1
|
Yan S, Gao C, Tian K, Xiao C, Shi J, Jia X, Wang K, Sun G, Li D, Li W, Kang X. Comparative population genomics analysis for chicken body sizes using genome-wide single nucleotide polymorphisms. Anim Biosci 2025; 38:600-611. [PMID: 39482999 PMCID: PMC11917417 DOI: 10.5713/ab.24.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE This study aims to investigate the selection history, genome regions, and candidate genes associated with different chicken body sizes, thereby providing insights into the genetic basis of complex economic traits such as chicken body size and growth. METHODS In this study, a total of 217 individuals from eight breeds were selected. According to body size, they were divided into two groups: large chickens and bantam chickens, with four breeds in each group. Firstly, we investigate population structure by principal component analysis (PCA), phylogenetic tree, and ancestry component analysis. Next, we recognize runs of homozygosity (ROH) islands through calculating ROH. Finally, we carry out selection signatures analysis utilizing population differentiation index and nucleic acid diversity. RESULTS The population structure analysis show that large and bantam chickens are clearly separated. Large chickens are clustered together, the bantam chickens are relatively dispersed. The results of ROH island analysis show that 48 and 56 ROH islands were identified in large and bantam chickens respectively. Among the interesting ROH islands, a total of eight candidate genes were identified. In selection signatures analysis, a total of 322 selected genes were annotated in large chickens, such as POU1F1, BMP10, enrichment in 16 gene ontology (GO) terms. In bantam chickens, a total of 447 selected genes were annotated, such as IGF1, GRB10, enrichment in 20 GO terms and 2 Kyoto encyclopedia of genes and genomes pathways. The haplotype analysis results show that GRB10 has differences in chickens of different body sizes. CONCLUSION By population structure, ROH islands, and selection signatures analysis, we have identified multiple genes associated with chicken body size, growth, and development (such as BMP10, IGF1, GRB10, etc). This provides a theoretical reference for the subsequent development of molecular markers for chicken body size and the analysis of the genetic mechanism of chicken body size.
Collapse
Affiliation(s)
- Sensen Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Chaoqun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Kaiyuan Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Chengpeng Xiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Junlai Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Xintao Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| |
Collapse
|
2
|
Guan H, Fang J. BMP10 Knockdown Modulates Endothelial Cell Immunoreactivity by Inhibiting the HIF-1α Pathway in the Sepsis-Induced Myocardial Injury. J Cell Mol Med 2024; 28:e70232. [PMID: 39611400 PMCID: PMC11605482 DOI: 10.1111/jcmm.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Sepsis is a life-threatening syndrome triggered by a cascade of dysregulated immune responses. Sepsis-induced myocardial injury (SIMI) substantially impacts the survival time of septic patients. However, the molecular mechanisms underlying the pathology of SIMI remain unclear. Immune-related differentially expressed genes in SIMI were identified through RNA sequencing and bioinformatics analysis. The expression levels of hub genes were detected using reverse transcription quantitative PCR. BMP10 was knocked down in the lipopolysaccharide-induced mouse and cardiac microvascular endothelial cell (CMEC) models, and its functions were assessed by a series of in vitro and in vivo assays. Cell adhesion and HIF-1 pathway-associated protein expressions were measured by western blot. Fenbendazole-d3 was used to investigate whether BMP10 influenced SIMI development by modulating the HIF-1 pathway. Six key genes were screened, of which BMP10, HAMP, TRIM5, and MLANA were highly expressed, and PTPRN2 and AVP were lowly expressed. BMP10 knockdown ameliorated histopathological changes and inhibited apoptosis and CMEC immune infiltration in SIMI. BMP10 knockdown reduced inflammatory factor (IL-6, MCP-1, IFN-β, and CCL11) levels and protein expressions of cell adhesion-related molecules (VCAM-1 and ICAM-1). Mechanistically, the HIF-1 pathway agonist, Fenbendazole-d3, significantly reversed the inhibitory effects of BMP10 knockdown on SIMI in vitro, indicating that BMP10 knockdown impeded the development of SIMI by suppressing the HIF-1α pathway. BMP10 knockdown blocks SIMI progression by inhibiting the HIF-1α pathway, which provides a new potential therapeutic strategy for SIMI treatment.
Collapse
Affiliation(s)
- Huan Guan
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| | - Jingyun Fang
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| |
Collapse
|
3
|
Wang X, Sun H, Yu H, Du B, Fan Q, Jia B, Zhang Z. Bone morphogenetic protein 10, a rising star in the field of diabetes and cardiovascular disease. J Cell Mol Med 2024; 28:e18324. [PMID: 38760897 PMCID: PMC11101671 DOI: 10.1111/jcmm.18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024] Open
Abstract
Early research suggested that bone morphogenetic protein 10 (BMP10) is primarily involved in cardiac development and congenital heart disease processes. BMP10 is a newly identified cardiac-specific protein. In recent years, reports have emphasized the effects of BMP10 on myocardial apoptosis, fibrosis and immune response, as well as its synergistic effects with BMP9 in vascular endothelium and role in endothelial dysfunction. We believe that concentrating on this aspect of the study will enhance our knowledge of the pathogenesis of diabetes and the cardiovascular field. However, there have been no reports of any reviews discussing the role of BMP10 in diabetes and cardiovascular disease. In addition, the exact pathogenesis of diabetic cardiomyopathy is not fully understood, including myocardial energy metabolism disorders, microvascular changes, abnormal apoptosis of cardiomyocytes, collagen structural changes and myocardial fibrosis, all of which cause cardiac function impairment directly or indirectly and interact with one another. This review summarizes the research results of BMP10 in cardiac development, endothelial function and cardiovascular disease in an effort to generate new ideas for future research into diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xueyin Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Helin Sun
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Haomiao Yu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Bingyu Du
- Teaching and Research Section of Internal Medicine, College of MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Qi Fan
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Baoxue Jia
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Zhongwen Zhang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
4
|
Deng WJ, Li QQ, Shuai HN, Wu RX, Niu SF, Wang QH, Miao BB. Whole-Genome Sequencing Analyses Reveal the Evolution Mechanisms of Typical Biological Features of Decapterus maruadsi. Animals (Basel) 2024; 14:1202. [PMID: 38672351 PMCID: PMC11047736 DOI: 10.3390/ani14081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Decapterus maruadsi is a typical representative of small pelagic fish characterized by fast growth rate, small body size, and high fecundity. It is a high-quality marine commercial fish with high nutritional value. However, the underlying genetics and genomics research focused on D. maruadsi is not comprehensive. Herein, a high-quality chromosome-level genome of a male D. maruadsi was assembled. The assembled genome length was 716.13 Mb with contig N50 of 19.70 Mb. Notably, we successfully anchored 95.73% contig sequences into 23 chromosomes with a total length of 685.54 Mb and a scaffold N50 of 30.77 Mb. A total of 22,716 protein-coding genes, 274.90 Mb repeat sequences, and 10,060 ncRNAs were predicted, among which 22,037 (97%) genes were successfully functionally annotated. The comparative genome analysis identified 459 unique, 73 expanded, and 52 contracted gene families. Moreover, 2804 genes were identified as candidates for positive selection, of which some that were related to the growth and development of bone, muscle, cardioid, and ovaries, such as some members of the TGF-β superfamily, were likely involved in the evolution of typical biological features in D. maruadsi. The study provides an accurate and complete chromosome-level reference genome for further genetic conservation, genomic-assisted breeding, and adaptive evolution research for D. maruadsi.
Collapse
Affiliation(s)
| | | | | | | | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.-J.D.); (Q.-Q.L.); (H.-N.S.); (R.-X.W.); (Q.-H.W.); (B.-B.M.)
| | | | | |
Collapse
|
5
|
Jiahao M, Fan Z, Junsheng M. Influence of acidic metabolic environment on differentiation of stem cell-derived cardiomyocytes. Front Cardiovasc Med 2024; 11:1288710. [PMID: 38572303 PMCID: PMC10987843 DOI: 10.3389/fcvm.2024.1288710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Stem cell-based myocardial regeneration is a frontier topic in the treatment of myocardial infarction. Manipulating the metabolic microenvironment of stem cells can influence their differentiation into cardiomyocytes, which have promising clinical applications. pH is an important indicator of the metabolic environment during cardiomyocyte development. And lactate, as one of the main acidic metabolites, is a major regulator of the acidic metabolic environment during early cardiomyocyte development. Here, we summarize the progress of research into the influence of pH value and lactate on cardiomyocyte survival and differentiation, as well as related mechanisms.
Collapse
Affiliation(s)
- Mao Jiahao
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhou Fan
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Mu Junsheng
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Mao Y, Miao Y, Zhu X, Duan S, Wang Y, Wang X, Wu C, Wang G. Expression of bone morphogenetic protein 10 and its role in biomineralization in Hyriopsis cumingii. Int J Biol Macromol 2023; 253:127245. [PMID: 37797863 DOI: 10.1016/j.ijbiomac.2023.127245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Shells and pearls are the products of biomineralization of shellfish after ingesting external mineral ions. Bone morphogenetic proteins (BMPs) play a role in a variety of biological function, and the genes that encode them, are considered important shell-forming genes in mollusks and are associated with shell and pearl formation, embryonic development, and other functions, but bone morphogenetic protein 10 (BMP10) is poorly understood in Hyriopsis cumingii. In this study, we cloned Hc-BMP10 and obtained a 2477 bp full-length sequence encoding 460 amino acids with a conserved TGF-β structural domain. During the embryonic developmental stages, the cleavage stage had the highest expression of Hc-BMP10, followed by juvenile clams; the expression in the mantle gradually decreased with increasing mussel age. A strong signal was detected on epidermal cells on the mantle edge by in situ hybridization. In both the shell notching and inserting operations of the pearl fragment assay, we found that the expression of Hc-BMP10 increased after the above treatments. RNA interference assays showed that the silencing of Hc-BMP10 resulted in a change in the morphology of the prismatic layer and nacreous layer, with the prismatic layer less closely aligned and the disordered aragonite flakes in the nacreous layer. These findings indicate that Hc-BMP10 is involved in the growth and development of H. cumingii, as well as the formation of shells and pearls. Therefore, this study provides some reference for selecting superior species for growth and pearl breeding of H. cumingii at a molecular level and further investigation of the molecular mechanism for biomineralization of Hc-BMP10.
Collapse
Affiliation(s)
- Yingrui Mao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yulin Miao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiaoyue Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Shenghua Duan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Congdi Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
7
|
Ordoño J, Pérez-Amodio S, Ball K, Aguirre A, Engel E. The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes. BIOMATERIALS ADVANCES 2022; 139:213035. [PMID: 35907761 PMCID: PMC11061846 DOI: 10.1016/j.bioadv.2022.213035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.
Collapse
Affiliation(s)
- Jesús Ordoño
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain; IMEM-BRT Group, Dpt. Material Science and Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
| | - Kristen Ball
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, MI, USA
| | - Aitor Aguirre
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, MI, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain; IMEM-BRT Group, Dpt. Material Science and Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain.
| |
Collapse
|
8
|
Yin P, Li D, Zhao Q, Cai M, Wu Z, Shi Y, Su L. Gsα deficiency facilitates cardiac remodeling via CREB/ Bmp10-mediated signaling. Cell Death Discov 2021; 7:391. [PMID: 34907172 PMCID: PMC8671484 DOI: 10.1038/s41420-021-00788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
The stimulatory G-protein alpha subunit (Gsα), a ubiquitously expressed protein, mediates G-protein receptor-stimulated signal transduction. To investigate the functions of Gsα in cardiomyocytes. We developed transverse aortic constriction (TAC)-induced heart failure mouse models and tamoxifen-inducible transgenic mice with cardiac-specific Gsα disruption. We detected alterations in Gsα expression in TAC-induced heart failure mice. Moreover, we examined cardiac function and structure in mice with genetic Gsα deletion and investigated the underlying molecular mechanisms of Gsα function. We found that Gsα expression increased during the compensated cardiac hypertrophy period and decreased during the heart failure period. Moreover, cardiac-specific Gsα disruption deteriorated cardiac function and induced severe cardiac remodeling. Mechanistically, Gsα disruption decreased CREB1 expression and inhibited the Bmp10-mediated signaling pathway. In addition, we found that Gsα regulates Bmp10 expression through the binding of CREB1 to the Bmp10 promoter. Our results suggest that fluctuations in Gsα levels may play a vital role in the development of heart failure and that loss of Gsα function facilitates cardiac remodeling.
Collapse
Affiliation(s)
- Ping Yin
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dan Li
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qi Zhao
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Mingming Cai
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Su
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
9
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
10
|
Capasso TL, Li B, Volek HJ, Khalid W, Rochon ER, Anbalagan A, Herdman C, Yost HJ, Villanueva FS, Kim K, Roman BL. BMP10-mediated ALK1 signaling is continuously required for vascular development and maintenance. Angiogenesis 2019; 23:203-220. [PMID: 31828546 DOI: 10.1007/s10456-019-09701-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder characterized by development of high-flow arteriovenous malformations (AVMs) that can lead to stroke or high-output heart failure. HHT2 is caused by heterozygous mutations in ACVRL1, which encodes an endothelial cell bone morphogenetic protein (BMP) receptor, ALK1. BMP9 and BMP10 are established ALK1 ligands. However, the unique and overlapping roles of these ligands remain poorly understood. To define the physiologically relevant ALK1 ligand(s) required for vascular development and maintenance, we generated zebrafish harboring mutations in bmp9 and duplicate BMP10 paralogs, bmp10 and bmp10-like. bmp9 mutants survive to adulthood with no overt phenotype. In contrast, combined loss of bmp10 and bmp10-like results in embryonic lethal cranial AVMs indistinguishable from acvrl1 mutants. However, despite embryonic functional redundancy of bmp10 and bmp10-like, bmp10 encodes the only required Alk1 ligand in the juvenile-to-adult period. bmp10 mutants exhibit blood vessel abnormalities in anterior skin and liver, heart dysmorphology, and premature death, and vascular defects correlate with increased cardiac output. Together, our findings support a unique role for Bmp10 as a non-redundant Alk1 ligand required to maintain the post-embryonic vasculature and establish zebrafish bmp10 mutants as a model for AVM-associated high-output heart failure, which is an increasingly recognized complication of severe liver involvement in HHT2.
Collapse
Affiliation(s)
- Teresa L Capasso
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bijun Li
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Harry J Volek
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Waqas Khalid
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Elizabeth R Rochon
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Arulselvi Anbalagan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Chelsea Herdman
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - H Joseph Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Flordeliza S Villanueva
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Center for Ultrasound Molecular Imaging and Therapeutics, Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kang Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Center for Ultrasound Molecular Imaging and Therapeutics, Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Beth L Roman
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
11
|
Qu X, Liu Y, Cao D, Chen J, Liu Z, Ji H, Chen Y, Zhang W, Zhu P, Xiao D, Li X, Shou W, Chen H. BMP10 preserves cardiac function through its dual activation of SMAD-mediated and STAT3-mediated pathways. J Biol Chem 2019; 294:19877-19888. [PMID: 31712309 DOI: 10.1074/jbc.ra119.010943] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein 10 (BMP10) is a cardiac peptide growth factor belonging to the transforming growth factor β superfamily that critically controls cardiovascular development, growth, and maturation. It has been shown that BMP10 elicits its intracellular signaling through a receptor complex of activin receptor-like kinase 1 with morphogenetic protein receptor type II or activin receptor type 2A. Previously, we generated and characterized a transgenic mouse line expressing BMP10 from the α-myosin heavy chain gene promoter and found that these mice have normal cardiac hypertrophic responses to both physiological and pathological stimuli. In this study, we report that these transgenic mice exhibit significantly reduced levels of cardiomyocyte apoptosis and cardiac fibrosis in response to a prolonged administration of the β-adrenoreceptor agonist isoproterenol. We further confirmed this cardioprotective function with a newly generated conditional Bmp10 transgenic mouse line, in which Bmp10 was activated in adult hearts by tamoxifen. Moreover, the intraperitoneal administration of recombinant human BMP10 was found to effectively protect hearts from injury, suggesting potential therapeutic utility of using BMP10 to prevent heart failure. Gene profiling and biochemical analyses indicated that BMP10 activates the SMAD-mediated canonical pathway and, unexpectedly, also the signal transducer and activator of transcription 3 (STAT3)-mediated signaling pathway both in vivo and in vitro Additional findings further supported the notion that BMP10's cardioprotective function likely is due to its dual activation of SMAD- and STAT3-regulated signaling pathways, promoting cardiomyocyte survival and suppressing cardiac fibrosis.
Collapse
Affiliation(s)
- Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.,Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ying Liu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dayan Cao
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Jinghai Chen
- Department of Cardiology, the Second Affiliate Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang 310029, China
| | - Zhuo Liu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hongrui Ji
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.,School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Heilongjiang 150040, China
| | - Yuwen Chen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wenjun Zhang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ping Zhu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong 510100, China
| | - Deyong Xiao
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Fountain Valley Institute of Life Sciences and Fountain Valley Biotechnology Inc., Dalian Hi-Tech Industrial Zone, Liaoning 116023, China
| | - Xiaohui Li
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Weinian Shou
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hanying Chen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
12
|
Hirono K, Saito K, Munkhsaikhan U, Xu F, Wang C, Lu L, Ichida F, Towbin JA, Purevjav E. Familial Left Ventricular Non-Compaction Is Associated With a Rare p.V407I Variant in Bone Morphogenetic Protein 10. Circ J 2019; 83:1737-1746. [PMID: 31243186 DOI: 10.1253/circj.cj-19-0116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Left ventricular non-compaction (LVNC) is a heritable cardiomyopathy characterized by hypertrabeculation, inter-trabecular recesses and thin compact myocardium, but the genetic basis and mechanisms remain unclear. This study identified novel LVNC-associated mutations inNOTCH-dependent genes and investigated their mutational effects. METHODS AND RESULTS High-resolution melting screening was performed in 230 individuals with LVNC, followed by whole exome and Sanger sequencing of available family members. Dimerization of bone morphogenetic protein 10 (BMP10) and its binding to BMP receptors (BMPRs) were evaluated. Cellular differentiation, proliferation and tolerance to mechanical stretch were assessed in H9C2 cardiomyoblasts, expressing wild-type (WT) or mutant BMP10 delivered by adenoviral vectors. Rare variants, p.W143*-NRG1and p.V407I-BMP10, were identified in 2 unrelated probands and their affected family members. Although dimerization of mutant V407I-BMP10 was preserved like WT-BMP10, V407I-BMP10 pulled BMPR1a and BMPR2 receptors more weakly compared with WT-BMP10. On comparative gene expression and siRNA analysis, expressed BMPR1a and BMPR2 receptors were responsive to BMP10 treatment in H9C2 cardiomyoblasts. Expression of V407I-BMP10 resulted in a significantly lower rate of proliferation in H9C2 cells compared with WT-BMP10. Cyclic stretch resulted in destruction and death of V407I-BMP10 cells. CONCLUSIONS The W143*-NRG1and V470I-BMP10variants are associated with LVNC. Impaired BMPR-binding ability, perturbed proliferation and differentiation processes and intolerance to stretch in V407I-BMP10 mutant cardiomyoblasts may underlie myocardial non-compaction.
Collapse
Affiliation(s)
- Keiichi Hirono
- Department of Pediatrics, Graduate School of Medicine, University of Toyama
- The Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center
| | - Kazuyoshi Saito
- Department of Pediatrics, Graduate School of Medicine, University of Toyama
- The Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center
| | - Undral Munkhsaikhan
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center
| | - Ce Wang
- Department of Pediatrics, Graduate School of Medicine, University of Toyama
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center
| | - Fukiko Ichida
- Department of Pediatrics, Graduate School of Medicine, University of Toyama
| | - Jeffrey A Towbin
- The Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis
- Pediatric Cardiology, St. Jude Children's Research Hospital
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center
| |
Collapse
|
13
|
Ye J, Wang Z, Wang M, Xu Y, Zeng T, Ye D, Liu J, Jiang H, Lin Y, Wan J. Increased kielin/chordin-like protein levels are associated with the severity of heart failure. Clin Chim Acta 2018; 486:381-386. [PMID: 30144436 DOI: 10.1016/j.cca.2018.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies demonstrated that the transforming growth factor (TGF) β superfamily, including TGF-βs and bone morphogenetic proteins (BMPs), plays important roles in cardiovascular diseases. The kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of TGF-βs and BMPs. However, the role of KCP during heart failure (HF) remains unknown. The present study aimed to investigate the cardiac expression of KCP in human failing hearts. METHODS The human failing heart samples from patients with dilated cardiomyopathy (DCM, n = 12) and ischemic cardiomyopathy (ICM, n = 12) were collected, and normal heart (n = 8) samples from unmatched donors were collected as controls. Collagen volume, KCP levels, and mRNA levels of several BMPs in left ventricles (LV) of all hearts were measured. RESULTS The KCP levels were significantly higher in human failing hearts than in normal hearts. KCP levels were positively associated with hypertrophy markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, KCP levels were also positively associated with left ventricular end-diastolic dimension (LVEDD), collagen Iα and collagen IIIα expression but were negatively associated with left ventricular ejection fraction (LVEF). Furthermore, increased TGF-β1, BMP2/4/6/10 and reduced BMP7 levels were observed, and positive correlations between KCP and TGF-β1 and negative correlation between KCP and BMP2/7 were found, but not for BMP4/6/10. CONCLUSIONS KCP was closely associated with heart failure. The regulation of BMP2/7 and TGF-β1 expression may be the possible mechanisms.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tao Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
14
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Romaine A, Sørensen IW, Zeltz C, Lu N, Erusappan PM, Melleby AO, Zhang L, Bendiksen B, Robinson EL, Aronsen JM, Herum KM, Danielsen HE, Sjaastad I, Christensen G, Gullberg D. Overexpression of integrin α11 induces cardiac fibrosis in mice. Acta Physiol (Oxf) 2018; 222. [PMID: 28771943 DOI: 10.1111/apha.12932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 01/09/2023]
Abstract
AIM To understand the role of the collagen-binding integrin α11 in vivo, we have used a classical approach of creating a mouse strain overexpressing integrin α11. A transgenic mouse strain overexpressing α11 in muscle tissues was analysed in the current study with special reference to the heart tissue. METHODS We generated and phenotyped integrin α11 transgenic (TG) mice by echocardiography, magnetic resonance imaging and histology. Wild-type (WT) mice were subjected to aortic banding (AB) and the expression of integrin α11 was measured in flow cytometry-sorted cardiomyocytes and non-myocytes. RESULTS TG mice developed left ventricular concentric hypertrophy by 6 months, with increased collagen deposition and reactivation of mRNA encoding foetal genes associated with cardiovascular pathological remodelling compared to WT mice. Masson's trichrome staining revealed interstitial fibrosis, confirmed additionally by magnetic resonance imaging and was found to be most prominent in the cardiac septum of TG but not WT mice. TG hearts expressed increased levels of transforming growth factor-β2 and transforming growth factor-β3 and upregulated smooth muscle actin. Macrophage infiltration coincided with increased NF-κB signalling in TG but not WT hearts. Integrin α11 expression was increased in both cardiomyocytes and non-myocyte cells from WT AB hearts compared to sham-operated animals. CONCLUSION We report for the first time that overexpression of integrin α11 induces cardiac fibrosis and left ventricular hypertrophy. This is a result of changes in intracellular hypertrophic signalling and secretion of soluble factors that increase collagen production in the heart.
Collapse
Affiliation(s)
- A. Romaine
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - I. W. Sørensen
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - C. Zeltz
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - N. Lu
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - P. M. Erusappan
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - A. O. Melleby
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - L. Zhang
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - B. Bendiksen
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - E. L. Robinson
- Laboratory of Experimental Cardiology; Department of Cardiovascular Sciences; KU Leuven; Leuven Belgium
| | - J. M. Aronsen
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
- Bjørknes College; Oslo Norway
| | - K. M. Herum
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - H. E. Danielsen
- Institute for Cancer Genetics and Informatics; Oslo University Hospital; Oslo Norway
- Center for Cancer Biomedicine; University of Oslo; Oslo Norway
- Department of Informatics; University of Oslo; Oslo Norway
- Nuffield Division of Clinical Laboratory Sciences; University of Oxford; Oxford UK
| | - I. Sjaastad
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - G. Christensen
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - D. Gullberg
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
16
|
Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog 2017; 113:303-311. [DOI: 10.1016/j.micpath.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
17
|
Zhao H, Shen R, Dong X, Shen Y. Murine Double Minute-2 Inhibition Attenuates Cardiac Dysfunction and Fibrosis by Modulating NF-κB Pathway After Experimental Myocardial Infarction. Inflammation 2017; 40:232-239. [PMID: 27838797 DOI: 10.1007/s10753-016-0473-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inflammation has been implicated in myocardial infarction (MI). MDM2 associates with nuclear factor-κB (NF-κB)-mediated inflammation. However, the role of MDM2 in MI remains unclear. This study aimed to evaluate the impacts of MDM2 inhibition on cardiac dysfunction and fibrosis after experimental MI and the underlying mechanisms. Three-month-old male C57BL/6 mice were subjected to left anterior descending (LAD) coronary artery ligation for induction of myocardial infarction (MI). Immediately after MI induction, mice were treated with Nutlin-3a (100 mg/kg) or vehicle twice daily for 4 weeks. Survival, heart function and fibrosis were assessed. Signaling molecules were detected by Western blotting. Mouse myofibroblasts under oxygen and glucose deprivation were used for in vitro experiments. MDM2 protein expression was significantly elevated in the mouse heart after MI. Compared with vehicle-treated animals, Nutlin-3a treatment reduced the mouse mortality. Nutlin-3a treatment improved heart function and decreased the infarct scar and fibrosis compared with vehicle. Furthermore, MDM2 inhibition restored IκB and inhibited NF-κB activation, leading to suppressed production of proinflammatory cytokines in the heart after MI. The consistent results were obtained in vitro. MDM2 inhibition reduced cardiac dysfunction and fibrosis after MI. These effects of MDM2 inhibition is mediated through modulating NF-κB activation, resulting in inhibition of inflammatory response.
Collapse
Affiliation(s)
- Hao Zhao
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruijuan Shen
- Department of Health, Qingdao Municipal Hospital, No.5 Donghaizhong Road, Qingdao, 266071, Shandong, China.
| | - Xiaobin Dong
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yi Shen
- Department of Health, Qingdao Municipal Hospital, No.5 Donghaizhong Road, Qingdao, 266071, Shandong, China
| |
Collapse
|
18
|
Sørhus E, Incardona JP, Furmanek T, Goetz GW, Scholz NL, Meier S, Edvardsen RB, Jentoft S. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. eLife 2017; 6:e20707. [PMID: 28117666 PMCID: PMC5302885 DOI: 10.7554/elife.20707] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | - Giles W Goetz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
19
|
Wang MS, Huo YX, Li Y, Otecko NO, Su LY, Xu HB, Wu SF, Peng MS, Liu HQ, Zeng L, Irwin DM, Yao YG, Wu DD, Zhang YP. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. J Mol Cell Biol 2016; 8:542-552. [PMID: 27744377 DOI: 10.1093/jmcb/mjw044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Body size is the most important economic trait for animal production and breeding. Several hundreds of loci have been reported to be associated with growth trait and body weight in chickens. The loci are mapped to large genomic regions due to the low density and limited number of genetic markers in previous studies. Herein, we employed comparative population genomics to identify genetic basis underlying the small body size of Yuanbao chicken (a famous ornamental chicken) based on 89 whole genomes. The most significant signal was mapped to the BMP10 gene, whose expression was upregulated in the Yuanbao chicken. Overexpression of BMP10 induced a significant decrease in body length by inhibiting angiogenic vessel development in zebrafish. In addition, three other loci on chromosomes 1, 2, and 24 were also identified to be potentially involved in the development of body size. Our results provide a paradigm shift in identification of novel loci controlling body size variation, availing a fast and efficient strategy. These loci, particularly BMP10, add insights into ongoing research of the evolution of body size under artificial selection and have important implications for future chicken breeding.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yong-Xia Huo
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- College of Life Science, Anhui University, Hefei 230601, China
| | - Yan Li
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ling-Yan Su
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Shi-Fang Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Yong-Gang Yao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China
| |
Collapse
|
20
|
Zhang W, Qu X, Chen B, Snyder M, Wang M, Li B, Tang Y, Chen H, Zhu W, Zhan L, Yin N, Li D, Xie L, Liu Y, Zhang JJ, Fu XY, Rubart M, Song LS, Huang XY, Shou W. Critical Roles of STAT3 in β-Adrenergic Functions in the Heart. Circulation 2016; 133:48-61. [PMID: 26628621 PMCID: PMC4698100 DOI: 10.1161/circulationaha.115.017472] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND β-Adrenergic receptors (βARs) play paradoxical roles in the heart. On one hand, βARs augment cardiac performance to fulfill the physiological demands, but on the other hand, prolonged activations of βARs exert deleterious effects that result in heart failure. The signal transducer and activator of transcription 3 (STAT3) plays a dynamic role in integrating multiple cytokine signaling pathways in a number of tissues. Altered activation of STAT3 has been observed in failing hearts in both human patients and animal models. Our objective is to determine the potential regulatory roles of STAT3 in cardiac βAR-mediated signaling and function. METHODS AND RESULTS We observed that STAT3 can be directly activated in cardiomyocytes by β-adrenergic agonists. To follow up this finding, we analyzed βAR function in cardiomyocyte-restricted STAT3 knockouts and discovered that the conditional loss of STAT3 in cardiomyocytes markedly reduced the cardiac contractile response to acute βAR stimulation, and caused disengagement of calcium coupling and muscle contraction. Under chronic β-adrenergic stimulation, Stat3cKO hearts exhibited pronounced cardiomyocyte hypertrophy, cell death, and subsequent cardiac fibrosis. Biochemical and genetic data supported that Gαs and Src kinases are required for βAR-mediated activation of STAT3. Finally, we demonstrated that STAT3 transcriptionally regulates several key components of βAR pathway, including β1AR, protein kinase A, and T-type Ca(2+) channels. CONCLUSIONS Our data demonstrate for the first time that STAT3 has a fundamental role in βAR signaling and functions in the heart. STAT3 serves as a critical transcriptional regulator for βAR-mediated cardiac stress adaption, pathological remodeling, and heart failure.
Collapse
Affiliation(s)
- Wenjun Zhang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.).
| | - Xiuxia Qu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Biyi Chen
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Marylynn Snyder
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Meijing Wang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Baiyan Li
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Yue Tang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Hanying Chen
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Wuqiang Zhu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Li Zhan
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Ni Yin
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Deqiang Li
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Li Xie
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Ying Liu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - J Jillian Zhang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Xin-Yuan Fu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Michael Rubart
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Long-Sheng Song
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Xin-Yun Huang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Weinian Shou
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.).
| |
Collapse
|
21
|
Jiang H, Salmon RM, Upton PD, Wei Z, Lawera A, Davenport AP, Morrell NW, Li W. The Prodomain-bound Form of Bone Morphogenetic Protein 10 Is Biologically Active on Endothelial Cells. J Biol Chem 2015; 291:2954-66. [PMID: 26631724 PMCID: PMC4742757 DOI: 10.1074/jbc.m115.683292] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality because of impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular, it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.
Collapse
Affiliation(s)
- He Jiang
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Richard M Salmon
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Paul D Upton
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Zhenquan Wei
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Aleksandra Lawera
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Anthony P Davenport
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Nicholas W Morrell
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Wei Li
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| |
Collapse
|
22
|
Ormiston ML, Upton PD, Li W, Morrell NW. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2015; 2015:47. [PMID: 26779522 PMCID: PMC4710869 DOI: 10.5339/gcsp.2015.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.
Collapse
Affiliation(s)
- Mark L Ormiston
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Paul D Upton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
23
|
Mu W, Zhang Q, Tang X, Fu W, Zheng W, Lu Y, Li H, Wei Y, Li L, She Z, Chen H, Liu D. Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure. SCIENCE CHINA. LIFE SCIENCES 2014; 57:915-924. [PMID: 25104317 DOI: 10.1007/s11427-014-4687-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/30/2014] [Indexed: 10/24/2022]
Abstract
SIRT1, a mammalian ortholog of yeast silent information regulator 2 (Sir2), is an NAD(+)-dependent protein deacetylase that plays a critical role in the regulation of vascular function. The current study aims to investigate the functional significance of deacetylase activity of SIRT1 in heart. Here we show that the early postnatal hearts expressed the highest level of SIRT1 deacetylase activity compared to adult and aged hearts. We generated transgenic mice with cardiac-specific expression of a dominant-negative form of the human SIRT1 (SIRT1H363Y), which represses endogenous SIRT1 activity. The transgenic mice displayed dilated atrial and ventricular chambers, and died early in the postnatal period. Pathological, echocardiographic and molecular phenotype confirmed the presence of dilated cardiomyopathy. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling analysis revealed a greater abundance of apoptotic nuclei in the hearts of transgenic mice. Furthermore, we show that cardiomyocyte apoptosis caused by suppression of SIRT1 activity is, at least in part, due to increased p53 acetylation and upregulated Bax expression. These results indicate that dominant negative form of SIRT1 (SIRT1H363Y) overexpression in mouse hearts causes cardiomyocyte apoptosis and early-onset heart failure, suggesting a critical role of SIRT1 in preserving normal cardiac development during the early postnatal period.
Collapse
Affiliation(s)
- WenLi Mu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen J, Sun W, Zheng Y, Xiong H, Cai Y. Bone morphogenetic protein 4, inhibitor of differentiation 1, and epidermal growth factor receptor regulate the survival of cochlear sensory epithelial cells. J Neurosci Res 2013; 91:515-26. [DOI: 10.1002/jnr.23175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/06/2012] [Accepted: 10/13/2012] [Indexed: 12/11/2022]
|
25
|
Gaborit N, Sakuma R, Wylie JN, Kim KH, Zhang SS, Hui CC, Bruneau BG. Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology. Development 2012; 139:4007-19. [PMID: 22992950 DOI: 10.1242/dev.081703] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Iroquois homeobox (Irx) homeodomain transcription factors are important for several aspects of embryonic development. In the developing heart, individual Irx genes are important for certain postnatal cardiac functions, including cardiac repolarization (Irx5) and rapid ventricular conduction (Irx3). Irx genes are expressed in dynamic and partially overlapping patterns in the developing heart. Here we show in mice that Irx3 and Irx5 have redundant function in the endocardium to regulate atrioventricular canal morphogenesis and outflow tract formation. Our data suggest that direct transcriptional repression of Bmp10 by Irx3 and Irx5 in the endocardium is required for ventricular septation. A postnatal deletion of Irx3 and Irx5 in the myocardium leads to prolongation of atrioventricular conduction, due in part to activation of expression of the Na(+) channel protein Nav1.5. Surprisingly, combined postnatal loss of Irx3 and Irx5 results in a restoration of the repolarization gradient that is altered in Irx5 mutant hearts, suggesting that postnatal Irx3 activity can be repressed by Irx5. Our results have uncovered complex genetic interactions between Irx3 and Irx5 in embryonic cardiac development and postnatal physiology.
Collapse
Affiliation(s)
- Nathalie Gaborit
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Huang J, Elicker J, Bowens N, Liu X, Cheng L, Cappola TP, Zhu X, Parmacek MS. Myocardin regulates BMP10 expression and is required for heart development. J Clin Invest 2012; 122:3678-91. [PMID: 22996691 DOI: 10.1172/jci63635] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
Abstract
Myocardin is a muscle lineage-restricted transcriptional coactivator that has been shown to transduce extracellular signals to the nucleus required for SMC differentiation. We now report the discovery of a myocardin/BMP10 (where BMP10 indicates bone morphogenetic protein 10) signaling pathway required for cardiac growth, chamber maturation, and embryonic survival. Myocardin-null (Myocd) embryos and embryos harboring a cardiomyocyte-restricted mutation in the Myocd gene exhibited myocardial hypoplasia, defective atrial and ventricular chamber maturation, heart failure, and embryonic lethality. Cardiac hypoplasia was caused by decreased cardiomyocyte proliferation accompanied by a dramatic increase in programmed cell death. Defective chamber maturation and the block in cardiomyocyte proliferation were caused in part by a block in BMP10 signaling. Myocardin transactivated the Bmp10 gene via binding of a serum response factor-myocardin protein complex to a nonconsensus CArG element in the Bmp10 promoter. Expression of p57kip2, a BMP10-regulated cyclin-dependent kinase inhibitor, was induced in Myocd-/- hearts, while BMP10-activated cardiogenic transcription factors, including NKX2.5 and MEF2c, were repressed. Remarkably, when embryonic Myocd-/- hearts were cultured ex vivo in BMP10-conditioned medium, the defects in cardiomyocyte proliferation and p57kip2 expression were rescued. Taken together, these data identify a heretofore undescribed myocardin/BMP10 signaling pathway that regulates cardiomyocyte proliferation and apoptosis in the embryonic heart.
Collapse
Affiliation(s)
- Jianhe Huang
- University of Pennsylvania, Cardiovascular Institute, Department of Medicine, Philadelphia, PA 19104-5159, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang J, Yang X. The function of miRNA in cardiac hypertrophy. Cell Mol Life Sci 2012; 69:3561-70. [PMID: 22926414 PMCID: PMC3474911 DOI: 10.1007/s00018-012-1126-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
Cardiac hypertrophy is an adaptive enlargement of the myocardium in response to altered stress or injury. The cellular responses of cardiomyocytes and non-cardiomyocytes to various signaling pathways should be tightly and delicately regulated to maintain cardiac homeostasis and prevent pathological cardiac hypertrophy. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs that act as regulators of gene expression by promoting the degradation or inhibiting the translation of target mRNAs. Recent studies have revealed expression signatures of miRNAs associated with pathological cardiac hypertrophy and heart failure in humans and mouse models of heart diseases. Increasing evidence indicates that dysregulation of specific miRNAs could alter the cellular responses of cardiomyocytes and non-cardiomyocytes to specific signaling upon the pathological hemodynamic overload, leading to cardiac hypertrophy and heart failure. This review summarizes the cell-autonomous functions of cardiomyocyte miRNAs regulated by different pathways and the roles of non-cardiomyocyte miRNAs in cardiac hypertrophy. The therapeutic effects of a number of miRNAs in heart diseases are also discussed.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, 100071 Beijing, China
| | | |
Collapse
|
28
|
Asp J, Synnergren J, Jonsson M, Dellgren G, Jeppsson A. Comparison of human cardiac gene expression profiles in paired samples of right atrium and left ventricle collected in vivo. Physiol Genomics 2012; 44:89-98. [DOI: 10.1152/physiolgenomics.00137.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Studies of expressed genes in human heart provide insight into both physiological and pathophysiological mechanisms. This is of importance for extended understanding of cardiac function as well as development of new therapeutic drugs. Heart tissue for gene expression studies is generally hard to obtain, particularly from the ventricles. Since different parts of the heart have different functions, expression profiles should likely differ between these parts. The aim of the study was therefore to compare the global gene expression in cardiac tissue from the more accessible auricula of the right atrium to expression in tissue from the left ventricle. Tissue samples were collected from five men undergoing aortic valve replacement or coronary artery bypass grafting. Global gene expression analysis identified 542 genes as differentially expressed between the samples extracted from these two locations, corresponding to ∼2% of the genes covered by the microarray; 416 genes were identified as abundantly expressed in right atrium, and 126 genes were abundantly expressed in left ventricle. Further analysis of the differentially expressed genes according to available annotations, information from curated pathways and known protein interactions, showed that genes with higher expression in the ventricle were mainly associated with contractile work of the heart. Transcription in biopsies from the auricula of the right atrium on the other hand indicated a wider area of functions, including immunity and defense. In conclusion, our results suggest that biopsies from the auricula of the right atrium may be suitable for various genetic studies, but not studies directly related to muscle work.
Collapse
Affiliation(s)
- Julia Asp
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg
| | - Jane Synnergren
- Systems Biology Research Center, School of Life Sciences, University of Skövde, Skövde
| | - Marianne Jonsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg
| | - Göran Dellgren
- Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
29
|
Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Dev Biol 2011; 363:234-46. [PMID: 22226977 DOI: 10.1016/j.ydbio.2011.12.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/29/2011] [Accepted: 12/20/2011] [Indexed: 11/21/2022]
Abstract
TBX20 gain-of-function mutations in humans are associated with congenital heart malformations and myocardial defects. However the effects of increased Tbx20 function during cardiac chamber development and maturation have not been reported previously. CAG-CAT-Tbx20 transgenic mice were generated for Cre-dependent induction of Tbx20 in myocardial lineages in the developing heart. βMHCCre-mediated overexpression of Tbx20 in fetal ventricular cardiomyocytes results in increased thickness of compact myocardium, induction of cardiomyocyte proliferation, and increased expression of Bmp10 and pSmad1/5/8 at embryonic day (E) 14.5. βMHCCre-mediated Tbx20 overexpression also leads to increased expression of cardiac conduction system (CCS) genes Tbx5, Cx40, and Cx43 throughout the ventricular myocardium. In contrast, Nkx2.5Cre mediated overexpression of Tbx20 in the embryonic heart results in reduced cardiomyocyte proliferation, increased expression of a cell cycle inhibitor, p21(CIP1), and decreased expression of Tbx2, Tbx5, and N-myc1 at E9.5, concomitant with decreased phospho-ERK1/2 expression. Together, these analyses demonstrate that Tbx20 differentially regulates cell proliferation and cardiac lineage specification in embryonic versus fetal cardiomyocytes. Induction of pSmad1/5/8 at E14.5 and inhibition of dpERK expression at E9.5 are consistent with selective Tbx20 regulation of these pathways in association with stage-specific effects on cardiomyocyte proliferation. Together, these in vivo data support distinct functions for Tbx20 in regulation of cardiomyocyte lineage maturation and cell proliferation at embryonic and fetal stages of heart development.
Collapse
|
30
|
Kerckhoffs RCP. Computational modeling of cardiac growth in the post-natal rat with a strain-based growth law. J Biomech 2011; 45:865-71. [PMID: 22169150 DOI: 10.1016/j.jbiomech.2011.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The postnatal heart grows mostly in response to increased hemodynamic load. However, the specific biomechanical stimuli that stimulate cardiac growth as a reaction to increased hemodynamic load are still poorly understood. It has been shown that isolated neonatal rat cardiac myocytes normalize resting sarcomere length by adding sarcomeres in series when subjected to uniaxial static strain. Because there is experimental evidence that myocytes can distinguish the direction of stretch, it was postulated that myocytes also may normalize interfilament lattice spacing as a response to cross-fiber stretch. METHODS A growth law was proposed in which fiber axial growth was stimulated by fiber strain deviating from zero and fiber radial growth by cross-fiber strain (parallel to the wall surface) deviating from zero. Fiber radial growth rate constant was 1/3 of the fiber axial growth rate constant. The growth law was implemented in a finite element model of the newborn Sprague-Dawley rat residually stressed left ventricle (LV). The LV was subjected to an end-diastolic pressure of 1 kPa and about 25 weeks of normal growth was simulated. RESULTS Most cellular and chamber dimension changes in the model matched experimentally measured ones: LV cavity and wall volume increased from 2.3 and 54 μl, respectively, in the newborn to 276 μl and 1.1 ml, respectively, in the adult rat; LV shape became more spherical; internal LV radius increased faster than wall thickness; and unloaded sarcomere lengths exhibited a transmural gradient. The major discrepancy with experiments included a reversed transmural gradient of cell length in the older rat. CONCLUSION A novel strain-based growth law has been presented that reproduced physiological postnatal growth in the rat LV.
Collapse
Affiliation(s)
- Roy C P Kerckhoffs
- University of California San Diego, Department of Bioengineering, La Jolla, CA 92093-0412, USA.
| |
Collapse
|
31
|
Liu Y, Chen H, Ji G, Li B, Mohler PJ, Zhu Z, Yong W, Chen Z, Xu X, Xin H, Shou W. Transgenic analysis of the role of FKBP12.6 in cardiac function and intracellular calcium release. Assay Drug Dev Technol 2011; 9:620-7. [PMID: 22087651 DOI: 10.1089/adt.2011.0411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
FK506 binding protein12.6 (FKBP12.6) binds to the Ca(2+) release channel ryanodine receptor (RyR2) in cardiomyocytes and stabilizes RyR2 to prevent premature sarcoplasmic reticulum Ca(2+) release. Previously, two different mouse strains deficient in FKBP12.6 were reported to have different abnormal cardiac phenotypes. The first mutant strain displayed sex-dependent cardiac hypertrophy, while the second displayed exercise-induced cardiac arrhythmia and sudden death. In this study, we tested whether FKBP12.6-deficient mice that display hypertrophic hearts can develop exercise-induced cardiac sudden death and whether the hypertrophic heart is a direct consequence of abnormal calcium handling in mutant cardiomyocytes. Our data show that FKBP12.6-deficient mice with cardiac hypertrophy do not display exercise-induced arrhythmia and/or sudden cardiac death. To investigate the role of FKBP12.6 overexpression for cardiac function and cardiomyocyte calcium release, we generated a transgenic mouse line with cardiac specific overexpression of FKBP12.6 using α-myosin heavy chain (αMHC) promoter. MHC-FKBP12.6 mice displayed normal cardiac development and function. We demonstrated that MHC-FKBP12.6 mice are able to rescue abnormal cardiac hypertrophy and abnormal calcium release in FKBP12.6-deficient mice.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory for Cardiovascular Diseases, West-China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mungrue IN, Zhao P, Yao Y, Meng H, Rau C, Havel JV, Gorgels TGMF, Bergen AAB, MacLellan WR, Drake TA, Boström KI, Lusis AJ. Abcc6 deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model. Arterioscler Thromb Vasc Biol 2011; 31:2806-12. [PMID: 21979437 DOI: 10.1161/atvbaha.111.237420] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE ABCC6 genetic deficiency underlies pseudoxanthoma elasticum (PXE) in humans, characterized by ectopic calcification, and early cardiac disease. The spectrum of PXE has been noted in Abcc6-deficient mice, including dystrophic cardiac calcification. We tested the role of Abcc6 in response to cardiac ischemia-reperfusion (I/R) injury. METHODS AND RESULTS To determine the role of Abcc6 in cardioprotection, we induced ischemic injury in mice in vivo by occluding the left anterior descending artery (30 minutes) followed by reperfusion (48 hours). Infarct size was increased in Abcc6-deficient mice compared with wild-type controls. Additionally, an Abcc6 transgene significantly reduced infarct size on the background of a naturally occurring Abcc6 deficiency. There were no differences in cardiac calcification following I/R, but increased cardiac apoptosis was noted in Abcc6-deficient mice. Previous studies have implicated the bone morphogenetic protein (BMP) signaling pathway in directing calcification, and here we showed that the BMP responsive transcription factors pSmad1/5/8 were increased in hearts of Abcc6 mice. Consistent with this finding, BMP4 and BMP9 were increased and activin receptor-like kinase-2 and endoglin were downregulated in cardiac extracts from Abcc6-deficient mice versus controls. CONCLUSIONS These data identify Abcc6 as a novel modulator of cardiac myocyte survival after I/R. This cardioprotective mechanism may involve inhibition of the BMP signaling pathway, which modulates apoptosis.
Collapse
Affiliation(s)
- Imran N Mungrue
- Division of Cardiology and Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang W, Chen H, Wang Y, Yong W, Zhu W, Liu Y, Wagner GR, Payne RM, Field LJ, Xin H, Cai CL, Shou W. Tbx20 transcription factor is a downstream mediator for bone morphogenetic protein-10 in regulating cardiac ventricular wall development and function. J Biol Chem 2011; 286:36820-9. [PMID: 21890625 DOI: 10.1074/jbc.m111.279679] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 10 (BMP10) belongs to the TGFβ-superfamily. Previously, we had demonstrated that BMP10 is a key regulator for ventricular chamber formation, growth, and maturation. Ablation of BMP10 leads to hypoplastic ventricular wall formation, and elevated levels of BMP10 are associated with abnormal ventricular trabeculation/compaction and wall maturation. However, the molecular mechanism(s) by which BMP10 regulates ventricle wall growth and maturation is still largely unknown. In this study, we sought to identify the specific transcriptional network that is potentially mediated by BMP10. We analyzed and compared the gene expression profiles between α-myosin heavy chain (αMHC)-BMP10 transgenic hearts and nontransgenic littermate controls using Affymetrix mouse exon arrays. T-box 20 (Tbx20), a cardiac transcription factor, was significantly up-regulated in αMHC-BMP10 transgenic hearts, which was validated by quantitative RT-PCR and in situ hybridization. Ablation of BMP10 reduced Tbx20 expression specifically in the BMP10-expressing region of the developing ventricle. In vitro promoter analysis demonstrated that BMP10 was able to induce Tbx20 promoter activity through a conserved Smad binding site in the Tbx20 promoter proximal region. Furthermore, overexpression of Tbx20 in myocardium led to dilated cardiomyopathy that exhibited ventricular hypertrabeculation and an abnormal muscular septum, which phenocopied genetically modified mice with elevated BMP10 levels. Taken together, our findings demonstrate that the BMP10-Tbx20 signaling cascade is important for ventricular wall development and maturation.
Collapse
Affiliation(s)
- Wenjun Zhang
- Riley Heart Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li D, Liu Y, Maruyama M, Zhu W, Chen H, Zhang W, Reuter S, Lin SF, Haneline LS, Field LJ, Chen PS, Shou W. Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Hum Mol Genet 2011; 20:4582-96. [PMID: 21880664 DOI: 10.1093/hmg/ddr392] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inheritable myocardial disorder associated with fibrofatty replacement of myocardium and ventricular arrhythmia. A subset of ARVC is categorized as Naxos disease, which is characterized by ARVC and a cutaneous disorder. A homozygous loss-of-function mutation of the Plakoglobin (Jup) gene, which encodes a major component of the desmosome and the adherens junction, had been identified in Naxos patients, although the underlying mechanism remained elusive. We generated Jup mutant mice by ablating Jup in cardiomyocytes. Jup mutant mice largely recapitulated the clinical manifestation of human ARVC: ventricular dilation and aneurysm, cardiac fibrosis, cardiac dysfunction and spontaneous ventricular arrhythmias. Ultra-structural analyses revealed that desmosomes were absent in Jup mutant myocardia, whereas adherens junctions and gap junctions were preserved. We found that ventricular arrhythmias were associated with progressive cardiomyopathy and fibrosis in Jup mutant hearts. Massive cell death contributed to the cardiomyocyte dropout in Jup mutant hearts. Despite the increase of β-catenin at adherens junctions in Jup mutant cardiomyoicytes, the Wnt/β-catenin-mediated signaling was not altered. Transforming growth factor-beta-mediated signaling was found significantly elevated in Jup mutant cardiomyocytes at the early stage of cardiomyopathy, suggesting an important pathogenic pathway for Jup-related ARVC. These findings have provided further insights for the pathogenesis of ARVC and potential therapeutic interventions.
Collapse
Affiliation(s)
- Deqiang Li
- Riley Heart Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, Guo S, Wang Y, Fan K, Zhan D, Zha L, Cao Y, Li Z, Cheng X, Zhang Y, Yang X. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res 2011; 22:516-27. [PMID: 21844895 PMCID: PMC3292295 DOI: 10.1038/cr.2011.132] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have begun to reveal critical roles of microRNAs (miRNAs) in the pathogenesis of cardiac hypertrophy and dysfunction. In this study, we tested whether a transforming growth factor-β (TGF-β)-regulated miRNA played a pivotal role in the development of cardiac hypertrophy and heart failure (HF). We observed that miR-27b was upregulated in hearts of cardiomyocyte-specific Smad4 knockout mice, which developed cardiac hypertrophy. In vitro experiments showed that the miR-27b expression could be inhibited by TGF-β1 and that its overexpression promoted hypertrophic cell growth, while the miR-27b suppression led to inhibition of the hypertrophic cell growth caused by phenylephrine (PE) treatment. Furthermore, the analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-27b revealed that miR-27b overexpression was sufficient to induce cardiac hypertrophy and dysfunction. We validated the peroxisome proliferator-activated receptor-γ (PPAR-γ) as a direct target of miR-27b in cardiomyocyte. Consistently, the miR-27b transgenic mice displayed significantly lower levels of PPAR-γ than the control mice. Furthermore, in vivo silencing of miR-27b using a specific antagomir in a pressure-overload-induced mouse model of HF increased cardiac PPAR-γ expression, attenuated cardiac hypertrophy and dysfunction. The results of our study demonstrate that TGF-β1-regulated miR-27b is involved in the regulation of cardiac hypertrophy, and validate miR-27b as an efficient therapeutic target for cardiac diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chinchilla A, Daimi H, Lozano-Velasco E, Dominguez JN, Caballero R, Delpón E, Tamargo J, Cinca J, Hove-Madsen L, Aranega AE, Franco D. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:269-79. [PMID: 21511879 DOI: 10.1161/circgenetics.110.958116] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pitx2 is a homeobox transcription factor that plays a pivotal role in early left/right determination during embryonic development. Pitx2 loss-of-function mouse mutants display early embryonic lethality with severe cardiac malformations, demonstrating the importance of Pitx2 during cardiogenesis. Recently, independent genome-wide association studies have provided new evidence for a putative role of PITX2 in the adult heart. These studies have independently reported several risk variants close to the PITX2 locus on chromosome 4q25 that are strongly associated with atrial fibrillation in humans. METHODS AND RESULTS We show for the first time that PITX2C expression is significantly decreased in human patients with sustained atrial fibrillation, thus providing a molecular link between PITX2 loss of function and atrial fibrillation. In addition, morphological, molecular, and electrophysiological characterization of chamber-specific Pitx2 conditional mouse mutants reveals that atrial but not ventricular chamber-specific deletion of Pitx2 results in differences in the action potential amplitude and resting membrane potential in the adult heart as well as ECG characteristics of atrioventricular block. Lack of Pitx2 in atrial myocardium impairs sodium channel and potassium channel expression, mediated in part by miRNA misexpression. CONCLUSIONS This study thus identifies Pitx2 as an upstream transcriptional regulator of atrial electric function, the insufficiency of which results in cellular and molecular changes leading to atrial electric and structural remodeling linked to arrhythmogenesis.
Collapse
Affiliation(s)
- Ana Chinchilla
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Benjannet S, Chamberland A, Day R, Szumska D, Constam D, Bhattacharya S, Prat A, Seidah NG. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J Biol Chem 2011; 286:22785-94. [PMID: 21550985 DOI: 10.1074/jbc.m111.233577] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (∼60 kDa) is processed into active BMP10 (∼14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.
Collapse
Affiliation(s)
- Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
He K, Fu Y, Zhang W, Yuan J, Li Z, Lv Z, Zhang Y, Fang X. Single-molecule imaging revealed enhanced dimerization of transforming growth factor β type II receptors in hypertrophic cardiomyocytes. Biochem Biophys Res Commun 2011; 407:313-7. [PMID: 21382347 DOI: 10.1016/j.bbrc.2011.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/02/2011] [Indexed: 12/29/2022]
Abstract
Transforming growth factor β (TGF-β) signaling plays an important role in the pathogenesis of cardiac hypertrophy. However, the molecular mechanism of TGF-β signaling during the process of cardiac remodeling remains poorly understood. In the present study, by employing single-molecule fluorescence imaging approach, we demonstrated that in neonatal rat cardiomyocytes, TGF-β type II receptors (TβRII) existed as monomers at the low expression level, and dimerized upon TGF-β1 stimulation. Importantly, for the first time, we found the increased dimerization of TβRII in hypertrophic cardiomyocytes comparing to the normal cardiomyocytes. The enhanced TβRII dimerization was correlated with the enhanced Smad3 phosphorylation levels. These results provide new information on the mechanism of TGF-β signaling in cardiac remodeling.
Collapse
Affiliation(s)
- Kangmin He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Maruyama M, Li BY, Chen H, Xu X, Song LS, Guatimosim S, Zhu W, Yong W, Zhang W, Bu G, Lin SF, Fishbein MC, Lederer WJ, Schild JH, Field LJ, Rubart M, Chen PS, Shou W. FKBP12 is a critical regulator of the heart rhythm and the cardiac voltage-gated sodium current in mice. Circ Res 2011; 108:1042-52. [PMID: 21372286 DOI: 10.1161/circresaha.110.237867] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE FK506 binding protein (FKBP)12 is a known cis-trans peptidyl prolyl isomerase and highly expressed in the heart. Its role in regulating postnatal cardiac function remains largely unknown. METHODS AND RESULTS We generated FKBP12 overexpressing transgenic (αMyHC-FKBP12) mice and cardiomyocyte-restricted FKBP12 conditional knockout (FKBP12(f/f)/αMyHC-Cre) mice and analyzed their cardiac electrophysiology in vivo and in vitro. A high incidence (38%) of sudden death was found in αMyHC-FKBP12 mice. Surface and ambulatory ECGs documented cardiac conduction defects, which were further confirmed by electric measurements and optical mapping in Langendorff-perfused hearts. αMyHC-FKBP12 hearts had slower action potential upstrokes and longer action potential durations. Whole-cell patch-clamp analyses demonstrated an ≈ 80% reduction in peak density of the tetrodotoxin-resistant, voltage-gated sodium current I(Na) in αMyHC-FKBP12 ventricular cardiomyocytes, a slower recovery of I(Na) from inactivation, shifts of steady-state activation and inactivation curves of I(Na) to more depolarized potentials, and augmentation of late I(Na), suggesting that the arrhythmogenic phenotype of αMyHC-FKBP12 mice is attributable to abnormal I(Na). Ventricular cardiomyocytes isolated from FKBP12(f/f)/αMyHC-Cre hearts showed faster action potential upstrokes and a more than 2-fold increase in peak I(Na) density. Dialysis of exogenous recombinant FKBP12 protein into FKBP12-deficient cardiomyocytes promptly recapitulated alterations in I(Na) seen in αMyHC-FKBP12 myocytes. CONCLUSIONS FKBP12 is a critical regulator of I(Na) and is important for cardiac arrhythmogenic physiology. FKPB12-mediated dysregulation of I(Na) may underlie clinical arrhythmias associated with FK506 administration.
Collapse
Affiliation(s)
- Mitsunori Maruyama
- Department of Medicine, University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The potential role of ATF3 on immune response is regulated by BMP10 through Smad dependent pathway. Med Hypotheses 2011; 76:685-8. [PMID: 21345597 DOI: 10.1016/j.mehy.2011.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/20/2011] [Indexed: 02/05/2023]
Abstract
It is hypothesis that ATF3 is a downstream component of BMP10. The possible function of ATF3 on immune response is partially regulated by BMP10 via Smad dependent pathway. BMP10 is highly expressed in blood cells during embryonic development based on our in situ hybridization. The expression of ATF3 is enhanced by BMP10 in overexpression transgenic mice. Both BMP10 and ATF3 can response to stress stimulate, and ATF3 is well understood as a stress inducible gene which possible contributes to immune response. The Smad dependent pathway is well established for BMP10 in regulation expression of downstream targets. It would be interesting for us to determine the relationship between BMP10 and ATF3, especially to understand the mechanism of BMP10 and ATF3 effecting on heart development, as well as immune response exposed to stress stimulates.
Collapse
|
41
|
Li Y, Messina C, Bendaoud M, Fine DH, Schreiner H, Tsiagbe VK. Adaptive immune response in osteoclastic bone resorption induced by orally administered Aggregatibacter actinomycetemcomitans in a rat model of periodontal disease. Mol Oral Microbiol 2010; 25:275-92. [PMID: 20618701 DOI: 10.1111/j.2041-1014.2010.00576.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is mounting evidence that innate and adaptive immunity are critical for periodontal disease-mediated bone resorption. These studies examined the role of B and CD4 T cells in adaptive immunity of rats infected with Aggregatibacter actinomycetemcomitans (Aa). Sprague-Dawley male rats were fed Aa-containing mash or control-mash for 2 weeks. B and CD4 T cells were obtained from draining lymph nodes at 2, 4 and 12 weeks, postinoculation. Quantitative polymerase chain reaction-based messenger RNA expression was conducted for 89 cytokine family genes. Disease-relevance of the differentially expressed genes was assessed using a biological interaction pathway analysis software. B and CD4 T cells of Aa-infected rats increased and were activated, resulting in enhanced isotype-switched serum immunoglobulin G by 2 weeks postinoculation. Bone resorption was evident 12 weeks after Aa-feeding. In B cells, interleukin-2 (IL-2), macrophage-inhibiting factor, IL-19, IL-21, tumor necrosis factor (TNF), CD40 ligand (CD40L), CD70, bone morphogenetic protein 2 (BMP2), BMP3, and BMP10 were upregulated early; while IL-7, Fas ligand (FasL), small inducible cytokine subfamily E1, and growth differentiation factor 11 (GDF11; BMP11) were upregulated late (12 weeks). BMP10 was sustained throughout. In CD4 T cells, IL-10, IL-16, TNF, lymphotoxin-beta (LTbeta), APRIL, CD40L, FasL, RANKL and osteoprotegerin were upregulated early, whereas IL-1beta, IL-1RN, IL-1F8, IL-24, interferon-alpha1, GDF11 (BMP11), and GDF15 were upregulated late (12 weeks). Adaptive immunity appears crucial for bone resorption. Several of the deregulated genes are, for the first time, shown to be associated with bone resorption, and the results indicate that activated B cells produce BMP10. The study provides a rationale for a link between periodontal disease and other systemic diseases.
Collapse
Affiliation(s)
- Y Li
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
42
|
Griffin CA, Apponi LH, Long KK, Pavlath GK. Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 2010; 123:3052-60. [PMID: 20736301 DOI: 10.1242/jcs.066241] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult regenerative myogenesis is vital for restoring normal tissue structure after muscle injury. Muscle regeneration is dependent on progenitor satellite cells, which proliferate in response to injury, and their progeny differentiate and undergo cell-cell fusion to form regenerating myofibers. Myogenic progenitor cells must be precisely regulated and positioned for proper cell fusion to occur. Chemokines are secreted proteins that share both leukocyte chemoattractant and cytokine-like behavior and affect the physiology of a number of cell types. We investigated the steady-state mRNA levels of 84 chemokines, chemokine receptors and signaling molecules, to obtain a comprehensive view of chemokine expression by muscle cells during myogenesis in vitro. A large number of chemokines and chemokine receptors were expressed by primary mouse muscle cells, especially during times of extensive cell-cell fusion. Furthermore, muscle cells exhibited different migratory behavior throughout myogenesis in vitro. One receptor-ligand pair, CXCR4-SDF-1alpha (CXCL12), regulated migration of both proliferating and terminally differentiated muscle cells, and was necessary for proper fusion of muscle cells. Given the large number of chemokines and chemokine receptors directly expressed by muscle cells, these proteins might have a greater role in myogenesis than previously appreciated.
Collapse
Affiliation(s)
- Christine A Griffin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Doxorubicin (DOX) is a potent antitumor agent. DOX can also induce cardiotoxicity, and high cumulative doses are associated with recalcitrant heart failure. Children are particularly sensitive to DOX-induced heart failure. The ability to genetically modify mice makes them an ideal experimental system to study the molecular basis of DOX-induced cardiotoxicity. However, most mouse DOX studies rely on acute drug administration in adult animals, which typically are analyzed within 1 wk. Here, we describe a juvenile mouse model of chronic DOX-induced cardiac dysfunction. DOX treatment was initiated at 2 wk of age and continued for a period of 5 wk (25 mg/kg cumulative dose). This resulted in a decline in cardiac systolic function, which was accompanied by marked atrophy of the heart, low levels of cardiomyocyte apoptosis, and decreased growth velocity. Other animals were allowed to recover for 13 wk after the final DOX injection. Cardiac systolic function improved during this recovery period but remained depressed compared with the saline injected controls, despite the reversal of cardiac atrophy. Interestingly, increased levels of cardiomyocyte apoptosis and concomitant myocardial fibrosis were observed after DOX withdrawal. These data suggest that different mechanisms contribute to cardiac dysfunction during the treatment and recovery phases.
Collapse
Affiliation(s)
- Wuqiang Zhu
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 26202, USA
| | | | | | | | | |
Collapse
|
44
|
A broken heart: a stretch too far: an overview of mouse models with mutations in stretch-sensor components. Int J Cardiol 2008; 131:33-44. [PMID: 18715658 DOI: 10.1016/j.ijcard.2008.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 05/07/2008] [Accepted: 06/03/2008] [Indexed: 12/11/2022]
Abstract
With every heartbeat the heart must contract and relax. This seemingly trivial process critically needs tight control of contraction and relaxation phases, and extremely efficient coordination between these two phases to control blood flow and maintain cardiac homeostasis. To achieve this, specialized sensors are required to detect the inherent repeatedly changing environment and needs. One sensor is a stretch-sensor that monitors the filling of the ventricles. Its molecular identity and localization are only partly understood. Here we give a synopsis of the genetic models that leap into our understanding of stretch-sensors. We focus on the widely acknowledged sarcomeric sensor at the Z-disc and the costamere sensor at the sarcolemma. Recently, several novel components of both sensors were discovered. Given that these two sensors seem physically connected, it is likely that these two models are not mutually exclusive and might even communicate. We describe briefly how candidate and known proteins within these sensors receive and transduce mechanical signals in the cardiomyocyte that lead to changes in gene expression underlying homeostasis and its restoration in the heart. Emphasis is placed on the putative link between altered stretch-sensor function and heart failure observed in different genetic mouse models of stretch-sensor components.
Collapse
|
45
|
Martin-Puig S, Wang Z, Chien KR. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2008; 2:320-31. [PMID: 18397752 DOI: 10.1016/j.stem.2008.03.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heart cells are the unitary elements that define cardiac function and disease. The recent identification of distinct families of cardiovascular progenitor cells begins to build a foundation for our understanding of the developmental logic of human cardiovascular disease, and also points to new approaches to arrest and/or reverse its progression, a major goal of regenerative medicine. In this review, we highlight recent clarifications, revisions, and advances in our understanding of the many lives of a heart cell, with a primary focus on the emerging links between cardiogenesis and heart stem cell biology.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | |
Collapse
|
46
|
Shen WH, Chen Z, Shi S, Chen H, Zhu W, Penner A, Bu G, Li W, Boyle DW, Rubart M, Field LJ, Abraham R, Liechty EA, Shou W. Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J Biol Chem 2008; 283:13842-9. [PMID: 18326485 PMCID: PMC2376248 DOI: 10.1074/jbc.m801510200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 02/04/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator for cell growth through modulating components of the translation machinery. Previously, numerous pharmacological studies using rapamycin suggested that mTOR has an important role in regulating cardiac hypertrophic growth. To further investigate this assumption, we have generated two lines of cardiac specific mTOR transgenic mice, kinase-dead (kd) mTOR and constitutively active (ca) mTOR, using alpha-myosin heavy chain promoter. alpha-Myosin heavy chain (alphaMHC)-mTORkd mice had a near complete inhibition of p70 S6k and 4E-BP1 phosphorylation, whereas alphaMHC-mTORca had a significant increase in p70 S6k and 4E-BP1 phosphorylation. Although the cardiac function of alphaMHC-mTORkd mice was significantly altered, the cardiac morphology of these transgenic mice was normal. The cardiac hypertrophic growth in response to physiological and pathological stimuli was not different in alphaMHC-mTORkd and alphaMHC-mTORca transgenic mice when compared with that of nontransgenic littermates. These findings suggest that the mTOR-mediated signaling pathway is not essential to cardiac hypertrophic growth but is involved in regulating cardiac function. Additional analysis of cardiac responses to fasting-refeeding or acute insulin administration indicated that alphaMHC-mTORkd mice had a largely impaired physiological response to nutrient energy supply and insulin stimulation.
Collapse
Affiliation(s)
- Wei-Hua Shen
- Herman B. Wells Center for Pediatric Research, Division of Pediatric Cardiology and Neonatology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Spurney CF, Knoblach S, Pistilli EE, Nagaraju K, Martin GR, Hoffman EP. Dystrophin-deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord 2008; 18:371-81. [PMID: 18440230 PMCID: PMC2430663 DOI: 10.1016/j.nmd.2008.03.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 02/25/2008] [Accepted: 03/11/2008] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD; dystrophin-deficiency) causes dilated cardiomyopathy in the second decade of life in affected males. We studied the dystrophin-deficient mouse heart (mdx) using high-frequency echocardiography, histomorphometry, and gene expression profiling. Heart dysfunction was prominent at 9-10months of age and showed significantly increased LV internal diameter (end systole) and decreased posterior wall thickness. This cardiomyopathy was associated with a 30% decrease in shortening fraction. Histologically, there was a 10-fold increase in connective tissue volume (fibrosis). mRNA profiling with RT-PCR validation showed activation of key pro-fibrotic genes, including Nox4 and Lox. The Nox gene family expression differed in mdx heart and skeletal muscle, where Nox2 was specifically induced in skeletal muscle while Nox4 was specifically induced in heart. This is the first report of an altered profibrotic gene expression profile in cardiac tissue of dystrophic mice showing echocardiographic evidence of cardiomyopathy.
Collapse
MESH Headings
- Animals
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Echocardiography
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Fibrosis
- Fluorescent Antibody Technique
- Gene Expression
- Gene Expression Profiling
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NADPH Oxidase 4
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Protein-Lysine 6-Oxidase/genetics
- Protein-Lysine 6-Oxidase/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction
- Ventricular Dysfunction/diagnostic imaging
- Ventricular Dysfunction/genetics
- Ventricular Dysfunction/metabolism
Collapse
Affiliation(s)
- Christopher F Spurney
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Xiao H, Zhang YY. UNDERSTANDING THE ROLE OF TRANSFORMING GROWTH FACTOR-β SIGNALLING IN THE HEART: OVERVIEW OF STUDIES USING GENETIC MOUSE MODELS. Clin Exp Pharmacol Physiol 2008; 35:335-41. [DOI: 10.1111/j.1440-1681.2007.04876.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Nakano N, Hori H, Abe M, Shibata H, Arimura T, Sasaoka T, Sawabe M, Chida K, Arai T, Nakahara KI, Kubo T, Sugimoto K, Katsuya T, Ogihara T, Doi Y, Izumi T, Kimura A. Interaction of BMP10 with Tcap may modulate the course of hypertensive cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2007; 293:H3396-403. [DOI: 10.1152/ajpheart.00311.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated wall stress by hypertension induces an adaptive myocardial hypertrophy via releasing prohypertrophic hormones such as angiotensin II. In this study, we investigated the involvement of bone morphogenetic protein-10 (BMP10) in hypertension-induced cardiac hypertrophy. Expression of BMP10 was increased in the hypertrophied ventricles from hypertensive rats. BMP10 localized on cell surface and at stretch-sensing Z disc of cardiomyocytes, where BMP10 interacted with a protein called titin-cap (Tcap). A rare variant of the human BMP10 gene, Thr326Ile, was found to be associated with hypertensive dilated cardiomyopathy. The variant BMP10 demonstrated decreased binding to Tcap and increased extracellular secretion. Conditioned medium from cells transfected with wild-type or variant BMP10 induced hypertrophy in rat neonatal cardiomyocytes, except that medium from variant BMP10-carrying cells showed an enhanced effect reflecting the increased secretion. These observations suggested that hypertension induced expression of prohypertrophic BMP10, and the hypertrophic effect of BMP10 was modulated, at least in part, by its binding to Tcap at the Z disc.
Collapse
|