1
|
Das AS, Sherry EC, Vaughan RM, Henderson ML, Zieba J, Uhl KL, Koehn O, Bupp CP, Rajasekaran S, Li X, Chhetri SB, Nissim S, Williams CL, Prokop JW. The complex, dynamic SpliceOme of the small GTPase transcripts altered by technique, sex, genetics, tissue specificity, and RNA base editing. Front Cell Dev Biol 2022; 10:1033695. [PMID: 36467401 PMCID: PMC9714508 DOI: 10.3389/fcell.2022.1033695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 04/04/2024] Open
Abstract
The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.
Collapse
Affiliation(s)
- Akansha S. Das
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| | - Emily C. Sherry
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, United States
| | - Robert M. Vaughan
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marian L. Henderson
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- The Department of Biology, Calvin University, Grand Rapids, MI, United States
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Olivia Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital Spectrum Health, Grand Rapids, MI, United States
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Surya B. Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, United States
| | - Sahar Nissim
- Genetics and Gastroenterology Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Johnson JL, Ramadass M, Rahman F, Meneses-Salas E, Zgajnar NR, Carvalho Gontijo R, Zhang J, Kiosses WB, Zhu YP, Hedrick CC, Perego M, Gunton JE, Pestonjamasp K, Napolitano G, Catz SD. The atypical small GTPase GEM/Kir is a negative regulator of the NADPH oxidase and NETs production through macroautophagy. J Leukoc Biol 2021; 110:629-649. [PMID: 34085299 DOI: 10.1002/jlb.2hi0421-123r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite the important function of neutrophils in the eradication of infections and induction of inflammation, the molecular mechanisms regulating the activation and termination of the neutrophil immune response is not well understood. Here, the function of the small GTPase from the RGK family, Gem, is characterized as a negative regulator of the NADPH oxidase through autophagy regulation. Gem knockout (Gem KO) neutrophils show increased NADPH oxidase activation and increased production of extracellular and intracellular reactive oxygen species (ROS). Enhanced ROS production in Gem KO neutrophils was associated with increased NADPH oxidase complex-assembly as determined by quantitative super-resolution microscopy, but normal exocytosis of gelatinase and azurophilic granules. Gem-deficiency was associated with increased basal autophagosomes and autolysosome numbers but decreased autophagic flux under phorbol ester-induced conditions. Neutrophil stimulation triggered the localization of the NADPH oxidase subunits p22phox and p47phox at LC3-positive structures suggesting that the assembled NADPH oxidase complex is recruited to autophagosomes, which was significantly increased in Gem KO neutrophils. Prevention of new autophagosome formation by treatment with SAR405 increased ROS production while induction of autophagy by Torin-1 decreased ROS production in Gem KO neutrophils, and also in wild-type neutrophils, suggesting that macroautophagy contributes to the termination of NADPH oxidase activity. Autophagy inhibition decreased NETs formation independently of enhanced ROS production. NETs production, which was significantly increased in Gem-deficient neutrophils, was decreased by inhibition of both autophagy and calmodulin, a known GEM interactor. Intracellular ROS production was increased in Gem KO neutrophils challenged with live Gram-negative bacteria Pseudomonas aeruginosa or Salmonella Typhimurium, but phagocytosis was not affected in Gem-deficient cells. In vivo analysis in a model of Salmonella Typhimurium infection indicates that Gem-deficiency provides a genetic advantage manifested as a moderate increased in survival to infections. Altogether, the data suggest that Gem-deficiency leads to the enhancement of the neutrophil innate immune response by increasing NADPH oxidase assembly and NETs production and that macroautophagy differentially regulates ROS and NETs in neutrophils.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Elsa Meneses-Salas
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Nadia R Zgajnar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - William B Kiosses
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Marta Perego
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jenny E Gunton
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
3
|
Dhanaraman T, Singh S, Killoran RC, Singh A, Xu X, Shifman JM, Smith MJ. RASSF effectors couple diverse RAS subfamily GTPases to the Hippo pathway. Sci Signal 2020; 13:13/653/eabb4778. [PMID: 33051258 DOI: 10.1126/scisignal.abb4778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small guanosine triphosphatases (GTPases) of the RAS superfamily signal by directly binding to multiple downstream effector proteins. Effectors are defined by a folded RAS-association (RA) domain that binds exclusively to GTP-loaded (activated) RAS, but the binding specificities of most RA domains toward more than 160 RAS superfamily GTPases have not been characterized. Ten RA domain family (RASSF) proteins comprise the largest group of related effectors and are proposed to couple RAS to the proapoptotic Hippo pathway. Here, we showed that RASSF1-6 formed complexes with the Hippo kinase ortholog MST1, whereas RASSF7-10 formed oligomers with the p53-regulating effectors ASPP1 and ASPP2. Moreover, only RASSF5 bound directly to activated HRAS and KRAS, and RASSFs did not augment apoptotic induction downstream of RAS oncoproteins. Structural modeling revealed that expansion of the RASSF effector family in vertebrates included amino acid substitutions to key residues that direct GTPase-binding specificity. We demonstrated that the tumor suppressor RASSF1A formed complexes with the RAS-related GTPases GEM, REM1, REM2, and the enigmatic RASL12. Furthermore, interactions between RASSFs and RAS GTPases blocked YAP1 nuclear localization. Thus, these simple scaffolds link the activation of diverse RAS family small G proteins to Hippo or p53 regulation.
Collapse
Affiliation(s)
- Thillaivillalan Dhanaraman
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Anamika Singh
- Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem 9190401, Israel
| | - Xingjian Xu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Julia M Shifman
- Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem 9190401, Israel
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
4
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
5
|
PseudoGTPase domains in p190RhoGAP proteins: a mini-review. Biochem Soc Trans 2018; 46:1713-1720. [PMID: 30514771 DOI: 10.1042/bst20180481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
Abstract
Pseudoenzymes generally lack detectable catalytic activity despite adopting the overall protein fold of their catalytically competent counterparts, indeed 'pseudo' family members seem to be incorporated in all enzyme classes. The small GTPase enzymes are important signaling proteins, and recent studies have identified many new family members with noncanonical residues within the catalytic cleft, termed pseudoGTPases. To illustrate recent discoveries in the field, we use the p190RhoGAP proteins as an example. p190RhoGAP proteins (ARHGAP5 and ARHGAP35) are the most abundant GTPase activating proteins for the Rho family of small GTPases. These are key regulators of Rho signaling in processes such as cell migration, adhesion and cytokinesis. Structural biology has complemented and guided biochemical analyses for these proteins and has allowed discovery of two cryptic pseudoGTPase domains, and the re-classification of a third, previously identified, GTPase-fold domain as a pseudoGTPase. The three domains within p190RhoGAP proteins illustrate the diversity of this rapidly expanding pseudoGTPase group.
Collapse
|
6
|
Stiegler AL, Boggon TJ. The N-Terminal GTPase Domain of p190RhoGAP Proteins Is a PseudoGTPase. Structure 2018; 26:1451-1461.e4. [PMID: 30174148 PMCID: PMC6249675 DOI: 10.1016/j.str.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
The pseudoGTPases are a rapidly growing and important group of pseudoenzymes. p190RhoGAP proteins are critical regulators of Rho signaling and contain two previously identified pseudoGTPase domains. Here we report that p190RhoGAP proteins contain a third pseudoGTPase domain, termed N-GTPase. We find that GTP constitutively purifies with the N-GTPase domain, and a 2.8-Å crystal structure of p190RhoGAP-A co-purified with GTP reveals an unusual GTP-Mg2+ binding pocket. Six inserts in N-GTPase indicate perturbed catalytic activity and inability to bind to canonical GTPase activating proteins, guanine nucleotide exchange factors, and effector proteins. Biochemical analysis shows that N-GTPase does not detectably hydrolyze GTP, and exchanges nucleotide only under harsh Mg2+ chelation. Furthermore, mutational analysis shows that GTP and Mg2+ binding stabilizes the domain. Therefore, our results support that N-GTPase is a nucleotide binding, non-hydrolyzing, pseudoGTPase domain that may act as a protein-protein interaction domain. Thus, unique among known proteins, p190RhoGAPs contain three pseudoGTPase domains.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Stiegler AL, Boggon TJ. p190RhoGAP proteins contain pseudoGTPase domains. Nat Commun 2017; 8:506. [PMID: 28894085 PMCID: PMC5593906 DOI: 10.1038/s41467-017-00483-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/02/2017] [Indexed: 01/20/2023] Open
Abstract
The two p190RhoGAP proteins, p190RhoGAP-A and -B, are key regulators of Rho GTPase signaling and are essential for actin cytoskeletal structure and contractility. Here we report the discovery of two evolutionarily conserved GTPase-like domains located in the 'middle domain', previously thought to be unstructured. Deletion of these domains reduces RhoGAP activity. Crystal structures, MANT-GTPγS binding, thermal denaturation, biochemical assays and sequence homology analysis all strongly support defects in nucleotide-binding activity. Analysis of p190RhoGAP proteins therefore indicates the presence of two previously unidentified domains which represent an emerging group of pseudoenzymes, the pseudoGTPases.A growing number of 'pseudoenzymes' with a regulatory role in signal transduction processes but without catalytic activity are being identified. Here, the authors identify two pseudoGTPase domains in p190RhoGAP, characterize them biochemically and structurally and show that they influence RhoGAP activity.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Chang DD, Colecraft HM. Rad and Rem are non-canonical G-proteins with respect to the regulatory role of guanine nucleotide binding in Ca(V)1.2 channel regulation. J Physiol 2016; 593:5075-90. [PMID: 26426338 DOI: 10.1113/jp270889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/27/2015] [Indexed: 12/15/2022] Open
Abstract
Rad and Rem are Ras-like G-proteins linked to diverse cardiovascular functions and pathophysiology. Understanding how Rad and Rem are regulated is important for deepened insights into their pathophysiological roles. As in other Ras-like G-proteins, Rad and Rem contain a conserved guanine-nucleotide binding domain (G-domain). Canonically, G-domains are key control modules, functioning as nucleotide-regulated switches of G-protein activity. Whether Rad and Rem G-domains conform to this canonical paradigm is ambiguous. Here, we used multiple functional measurements in HEK293 cells and cardiomyocytes (Ca(V)1.2 currents, Ca(2+) transients, Ca(V)β binding) as biosensors to probe the role of the G-domain in regulation of Rad and Rem function. We utilized Rad(S105N) and Rem(T94N), which are the cognate mutants to Ras(S17N), a dominant-negative variant of Ras that displays decreased nucleotide binding affinity. In HEK293 cells, over-expression of either Rad(S105N) or Rem(T94N) strongly inhibited reconstituted Ca(V)1.2 currents to the same extent as their wild-type (wt) counterparts, contrasting with reports that Rad(S105N) is functionally inert in HEK293 cells. Adenovirus-mediated expression of either wt Rad or Rad(S105N) in cardiomyocytes dramatically blocked L-type calcium current (I(Ca,L)) and inhibited Ca(2+)-induced Ca(2+) release, contradicting reports that Rad(S105N) acts as a dominant negative in heart. By contrast, Rem(T94N) was significantly less effective than wt Rem at inhibiting I(Ca,L) and Ca(2+) transients in cardiomyocytes. FRET analyses in cardiomyocytes revealed that both Rad(S105N) and Rem(T94N) had moderately reduced binding affinity for Ca(V)βs relative to their wt counterparts. The results indicate Rad and Rem are non-canonical G-proteins with respect to the regulatory role of their G-domain in Ca(V)1.2 regulation.
Collapse
Affiliation(s)
- Donald D Chang
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
9
|
Buraei Z, Lumen E, Kaur S, Yang J. RGK regulation of voltage-gated calcium channels. SCIENCE CHINA-LIFE SCIENCES 2015; 58:28-38. [PMID: 25576452 PMCID: PMC9074095 DOI: 10.1007/s11427-014-4788-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Voltage-gated calcium channels (VGCCs) play critical roles in cardiac and skeletal muscle contractions, hormone and neurotransmitter release, as well as slower processes such as cell proliferation, differentiation, migration and death. Mutations in VGCCs lead to numerous cardiac, muscle and neurological disease, and their physiological function is tightly regulated by kinases, phosphatases, G-proteins, calmodulin and many other proteins. Fifteen years ago, RGK proteins were discovered as the most potent endogenous regulators of VGCCs. They are a family of monomeric GTPases (Rad, Rem, Rem2, and Gem/Kir), in the superfamily of Ras GTPases, and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs. Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition, the physiological impact of this inhibition, and recent evidence linking the two known RGK functions.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biology, Pace University, New York, NY, 10038, USA,
| | | | | | | |
Collapse
|
10
|
Huang X, Cong X, Yang D, Ji L, Liu Y, Cui X, Cai J, He S, Zhu C, Ni R, Zhang Y. Identification of Gem as a new candidate prognostic marker in hepatocellular carcinoma. Pathol Res Pract 2014; 210:719-25. [PMID: 25155751 DOI: 10.1016/j.prp.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022]
Abstract
GTP binding protein overexpressed in skeletal muscle (Gem) is a Ras-related protein whose expression is induced in several cell types upon activation by extracellular stimuli. To investigate the potential roles of Gem in hepatocellular carcinoma (HCC), expression of Gem was examined in human HCC samples. Western blot analysis showed that compared with primary human hepatocytes and adjacent noncancerous tissue, significant down-regulation of Gem was found in HCC cells and tumor tissues. In addition, immunohistochemical analysis of Gem expression was investigated in 108 specimens of HCC tissues. Clinicopathological data were collected to analyze the association with Gem expression. Expression of Gem was significantly negatively correlated with histological grade (P=0.001), tumor size (P=0.020), and vascular invasion (P=0.005), and Gem was also negatively correlated with proliferation marker Ki-67 (P<0.01). More importantly, the Kaplan-Meier survival curves analysis revealed that low expression of Gem was associated with poor prognosis in HCC patients. Univariate analysis showed that Gem expression was associated with poor prognosis (P=0.006). Multivariate analysis indicated that Gem expression was an independent prognostic marker for HCC (P=0.007). Finally, serum starvation and release experiments showed that Gem expression was negatively related with cell proliferation. In the conclusion, our results suggested that down regulation of Gem expression was involved in the pathogenesis of hepatocellular carcinoma, and it might be a favorable independent prognostic parameter for HCC.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China; Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xia Cong
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Dunpeng Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Lili Ji
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yanhua Liu
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xiaopeng Cui
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jing Cai
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China
| | - Song He
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China
| | - Changyun Zhu
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Runzhou Ni
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yixin Zhang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
11
|
Neely A, Hidalgo P. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front Physiol 2014; 5:209. [PMID: 24917826 PMCID: PMC4042065 DOI: 10.3389/fphys.2014.00209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels.
Collapse
Affiliation(s)
- Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso and Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Patricia Hidalgo
- Forschungszentrum Jülich, Institute of Complex Systems 4, Zelluläre Biophysik Jülich, Germany
| |
Collapse
|
12
|
DeRocher MM, Armaly FH, Lepore CJ, Hollis DM. Rem2 in the bullfrog (Rana catesbeiana): Patterns of expression within the central nervous system and brain expression at different ontogenetic stages. Gene 2014; 540:37-45. [PMID: 24576576 DOI: 10.1016/j.gene.2014.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Rem2 is a member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins. In mammals, Rem2 has been found to be unique in not only its structure, but also its tissue specificity, as it is the first member to be found at high levels in neuronal tissue. Because Rem2 has previously been implicated in neuronal cell proliferation, and amphibians maintain relatively high neuronal proliferative activity as adults, we sought to isolate and acquire the full-length sequence of the rem2 gene from the brain of the bullfrog (Rana catesbeiana). Furthermore, we used real time PCR (rtPCR) to characterize its tissue specificity, regional brain expression, and brain expression levels at different stages of development. Deduced amino acid sequence analysis showed that the bullfrog Rem2 protein possesses the unique 5' extension characteristic of mammalian Rem2 and the RGK subfamily to which it belongs. Tissue specificity of the bullfrog rem2 gene showed that the bullfrog is similar to both mammals and fish in that the levels of rem2 gene expression were significantly greater in the brain than all other tissues assayed. In the brain itself, differential rem2 expression patterns were observed between six major brain areas assayed and the spinal cord, with expression significantly high in the cerebrum and low in the cerebellum. Finally, examination of whole brain rem2 expression levels in bullfrogs at different stages of development revealed greater expression after metamorphic climax.
Collapse
|
13
|
Wen H, Cao J, Yu X, Sun B, Ding T, Li M, Li D, Wu H, Long L, Xu G, Zhang F. Spatiotemporal patterns of Gem expression after rat spinal cord injury. Brain Res 2013; 1516:11-9. [PMID: 23602967 DOI: 10.1016/j.brainres.2013.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/30/2013] [Accepted: 04/09/2013] [Indexed: 01/23/2023]
Abstract
Gem is an atypical protein of the Ras superfamily that plays a role in regulating voltage-gated Ca(2+) channels and cytoskeletal reorganization. To elucidate the certain expression and biological function in central nervous system (CNS), we performed an acute spinal cord contusion injury model in adult rats. Western blot analysis showed a marked up-regulation of Gem after spinal cord injury (SCI). Immunohistochemistry revealed wide distribution of Gem in spinal cord, including neurons and glial cells. Double immunofluorescent staining for proliferating cell nuclear antigen (PCNA) and phenotype-specific markers indicated increases of Gem expression in proliferating microglia and astrocytes. Our data suggest that Gem may be implicated in the proliferation of microglia and astrocytes after SCI.
Collapse
Affiliation(s)
- Hai Wen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang T, Colecraft HM. Regulation of voltage-dependent calcium channels by RGK proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1644-54. [PMID: 23063948 DOI: 10.1016/j.bbamem.2012.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/28/2022]
Abstract
RGK proteins belong to the Ras superfamily of monomeric G-proteins, and currently include four members - Rad, Rem, Rem2, and Gem/Kir. RGK proteins are broadly expressed, and are the most potent known intracellular inhibitors of high-voltage-activated Ca²⁺ (Ca(V)1 and Ca(V)2) channels. Here, we review and discuss the evidence in the literature regarding the functional mechanisms, structural determinants, physiological role, and potential practical applications of RGK-mediated inhibition of Ca(V)1/Ca(V)2 channels. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
15
|
Reymond P, Coquard A, Chenon M, Zeghouf M, El Marjou A, Thompson A, Ménétrey J. Structure of the GDP-bound G domain of the RGK protein Rem2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:626-31. [PMID: 22684057 PMCID: PMC3370897 DOI: 10.1107/s1744309112013541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/28/2012] [Indexed: 11/10/2022]
Abstract
RGK proteins are atypical small GTP-binding proteins that are involved in the regulation of voltage-dependent calcium channels and actin cytoskeleton remodelling. The structure of the Rem2 G domain bound to GDP is reported here in a monoclinic crystal form at 2.66 Å resolution. It is very similar to the structure determined previously from an orthorhombic crystal form. However, differences in the crystal-packing environment revealed that the switch I and switch II regions are flexible and not ordered as previously reported. Comparison of the available RGK protein structures along with those of other small GTP-binding proteins highlights two structural features characteristic of this atypical family and suggests that the conserved tryptophan residue in the DXWEX motif may be a structural determinant of the nucleotide-binding affinity.
Collapse
Affiliation(s)
- Philippe Reymond
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
- ED 387 iViv, Université Pierre et Marie Curie, 75005 Paris, France
| | - Aline Coquard
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | - Mélanie Chenon
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | - Ahmed El Marjou
- Institut Curie, Centre de Recherche, 75248 Paris, France
- CNRS UMR144, 26 Rue d’Ulm, 75248 Paris, France
| | - Andrew Thompson
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48 St Aubin, 91192 Gif-sur-Yvette, France
| | - Julie Ménétrey
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Fan M, Zhang WK, Buraei Z, Yang J. Molecular determinants of Gem protein inhibition of P/Q-type Ca2+ channels. J Biol Chem 2012; 287:22749-58. [PMID: 22589533 DOI: 10.1074/jbc.m111.291872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
17
|
Tsoi LC, Qin T, Slate EH, Zheng WJ. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior. BMC Bioinformatics 2011; 12:438. [PMID: 22078224 PMCID: PMC3251006 DOI: 10.1186/1471-2105-12-438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 11/11/2011] [Indexed: 01/03/2023] Open
Abstract
Background To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. Results We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. Conclusions CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray experiments. Availability: CDEP is implemented in R and freely available at: http://genomebioinfo.musc.edu/CDEP/ Contact: zhengw@musc.edu
Collapse
Affiliation(s)
- Lam C Tsoi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
18
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
19
|
Isolation and molecular characterization of Rem2 isoforms in the rainbow trout (Oncorhynchus mykiss): Tissue and central nervous system expression. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:93-101. [PMID: 21983188 DOI: 10.1016/j.cbpb.2011.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 12/17/2022]
Abstract
REM2 is a member of the REM, RAD, and GEM/KIR (RGK) subfamily of RAS superfamily proteins and plays an important role in brain development and function. In this study, two Rem2 isoforms were isolated from the rainbow trout (Oncorhynchus mykiss). The two genes, designated O. mykiss rem2a and rem2b, both encode 304 amino acid proteins with 61% and 62% identities to zebrafish (Danio rerio) Rem2, respectively, and each with 43% identity to mammalian (human) REM2. To our knowledge, this is the first incidence of Rem2 isoforms in a species that are the result of gene duplication. Both isoforms possessed similar tissue expression profiles with the highest levels in the brain. The rem2a gene has significantly higher expression levels than rem2b in all tissues assayed except the brain and head kidney. In the central nervous system, both isoforms showed similar expression levels with the highest levels occurring in the olfactory bulb, cerebrum, and midbrain, though rem2a expression is significantly higher in the spinal cord. Based on known functional roles of Rem2 in synapse development and stem cell proliferation, the characterization of Rem2 in rainbow trout could shed light on its role in adult vertebrate neurogenesis and brain regeneration.
Collapse
|
20
|
Sasson Y, Navon-Perry L, Huppert D, Hirsch JA. RGK family G-domain:GTP analog complex structures and nucleotide-binding properties. J Mol Biol 2011; 413:372-89. [PMID: 21903096 DOI: 10.1016/j.jmb.2011.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/26/2022]
Abstract
The RGK family of small G-proteins, including Rad, Gem, Rem1, and Rem2, is inducibly expressed in various mammalian tissues and interacts with voltage-dependent calcium channels and Rho kinase. Many questions remain regarding their physiological roles and molecular mechanism. Previous crystallographic studies reported RGK G-domain:guanosine di-phosphate structures. To test whether RGK proteins undergo a nucleotide-induced conformational change, we determined the crystallographic structures of Rad:GppNHp and Rem2:GppNHp to 1.7 and 1.8 Å resolutions, respectively. Also, we characterized the nucleotide-binding properties and conformations for Gem, Rad, and several structure-based mutants using fluorescence spectroscopy. The results suggest that RGK G-proteins may not behave as Ras-like canonical nucleotide-induced molecular switches. Further, the RGK proteins have differing structures and nucleotide-binding properties, which may have implications for their varied action on effectors.
Collapse
Affiliation(s)
- Yehezkel Sasson
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
21
|
Minor DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 2011; 4:459-74. [PMID: 21139419 DOI: 10.4161/chan.4.6.12867] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, CA, USA.
| | | |
Collapse
|
22
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
23
|
Pang C, Crump SM, Jin L, Correll RN, Finlin BS, Satin J, Andres DA. Rem GTPase interacts with the proximal CaV1.2 C-terminus and modulates calcium-dependent channel inactivation. Channels (Austin) 2010; 4:192-202. [PMID: 20458179 DOI: 10.4161/chan.4.3.11867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Rem, Rem2, Rad, and Gem/Kir (RGK) GTPases, comprise a subfamily of small Ras-related GTP-binding proteins, and have been shown to potently inhibit high voltage-activated Ca(2+) channel current following overexpression. Although the molecular mechanisms underlying RGK-mediated Ca(2+) channel regulation remains controversial, recent studies suggest that RGK proteins inhibit Ca(2+) channel currents at the plasma membrane in part by interactions with accessory channel β subunits. In this paper, we extend our understanding of the molecular determinants required for RGK-mediated channel regulation by demonstrating a direct interaction between Rem and the proximal C-terminus of Ca(V)1.2 (PCT), including the CB/IQ domain known to contribute to Ca(2+)/calmodulin (CaM)-mediated channel regulation. The Rem2 and Rad GTPases display similar patterns of PCT binding, suggesting that the Ca(V)1.2 C-terminus represents a common binding partner for all RGK proteins. In vitro Rem:PCT binding is disrupted by Ca(2+)/CaM, and this effect is not due to Ca(2+)/CaM binding to the Rem C-terminus. In addition, co-overexpression of CaM partially relieves Rem-mediated L-type Ca(2+) channel inhibition and slows the kinetics of Ca(2+)-dependent channel inactivation. Taken together, these results suggest that the association of Rem with the PCT represents a crucial molecular determinant in RGK-mediated Ca(2+) channel regulation and that the physiological function of the RGK GTPases must be re-evaluated. Rather than serving as endogenous inhibitors of Ca(2+) channel activity, these studies indicate that RGK proteins may play a more nuanced role, regulating Ca(2+) currents via modulation of Ca(2+)/CaM-mediated channel inactivation kinetics.
Collapse
Affiliation(s)
- Chunyan Pang
- Department of Molecular and Cellular Biochemistry and Physiology, University of Kentucky College of Medicine, Lexington, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Young J, Ménétrey J, Goud B. RAB6C is a retrogene that encodes a centrosomal protein involved in cell cycle progression. J Mol Biol 2010; 397:69-88. [PMID: 20064528 DOI: 10.1016/j.jmb.2010.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/08/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Rab-GTPases are key regulators of membrane transport, and growing evidence indicates that their expression levels are altered in certain human malignancies, including cancer. Rab6C, a newly identified Rab6 subfamily member, has attracted recent attention because its reduced expression might confer a selective advantage to drug-resistant breast cancer cells. Here, we report that RAB6C is a primate-specific retrogene derived from a RAB6A' transcript. RAB6C is transcribed in a limited number of human tissues including brain, testis, prostate, and breast. Endogenous Rab6C is considerably less abundant and has a much shorter half-life than Rab6A'. Comparison of the GTP-binding motifs of Rab6C and Rab6A', homology modeling, and GTP-blot overlay assays indicate that amino acid changes in Rab6C have greatly reduced its GTP-binding affinity. Instead, the noncanonical GTP-binding domain of Rab6C mediates localization of the protein to the centrosome. Overexpression of Rab6C results in G1 arrest, and its specific depletion generates tetraploid cells with supernumerary centrosomes, revealing a role of Rab6C in events related to the centrosome and cell cycle progression. Thus, RAB6C is a rare example of a recently emerged retrogene that has acquired the status of a new gene, encoding a functional protein with altered characteristics compared to Rab6A'.
Collapse
Affiliation(s)
- Joanne Young
- Molecular Mechanisms of Intracellular Transport, CNRS, UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
25
|
Ria R, Todoerti K, Berardi S, Coluccia AML, De Luisi A, Mattioli M, Ronchetti D, Morabito F, Guarini A, Petrucci MT, Dammacco F, Ribatti D, Neri A, Vacca A. Gene Expression Profiling of Bone Marrow Endothelial Cells in Patients with Multiple Myeloma. Clin Cancer Res 2009; 15:5369-78. [DOI: 10.1158/1078-0432.ccr-09-0040] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P. RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. FASEB J 2009; 23:2627-38. [PMID: 19332647 DOI: 10.1096/fj.08-122135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RGK (Rad-Gem-Rem) GTPases have been described as potent negative regulators of the Ca(2+) influx via high-threshold voltage-activated Ca(2+) channels. Recent work, mostly performed on Ca(V)1.2 Ca(2+) channels, has highlighted the crucial role played by the channel auxiliary Ca(V)beta subunits and identified several GTPase and beta-subunit protein domains involved in this regulation. We now extend these conclusions by producing the first complete characterization of the effects of Gem, Rem, and Rem2 on the neuronal Ca(V)2.1 Ca(2+) channels expressed with Ca(V)beta(1) or Ca(V)beta(2) subunits. Current inhibition is limited to a decrease in amplitude with no modification in the voltage dependence or kinetics of the current. We demonstrate that this inhibition can occur for Ca(V)beta constructs with impaired capacity to induce current potentiation, but that it is lost for Ca(V)beta constructs deleted for their beta-interaction domain. The RGK C-terminal last approximately 80 amino acids are sufficient to allow potent current inhibition and in vivo beta-subunit/Gem interaction. Interestingly, although Gem and Gem carboxy-terminus induce a completely different pattern of beta-subunit cellular localization, they both potently inhibit Ca(V)2.1 channels. These data therefore set the status of neuronal Ca(V)2.1 Ca(2+) channel inhibition by RGK GTPases, emphasizing the role of short amino acid sequences of both proteins in beta-subunit binding and channel inhibition and revealing a new mechanism for channel inhibition.
Collapse
Affiliation(s)
- J-P Leyris
- CRBM, CNRS UMR 5237, Université de Montpellier 1, 34293 Montpellier cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Schweikl H, Hiller KA, Eckhardt A, Bolay C, Spagnuolo G, Stempfl T, Schmalz G. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials 2008; 29:1377-87. [DOI: 10.1016/j.biomaterials.2007.11.049] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/26/2007] [Indexed: 12/31/2022]
|
28
|
Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA. The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Cell Signal 2008; 20:292-300. [PMID: 18042346 PMCID: PMC2254326 DOI: 10.1016/j.cellsig.2007.10.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 02/05/2023]
Abstract
RGK proteins constitute a novel subfamily of small Ras-related proteins that function as potent inhibitors of voltage-dependent (VDCC) Ca(2+) channels and regulators of actin cytoskeletal dynamics. Within the larger Ras superfamily, RGK proteins have distinct regulatory and structural characteristics, including nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains conserved regulatory sites which control both subcellular localization and function. RGK GTPases interact with the VDCC beta-subunit (Ca(V)beta) and inhibit Rho/Rho kinase signaling to regulate VDCC activity and the cytoskeleton respectively. Binding of both calmodulin and 14-3-3 to RGK proteins, and regulation by phosphorylation controls cellular trafficking and the downstream signaling of RGK proteins, suggesting that a complex interplay between interacting protein factors and trafficking contribute to their regulation.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
29
|
Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; 8:1164-78. [PMID: 17605760 DOI: 10.1111/j.1600-0854.2007.00599.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The members of the RGK small GTP-binding protein family, Kir/Gem, Rad, Rem and Rem2, are multifunctional proteins that regulate voltage-gated calcium channel activity and cell shape remodeling. Calmodulin (CaM) or CaM 14-3-3 are regulators of RGK functions and their association defines the subcellular localization of RGK proteins. Abolition of CaM association results in the accumulation of RGK proteins in the nucleus, whereas 14-3-3 binding maintains them in the cytoplasm. Kir/Gem possesses nuclear localization signals (NLS) that mediate nuclear accumulation through an importin alpha5-dependent pathway (see Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear transport of Kir/Gem requires specific signals and importin alpha5 and is regulated by Calmodulin and predicted service phosphorylations. Traffic 2007; doi: 10.1111/j.1600-0854.2007.00598.x). Because the extent of nuclear localization depends on the RGK protein and the cell type, the mechanism and regulation of nuclear transport may differ. Here, we extend our analysis to the other RGK members and show that Rem also binds importin alpha5, whereas Rad associates with importins alpha3, alpha5 and beta through three conserved NLS. Predicted phosphorylation of a serine residue within the bipartite NLS affects, as observed for Kir/Gem, nuclear accumulation of Rem, but not that of Rad or Rem2. We also identify an additional regulatory phosphorylation for all RGK proteins that prevents binding of 14-3-3 and thereby interferes with their cytosolic relocalization by 14-3-3. Functionally, nuclear localization of RGK proteins contributes to the suppression of RGK-mediated cell shape remodeling. Importantly, we show that endogenous RGK proteins are localized predominantly in the nucleus of individual cells of the brain cortex 'in situ' as well as in primary hippocampal cells, indicating that transport between the nucleus and their site of action in the cytoplasm (i.e., cytoskeleton, endoplasmic reticulum or plasma membrane) is of physiological relevance for the regulation of RGK protein function.
Collapse
Affiliation(s)
- Ramasubbu N Mahalakshmi
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
30
|
Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear Transport of Kir/Gem Requires Specific Signals and Importin α5 and Is Regulated by Calmodulin and Predicted Serine Phosphorylations. Traffic 2007; 8:1150-63. [PMID: 17605761 DOI: 10.1111/j.1600-0854.2007.00598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kir/Gem, together with Rad, Rem and Rem2, is a member of the RGK small GTP-binding protein family. These multifunctional proteins regulate voltage-gated calcium channel (VGCC) activity and cell-shape remodeling. Calmodulin and 14-3-3 binding modulate the functions of RGK proteins. Intriguingly, abolishing the binding of calmodulin or calmodulin and 14-3-3 results in nuclear accumulation of RGK proteins. Under certain conditions, the Ca(v)beta3-subunit of VGCCs can be translocated into the nucleus along with the RGK proteins, resulting in channel inactivation. The mechanism by which nuclear localization of RGK proteins is accomplished and regulated, however, is unknown. Here, we identify specific nuclear localization signals (NLS) in Kir/Gem that are both required and sufficient for nuclear transport. Importin alpha5 binds to Kir/Gem, and its depletion using RNA interference impairs nuclear translocation of this RGK protein. Calmodulin and predicted phosphorylations on serine residues within or in the vicinity of a C-terminal bipartite NLS regulate nuclear translocation by interfering with the association between importinalpha5 and Kir/Gem. These predicted phosphorylations, however, do not affect Kir/Gem-mediated calcium channel downregulation but rather, as shown in the accompanying paper (Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; doi:10.1111/j.1600-0854.2007.00599.x), interfere with cell-shape remodeling.
Collapse
Affiliation(s)
- Ramasubbu N Mahalakshmi
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
Hatzoglou A, Ader I, Splingard A, Flanders J, Saade E, Leroy I, Traver S, Aresta S, de Gunzburg J. Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway. Mol Biol Cell 2007; 18:1242-52. [PMID: 17267693 PMCID: PMC1839077 DOI: 10.1091/mbc.e06-06-0510] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca2+ channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane-cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin stress fibers and collapse of most focal adhesions. The same morphological effect is elicited when cells expressing Gem alone are stimulated with serum and requires the expression of ERM proteins. We show that endogenous Gem down-regulates the level of active RhoA and actin stress fibers. The effects of Gem downstream of Rho, i.e., ERM phosphorylation as well as disappearance of actin stress fibers and most focal adhesions, require the Rho-GAP partner of Gem, Gmip, a protein that is enriched in membranes under conditions in which Gem induced cell elongation. Our results suggest that Gem binds active Ezrin at the plasma membrane-cytoskeleton interface and acts via the Rho-GAP protein Gmip to down-regulate the processes dependent on the Rho pathway.
Collapse
Affiliation(s)
| | - Isabelle Ader
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Anne Splingard
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - James Flanders
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Evelyne Saade
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Ingrid Leroy
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sabine Traver
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sandra Aresta
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Jean de Gunzburg
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| |
Collapse
|