1
|
Mao Y, Zhu J, Zhang Q, Wang G, Fan H, Zhang X, Sun Y, Wang Y. De novo synthesis of 1-phenethylisoquinoline in engineered Escherichia coli. Synth Syst Biotechnol 2024; 10:271-280. [PMID: 39650803 PMCID: PMC11625190 DOI: 10.1016/j.synbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Phenylethylisoquinoline alkaloids (PIAs) are medicinally important natural products derived from the 1-phenylethylisoquinoline precursor. Heterologous production of the PIAs remains challenging due to the incomplete elucidation of biosynthetic pathway and the lack of proper microbial cell factory designed for precursor enhancement. In this work, an artificial pathway composed of eight enzymes from different species was established for de novo 1-phenylethylisoquinoline biosynthesis in engineered Escherichia coli. The yield of the intermediate 4-hydroxydihydrocinnamaldehyde was optimized through screening various NADP+-dependent 2-alkenal reductases, cofactor regeneration and the site-directed mutagenesis of key residues in ChAER1. Subsequently, incorporation of the modified dopamine pathway into an endogenous reductase-deficient E. coli with high tyrosine yield boosted the production of 1-phenylethylisoquinoline, reaching 402.58 mg/L in a 5L fermenter. Our work lays a foundation for the future large-scale production of high value-added 1-phenylethylisoquinoline-related alkaloids.
Collapse
Affiliation(s)
- Yaping Mao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangming Zhu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guangyi Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongkai Fan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Ksas B, Chiarenza S, Dubourg N, Ménard V, Gilbin R, Havaux M. Plant acclimation to ionising radiation requires activation of a detoxification pathway against carbonyl-containing lipid oxidation products. PLANT, CELL & ENVIRONMENT 2024; 47:3882-3898. [PMID: 38831671 DOI: 10.1111/pce.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Ionising γ radiation produces reactive oxygen species by water radiolysis, providing an interesting model approach for studying oxidative stress in plants. Three-week old plants of Arabidopsis thaliana were exposed to a low dose rate (25 mGy h-1) of γ radiation for up to 21 days. This treatment had no effect on plant growth and morphology, but it induced chronic oxidation of lipids which was associated with an accumulation of reactive carbonyl species (RCS). However, contrary to lipid peroxidation, lipid RCS accumulation was transient only, being maximal after 1 day of irradiation and decreasing back to the initial level during the subsequent days of continuous irradiation. This indicates the induction of a carbonyl-metabolising process during chronic ionising radiation. Accordingly, the γ-radiation treatment induced the expression of xenobiotic detoxification-related genes (AER, SDR1, SDR3, ALDH4, and ANAC102). The transcriptomic response of some of those genes (AER, SDR1, and ANAC102) was deregulated in the tga256 mutant affected in three TGAII transcription factors, leading to enhanced and/or prolonged accumulation of RCS and to a marked inhibition of plant growth during irradiation compared to the wild type. These results show that Arabidopsis is able to acclimate to chronic oxidative stress and that this phenomenon requires activation of a carbonyl detoxification mechanism controlled by TGAII. This acclimation did not occur when plants were exposed to an acute γ radiation stress (100 Gy) which led to persistent accumulation of RCS and marked inhibition of plant growth. This study shows the role of secondary products of lipid peroxidation in the detrimental effects of reactive oxygen species.
Collapse
Affiliation(s)
- Brigitte Ksas
- Aix Marseille Université, UMR7265 CNRS, CEA, Institut de Biosciences et de Biotechnologies d'Aix-Marseille (BIAM), CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Serge Chiarenza
- Aix Marseille Université, UMR7265 CNRS, CEA, Institut de Biosciences et de Biotechnologies d'Aix-Marseille (BIAM), CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Nicolas Dubourg
- IRSN, Service de Radioprotection des Populations et de l'Environnement (SERPEN), MICADOLab, CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Véronique Ménard
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Rodophe Gilbin
- IRSN, Service de Radioprotection des Populations et de l'Environnement (SERPEN), MICADOLab, CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix Marseille Université, UMR7265 CNRS, CEA, Institut de Biosciences et de Biotechnologies d'Aix-Marseille (BIAM), CEA/Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
3
|
Xiong Z, Ding Z, Sun J, Jiang X, Cong H, Sun H, Qiao F. In vivo assembly in tobacco cells to elucidate and engineer the biosynthesis of 4-hydroxydihydrocinnamaldehyde from Gloriosa superba. PLANT CELL REPORTS 2024; 43:235. [PMID: 39299972 DOI: 10.1007/s00299-024-03318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE This study described the biosynthesis of 4-hydroxydihydrocinnamaldehyde sharing with monolignol pathway and supplemented the biosynthesis of colchicine in G. superba, 4-hydroxydihydrocinnamaldehyde produced in tobacco BY2 cells provided an important stepstone. The precursor, 4-hydroxydihydrocinnamaldehyde (4-HDCA), participates in the biosynthesis of the carbon skeleton of colchicine, which is derived from L-phenylalanine. However, one hypothesis proposed that 4-HDCA is synthesized by sharing the early part of the monolignol pathway in G. superba. In this study, we validated this prediction and identified the enzymatic functions involved in this pathway. GsDBR1 is a crucial enzyme to illustrate 4-HDCA diverging from monolignol pathway, we first confirmed its reductase activity on 4-coumaraldehyde, an important intermediate compound in monolignol biosynthesis. Then, the biochemical function of recombinant enzymes belonging to the other four families were verified to elucidate the entire process of 4-HDCA biosynthesis from L-phenylalanine. After reconstruction, the 4-HDCA was 78.4 ng/g with fresh weight (FW) of transgenic tobacco cells, and the yield increased to 168.22 ng/g·FW after improved treatment with methyl jasmonate (MeJA). The elucidation of 4-HDCA biosynthesis sharing the monolignol pathway supplemented the biosynthesis of colchicine in G. superba, and the production of 4-HDCA in tobacco cells provides an important step in the development of plant cell cultures as heterologous bio-factories for secondary metabolite production.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- National Key Laboratory for Tropical Crops Breeding, Sanya, 572024, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Zhuoying Ding
- National Key Laboratory for Tropical Crops Breeding, Sanya, 572024, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Jingyi Sun
- National Key Laboratory for Tropical Crops Breeding, Sanya, 572024, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xuefei Jiang
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Hanqing Cong
- National Key Laboratory for Tropical Crops Breeding, Sanya, 572024, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Huapeng Sun
- National Key Laboratory for Tropical Crops Breeding, Sanya, 572024, China.
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fei Qiao
- National Key Laboratory for Tropical Crops Breeding, Sanya, 572024, China.
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
4
|
Lyu H, Ernst L, Nakamura Y, Okamura Y, Köllner TG, Luck K, Liu B, Chen Y, Beerhues L, Gershenzon J, Paetz C. Phenylphenalenones and Linear Diarylheptanoid Derivatives Are Biosynthesized via Parallel Routes in Musella lasiocarpa, the Chinese Dwarf Banana. Org Lett 2024; 26:5522-5527. [PMID: 38900928 PMCID: PMC11232022 DOI: 10.1021/acs.orglett.4c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Here, we use transcriptomic data from seeds of Musella lasiocarpa to identify five enzymes involved in the formation of dihydrocurcuminoids. Characterization of the substrate specificities of the enzymes reveals two distinct dihydrocurcuminoid pathways leading to phenylphenalenones and linear diarylheptanoid derivatives, the major seed metabolites. Furthermore, we demonstrate the stepwise conversion of dihydrobisdemethoxycurcumin to the phenylphenalenone 4'-hydroxylachnanthocarpone by feeding intermediates to M. lasiocarpa root protein extract.
Collapse
Affiliation(s)
- Hui Lyu
- NMR/Biosynthesis
Group, Max Planck Institute for Chemical
Ecology, Jena 07745, Germany
| | - Lukas Ernst
- Technische
Universität Braunschweig, Institute
of Pharmaceutical Biology, Braunschweig 38106, Germany
| | - Yoko Nakamura
- NMR/Biosynthesis
Group, Max Planck Institute for Chemical
Ecology, Jena 07745, Germany
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Yu Okamura
- Department
of Insect Symbiosis, Max Planck Institute
for Chemical Ecology, Jena 07745, Germany
| | - Tobias G. Köllner
- Department
of Biochemistry, Max Planck Institute for
Chemical Ecology, Jena 07745, Germany
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Katrin Luck
- Department
of Biochemistry, Max Planck Institute for
Chemical Ecology, Jena 07745, Germany
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Benye Liu
- Technische
Universität Braunschweig, Institute
of Pharmaceutical Biology, Braunschweig 38106, Germany
| | - Yu Chen
- Jiangsu
Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese
Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Ludger Beerhues
- Technische
Universität Braunschweig, Institute
of Pharmaceutical Biology, Braunschweig 38106, Germany
| | - Jonathan Gershenzon
- Department
of Biochemistry, Max Planck Institute for
Chemical Ecology, Jena 07745, Germany
| | - Christian Paetz
- NMR/Biosynthesis
Group, Max Planck Institute for Chemical
Ecology, Jena 07745, Germany
| |
Collapse
|
5
|
Zhang Y, Liu WQ, Li J. Constructing an artificial short route for cell-free biosynthesis of the phenethylisoquinoline scaffold. Synth Syst Biotechnol 2023; 8:610-617. [PMID: 37781172 PMCID: PMC10534260 DOI: 10.1016/j.synbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
Plant-originated natural products are important drug sources. However, total biosynthesis of these compounds is often not achievable due to their uncharacterized, lengthy biosynthetic pathways. In nature, phenethylisoquinoline alkaloids (PIAs) such as colchicine are biosynthesized via a common precursor 6,7-dihydroxy-1-(4-hydroxyphenylethyl)-1,2,3,4-tetrahydroisoquinoline (i.e., phenethylisoquinoline scaffold, PIAS). PIAS is naturally synthesized in plants by using two upstream substrates (l-phenylalanine and l-tyrosine) catalyzed by eight enzymes. To shorten this native pathway, here we designed an artificial route to synthesize PIAS with two enzymatic steps from two alternative substrates of 3-(4-hydroxyphenyl) propanol (4-HPP) and dopamine. In the two-step bioconversion, an alcohol dehydrogenase selected from yeast (i.e., ADH7) was able to oxidize its non-native alcohol substrate 4-HPP to form the corresponding aldehyde product, which was then condensed with dopamine by the (S)-norcoclaurine synthase (NCS) to synthesize PIAS. After optimization, the final enzymatic reaction system was successfully scaled up by 200 times from 50 μL to 10 mL, generating 5.4 mM of PIAS. We envision that this study will provide an easy and sustainable approach to produce PIAS and thus lay the foundation for large-scale production of PIAS-derived natural products.
Collapse
Affiliation(s)
- Yuhao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Takemoto K, Tsurugi-Sakurada A, Moriuchi R, Yoneda Y, Kawai S. Cloning and characterization of NADPH-dependent double-bond reductases from Alnus sieboldiana that recognize linear diarylheptanoids as substrates. PHYTOCHEMISTRY 2023; 215:113850. [PMID: 37659705 DOI: 10.1016/j.phytochem.2023.113850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Diarylheptanoids are secondary metabolites of plants that comprise a C6-C7-C6 scaffold. They can be broadly classified into linear-type and cyclic-type diarylheptanoids based on their chemical structures. Actinorhizal trees, such as Casuarina, Alnus, and Myrica, which form nodule symbiosis with actinomycetes Frankia, produce cyclic diarylheptanoids (CDHs); in Alnus sieboldiana Matsum. in particular, we have reported that the addition of CDHs leads to an increase in the number of nodules. However, the information available on the biosynthesis of CDHs is scarce. A greater number of plants CDHs (including those isolated from actinorhizal trees) with a saturated heptane chain have been isolated compared with linear, non-cyclic diarylheptanoids. To identify the genes involved in the synthesis of these compounds, genes with significant sequence similarity to existing plant double-bond reductases were screened in A. sieboldiana. This report describes the isolation and characterization of two A. sieboldiana double-bond reductases (AsDBR1 and AsDBR2) that catalyze the NADPH-dependent reduction of bisdemethoxycurcumin and curcumin. The optimum pH for the two enzymes was 5.0. The apparent Km values for bisdemethoxycurcumin and NADPH were 4.24 and 3.53 μM in the case of AsDBR1, and 2.55 and 2.13 μM for AsDBR2. The kcat value was 9.4-fold higher for AsDBR1 vs. AsDBR2 when using the bisdemethoxycurcumin substrate. Interestingly, the two AsDBRs failed to reduce the phenylpropanoid monomer.
Collapse
Affiliation(s)
- Konosuke Takemoto
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; The United Graduate School of Agricultural Science, Gifu University, 1-1, Yanagido, Gifu-shi, 501-1193, Japan
| | - Akiho Tsurugi-Sakurada
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ryota Moriuchi
- Functional Genomics Section, Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuko Yoneda
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shingo Kawai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
7
|
Ferreira SS, Goeminne G, Simões MS, Pina AVDA, Lima LGAD, Pezard J, Gutiérrez A, Rencoret J, Mortimer JC, Del Río JC, Boerjan W, Cesarino I. Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6307-6333. [PMID: 35788296 DOI: 10.1093/jxb/erac300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.
Collapse
Affiliation(s)
- Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | | | | | - Jade Pezard
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| |
Collapse
|
8
|
Xiong Z, Wang L, Sun J, Jiang X, Cong H, Sun H, Qiao F. Functional characterization of a Colchicum autumnale L. double-bond reductase (CaDBR1) in colchicine biosynthesis. PLANTA 2022; 256:95. [PMID: 36214872 DOI: 10.1007/s00425-022-04003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
An alkenal double-bond reductase enzyme (CaDBR1) was cloned from Colchicum autumnale L. The encoded enzyme catalysed 4-coumaraldehyde to 4-hydroxydihydrocinnamaldehyde (4-HDCA). Its functional characterization increased the understanding of colchicine biosynthesis. As a traditional medical plant, Colchicum autumnale L. is famous for producing colchicine, a widely used drug for alleviating gout attacks. The biosynthetic pathway of colchicine was revealed most recently, and 4-hydroxydihydrocinnamaldehyde (4-HDCA) has been verified as a crucial intermediate derived from L-phenylalanine. However, the functional gene that catalyses the formation of 4-HDCA remains controversial. In this study, the alkenal double-bond reductase (DBR) gene member CaDBR1 was cloned and characterized from C. autumnale. Bioinformatics analysis predicted and characterized the basic physicochemical properties of CaDBR1. Recombinant CaDBR1 protein was heterologously expressed in Escherichia coli and purified by a Ni-NTA column. In vitro enzyme assays indicated that CaDBR1 could catalyse 4-coumaraldehyde to form 4-HDCA but could not generate 4-HDCA by taking cinnamaldehyde as a substrate. Stable transformation into tobacco BY-2 cells revealed that CaDBR1 localized in the cytoplasm, and tissue-specific expression results showed that CaDBR1 had the highest expression in bulbs. All these results verify and confirm the participation and contribution of CaDBR1 in the biosynthesis pathway of 4-HDCA and colchicine alkaloids in C. autumnale.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Liang Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Jingyi Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xuefei Jiang
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
9
|
Havaux M, Ksas B. Imaging of Lipid Peroxidation-Associated Chemiluminescence in Plants: Spectral Features, Regulation and Origin of the Signal in Leaves and Roots. Antioxidants (Basel) 2022; 11:antiox11071333. [PMID: 35883824 PMCID: PMC9312247 DOI: 10.3390/antiox11071333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters. In vitro oxidation of lipids induced luminescence throughout the visible spectrum (450−850 nm). However, luminescence in the red spectral domain (>640 nm) occurred first, then declined in parallel with the appearance of the emission in the blue-green (<600 nm). This temporal separation suggests that the chemical species emitting in the blue-green are secondary products, possibly deriving from the red light-emitting species. This conversion did not seem to occur in planta because spontaneous chemiluminescence from plant tissues (leaves, roots) occurred only in the red/far-red light domain (>640 nm), peaking at 700−750 nm. The spectrum of plant chemiluminescence was independent of chlorophyll. The in vivo signal was modulated by cellular detoxification mechanisms and by changes in the concentration of singlet oxygen in the tissues, although the singlet oxygen luminescence bands did not appear as major bands in the spectra. Our results indicate that the intensity of endogenous chemiluminescence from plant tissues is determined by the balance between the formation of luminescent species through secondary reactions involving lipid peroxide-derived intermediates, including singlet oxygen, and their elimination by metabolizing processes. The kinetic aspects of plant chemiluminescence must be taken into account when using the signal as an oxidative stress marker.
Collapse
|
10
|
Nissan N, Hooker J, Pattang A, Charette M, Morrison M, Yu K, Hou A, Golshani A, Molnar SJ, Cober ER, Samanfar B. Novel QTL for Low Seed Cadmium Accumulation in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:1146. [PMID: 35567147 PMCID: PMC9102923 DOI: 10.3390/plants11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Soybean is a valuable crop, used in animal feed and for human consumption. Selecting soybean cultivars with low seed cadmium (Cd) concentration is important for the purpose of minimizing the transfer of Cd into the human body. To ensure international trade, farmers need to produce soybean that meets the European Union (EU) Cd limit of 0.2 mg kg-1. In this study, we evaluated two populations of recombinant inbred lines (RILs), X5154 and X4050, for seed Cd accumulation. Linkage maps were constructed with 325 and 280 polymorphic simple sequence repeat (SSR) markers, respectively, and used to identify a novel minor quantitative trait locus (QTL) on chromosome 13 in the X4050 population between SSR markers Satt522 and Satt218. Based on a gene ontology search within the QTL region, seven genes were identified as candidates responsible for low seed Cd accumulation, including Glyma.13G308700 and Glyma.13G309100. In addition, we confirmed the known major gene, Cda1, in the X5154 population and developed KASP and CAPS/dCAPS allele-specific markers for efficient marker-assisted breeding for Cda1.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Arezo Pattang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Martin Charette
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Malcolm Morrison
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Kangfu Yu
- Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, ON N0R 1G0, Canada;
| | - Anfu Hou
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada;
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Stephen J. Molnar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
11
|
Kamimura N, Watanabe S, Sugimoto K, Senda M, Araki T, Yu HY, Hishiyama S, Kajita S, Senda T, Masai E. Exploration and structure-based engineering of alkenal double bond reductases catalyzing the Cα−Cβ double bond reduction of coniferaldehyde. N Biotechnol 2022; 68:57-67. [DOI: 10.1016/j.nbt.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
12
|
Liu C, Gao Q, Shang Z, Liu J, Zhou S, Dang J, Liu L, Lange I, Srividya N, Lange BM, Wu Q, Lin W. Functional Characterization and Structural Insights Into Stereoselectivity of Pulegone Reductase in Menthol Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:780970. [PMID: 34917113 PMCID: PMC8670242 DOI: 10.3389/fpls.2021.780970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 05/29/2023]
Abstract
Monoterpenoids are the main components of plant essential oils and the active components of some traditional Chinese medicinal herbs like Mentha haplocalyx Briq., Nepeta tenuifolia Briq., Perilla frutescens (L.) Britt and Pogostemin cablin (Blanco) Benth. Pulegone reductase is the key enzyme in the biosynthesis of menthol and is required for the stereoselective reduction of the Δ2,8 double bond of pulegone to produce the major intermediate menthone, thus determining the stereochemistry of menthol. However, the structural basis and mechanism underlying the stereoselectivity of pulegone reductase remain poorly understood. In this study, we characterized a novel (-)-pulegone reductase from Nepeta tenuifolia (NtPR), which can catalyze (-)-pulegone to (+)-menthone and (-)-isomenthone through our RNA-seq, bioinformatic analysis in combination with in vitro enzyme activity assay, and determined the structure of (+)-pulegone reductase from M. piperita (MpPR) by using X-ray crystallography, molecular modeling and docking, site-directed mutagenesis, molecular dynamics simulations, and biochemical analysis. We identified and validated the critical residues in the crystal structure of MpPR involved in the binding of the substrate pulegone. We also further identified that residues Leu56, Val282, and Val284 determine the stereoselectivity of the substrate pulegone, and mainly contributes to the product stereoselectivity. This work not only provides a starting point for the understanding of stereoselectivity of pulegone reductases, but also offers a basis for the engineering of menthone/menthol biosynthetic enzymes to achieve high-titer, industrial-scale production of enantiomerically pure products.
Collapse
Affiliation(s)
- Chanchan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qiyu Gao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuo Shang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwei Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China
| | - Jingjie Dang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Licheng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
| | - B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Wei Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Guan Y, Hu W, Xu Y, Sarengaowa, Ji Y, Yang X, Feng K. Proteomic analysis validates previous findings on wounding-responsive plant hormone signaling and primary metabolism contributing to the biosynthesis of secondary metabolites based on metabolomic analysis in harvested broccoli (Brassica oleracea L. var. italica). Food Res Int 2021; 145:110388. [PMID: 34112391 DOI: 10.1016/j.foodres.2021.110388] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
The plant wound-response is a complex process that generates physiological modifications for protecting the wounded tissue. In this study, tandem mass tag (TMT)-based quantitative proteomic analysis was performed to clarify the comprehensive molecular mechanism for the wound-response of broccoli subjected to two wounding intensities (0.04 and 1.85 m2 kg-1 for florets and shreds, respectively). Furthermore, integrated proteomic and metabolomic analysis was performed to reveal the interaction among the critical metabolic pathway responses to wounding. The results show that a total of 399 proteins and 266 proteins were identified as differentially expressed proteins (DEPs) in florets and shreds broccoli compared to control, respectively. Furthermore, 167 DEPs were detected in shreds broccoli compared to the florets broccoli. Salicylic acid (SA) and ethylene (ET) biosynthesis were more susceptible to being induced by wounding with lower intensities, whereas, phenylpropanoid biosynthesis, aliphatic glucosinolate synthesis and jasmonic acid (JA) biosynthesis were more susceptible to being activated by wounding with higher intensities. The activation of starch and sucrose metabolism, TCA cycle, glycolysis, pentose phosphate could provide carbon sources and ATP for the production of amino acids including phenylalanine, valine, threonine, isoleucine, L-methionine, methionine and histidine. The motivation of carbohydrate metabolic pathways and amino acid biosynthesis-related pathways promotes the precursor levels for phenolic substances and glucosinolate synthesis. Furthermore, the accumulation of SA, ET and JA may activated secondary metabolite biosynthesis through the regulation of critical proteins involved in the corresponding metabolic pathways.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China
| |
Collapse
|
14
|
Caliandro R, Polsinelli I, Demitri N, Musiani F, Martens S, Benini S. The structural and functional characterization of Malus domestica double bond reductase MdDBR provides insights towards the identification of its substrates. Int J Biol Macromol 2021; 171:89-99. [PMID: 33412202 DOI: 10.1016/j.ijbiomac.2020.12.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
In this study we describe the crystal structures of the apoform, the binary and the ternary complexes of a double bond reductase from Malus domestica L. (MdDBR) and explore a range of potential substrates. The overall fold of MdDBR is similar to that of the medium chain reductase/dehydrogenase/zinc-dependent alcohol dehydrogenase-like family. Structural comparison of MdDBR with Arabidopsis thaliana DBR (AtDBR), Nicotiana tabacum DBR (NtDBR) and Rubus idaeus DBR (RiDBR) allowed the identification of key amino acids involved in cofactor and ligands binding and shed light on how these residues may guide the orientation of the substrates. The enzyme kinetic for the substrate trans-4-phenylbuten-2-one has been analyzed, and MdDBR activity towards a variety of substrates was tested. This enzyme has been reported to be involved in the phenylpropanoid pathway where it would catalyze the NADPH-dependent reduction of the α, β-unsaturated double bond of carbonyl metabolites. Our study provides new data towards the identification of MdDBR natural substrate and the biosynthetic pathway where it belongs. Furthermore, the originally proposed involvement in dihydrochalcone biosynthesis in apple must be questioned.
Collapse
Affiliation(s)
- Rosanna Caliandro
- Bioorganic Chemistry and Bio-Crystallography laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Via Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Trentino, Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy.
| |
Collapse
|
15
|
Karrer D, Gand M, Rühl M. Expanding the Biocatalytic Toolbox with a New Type of ene/yne‐Reductase from
Cyclocybe aegerita. ChemCatChem 2021. [DOI: 10.1002/cctc.202002011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dominik Karrer
- Department of Biology and Chemistry Justus-Liebig University Giessen Institute of Food Chemistry and Food Biotechnology 35392 Giessen Germany
| | - Martin Gand
- Department of Biology and Chemistry Justus-Liebig University Giessen Institute of Food Chemistry and Food Biotechnology 35392 Giessen Germany
| | - Martin Rühl
- Department of Biology and Chemistry Justus-Liebig University Giessen Institute of Food Chemistry and Food Biotechnology 35392 Giessen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME Business Area Bioresources 35392 Giessen Germany
| |
Collapse
|
16
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|
17
|
Fisher KE, Tillett RL, Fotoohi M, Caldwell C, Petereit J, Schlauch K, Tittiger C, Blomquist GJ, MacLean M. RNA-Seq used to identify ipsdienone reductase (IDONER): A novel monoterpene carbon-carbon double bond reductase central to Ips confusus pheromone production. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103513. [PMID: 33388375 PMCID: PMC7909325 DOI: 10.1016/j.ibmb.2020.103513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The pinyon ips beetle, Ips confusus (LeConte) is a highly destructive pest in pine forests in western North America. When colonizing a new host tree, I. confusus beetles coordinate a mass attack to overcome the tree's defenses using aggregation pheromones. Ips confusus, as with other Ips spp. beetles, biosynthesize ipsdienol and ipsenol in a specific enantiomeric blend and ratio as aggregation pheromones. While several of the initial steps in the pheromone biosynthetic pathway have been well defined, the final steps were unknown. We used comparative RNA-Seq analysis between fed and unfed male I. confusus midgut tissue to identify candidate genes involved in pheromone biosynthesis. The 12,995 potentially unique transcripts showed a clear separation based on feeding state. Differential expression analysis identified gene groups that were tightly connected. This analysis identified all known pheromone biosynthetic genes and suggested a novel monoterpene double bond reductase, ipsdienone reductase (IDONER), with pheromone biosynthetic gene expression patterns. IDONER cDNA was cloned, expressed, and functionally characterized. The coding DNA sequence has an ORF of 1101 nt with a predicted translation product of 336 amino acids. The enzyme has a molecular weight of 36.7 kDa with conserved motifs of the medium chain dehydrogenases/reductase (MDR) superfamily in the leukotriene B4 dehydrogenases/reductases (LTB4R) family. Tagged recombinant protein was expressed and purified. Enzyme assays and GC/MS analysis showed IDONER catalyzed the reduction of ipsdienone to form ipsenone. This study shows that IDONER is a monoterpene double bond reductase involved in I. confusus pheromone biosynthesis.
Collapse
Affiliation(s)
- Katherine E Fisher
- Phigenics Research and Innovation Laboratory, Nevada Center for Applied Research, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, 89154, USA.
| | - Misha Fotoohi
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Cody Caldwell
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Juli Petereit
- Nevada Center for Bioinformatics, University of Nevada, Reno, NV, 89557, USA.
| | - Karen Schlauch
- Desert Research Institute, Northern Nevada Science Center Campus, 2215 Raggio Parkway, Reno, NV, 89512, USA.
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Marina MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
18
|
Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, Liu F. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. PLANT, CELL & ENVIRONMENT 2021; 44:559-573. [PMID: 33215716 DOI: 10.1111/pce.13956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/11/2023]
Abstract
In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanxiang Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Structural and functional investigation of AerF, a NADPH-dependent alkenal double bond reductase participating in the biosynthesis of Choi moiety of aeruginosin. J Struct Biol 2019; 209:107415. [PMID: 31726097 DOI: 10.1016/j.jsb.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
The 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety is an essential residue for the antithrombotic activities of aeruginosins, which are a class of cyanobacterial derived bioactive linear tetrapeptides. Biosynthetic pathway of Choi is still elusive. AerF was suggested to be involved in the biosynthesis of Choi, and can be assigned to the short-chain dehydrogenase/reductase (SDR) superfamily. However, both the exact role and the catalytic mechanism of AerF have not been elucidated. In this study, functional and mechanistic analyses of AerF from Microcystis aeruginosa were performed. Observation of enzymatic assay demonstrates that AerF is a NADPH-dependent alkenal double bond reductase that catalyzes the reduction of dihydro-4-hydroxyphenylpyruvate (H2HPP) to generate tetrahydro-4-hydroxyphenylpyruvate (H4HPP), which is the third step of the biosynthetic pathway from prephenate to Choi. Comparative structural analysis indicates that ligand binding-induced conformational change of AerF is different from that of the other SDR superfamily reductase using H2HPP as a substrate. Analyses of NADPH and substrate analogue binding sites combined with the results of mutagenesis analyses suggest that a particular serine residue mainly involves in the initiation of the proton transfer between the substrate and the residues of AerF, which is an uncommon feature in SDR superfamily reductase. Furthermore, based on the observations of structural and mutagenesis analyses, the catalytic mechanism of AerF is proposed and a proton transfer pathway in AerF is deduced.
Collapse
|
20
|
Mano J, Biswas MS, Sugimoto K. Reactive Carbonyl Species: A Missing Link in ROS Signaling. PLANTS (BASEL, SWITZERLAND) 2019; 8:E391. [PMID: 31575078 PMCID: PMC6843276 DOI: 10.3390/plants8100391] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
As reactive oxygen species (ROS) play critical roles in plants to determine cell fate in various physiological situations, there is keen interest in the biochemical processes of ROS signal transmission. Reactive carbonyl species (RCS), the ,-unsaturated aldehydes and ketones produced from lipid peroxides, due to their chemical property to covalently modify protein, can mediate ROS signals to proteins. Comprehensive carbonyl analysis in plants has revealed that more than a dozen different RCS, e.g., acrolein, 4-hydroxy-(E)-2-nonenal and malondialdehyde, are produced from various membranes, and some of them increase and modify proteins in response to oxidative stimuli. At early stages of response, specific subsets of proteins are selectively modified with RCS. The involvement of RCS in ROS signaling can be judged on three criteria: (1) A stimulus to increase the ROS level in plants leads to the enhancement of RCS levels. (2) Suppression of the increase of RCS by scavenging enzymes or chemicals diminishes the ROS-induced response. (3) Addition of RCS to plants evokes responses similar to those induced by ROS. On these criteria, the RCS action as damaging/signaling agents has been demonstrated for root injury, programmed cell death, senescence of siliques, stomata response to abscisic acid, and root response to auxin. RCS thus act as damage/signal mediators downstream of ROS in a variety of physiological situations. A current picture and perspectives of RCS research are presented in this article.
Collapse
Affiliation(s)
- Jun'ichi Mano
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yamaguchi 753-8511, Japan.
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.
| | - Md Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Koichi Sugimoto
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
21
|
Wu YF, Zheng HB, Liu XY, Cheng AX, Lou HX. Molecular Diversity of Alkenal Double Bond Reductases in the Liverwort Marchantia paleacea. Molecules 2018; 23:molecules23071630. [PMID: 29973530 PMCID: PMC6099575 DOI: 10.3390/molecules23071630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Alkenal double bond reductases (DBRs), capable of catalyzing the NADPH-dependent reduction of the α,β-unsaturated double bond, play key roles in the detoxication of alkenal carbonyls. Here, the isolation and characterization of two DBRs encoded by the liverwort species Marchantia paleacea are described. The two DBRs share a relatively low similarity, and phylogenetic analysis indicated that MpMDBRL is more closely related to microbial DBRs than to other plant DBRs, while MpDBR shares common ancestry with typical plant DBRs. Both DBR proteins exhibited hydrogenation ability towards hydroxycinnamyl aldehydes; however, their temperature optimums were strikingly different. MpMDBRL demonstrated slightly weaker catalytic efficiency compared to MpDBR, and the structural models of their active binding sites to the substrate may provide a parsimonious explanation. Furthermore, both DBRs significantly responded to phytohormone treatment. In conclusion, M. paleacea produces two distinct types of functional DBRs, both of which participate in the protection against environmental stress in liverwort. The presence of a microbial type of DBR in a plant is herein reported for the first time.
Collapse
Affiliation(s)
- Yi-Feng Wu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hong-Bo Zheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
22
|
Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat Chem 2018; 10:770-775. [PMID: 29892028 DOI: 10.1038/s41557-018-0059-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 04/04/2018] [Indexed: 11/09/2022]
Abstract
Strategies that provide enzymes with the ability to catalyse non-natural reactions are of considerable synthetic value. Photoredox catalysis has proved adept at expanding the synthetic repertoire of existing catalytic platforms, yet, in the realm of biocatalysis it has primarily been used for cofactor regeneration. Here we show that photoredox catalysts can be used to enable new catalytic function in nicotinamide-dependent enzymes. Under visible-light irradiation, xanthene-based photocatalysts enable a double-bond reductase to catalyse an enantioselective deacetoxylation. Mechanistic experiments support the intermediacy of an α-acyl radical, formed after the elimination of acetate. Isotopic labelling experiments support nicotinamide as the source of the hydrogen atom. Preliminary calculations and mechanistic experiments suggest that binding to the protein attenuates the reduction potential of the starting material, an important feature for localizing radical formation to the enzyme active site. The generality of this approach is highlighted with the radical dehalogenation of α-bromoamides catalysed by ketoreductases with Eosin Y as a photocatalyst.
Collapse
|
23
|
Zhang X, Liao S, Cao F, Zhao L, Pei J, Tang F. Cloning and characterization of enoate reductase with high β-ionone to dihydro-β-ionone bioconversion productivity. BMC Biotechnol 2018; 18:26. [PMID: 29743047 PMCID: PMC5944158 DOI: 10.1186/s12896-018-0438-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/23/2018] [Indexed: 11/28/2022] Open
Abstract
Background Dihydro-β-ionone is a principal aroma compound and has received considerable attention by flavor and fragrance industry. The traditional method of preparing dihydro-β-ionone has many drawbacks, which has restricted its industrial application. Therefore, it is necessary to find a biotechnological method to produce dihydro-β-ionone. Results In this study, the enoate reductase with high conversion efficiency of β-ionone to dihydro-β-ionone, DBR1, was obtained by screening four genetically engineered bacteria. The product, dihydro-β-ionone, was analyzed by GC and GC-MS. The highest dihydro-β-ionone production with 308.3 mg/L was detected in the recombinant strain expressing DBR1 which was later on expressed and purified. Its optimal temperature and pH were 45 °C and 6.5, respectively. The greatest activity of the purified enzyme was 356.39 U/mg using β-ionone as substrate. In the enzymatic conversion system, 1 mM of β-ionone was transformed into 91.08 mg/L of dihydro-β-ionone with 93.80% of molar conversion. Conclusion DBR1 had high selectivity to hydrogenated the 10,11-unsaturated double bond of β-ionone as well as high catalytic efficiency for the conversion of β-ionone to dihydro-β-ionone. It is the first report on the bioconversion of β-ionone to dihydro-β-ionone by using enoate reductase. Electronic supplementary material The online version of this article (10.1186/s12896-018-0438-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuesong Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.,College of Tea and Food Science and Technology, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, 212400, China
| | - Shiyong Liao
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China. .,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| | - Jianjun Pei
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.,Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, 159 Long Pan Road, Nanjing, 210037, China
| | - Feng Tang
- International centre for bamboo and rattan, 8 FuTong East Street, Beijing, 100714, China
| |
Collapse
|
24
|
Ibdah M, Martens S, Gang DR. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2273-2280. [PMID: 29171271 DOI: 10.1021/acs.jafc.7b04445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Newe Ya'ar Research Center , Agriculture Research Organization , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione , Fondazione Edmund Mach , Via E. Mach 1 , 38010 San Michele all'Adige , Trentino , Italy
| | - David R Gang
- Institute of Biological Chemistry , Washington State University , Post Office Box 646340, Pullman , Washington 99164-6340 , United States
| |
Collapse
|
25
|
Viegas MF, Neves RPP, Ramos MJ, Fernandes PA. Modeling of Human Fatty Acid Synthase and in Silico Docking of Acyl Carrier Protein Domain and Its Partner Catalytic Domains. J Phys Chem B 2018; 122:77-85. [DOI: 10.1021/acs.jpcb.7b09645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matilde F. Viegas
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| | - Rui P. P. Neves
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
26
|
Yamamoto K, Oku Y, Ina A, Izumi A, Doya M, Ebata S, Asano Y. Purification and Characterization of an Enone Reductase from Sporidiobolus salmonicolor
TPU 2001 Reacting with Large Monocyclic Enones. ChemCatChem 2017. [DOI: 10.1002/cctc.201700244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazunori Yamamoto
- Biotechnology Research Center and Department of Biotechnology; Toyama Prefectural University; 5180 Kurokawa Imizu Toyama Japan
- Asano Active Enzyme Molecule Project; ERATO, JST; 5180 Kurokawa Imizu Toyama Japan
| | - Yuko Oku
- Biotechnology Research Center and Department of Biotechnology; Toyama Prefectural University; 5180 Kurokawa Imizu Toyama Japan
- Asano Active Enzyme Molecule Project; ERATO, JST; 5180 Kurokawa Imizu Toyama Japan
| | - Atsutoshi Ina
- Biotechnology Research Center and Department of Biotechnology; Toyama Prefectural University; 5180 Kurokawa Imizu Toyama Japan
- Asano Active Enzyme Molecule Project; ERATO, JST; 5180 Kurokawa Imizu Toyama Japan
| | - Atsushi Izumi
- Biotechnology Research Center and Department of Biotechnology; Toyama Prefectural University; 5180 Kurokawa Imizu Toyama Japan
- Asano Active Enzyme Molecule Project; ERATO, JST; 5180 Kurokawa Imizu Toyama Japan
| | - Masaharu Doya
- Toho Earthtec, Inc.; 1450 Kurotori, Nishi-ku Niigata Niigata Japan
| | - Syuji Ebata
- Toho Earthtec, Inc.; 1450 Kurotori, Nishi-ku Niigata Niigata Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology; Toyama Prefectural University; 5180 Kurokawa Imizu Toyama Japan
- Asano Active Enzyme Molecule Project; ERATO, JST; 5180 Kurokawa Imizu Toyama Japan
| |
Collapse
|
27
|
Mas y mas S, Curien G, Giustini C, Rolland N, Ferrer JL, Cobessi D. Crystal Structure of the Chloroplastic Oxoene Reductase ceQORH from Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:329. [PMID: 28337214 PMCID: PMC5343027 DOI: 10.3389/fpls.2017.00329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/24/2017] [Indexed: 05/17/2023]
Abstract
Enzymatic and non-enzymatic peroxidation of polyunsaturated fatty acids give rise to accumulation of aldehydes, ketones, and α,β-unsaturated carbonyls of various lengths, known as oxylipins. Oxylipins with α,β-unsaturated carbonyls are reactive electrophile species and are toxic. Cells have evolved several mechanisms to scavenge reactive electrophile oxylipins and decrease their reactivity such as by coupling with glutathione, or by reduction using NAD(P)H-dependent reductases and dehydrogenases of various substrate specificities. Plant cell chloroplasts produce reactive electrophile oxylipins named γ-ketols downstream of enzymatic lipid peroxidation. The chloroplast envelope quinone oxidoreductase homolog (ceQORH) from Arabidopsis thaliana was previously shown to reduce the reactive double bond of γ-ketols. In marked difference with its cytosolic homolog alkenal reductase (AtAER) that displays a high activity toward the ketodiene 13-oxo-9(Z),11(E)-octadecadienoic acid (13-KODE) and the ketotriene 13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid (13-KOTE), ceQORH binds, but does not reduce, 13-KODE and 13-KOTE. Crystal structures of apo-ceQORH and ceQORH bound to 13-KOTE or to NADP+ and 13-KOTE have been solved showing a large ligand binding site, also observed in the structure of the cytosolic alkenal/one reductase. Positioning of the α,β-unsaturated carbonyl of 13-KOTE in ceQORH-NADP+-13-KOTE, far away from the NADP+ nicotinamide ring, provides a rational for the absence of activity with the ketodienes and ketotrienes. ceQORH is a monomeric enzyme in solution whereas other enzymes from the quinone oxidoreductase family are stable dimers and a structural explanation of this difference is proposed. A possible in vivo role of ketodienes and ketotrienes binding to ceQORH is also discussed.
Collapse
Affiliation(s)
- Sarah Mas y mas
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Cécile Giustini
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Jean-Luc Ferrer
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
| | - David Cobessi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
- *Correspondence: David Cobessi
| |
Collapse
|
28
|
Geissler M, Burghard M, Volk J, Staniek A, Warzecha H. A novel cinnamyl alcohol dehydrogenase (CAD)-like reductase contributes to the structural diversity of monoterpenoid indole alkaloids in Rauvolfia. PLANTA 2016; 243:813-24. [PMID: 26715562 DOI: 10.1007/s00425-015-2446-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/11/2015] [Indexed: 05/18/2023]
Abstract
Based on findings described herein, we contend that the reduction of vomilenine en route to antiarrhythmic ajmaline in planta might proceed via an alternative, novel sequence of biosynthetic steps. In the genus Rauvolfia, monoterpenoid indole alkaloids (MIAs) are formed via complex biosynthetic sequences. Despite the wealth of information about the biochemistry and molecular genetics underlying these processes, many reaction steps involving oxygenases and oxidoreductases are still elusive. Here, we describe molecular cloning and characterization of three cinnamyl alcohol dehydrogenase (CAD)-like reductases from Rauvolfia serpentina cell culture and R. tetraphylla roots. Functional analysis of the recombinant proteins, with a set of MIAs as potential substrates, led to identification of one of the enzymes as a CAD, putatively involved in lignin formation. The two remaining reductases comprise isoenzymes derived from orthologous genes of the investigated alternative Rauvolfia species. Their catalytic activity consists of specific conversion of vomilenine to 19,20-dihydrovomilenine, thus proving their exclusive involvement in MIA biosynthesis. The obtained data suggest the existence of a previously unknown bypass in the biosynthetic route to ajmaline further expanding structural diversity within the MIA family of specialized plant metabolites.
Collapse
Affiliation(s)
- Marcus Geissler
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany
| | - Marie Burghard
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany
| | - Jascha Volk
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany
| | - Agata Staniek
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany.
| |
Collapse
|
29
|
Mostafa I, Zhu N, Yoo MJ, Balmant KM, Misra BB, Dufresne C, Abou-Hashem M, Chen S, El-Domiaty M. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. J Proteomics 2016; 138:1-19. [PMID: 26915584 DOI: 10.1016/j.jprot.2016.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Glucosinolates present in Brassicales are important for human health and plant defense against insects and pathogens. Here we investigate the proteomes and metabolomes of Arabidopsis myb28/29 and cyp79B2/B3 mutants deficient in aliphatic glucosinolates and indolic glucosinolates, respectively. Quantitative proteomics of the myb28/29 and cyp79B2/B3 mutants led to the identification of 2785 proteins, of which 142 proteins showed significant changes in the two mutants compared to wild type (WT). By mapping the differential proteins using STRING, we detected 59 new edges in the glucosinolate metabolic network. These connections can be classified as primary with direct roles in glucosinolate metabolism, secondary related to plant stress responses, and tertiary involved in other biological processes. Gene Ontology analysis of the differential proteins showed high level of enrichment in the nodes belonging to metabolic process including glucosinolate biosynthesis and response to stimulus. Using metabolomics, we quantified 292 metabolites covering a broad spectrum of metabolic pathways, and 89 exhibited differential accumulation patterns between the mutants and WT. The changing metabolites (e.g., γ-glutamyl amino acids, auxins and glucosinolate hydrolysis products) complement our proteomics findings. This study contributes toward engineering and breeding of glucosinolate profiles in plants in efforts to improve human health, crop quality and productivity. BIOLOGICAL SIGNIFICANCE Glucosinolates in Brassicales constitute an important group of natural metabolites important for plant defense and human health. Its biosynthetic pathways and transcriptional regulation have been well-studied. Using Arabidopsis mutants of important genes in glucosinolate biosynthesis, quantitative proteomics and metabolomics led to identification of many proteins and metabolites that are potentially related to glucosinolate metabolism. This study provides a comprehensive insight into the molecular networks of glucosinolate metabolism, and will facilitate efforts toward engineering and breeding of glucosinolate profiles for enhanced crop defense, and nutritional value.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ning Zhu
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kelly M Balmant
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Biswapriya B Misra
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Fisher Scientific, West Palm Beach, FL 33407, USA
| | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
30
|
Curien G, Giustini C, Montillet JL, Mas-Y-Mas S, Cobessi D, Ferrer JL, Matringe M, Grechkin A, Rolland N. The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids. PHYTOCHEMISTRY 2016; 122:45-55. [PMID: 26678323 DOI: 10.1016/j.phytochem.2015.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 05/11/2023]
Abstract
Under oxidative stress conditions the lipid constituents of cells can undergo oxidation whose frequent consequence is the production of highly reactive α,β-unsaturated carbonyls. These molecules are toxic because they can add to biomolecules (such as proteins and nucleic acids) and several enzyme activities cooperate to eliminate these reactive electrophile species. CeQORH (chloroplast envelope Quinone Oxidoreductase Homolog, At4g13010) is associated with the inner membrane of the chloroplast envelope and imported into the organelle by an alternative import pathway. In the present study, we show that the recombinant ceQORH exhibits the activity of a NADPH-dependent α,β-unsaturated oxoene reductase reducing the double bond of medium-chain (C⩾9) to long-chain (18 carbon atoms) reactive electrophile species deriving from poly-unsaturated fatty acid peroxides. The best substrates of ceQORH are 13-lipoxygenase-derived γ-ketols. γ-Ketols are spontaneously produced in the chloroplast from the unstable allene oxide formed in the biochemical pathway leading to 12-oxo-phytodienoic acid, a precursor of the defense hormone jasmonate. In chloroplasts, ceQORH could detoxify 13-lipoxygenase-derived γ-ketols at their production sites in the membranes. This finding opens new routes toward the understanding of γ-ketols role and detoxification.
Collapse
Affiliation(s)
- Gilles Curien
- Univ. Grenoble Alpes, F-38054 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France; INRA, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France; CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France.
| | - Cécile Giustini
- Univ. Grenoble Alpes, F-38054 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France; INRA, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France; CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Jean-Luc Montillet
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre de Cadarache, Direction des Sciences du Vivant (DSV), Institut de Biologie Environnementale et Biotechnologie (IBEB), Service de Biologie Végétale et de Microbiologie Environnementale (SBVME), Laboratoire d'Ecophysiologie Moléculaire des Plantes, UMR 7265, Centre National de la Recherche Scientifique (CNRS)/CEA/Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France
| | - Sarah Mas-Y-Mas
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38044 Grenoble, France
| | - David Cobessi
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38044 Grenoble, France
| | - Jean-Luc Ferrer
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38044 Grenoble, France
| | - Michel Matringe
- Univ. Grenoble Alpes, F-38054 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France; INRA, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France; CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Alexander Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia
| | - Norbert Rolland
- Univ. Grenoble Alpes, F-38054 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France; INRA, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France; CNRS, Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
31
|
Ibdah M, Berim A, Martens S, Valderrama ALH, Palmieri L, Lewinsohn E, Gang DR. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh. PHYTOCHEMISTRY 2014; 107:24-31. [PMID: 25152451 DOI: 10.1016/j.phytochem.2014.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 05/14/2023]
Abstract
The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA; NeweYaar Research Center, Agriculture Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
| | - Stefan Martens
- Fondazione Edmund Mach, Centro Ricerca e Innovazione, Department of Food Quality and Nutrition, Via E. Mach, 1 - 38010 San Michele all'Adige (TN), Italy
| | - Andrea Lorena Herrera Valderrama
- Fondazione Edmund Mach, Centro Ricerca e Innovazione, Department of Food Quality and Nutrition, Via E. Mach, 1 - 38010 San Michele all'Adige (TN), Italy
| | - Luisa Palmieri
- Fondazione Edmund Mach, Centro Ricerca e Innovazione, Department of Food Quality and Nutrition, Via E. Mach, 1 - 38010 San Michele all'Adige (TN), Italy
| | - Efraim Lewinsohn
- NeweYaar Research Center, Agriculture Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA.
| |
Collapse
|
32
|
Comparative proteomic analysis of labellum and inner lateral petals in Cymbidium ensifolium flowers. Int J Mol Sci 2014; 15:19877-97. [PMID: 25365177 PMCID: PMC4264144 DOI: 10.3390/ijms151119877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/04/2014] [Accepted: 08/13/2014] [Indexed: 11/24/2022] Open
Abstract
The labellum in orchids shares homology with the inner lateral petals of the flower. The labellum is a modified petal and often distinguished from other petals and sepals due to its large size and irregular shape. Herein, we combined two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time of flight/time of flight (MALDI-TOF/TOF) approaches to identify the differentially expressed proteome between labellum and inner lateral petal in one of Orchid species (C. ensifolium). A total of 30 protein spots were identified, which showed more than a two-fold significant difference (p < 0.05) in their expression. Compared with C. ensifolium transcriptome (sequenced in house), 21 proteins matched the translated nucleotide. The proteins identified were classified into 48 categories according to gene ontology (GO). Additionally, these proteins were involved in 18 pathways and 9 possible protein-protein interactions. Serine carboxypeptidase and beta-glucosidase were involved in the phenylpropanoid pathway, which could regulate biosynthesis of floral scent components. Malate dehydrogenase (maeB) and triosephosphate isomerase (TPI) in carbon fixation pathway could regulate the energy metabolism. Xyloglucan endotransglucosylase/hydrolase (XET/XTH) could promote cell wall formation and aid the petal’s morphogenesis. The identification of such differentially expressed proteins provides new targets for future studies; these will assess the proteins’ physiological roles and significance in labellum and inner lateral petals.
Collapse
|
33
|
Ibdah M, Gang DR. Use of coupled ion mobility spectrometry-time of flight mass spectrometry to analyze saturated and unsaturated phenylpropanoic acids and chalcones. Chem Cent J 2014; 8:38. [PMID: 24987454 PMCID: PMC4076437 DOI: 10.1186/1752-153x-8-38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In metabolite profiling screens or analyses, where generic separation and analysis conditions are used in efforts to measure as many metabolites as possible, overlapping signals from very similar molecules often make it very difficult if not impossible to separate and identify specific molecules of specific classes. The aim of this study was to evaluate the utility of coupling ion mobility spectrometry to UPLC-TOFMS (UPLC-Q-IMS-TOFMS) as a means to separate and identify saturated and unsaturated phenylpropanoic acids and chalcones, phenylpropanoid-acetate pathway derived compounds that are common in plant extracts. RESULTS This approach readily separated most of the unsaturated phenylpropanoid acids (t-cinnamate, p-coumarate, caffeate, ferulate) from the corresponding saturated (dihydro-) compounds, and analysis of two dimensional plots of mass/charge ratio values versus ion mobility drift time revealed that the other compounds can indeed be distinguished. However, this approach was less effective for the larger chalcones. CONCLUSIONS UPLC-Q-IMS-TOFMS is a promising tool to enable the separation, identification and quantification of very similar molecules. Although it has its limitations, as was seen for the chalcones that were not well separated in this investigation, ion mobility spectrometry nevertheless adds an additional level of characterization to large-scale metabolomic screens, which increases the power of such screens without the demand for multiple analyses using very different column chemistries.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA ; Agriculture Research Organization, Institute of Vegetable and Field Crops, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
| |
Collapse
|
34
|
Sánchez-Rodríguez R, Torres-Mena JE, De-la-Luz-Cruz M, Bernal-Ramos GA, Villa-Treviño S, Chagoya-Hazas V, Landero-López L, García-Román R, Rouimi P, Del-Pozo-Yauner L, Meléndez-Zajgla J, Pérez-Carreón JI. Increased expression of prostaglandin reductase 1 in hepatocellular carcinomas from clinical cases and experimental tumors in rats. Int J Biochem Cell Biol 2014; 53:186-94. [PMID: 24853774 DOI: 10.1016/j.biocel.2014.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/03/2014] [Accepted: 05/07/2014] [Indexed: 01/05/2023]
Abstract
To identify novel tumor-associated proteins, we analyzed the protein expression patterns from experimental hepatocellular carcinoma (HCC) that were induced using hepatocarcinogenesis models in rats. Rats were subjected to two previously described protocols of hepatocarcinogenesis using diethylnitrosamine as a carcinogen: the alternative Solt-Farber (aS&F) protocol, which induces HCC within 9 months, and Schiffer's model, which induces cirrhosis and multifocal HCC within 18 weeks. The patterns of protein expression from tumors and normal liver tissue were examined by SDS-PAGE and the bands identified at 33-34 kDa were analyzed by mass spectrometry. The prostaglandin reductase 1 (PTGR1) showed the highest number of peptides, with a confidence of level >99%. The increased expression of PTGR1 in tumors was confirmed in these two models by Western blotting and by increase in alkenal/one oxidoreductase activity (25-fold higher than normal liver). In addition, the gene expression level of Ptgr1, as measured by qRT-PCR, was increased during cancer development in a time-dependent manner (200-fold higher than normal liver). Furthermore, PTGR1 was detected in the cytoplasm of neoplastic cells in rat tumors and in 12 human HCC cases by immunohistochemistry. These analyses were performed by comparing the expression of PTGR1 to that of two well-known markers of hepatocarcinoma, Glutathione S-transferase pi 1 (GSTP1) in rats and glypican-3 in humans. The increased expression and activity of PTGR1 in liver carcinogenesis encourage further research aimed at understanding the metabolic role of PTGR1 in HCC and its potential application for human cancer diagnosis and treatment.
Collapse
Affiliation(s)
| | - Julia Esperanza Torres-Mena
- Instituto Nacional de Medicina Genómica, México D.F., Mexico; Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., Mexico
| | | | | | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., Mexico
| | - Victoria Chagoya-Hazas
- Instituto de Fisiología Celular. Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Luis Landero-López
- Centro de Especialidades Médicas del Estado de Veracruz "Dr. Rafael Lucio", Xalapa Veracruz, México D.F., Mexico
| | | | - Patrick Rouimi
- Institut National de la Recherche Agronomique (INRA), UMR 1331 TOXALIM (Research Centre in Food Toxicology), Toulouse, France
| | | | | | | |
Collapse
|
35
|
Abstract
Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.
Collapse
Affiliation(s)
- Minmin Huang
- Department of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang , China and
| | | | | | | | | | | |
Collapse
|
36
|
Direct evidence for a covalent ene adduct intermediate in NAD(P)H-dependent enzymes. Nat Chem Biol 2013; 10:50-5. [PMID: 24240506 DOI: 10.1038/nchembio.1385] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/01/2013] [Indexed: 11/08/2022]
Abstract
The pyridine nucleotides NADH and NADPH (NAD(P)H) are ubiquitous redox coenzymes that are present in all living cells. Although about 16% of all characterized enzymes use pyridine nucleotides as hydride donors or acceptors during catalysis, a detailed understanding of how the hydride is transferred between NAD(P)H and the corresponding substrate is lacking for many enzymes. Here we present evidence for a new mechanism that operates during enzymatic hydride transfers using crotonyl-CoA carboxylase/reductase (Ccr) as a case study. We observed a covalent ene intermediate between NADPH and the substrate, crotonyl-CoA, using NMR, high-resolution MS and stopped-flow spectroscopy. Preparation of the ene intermediate further allowed direct access to the catalytic cycle of other NADPH-dependent enzymes-including those from type II fatty acid biosynthesis-in an unprecedented way, suggesting that formation of NAD(P)H ene intermediates is a more general principle in catalysis.
Collapse
|
37
|
Wu Y, Cai Y, Sun Y, Xu R, Yu H, Han X, Lou H, Cheng A. A single amino acid determines the catalytic efficiency of two alkenal double bond reductases produced by the liverwort Plagiochasma appendiculatum. FEBS Lett 2013; 587:3122-8. [PMID: 23954295 DOI: 10.1016/j.febslet.2013.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 11/30/2022]
Abstract
Alkenal double bond reductases (DBRs) catalyze the NADPH-dependent reduction of the α,β-unsaturated double bond of many secondary metabolites. Two alkenal double bond reductase genes PaDBR1 and PaDBR2 were isolated from the liverwort species Plagiochasma appendiculatum. Recombinant PaDBR2 protein had a higher catalytic activity than PaDBR1 with respect to the reduction of the double bond present in hydroxycinnamyl aldehydes. The residue at position 56 appeared to be responsible for this difference in enzyme activity. The functionality of a C56 to Y56 mutation in PaDBR1 was similar to that of PaDBR2. Further site-directed mutagenesis and structural modeling suggested that the phenol ring stacking between this residue and the substrate was an important determinant of catalytic efficiency.
Collapse
Affiliation(s)
- Yifeng Wu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schiefner A, Sinz Q, Neumaier I, Schwab W, Skerra A. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone. J Biol Chem 2013; 288:16815-16826. [PMID: 23589283 PMCID: PMC3675614 DOI: 10.1074/jbc.m113.453852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/04/2013] [Indexed: 11/06/2022] Open
Abstract
The last step in the biosynthetic route to the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is catalyzed by Fragaria x ananassa enone oxidoreductase (FaEO), earlier putatively assigned as quinone oxidoreductase (FaQR). The ripening-induced enzyme catalyzes the reduction of the exocyclic double bond of the highly reactive precursor 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone (HMMF) in a NAD(P)H-dependent manner. To elucidate the molecular mechanism of this peculiar reaction, we determined the crystal structure of FaEO in six different states or complexes at resolutions of ≤1.6 Å, including those with HDMF as well as three distinct substrate analogs. Our crystallographic analysis revealed a monomeric enzyme whose active site is largely determined by the bound NAD(P)H cofactor, which is embedded in a Rossmann-fold. Considering that the quasi-symmetric enolic reaction product HDMF is prone to extensive tautomerization, whereas its precursor HMMF is chemically labile in aqueous solution, we used the asymmetric and more stable surrogate product 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (EHMF) and the corresponding substrate (2E)-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone (EDHMF) to study their enzyme complexes as well. Together with deuterium-labeling experiments of EDHMF reduction by [4R-(2)H]NADH and chiral-phase analysis of the reaction product EHMF, our data show that the 4R-hydride of NAD(P)H is transferred to the unsaturated exocyclic C6 carbon of HMMF, resulting in a cyclic achiral enolate intermediate that subsequently becomes protonated, eventually leading to HDMF. Apart from elucidating this important reaction of the plant secondary metabolism our study provides a foundation for protein engineering of enone oxidoreductases and their application in biocatalytic processes.
Collapse
Affiliation(s)
- André Schiefner
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, 85350 Freising-Weihenstephan, Germany
| | - Quirin Sinz
- Biotechnologie der Naturstoffe, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Irmgard Neumaier
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, 85350 Freising-Weihenstephan, Germany
| | - Wilfried Schwab
- Biotechnologie der Naturstoffe, Technische Universität München, 85350 Freising-Weihenstephan, Germany.
| | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
39
|
Mansell DJ, Toogood HS, Waller J, Hughes JMX, Levy CW, Gardiner JM, Scrutton NS. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from Nicotiana tabacum. ACS Catal 2013; 3:370-379. [PMID: 27547488 PMCID: PMC4990313 DOI: 10.1021/cs300709m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/18/2013] [Indexed: 02/08/2023]
Abstract
![]()
The application of biocatalysis for the asymmetric reduction
of
activated C=C is a powerful tool for the manufacture of high-value
chemical commodities. The biocatalytic potential of “-ene”
reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases
is well-known; however, the specificity of these enzymes toward mainly
small molecule substrates has highlighted the need to discover “-ene”
reductases from different enzymatic classes to broaden industrial
applicability. Here, we describe the characterization of a flavin-free
double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase
(LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase
superfamily of enzymes. Using steady-state kinetics and biotransformation
reactions, we have demonstrated the regio- and stereospecificity of
NtDBR against a variety of α,β-unsaturated activated alkenes.
In addition to catalyzing the reduction of typical LTD substrates
and several classical OYE-like substrates, NtDBR also exhibited complementary
activity by reducing non-OYE substrates (i.e., reducing the exocyclic
C=C double bond of (R)-pulegone) and in some
cases showing an opposite stereopreference in comparison with the
OYE family member pentaerythritol tetranitrate (PETN) reductase. This
serves to augment classical OYE “-ene” reductase activity
and, coupled with its aerobic stability, emphasizes the potential
industrial value of NtDBR. Furthermore, we also report the X-ray crystal
structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound]
NtDBR complexes. These will underpin structure-driven site-saturated
mutagenesis studies aimed at enhancing the reactivity, stereochemistry,
and specificity of this enzyme.
Collapse
Affiliation(s)
- David J. Mansell
- Manchester
Institute of Biotechnology, ⊥School of Chemistry, and ‡Faculty of Life Sciences, University of Manchester, Manchester,
U.K
| | - Helen S. Toogood
- Manchester
Institute of Biotechnology, ⊥School of Chemistry, and ‡Faculty of Life Sciences, University of Manchester, Manchester,
U.K
| | - John Waller
- Manchester
Institute of Biotechnology, ⊥School of Chemistry, and ‡Faculty of Life Sciences, University of Manchester, Manchester,
U.K
| | - John M. X. Hughes
- Manchester
Institute of Biotechnology, ⊥School of Chemistry, and ‡Faculty of Life Sciences, University of Manchester, Manchester,
U.K
| | - Colin W. Levy
- Manchester
Institute of Biotechnology, ⊥School of Chemistry, and ‡Faculty of Life Sciences, University of Manchester, Manchester,
U.K
| | - John M. Gardiner
- Manchester
Institute of Biotechnology, ⊥School of Chemistry, and ‡Faculty of Life Sciences, University of Manchester, Manchester,
U.K
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, ⊥School of Chemistry, and ‡Faculty of Life Sciences, University of Manchester, Manchester,
U.K
| |
Collapse
|
40
|
Moynie L, Schnell R, McMahon SA, Sandalova T, Boulkerou WA, Schmidberger JW, Alphey M, Cukier C, Duthie F, Kopec J, Liu H, Jacewicz A, Hunter WN, Naismith JH, Schneider G. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:25-34. [PMID: 23295481 PMCID: PMC3539698 DOI: 10.1107/s1744309112044739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/29/2012] [Indexed: 12/25/2022]
Abstract
Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.
Collapse
Affiliation(s)
- Lucille Moynie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Stephen A. McMahon
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | - Jason W. Schmidberger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Magnus Alphey
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Cyprian Cukier
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Fraser Duthie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Jolanta Kopec
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Huanting Liu
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Agata Jacewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
41
|
Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. PHYTOCHEMISTRY 2011; 72:1162-1172. [PMID: 21295800 DOI: 10.1016/j.phytochem.2010.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/28/2010] [Indexed: 05/27/2023]
Abstract
The thiol redox-sensitive and the total proteome in harvest-ripe grains of closely related genotypes of wheat (Triticum aestivum L.), with either a dormant or a non-dormant phenotype, were investigated using hybrid lines of spring wheat double haploid population segregating transgressively, to gain further insight into seed dormancy controlling events. Redox signalling by reactive oxygen species has been shown to play a role in seed dormancy alleviation. Thiol-disulfide proteins are of particular importance in the context of redox-dependent regulation as a central and flexible mechanism to control metabolic and developmental activities of the cells. Here we describe functional proteomic profiling of reversible oxidoreductive changes and characterize in vivo intrinsic reactivity of cysteine residues using thiol-specific fluorescent labelling, solubility-based protein fractionation, two-dimensional electrophoresis, and mass spectrometry analysis in conjunction with wheat EST sequence libraries. Quantitative differences between genotypes were found for 106 spots containing 64 unique proteins. Forty seven unique proteins displayed distinctive abundance pattern, and among them 31 proteins contained 78 unique redox active cysteines. Seventeen unique proteins with 19 reactive modified cysteines were found to have differential post-translational thiol redox modification. The results provide an insight into the alteration of thiol-redox profiles in proteins that function in major processes in seeds and include groups of redox- and stress-responsive, genetic information processing and cell cycle control, transport and storage proteins, enzymes of carbohydrate metabolism, proteases and their inhibitors.
Collapse
Affiliation(s)
- Natalia V Bykova
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | | | | | | | | | | |
Collapse
|
42
|
Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci U S A 2011; 108:6615-20. [PMID: 21467222 DOI: 10.1073/pnas.1016217108] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. Here, curcumin-converting microorganisms were isolated from human feces, the one exhibiting the highest activity being identified as Escherichia coli. We are thus unique in discovering that E. coli was able to act on curcumin. The curcumin-converting enzyme was purified from E. coli and characterized. The native enzyme had a molecular mass of about 82 kDa and consisted of two identical subunits. The enzyme has a narrow substrate spectrum, preferentially acting on curcumin. The microbial metabolism of curcumin by the purified enzyme was found to comprise a two-step reduction, curcumin being converted NADPH-dependently into an intermediate product, dihydrocurcumin, and then the end product, tetrahydrocurcumin. We named this enzyme "NADPH-dependent curcumin/dihydrocurcumin reductase" (CurA). The gene (curA) encoding this enzyme was also identified. A homology search with the BLAST program revealed that a unique enzyme involved in curcumin metabolism belongs to the medium-chain dehydrogenase/reductase superfamily.
Collapse
|
43
|
Porté S, Moeini A, Reche I, Shafqat N, Oppermann U, Farrés J, Parés X. Kinetic and structural evidence of the alkenal/one reductase specificity of human ζ-crystallin. Cell Mol Life Sci 2011; 68:1065-77. [PMID: 20835842 PMCID: PMC11114546 DOI: 10.1007/s00018-010-0508-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/04/2010] [Accepted: 08/10/2010] [Indexed: 12/01/2022]
Abstract
Human ζ-crystallin is a Zn(2+)-lacking medium-chain dehydrogenase/reductase (MDR) included in the quinone oxidoreductase (QOR) family because of its activity with quinones. In the present work a novel enzymatic activity was characterized: the double bond α,β-hydrogenation of medium-chain 2-alkenals and 3-alkenones. The enzyme is especially active with lipid peroxidation products such as 4-hydroxyhexenal, and a role in their detoxification is discussed. This specificity is novel in the QOR family, and it is similar to that described in the distantly related alkenal/one reductase family. Moreover, we report the X-ray structure of ζ-crystallin, which represents the first structure solved for a tetrameric Zn(2+)-lacking MDR, and which allowed the identification of the active-site lining residues. Docking simulations suggest a role for Tyr53 and Tyr59 in catalysis. The kinetics of Tyr53Phe and Tyr59Phe mutants support the implication of Tyr53 in binding/catalysis of alkenal/one substrates, while Tyr59 is involved in the recognition of 4-OH-alkenals.
Collapse
Affiliation(s)
- Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - Agrin Moeini
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - Irene Reche
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - Naeem Shafqat
- Structural Genomics Consortium, University of Oxford, Old Road Research Campus, Oxford, OX3 7DQ UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Research Campus, Oxford, OX3 7DQ UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Oxford, OX3 7DQ UK
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
44
|
Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T, Knox R. Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 2011; 11:865-82. [DOI: 10.1002/pmic.200900810] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 11/15/2010] [Accepted: 11/29/2010] [Indexed: 11/10/2022]
|
45
|
Porté S, Valencia E, Yakovtseva EA, Borràs E, Shafqat N, Debreczeny JÉ, Pike ACW, Oppermann U, Farrés J, Fita I, Parés X. Three-dimensional structure and enzymatic function of proapoptotic human p53-inducible quinone oxidoreductase PIG3. J Biol Chem 2009; 284:17194-17205. [PMID: 19349281 PMCID: PMC2719357 DOI: 10.1074/jbc.m109.001800] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of zeta-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in zeta-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis.
Collapse
Affiliation(s)
- Sergio Porté
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Eva Valencia
- Institut de Biologia Molecular (IBMB-Consejo Superior de Investigaciones Científicas) and IRB Barcelona, Parc Científic de Barcelona, Josep-Samitier 1-5, 08028 Barcelona, Spain
| | - Evgenia A Yakovtseva
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Emma Borràs
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Naeem Shafqat
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Judit É Debreczeny
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ashley C W Pike
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Udo Oppermann
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom; Botnar Research Center, Oxford Biomedical Research Unit, Oxford OX3 7LD, United Kingdom
| | - Jaume Farrés
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ignacio Fita
- Institut de Biologia Molecular (IBMB-Consejo Superior de Investigaciones Científicas) and IRB Barcelona, Parc Científic de Barcelona, Josep-Samitier 1-5, 08028 Barcelona, Spain
| | - Xavier Parés
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
46
|
Koeduka T, Orlova I, Baiga TJ, Noel JP, Dudareva N, Pichersky E. The lack of floral synthesis and emission of isoeugenol in Petunia axillaris subsp. parodii is due to a mutation in the isoeugenol synthase gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:961-9. [PMID: 19222805 PMCID: PMC2860387 DOI: 10.1111/j.1365-313x.2009.03834.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Floral scent has been extensively investigated in plants of the South American genus Petunia. Flowers of Petunia integrifolia emit mostly benzaldehyde, while flowers of Petunia axillaris subsp. axillaris emit a mixture of volatile benzenoid and phenylpropanoid compounds that include isoeugenol and eugenol. Flowers of the artificial hybrid Petunia hybrida, a cross between P. integrifolia and P. axillaris, emit a similar spectrum of volatiles as P. axillaris subsp. axillaris. However, the flowers of P. axillaris subsp. parodii emit neither isoeugenol nor eugenol but contain high levels of dihydroconiferyl acetate in the petals, the main scent-synthesizing and scent-emitting organs. We recently showed that both isoeugenol and eugenol in P. hybrida are biosynthesized from coniferyl acetate in reactions catalyzed by isoeugenol synthase (PhIGS1) and eugenol synthase (PhEGS1), respectively, via a quinone methide-like intermediate. Here we show that P. axillaris subsp. parodii has a functional EGS gene that is expressed in flowers, but its IGS gene contains a frame-shift mutation that renders it inactive. Despite the presence of active EGS enzyme in P. axillaris subsp. parodii, in the absence of IGS activity the coniferyl acetate substrate is converted by an as yet unknown enzyme to dihydroconiferyl acetate. By contrast, suppressing the expression of PhIGS1 in P. hybrida by RNA interference also leads to a decrease in isoeugenol biosynthesis, but instead of the accumulation of dihydroconiferyl acetate, the flowers synthesize higher levels of eugenol.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA
| | - Irina Orlova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas J. Baiga
- Howard Hughes Medical Institute, Jack H. Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph P. Noel
- Howard Hughes Medical Institute, Jack H. Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
47
|
Wu YH, Ko TP, Guo RT, Hu SM, Chuang LM, Wang AHJ. Structural basis for catalytic and inhibitory mechanisms of human prostaglandin reductase PTGR2. Structure 2009; 16:1714-23. [PMID: 19000823 DOI: 10.1016/j.str.2008.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 09/05/2008] [Accepted: 09/14/2008] [Indexed: 11/18/2022]
Abstract
PTGR2 catalyzes an NADPH-dependent reduction of the conjugated alpha,beta-unsaturated double bond of 15-keto-PGE(2), a key step in terminal inactivation of prostaglandins and suppression of PPARgamma-mediated adipocyte differentiation. Selective inhibition of PTGR2 may contribute to the improvement of insulin sensitivity with fewer side effects. PTGR2 belongs to the medium-chain dehydrogenase/reductase superfamily. The crystal structures reported here reveal features of the NADPH binding-induced conformational change in a LID motif and a polyproline type II helix which are critical for the reaction. Mutation of Tyr64 and Tyr259 significantly reduces the rate of catalysis but increases the affinity to substrate, confirming the structural observations. Besides targeting cyclooxygenase, indomethacin also inhibits PTGR2 with a binding mode similar to that of 15-keto-PGE(2). The LID motif becomes highly disordered upon the binding of indomethacin, indicating plasticity of the active site. This study has implications for the rational design of inhibitors of PTGR2.
Collapse
Affiliation(s)
- Yu-Hauh Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Bougioukou DJ, Stewart JD. Opposite Stereochemical Courses for Enzyme-Mediated Alkene Reductions of an Enantiomeric Substrate Pair. J Am Chem Soc 2008; 130:7655-8. [DOI: 10.1021/ja800200r] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Despina J. Bougioukou
- 127 Chemistry Research Building, Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Jon D. Stewart
- 127 Chemistry Research Building, Department of Chemistry, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
49
|
Chen ZJ, Pudas R, Sharma S, Smart OS, Juffer AH, Hiltunen JK, Wierenga RK, Haapalainen AM. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. J Mol Biol 2008; 379:830-44. [PMID: 18479707 DOI: 10.1016/j.jmb.2008.04.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
Abstract
Structural and kinetic properties of the human 2-enoyl thioester reductase [mitochondrial enoyl-coenzyme A reductase (MECR)/ETR1] of the mitochondrial fatty acid synthesis (FAS) II pathway have been determined. The crystal structure of this dimeric enzyme (at 2.4 A resolution) suggests that the binding site for the recognition helix of the acyl carrier protein is in a groove between the two adjacent monomers. This groove is connected via the pantetheine binding cleft to the active site. The modeled mode of NADPH binding, using molecular dynamics calculations, suggests that Tyr94 and Trp311 are critical for catalysis, which is supported by enzyme kinetic data. A deep, water-filled pocket, shaped by hydrophobic and polar residues and extending away from the catalytic site, was recognized. This pocket can accommodate a fatty acyl tail of up to 16 carbons. Mutagenesis of the residues near the end of this pocket confirms the importance of this region for the binding of substrate molecules with long fatty acyl tails. Furthermore, the kinetic analysis of the wild-type MECR/ETR1 shows a bimodal distribution of catalytic efficiencies, in agreement with the notion that two major products are generated by the mitochondrial FAS II pathway.
Collapse
MESH Headings
- Acyl Carrier Protein/metabolism
- Amino Acid Sequence
- Binding Sites
- Catalytic Domain
- Crystallography, X-Ray
- Dimerization
- Fatty Acid Synthase, Type I/chemistry
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Kinetics
- Mitochondria/enzymology
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- NADH, NADPH Oxidoreductases/chemistry
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- NADP/metabolism
- Oxidoreductases Acting on CH-CH Group Donors
- Protein Conformation
- Protein Structure, Quaternary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
Collapse
Affiliation(s)
- Zhi-Jun Chen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Matsushima A, Sato Y, Otsuka M, Watanabe T, Yamamoto H, Hirata T. An enone reductase from Nicotiana tabacum: cDNA cloning, expression in Escherichia coli, and reduction of enones with the recombinant proteins. Bioorg Chem 2008; 36:23-8. [PMID: 17945329 DOI: 10.1016/j.bioorg.2007.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 08/17/2007] [Accepted: 08/23/2007] [Indexed: 11/15/2022]
Abstract
In the course of the purification of enone reductase participating to the reduction of pulegone, two reductases (NtRed-1 and NtRed-2) were isolated from cultured cells of Nicotiana tabacum. The partial amino acid sequences of the reductases revealed that NtRed-1 was allyl-alcohol dehydrogenase (Accession No. BAA89423) and NtRed-2 was malate dehydrogenase (Accession No. CAC12826). cDNA cloning and expression of these reductases in Escherichia coli were performed. Reduction with recombinant proteins was examined with cyclic alpha,beta-unsaturated ketones, such as pulegone, carvone and verbenone, as substrates. It was found that the recombinant NtRed-1 catalyses the hydrogenation of the exocyclic C-C double bond of pulegone.
Collapse
Affiliation(s)
- Akihito Matsushima
- Natural Science Center for Basic Research and Development, Radioisotope Center, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | |
Collapse
|