of mu- and delta-opioid receptors (mu-OR, delta-OR) (Georgoussi et al., 2006, Cell. Signal.18, 771-782). Herein we demonstrate that RGS4 associates with these receptors in living cells and forms selective complexes with Gi/Go proteins in a receptor dependent manner. This interaction occurs within the predicted fourth intracellular loop of mu, delta-ORs as part of a signaling complex consisting of the opioid receptor, activated Galpha and RGS4. RGS4 is recruited to the plasma membrane upon opioid receptor stimulation. Expression of RGS4 in HEK293 cells attenuated agonist-mediated extracellular signal regulated kinase (ERK1,2) phosphorylation for both receptors and accelerated agonist-induced internalization of the delta-OR. RGS4 lacking its N-terminal domain failed to interact with both opioid receptors and to modulate opioid receptor signaling. Our findings demonstrate that RGS4 plays a key role in G protein coupling selectivity and signaling of the mu- and delta-OmicronRs.
Collapse
Affiliation(s)
- Leonidas J Leontiadis
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Center for Scientific Research Demokritos, Ag. Paraskevi-Attikis, Athens, Greece
| | | | | |
Collapse
|
34
|
Dupré DJ, Robitaille M, Rebois RV, Hébert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 2009; 49:31-56. [PMID: 18834311 PMCID: PMC2659589 DOI: 10.1146/annurev-pharmtox-061008-103038] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of Gbetagamma subunits in cellular signaling has become well established in the past 20 years. Not only do they regulate effectors once thought to be the sole targets of Galpha subunits, but it has become clear that they also have a unique set of binding partners and regulate signaling pathways that are not always localized to the plasma membrane. However, this may be only the beginning of the story. Gbetagamma subunits interact with G protein-coupled receptors, Galpha subunits, and several different effector molecules during assembly and trafficking of receptor-based signaling complexes and not simply in response to ligand stimulation at sites of receptor cellular activity. Gbetagamma assembly itself seems to be tightly regulated via the action of molecular chaperones and in turn may serve a similar role in the assembly of specific signaling complexes. We propose that specific Gbetagamma subunits have a broader role in controlling the architecture, assembly, and activity of cellular signaling pathways.
Collapse
Affiliation(s)
- Denis J. Dupré
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Mélanie Robitaille
- Département de biochimie, Université de Montréal, Montréal, Québec, Canada
| | - R. Victor Rebois
- National Institute of Deafness and Other Communication Disorders and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20824
| | - Terence E. Hébert
- Département de biochimie, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Québec, Canada;
| |
Collapse
|
35
|
Lomazzi M, Slesinger PA, Lüscher C. Addictive drugs modulate GIRK-channel signaling by regulating RGS proteins. Trends Pharmacol Sci 2008; 29:544-9. [PMID: 18790542 PMCID: PMC2818288 DOI: 10.1016/j.tips.2008.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 01/20/2023]
Abstract
Regulator of G-protein signaling (RGS) proteins are strong modulators of G-protein-mediated pathways in the nervous system. One function of RGS proteins is to accelerate the activation-deactivation kinetics of G-protein-coupled inwardly rectifying potassium (GIRK) channels. The opening of GIRK channels reduces the firing rates of neurons. Recent studies indicate that RGS proteins also modulate the coupling efficiency between gamma-aminobutyric acid type B (GABA(B)) receptors and GIRK channels in dopamine neurons of the ventral tegmental area (VTA), the initial target for addictive drugs in the brain reward pathway. Chronic drug exposure can dynamically regulate the expression levels of RGS. Functional and behavioral studies now reveal that levels of RGS2 protein, through selective association with GIRK3, critically determine whether GABA(B) agonists are excitatory or inhibitory in the VTA. The regulation of RGS protein in the reward pathway might underlie adaptation to different types of addictive drugs.
Collapse
Affiliation(s)
- Marta Lomazzi
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1, Michel-Servet, CH-1211 Geneva, Switzerland
| | | | | |
Collapse
|
36
|
Membrane signalling complexes: implications for development of functionally selective ligands modulating heptahelical receptor signalling. Cell Signal 2008; 21:179-85. [PMID: 18790047 DOI: 10.1016/j.cellsig.2008.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/24/2008] [Indexed: 11/24/2022]
Abstract
Technological development has considerably changed the way in which we evaluate drug efficacy and has led to a conceptual revolution in pharmacological theory. In particular, molecular resolution assays have revealed that heptahelical receptors may adopt multiple active conformations with unique signalling properties. It is therefore becoming widely accepted that ligand ability to stabilize receptor conformations with distinct signalling profiles may allow to direct the stimulus generated by an activated receptor towards a specific signalling pathway. This capacity to induce only a subset of the ensemble of responses regulated by a given receptor has been termed "functional selectivity" (or "stimulus trafficking"), and provides the bases for a highly specific regulation of receptor signalling. Concomitant with these observations, heptahelical receptors have been shown to associate with G proteins and effectors to form multimeric arrays. These complexes are constitutively formed during protein synthesis and are targeted to the cell surface as integral signalling units. Herein we summarize evidence supporting the existence of such constitutive signalling arrays and analyze the possibility that they may constitute viable targets for developing ligands with "functional selectivity".
Collapse
|
37
|
Doupnik CA. GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 2008; 28:83-91. [PMID: 18437632 DOI: 10.1080/10799890801941970] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ion channels and G protein-coupled receptors (GPCRs) are integral transmembrane proteins vital to a multitude of cell signaling and physiological functions. Members of these large protein families are known to interact directly with various intracellular protein partners in a dynamic and isoform-dependent manner, ultimately shaping their life cycle and signal output. The family of G protein-gated inwardly rectifying potassium channels (Kir3 or GIRK) expressed in brain, heart, and endocrine tissues were recently shown to stably associate with several different GPCRs, forming the basis of a macromolecular ion channel-GPCR signaling complex. The molecular determinants that mediate and maintain GPCR-Kir3 channel complexes are currently not well understood. Recent findings and emerging hypotheses on the assembly and stability of multiprotein GPCR-Kir channel signaling complexes are discussed, highlighting distinct mechanisms used by different Kir channel families. These protein-protein interaction processes are crucial in determining both the synaptic response times and the extent of GPCR "cross-talk" in Kir3-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| |
Collapse
|
38
|
Cifelli C, Rose RA, Zhang H, Voigtlaender-Bolz J, Bolz SS, Backx PH, Heximer SP. RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node. Circ Res 2008; 103:527-35. [PMID: 18658048 DOI: 10.1161/circresaha.108.180984] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heart rate is controlled by the opposing activities of sympathetic and parasympathetic inputs to pacemaker myocytes in the sinoatrial node (SAN). Parasympathetic activity on nodal myocytes is mediated by acetylcholine-dependent stimulation of M(2) muscarinic receptors and activation of Galpha(i/o) signaling. Although regulators of G protein signaling (RGS) proteins are potent inhibitors of Galpha(i/o) signaling in many tissues, the RGS protein(s) that regulate parasympathetic tone in the SAN are unknown. Our results demonstrate that RGS4 mRNA levels are higher in the SAN compared to right atrium. Conscious freely moving RGS4-null mice showed increased bradycardic responses to parasympathetic agonists compared to wild-type animals. Moreover, anesthetized RGS4-null mice had lower baseline heart rates and greater heart rate increases following atropine administration. Retrograde-perfused hearts from RGS4-null mice showed enhanced negative chronotropic responses to carbachol, whereas SAN myocytes showed greater sensitivity to carbachol-mediated reduction in the action potential firing rate. Finally, RGS4-null SAN cells showed decreased levels of G protein-coupled inward rectifying potassium (GIRK) channel desensitization and altered modulation of acetylcholine-sensitive potassium current (I(KACh)) kinetics following carbachol stimulation. Taken together, our studies establish that RGS4 plays an important role in regulating sinus rhythm by inhibiting parasympathetic signaling and I(KACh) activity.
Collapse
Affiliation(s)
- Carlo Cifelli
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Chidiac P, Hébert TE. Meeting review: advances from the GPCR Retreat. J Recept Signal Transduct Res 2008; 28:3-14. [PMID: 18437626 DOI: 10.1080/10799890801941962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In London, Ontario, the 8th Annual Joint meeting of the Great Lakes GPCR Retreat and the Club des Récepteurs à Sept Domaines Transmembranaires (now known simply as the GPCR Retreat) was held September 27-29, 2007. This meeting gathers together a core group of investigators from Michigan, Ontario, and Québec and has steadily increased its attendance in both the eastern (Europe) and western (USA, Canada) directions. The highlight this year was a sneak preview of the beta(2)AR crystal structure provided by Brian Kobilka, but as can be seen below, many other cutting edge talks were heard as well.
Collapse
Affiliation(s)
- Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
40
|
Hendriks-Balk MC, Peters SLM, Michel MC, Alewijnse AE. Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins. Eur J Pharmacol 2008; 585:278-91. [PMID: 18410914 DOI: 10.1016/j.ejphar.2008.02.088] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/18/2008] [Accepted: 02/06/2008] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization processes and GPCR up- and downregulation. GPCR function can also be regulated by several proteins that directly interact with the receptor and thereby modulate receptor activity. An additional mechanism by which receptor signalling is regulated involves an emerging class of proteins, the so-called regulators of G protein signalling (RGS). In this review we will describe some of these control mechanisms in more detail with some specific examples in the cardiovascular system. In addition, we will provide an overview on RGS proteins and the involvement of RGS proteins in cardiovascular function.
Collapse
Affiliation(s)
- Mariëlle C Hendriks-Balk
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
41
|
Bansal G, Druey KM, Xie Z. R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther 2007; 116:473-95. [PMID: 18006065 PMCID: PMC2156173 DOI: 10.1016/j.pharmthera.2007.09.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 12/21/2022]
Abstract
The regulators of G-protein signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCR) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating protein (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways, as well as a diverse array of non-GPCR-mediated biological responses.
Collapse
Affiliation(s)
- Geetanjali Bansal
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Kirk M. Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
42
|
Labouèbe G, Lomazzi M, Cruz HG, Creton C, Luján R, Li M, Yanagawa Y, Obata K, Watanabe M, Wickman K, Boyer SB, Slesinger PA, Lüscher C. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci 2007; 10:1559-68. [PMID: 17965710 DOI: 10.1038/nn2006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/01/2007] [Indexed: 02/07/2023]
Abstract
Agonists of GABA(B) receptors exert a bi-directional effect on the activity of dopamine (DA) neurons of the ventral tegmental area, which can be explained by the fact that coupling between GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK) channels is significantly weaker in DA neurons than in GABA neurons. Thus, low concentrations of agonists preferentially inhibit GABA neurons and thereby disinhibit DA neurons. This disinhibition might confer reinforcing properties on addictive GABA(B) receptor agonists such as gamma-hydroxybutyrate (GHB) and its derivatives. Here we show that, in DA neurons of mice, the low coupling efficiency reflects the selective expression of heteromeric GIRK2/3 channels and is dynamically modulated by a member of the regulator of G protein signaling (RGS) protein family. Moreover, repetitive exposure to GHB increases the GABA(B) receptor-GIRK channel coupling efficiency through downregulation of RGS2. Finally, oral self-administration of GHB at a concentration that is normally rewarding becomes aversive after chronic exposure. On the basis of these results, we propose a mechanism that might underlie tolerance to GHB.
Collapse
Affiliation(s)
- Gwenaël Labouèbe
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1, Michel- Servet, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Clancy SM, Boyer SB, Slesinger PA. Coregulation of natively expressed pertussis toxin-sensitive muscarinic receptors with G-protein-activated potassium channels. J Neurosci 2007; 27:6388-99. [PMID: 17567799 PMCID: PMC6672446 DOI: 10.1523/jneurosci.1190-07.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many inhibitory neurotransmitters in the brain activate Kir3 channels by stimulating pertussis toxin (PTX)-sensitive G-protein-coupled receptors. Here, we investigated the regulation of native muscarinic receptors and Kir3 channels expressed in NGF-differentiated PC12 cells, which are similar to sympathetic neurons. Quantitative reverse transcription-PCR and immunocytochemistry revealed that NGF treatment significantly upregulated mRNA and protein for m2 muscarinic receptors, PTX-sensitive G alpha(o) G-proteins, and Kir3.2c channels. Surprisingly, these upregulated muscarinic receptor/Kir3 signaling complexes were functionally silent. Ectopic expression of m2 muscarinic receptors or Kir3.2c channels was unable to produce muscarinic receptor-activated Kir3 currents with oxotremorine. Remarkably, pretreatment with muscarinic (m2/m4) receptor antagonists resulted in robust oxotremorine-activated Kir3 currents. Thus, sustained cholinergic stimulation of natively expressed m2/m4 muscarinic receptors controlled cell surface expression and functional coupling of both receptors and Kir3 channels. This new pathway for controlling Kir3 signaling could help limit the potential harmful effects of excessive Kir3 activity in the brain.
Collapse
Affiliation(s)
- Sinead M. Clancy
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - Stephanie B. Boyer
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Paul A. Slesinger
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
44
|
Clark MA, Sethi PR, Lambert NA. Active Galpha(q) subunits and M3 acetylcholine receptors promote distinct modes of association of RGS2 with the plasma membrane. FEBS Lett 2007; 581:764-70. [PMID: 17275815 PMCID: PMC1805712 DOI: 10.1016/j.febslet.2007.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/12/2006] [Accepted: 01/17/2007] [Indexed: 11/17/2022]
Abstract
RGS proteins accelerate the GTPase activity of heterotrimeric G proteins at the plasma membrane. Association of RGS proteins with the plasma membrane can be mediated by interactions with other membrane proteins and by direct interactions with the lipid bilayer. Here we use fluorescence recovery after photobleaching (FRAP) to characterize interactions between RGS2 and M3 acetylcholine receptors (M3Rs), Galpha subunits and the lipid bilayer. Active Galpha(q) and M3Rs both recruited RGS2-EGFP to the plasma membrane. RGS2-EGFP remained bound to the plasma membrane between interactions with active Galpha(q), but rapidly exchanged between membrane-associated and cytosolic pools when recruited by M3Rs.
Collapse
Affiliation(s)
- Michael A Clark
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|