1
|
Li Z, Koch KE, Thompson DT, Van der Heide DM, Chang J, Franke CM, Suraju MO, Beck AC, Lorenzen AW, White JR, Bartschat NI, Kulak MV, Meyerholz DK, Kenny C, Weigel RJ. Sumoylated Etv1 establishes mouse mammary cancer stem cells that support tumorigenesis by non-stem cancer cells. Dev Cell 2025:S1534-5807(25)00207-2. [PMID: 40315856 DOI: 10.1016/j.devcel.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
The small ubiquitin-like modifier (SUMO) pathway is required for maintenance of cancer stem cells/tumor-initiating cells (CSCs/TICs), which drive tumorigenesis when transplanted into immunocompromised mice. We found that inhibition of the SUMO pathway blocked Neu-mediated mammary oncogenesis and inhibited the function of CSCs/TICs without effects on normal mammary stem cells. Transcriptomic analysis implicated SUMO-conjugated Etv1 as being critical for oncogenesis. After SUMO pathway inhibition, a SUMO-mimetic Etv1 protein, created by a fusion with SUMO1 or SUMO2, established a stem-like cell capable of tumorigenesis, whereas a SUMO-resistant Etv1 protein established a proliferative, non-tumorigenic cell. In mixing experiments, stem-like cells induced tumorigenesis by non-stem cells. We conclude that SUMO-conjugated Etv1 is necessary to maintain the CSC/TIC phenotype and that crosstalk between stem and non-stem cells is crucial for tumorigenesis. The findings demonstrate dynamic interactions between heterogeneous cell types to drive tumorigenesis, which has implications for future cancer therapeutic development.
Collapse
Affiliation(s)
- Zhijie Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Jeremy Chang
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jeffrey R White
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Colin Kenny
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Dong R, Wang T, Dong W, Zhang H, Li Y, Tao R, Liu Q, Liang H, Chen X, Zhang B, Zhang X. TGM2-mediated histone serotonylation promotes HCC progression via MYC signalling pathway. J Hepatol 2025:S0168-8278(24)02829-0. [PMID: 39788430 DOI: 10.1016/j.jhep.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is an aggressive malignancy for which there are few effective treatment options. H3Q5ser, a serotonin-based histone modification mediated by transglutaminase 2 (TGM2), affects diverse biological processes, such as neurodevelopment. The role of TGM2-mediated H3Q5ser in HCC progression remains unclear. This study investigated the role of TGM2 in promoting HCC progression and evaluated its potential as a therapeutic target for HCC treatment. METHODS Adeno-associated virus-mediated liver-specific overexpression models of Tgm2 or H3.3 were adopted to validate the effects of H3Q5ser on HCC progression. CUT&Tag and RNA sequencing was employed to investigate the underlying mechanisms. HCC organoids, subcutaneous xenograft models, and hydrodynamic tail vein injection models were used to evaluate the treatment efficiency of TGM2 inhibitors. RESULTS TMG2 expression positively correlated with higher alpha-fetoprotein levels, poor differentiation, and a later BCLC stage. Tgm2 deficiency or H3Q5ser inhibition notably inhibited HCC progression. CUT&Tag and RNA sequencing analyses revealed that downregulated genes were enriched in the MYC pathway following treatment with the TGM2 inhibitors. Furthermore, transcriptional intermediary factor 1 β mediated the recruitment of TGM2 to MYC, facilitating H3Q5ser modifications on MYC target genes. Finally, targeting the transglutaminase activity of TGM2 significantly suppressed HCC progression and showed synergy with sorafenib treatment in preclinical models. TGM2 inhibitors did not cause significant myelosuppression or tissue damage. CONCLUSIONS TGM2 serves as a prognostic biomarker and targeting its transglutaminase activity may be an effective strategy for inhibiting HCC progression. IMPACT AND IMPLICATIONS Transglutaminase 2 (TGM2)-mediated H3Q5ser modifications promote hepatocellular carcinoma (HCC) progression via MYC pathway signalling. Targeting the transglutaminase activity of TGM2 markedly inhibited HCC progression. TGM2 inhibitors did not induce significant myelosuppression or tissue damage. This preclinical study provides a theoretical basis to explore new strategies for HCC therapy.
Collapse
Affiliation(s)
- Renshun Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Tianci Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Haoquan Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China
| | - Yani Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
3
|
Jonkhout MCM, Vanhessche T, Ferreira M, Verbinnen I, Withof F, Van der Hoeven G, Szekér K, Azhir Z, Lien WH, Van Eynde A, Bollen M. Embryonic NIPP1 Depletion in Keratinocytes Triggers a Cell Cycle Arrest and Premature Senescence in Adult Mice. J Invest Dermatol 2024; 144:2162-2175.e12. [PMID: 38431220 DOI: 10.1016/j.jid.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
NIPP1 is a ubiquitously expressed regulatory subunit of PP1. Its embryonic deletion in keratinocytes causes chronic sterile skin inflammation, epidermal hyperproliferation, and resistance to mutagens in adult mice. To explore the primary effects of NIPP1 deletion, we first examined hair cycle progression of NIPP1 skin knockouts (SKOs). The entry of the first hair cycle in the SKOs was delayed owing to prolonged quiescence of hair follicle stem cells. In contrast, the entry of the second hair cycle in the SKOs was advanced as a result of precocious activation of hair follicle stem cells. The epidermis of SKOs progressively accumulated senescent cells, and this cell-fate switch was accelerated by DNA damage. Primary keratinocytes from SKO neonates and human NIPP1-depleted HaCaT keratinocytes failed to proliferate and showed an increase in the expression of cell cycle inhibitors (p21, p16/Ink4a, and/or p19/Arf) and senescence-associated-secretory-phenotype factors as well as in DNA damage (γH2AX and 53BP1). Our data demonstrate that the primary effect of NIPP1 deletion in keratinocytes is a cell cycle arrest and premature senescence that gradually progresse to chronic senescence and likely contribute to the decreased sensitivity of SKOs to mutagens.
Collapse
Affiliation(s)
- Marloes C M Jonkhout
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Fabienne Withof
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Gerd Van der Hoeven
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Kathelijne Szekér
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Zahra Azhir
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Wei B, Yang F, Yu L, Qiu C. Crosstalk between SUMOylation and other post-translational modifications in breast cancer. Cell Mol Biol Lett 2024; 29:107. [PMID: 39127633 DOI: 10.1186/s11658-024-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer represents the most prevalent tumor type and a foremost cause of mortality among women globally. The complex pathophysiological processes of breast cancer tumorigenesis and progression are regulated by protein post-translational modifications (PTMs), which are triggered by different carcinogenic factors and signaling pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particularly pivotal player in this context. Recent studies have demonstrated that SUMOylation does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitination, acetylation, and methylation, thereby leading to the regulation of various pathological activities in breast cancer. This review explores novel and existing mechanisms of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated by phosphorylation to exert feedback control, while also modulates subsequent ubiquitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting breast cancer are protein-specific and site-specific. In mechanism, alterations in amino acid side chain charges, protein conformations, or the occupation of specific sites at specific domains or sites underlie the complex crosstalk. In summary, this review centers on elucidating the crosstalk between SUMOylation and other PTMs in breast cancer oncogenesis and progression and discuss the molecular mechanisms contributing to these interactions, offering insights into their potential applications in facilitating novel treatments for breast cancer.
Collapse
Affiliation(s)
- Bajin Wei
- The Department of Breast Surgery, Key Laboratory of Organ Transplantation, Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Cong Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet 2024; 15:1431564. [PMID: 39100077 PMCID: PMC11294089 DOI: 10.3389/fgene.2024.1431564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Haifeng Wang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Bitao Jiang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Owen DJ, Aguilar-Martinez E, Ji Z, Li Y, Sharrocks AD. ZMYM2 controls human transposable element transcription through distinct co-regulatory complexes. eLife 2023; 12:RP86669. [PMID: 37934570 PMCID: PMC10629813 DOI: 10.7554/elife.86669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
ZMYM2 is a zinc finger transcriptional regulator that plays a key role in promoting and maintaining cell identity. It has been implicated in several diseases such as congenital anomalies of the kidney where its activity is diminished and cancer where it participates in oncogenic fusion protein events. ZMYM2 is thought to function through promoting transcriptional repression and here we provide more evidence to support this designation. Here we studied ZMYM2 function in human cells and demonstrate that ZMYM2 is part of distinct chromatin-bound complexes including the established LSD1-CoREST-HDAC1 corepressor complex. We also identify new functional and physical interactions with ADNP and TRIM28/KAP1. The ZMYM2-TRIM28 complex forms in a SUMO-dependent manner and is associated with repressive chromatin. ZMYM2 and TRIM28 show strong functional similarity and co-regulate a large number of genes. However, there are no strong links between ZMYM2-TRIM28 binding events and nearby individual gene regulation. Instead, ZMYM2-TRIM28 appears to regulate genes in a more regionally defined manner within TADs where it can directly regulate co-associated retrotransposon expression. We find that different types of ZMYM2 binding complex associate with and regulate distinct subclasses of retrotransposons, with ZMYM2-ADNP complexes at SINEs and ZMYM2-TRIM28 complexes at LTR elements. We propose a model whereby ZMYM2 acts directly through retrotransposon regulation, which may then potentially affect the local chromatin environment and associated coding gene expression.
Collapse
Affiliation(s)
- Danielle J Owen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Elisa Aguilar-Martinez
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Zongling Ji
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Yaoyong Li
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| |
Collapse
|
7
|
Song T, Lv S, Ma X, Zhao X, Fan L, Zou Q, Li N, Yan Y, Zhang W, Sun L. TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy. J Biol Chem 2023; 299:104621. [PMID: 36935008 PMCID: PMC10141522 DOI: 10.1016/j.jbc.2023.104621] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Autophagy plays a pivotal role in physiology and pathophysiology, including cancer. Mechanisms of autophagy dysregulation in cancer remain elusive. Loss-of-function of TRIM28, a multi-function protein, is seen in familial kidney malignancy, but the mechanism by which TRIM28 contributes to the etiology of kidney malignancy is unclear. In this study, we show TRIM28 retards kidney cancer cell proliferation through inhibiting autophagy. Mechanistically, we find TRIM28 promotes ubiquitination and proteasome-mediated degradation of transcription factor TFE3, which is critical for autophagic gene expression. Genetic activation of TFE3 due to gene fusion is known to cause human kidney malignancy, but whether and how transcription activation by TFE3 involves chromatin changes is unclear. Here, we find another mode of TFE3 activation in human renal carcinoma. We find that TFE3 is constitutively localized to the cell nucleus in human and mouse kidney cancer, where it increases autophagic gene expression and promotes cell autophagy as well as proliferation. We further uncover that TFE3 interacts with and recruits histone H3K27 demethylase KDM6A for autophagic gene upregulation. We reveal that KDM6A contributes to expression of TFE3 target genes through increasing H3K4me3 rather than demethylating H3K27. Collectively, in this study, we identify a functional TRIM28-TFE3-KDM6A signal axis which plays a critical role in kidney cancer cell autophagy and proliferation.
Collapse
Affiliation(s)
- Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Xianyun Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Li Fan
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Yingying Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Wen Zhang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Bailey MA, Tang Y, Park HJ, Fitzgerald MC. Comparative Analysis of Protein Folding Stability-Based Profiling Methods for Characterization of Biological Phenotypes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:383-393. [PMID: 36802530 PMCID: PMC10164353 DOI: 10.1021/jasms.2c00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, a new suite of mass spectrometry-based proteomic methods has been developed that enables evaluation of protein folding stability on the proteomic scale. These methods utilize chemical and thermal denaturation approaches (SPROX and TPP, respectively) as well as proteolysis strategies (DARTS, LiP, and PP) to assess protein folding stability. The analytical capabilities of these technique have been well-established for protein target discovery applications. However, less is known about the relative advantages and disadvantages of using these different strategies to characterize biological phenotypes. Reported here is a comparative study of SPROX, TPP, LiP, and conventional protein expression level measurements using both a mouse model of aging and a mammalian cell culture model of breast cancer. Analyses on proteins in brain tissue cell lysates derived from 1- and 18-month-old mice (n = 4-5 at each time point) and on proteins in cell lysates derived from the MCF-7 and MCF-10A cell lines revealed a majority of the differentially stabilized protein hits in each phenotype analysis had unchanged expression levels. In both phenotype analyses, TPP generated the largest number and fraction of differentially stabilized protein hits. Only a quarter of all the protein hits identified in each phenotype analysis had a differential stability that was detected using multiple techniques. This work also reports the first peptide-level analysis of TPP data, which was required for the correct interpretation of the phenotype analyses performed here. Studies on selected protein stability hits also uncovered phenotype-related functional changes.
Collapse
Affiliation(s)
- Morgan A. Bailey
- Department of Chemistry, Duke University, Durham, North Carolina 27708
- These authors contributed equally
| | - Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708
- These authors contributed equally
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
9
|
Liu J, Wang Q, Kang Y, Xu S, Pang D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci 2022; 12:22. [PMID: 35216622 PMCID: PMC8881842 DOI: 10.1186/s13578-022-00756-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractBreast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.
Collapse
|
10
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
11
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
12
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
13
|
Gooding AJ, Parker KA, Valadkhan S, Schiemann WP. The IncRNA BORG: A novel inducer of TNBC metastasis, chemoresistance, and disease recurrence. ACTA ACUST UNITED AC 2019; 5. [PMID: 31435529 DOI: 10.20517/2394-4722.2019.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the molecular mechanisms underpinning the dissemination of primary breast tumor cells and their ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), which interact both directly and indirectly with key components of gene regulatory networks to alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BORG whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via survival and viability pathways, as well as decreased activation of cell death pathways. As such, BORG expression acts as a (i) marker capable of predicting which breast cancer patients are predisposed to develop secondary metastatic lesions, and (ii) unique therapeutic target to maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that contribute to the pathophysiological activities of BORG during its regulation of breast cancer metastasis, chemoresistance, and disease recurrence.
Collapse
Affiliation(s)
- Alex J Gooding
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kimberly A Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
14
|
Tanaka H, Kuwano Y, Nishikawa T, Rokutan K, Nishida K. ZNF350 promoter methylation accelerates colon cancer cell migration. Oncotarget 2018; 9:36750-36769. [PMID: 30613364 PMCID: PMC6298409 DOI: 10.18632/oncotarget.26353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Diversification of transcriptomic and epigenomic states may occur during the expansion of colorectal cancers. Certain cancer cells lose their epithelial characters and gain mesenchymal properties, known as epithelial-mesenchymal transition (EMT), and they aggressively migrate into the non-tumorigenic extracellular matrix. In this study, we isolated a subpopulation with accelerated baseline motility (MG cells) and an immotile one (non-MG cells) from a colon cancer cell line (HCT116). Gene expression signatures of the MG cells indicated that this subpopulation was likely an EMT hybrid. The MG cells substantially lost their migratory properties after treatment with a methyltransferase inhibitor, 5-azacytidine, suggesting a role of DNA methylation in this process. Global transcriptome assays of both types of cells with or without 5-azacytidine treatment identified 640 genes, whose expression might be methylation-dependently down-regulated in the MG cells. Global methylation analysis revealed that 35 out of the 640 genes were hyper-methylated in the MG cells. Among them, we focused on the anti-oncogene ZNF350, which encodes a zinc-finger and BRCA1-interacting protein. Notably, ZNF350 knockdown accelerated migration of the non-MG cells, while overexpression of ZNF350 in the MG cells significantly impaired their migration. Finally, pyrosequence analysis together with dual luciferase assays of serially truncated fragments of the ZNF350 promoter (-268 to +49 bp) indicated that three hyper-methylated sites were possibly responsible for the basal promoter activity of ZNF350. Taken together, our results suggest that hyper-methylation of the ZNF350 proximal promoter may be one of the crucial determinants for acquiring increased migratory capabilities in colon cancer cells.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
15
|
Lee A, CingÖz O, Sabo Y, Goff SP. Characterization of interaction between Trim28 and YY1 in silencing proviral DNA of Moloney murine leukemia virus. Virology 2018; 516:165-175. [PMID: 29407374 DOI: 10.1016/j.virol.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Moloney Murine Leukemia Virus (M-MLV) proviral DNA is transcriptionally silenced in embryonic cells by a large repressor complex tethered to the provirus by two sequence-specific DNA binding proteins, ZFP809 and YY1. A central component of the complex is Trim28, a scaffold protein that regulates many target genes involved in cell cycle progression, DNA damage responses, and viral gene expression. The silencing activity of Trim28, and its interactions with corepressors are often regulated by post-translational modifications such as sumoylation and phosphorylation. We defined the interaction domains of Trim28 and YY1, and investigated the role of sumoylation and phosphorylation of Trim28 in mediating M-MLV silencing. The RBCC domain of Trim28 was sufficient for interaction with YY1, and acidic region 1 and zinc fingers of YY1 were necessary and sufficient for its interaction with Trim28. Additionally, we found that residue K779 was critical for Trim28-mediated silencing of M-MLV in embryonic cells.
Collapse
Affiliation(s)
- Andreia Lee
- Department of Biological Sciences, United States
| | - Oya CingÖz
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Yosef Sabo
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
16
|
Stebbing J, Shah K, Lit LC, Gagliano T, Ditsiou A, Wang T, Wendler F, Simon T, Szabó KS, O'Hanlon T, Dean M, Roslani AC, Cheah SH, Lee SC, Giamas G. LMTK3 confers chemo-resistance in breast cancer. Oncogene 2018; 37:3113-3130. [PMID: 29540829 PMCID: PMC5992129 DOI: 10.1038/s41388-018-0197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and post-chemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer.
Collapse
Affiliation(s)
- Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Kalpit Shah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lei Cheng Lit
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Teresa Gagliano
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Angeliki Ditsiou
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Tingting Wang
- Cancer Science Institute of Singapore, Centre for Life Sciences, 28 Medical Drive, #02-15, Singapore, Singapore
| | - Franz Wendler
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Thomas Simon
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Krisztina Sára Szabó
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Timothy O'Hanlon
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, MD, 20892, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - April Camilla Roslani
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Swee Hung Cheah
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, Centre for Life Sciences, 28 Medical Drive, #02-15, Singapore, Singapore
| | - Georgios Giamas
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
17
|
TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget 2018; 8:863-882. [PMID: 27845900 PMCID: PMC5352203 DOI: 10.18632/oncotarget.13273] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors.
Collapse
|
18
|
Reuter N, Reichel A, Stilp AC, Scherer M, Stamminger T. SUMOylation of IE2p86 is required for efficient autorepression of the human cytomegalovirus major immediate-early promoter. J Gen Virol 2018; 99:369-378. [PMID: 29458530 DOI: 10.1099/jgv.0.001021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human cytomegalovirus (HCMV) IE2p86 protein is pivotal for coordinated regulation of viral gene expression. Besides functioning as a promiscuous transactivator, IE2p86 is also known to negatively regulate its own transcription. This occurs via direct binding of IE2p86 to a 14-bp palindromic DNA element located between the TATA box and the transcription start site of the major immediate-early promoter (MIEP), which is referred to as the cis repression signal (CRS). However, the exact mechanism of IE2p86-based autorepression is still unclear. By testing a series of IE2p86 mutants in transient expression assays, we found that not only did a DNA binding-deficient mutant of IE2p86 fail to repress the MIEP, but SUMOylation-negative mutants also failed to repress it. This finding was further supported by infection studies with primary fibroblasts harbouring a MIEP-driven transgene as a reporter. Here, we observed that a recombinant HCMV expressing SUMOylation-negative IE2p86 was defective in transgene downregulation, in contrast to wild-type HCMV. Interestingly, however, a double-mutant virus in which both the SUMO acceptor sites and the SUMO interaction motif (SIM) of IE2p86 were inactivated regained the ability to silence the MIEP. This correlated with increased expression levels of the IE2 isoforms IE2p40 and IE2p60, suggesting that these late proteins may contribute to MIEP suppression, thus compensating for the loss of IE2p86 SUMOylation. In summary, our results show that autorepression of the MIEP is not only regulated by late isoforms of IE2, but also depends on posttranslational SUMO modification, revealing a novel mechanism to fine-tune the expression of this important viral gene region.
Collapse
Affiliation(s)
- Nina Reuter
- Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Anna Reichel
- Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Anne-Charlotte Stilp
- Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
19
|
Desumoylase SENP6 maintains osteochondroprogenitor homeostasis by suppressing the p53 pathway. Nat Commun 2018; 9:143. [PMID: 29321472 PMCID: PMC5762923 DOI: 10.1038/s41467-017-02413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/29/2017] [Indexed: 01/01/2023] Open
Abstract
The development, growth, and renewal of skeletal tissues rely on the function of osteochondroprogenitors (OCPs). Protein sumoylation/desumoylation has emerged as a pivotal mechanism for stem cell/progenitor homeostasis, and excessive sumoylation has been associated with cell senescence and tissue aging, but its role in regulating OCP function is unclear. Here we show that postnatal loss of the desumoylase SUMO1/sentrin-specific peptidase 6 (SENP6) causes premature aging. OCP-specific SENP6 knockout mice exhibit smaller skeletons, with elevated apoptosis and cell senescence in OCPs and chondrocytes. In Senp6 ‒/‒ cells, the two most significantly elevated pathways are p53 signaling and senescence-associated secreted phenotypes (SASP), and Trp53 loss partially rescues the skeletal and cellular phenotypes caused by Senp6 loss. Furthermore, SENP6 interacts with, desumoylates, and stabilizes TRIM28, suppressing p53 activity. Our data reveals a crucial role of the SENP6-p53 axis in maintaining OCP homeostasis during skeletal development.
Collapse
|
20
|
Five zinc finger protein 350 single nucleotide polymorphisms and the risks of breast cancer: a meta-analysis. Oncotarget 2017; 8:107273-107282. [PMID: 29291027 PMCID: PMC5739812 DOI: 10.18632/oncotarget.21620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023] Open
Abstract
Some studies have reported an association between the zinc-finger protein 350 (ZNF350), also known as zinc-finger and BRCA1-interacting protein with a Kruppel-associated box (KRAB) domain (ZBRK1), and risks of breast cancer, although the results remain controversial. A systematic search was conducted on PubMed, Web of Science, EMBASE, Ovid, Chinese National Knowledge Databases, and WanFang databases with relevant keywords. Four studies of five distinct populations involving 5824 breast cancer cases were used to conduct a meta-analysis that summarizes the current evidence of 5 genetic polymorphisms: Asp35Asp, Leu66Pro, Pro373Pro, Ser472Pro, and Ser501Arg in the ZNF350 gene. The T allele in Asp35Asp polymorphisms not significantly associated with increased risk of breast cancer (OR: 1.08; 95% CI: 0.96–1.21). The minor C allele of the Asp35Asp polymorphism is protective in the overdominant model (OR = 1.14; 95% CI: 1.02–1.28). The Pro allele in the Leu66Pro polymorphism is protective in all of the models examined (allelic, dominant, recessive, and overdominant). The Pro373Pro is not associated with breast cancer in all of the models tested. The Pro allele of the Ser472Pro polymorphism is protective using the dominant model (OR = 0.10; 95% CI: 0.04–0.23) but deleterious using the overdominant model (OR = 1.14; 95% CI: 1.02–1.28). The Ser501Arg polymorphism is deleterious only when using the recessive model (OR = 1.21; 95% CI: 1.02–1.44). In conclusion, this meta-analysis suggests that genetic polymorphisms in the ZNF350 variant can increase, decrease, or have no effect on the risks of breast cancer depending on the polymorphism and genetic model used. Further studies will be required to validate these findings.
Collapse
|
21
|
Gooding AJ, Zhang B, Jahanbani FK, Gilmore HL, Chang JC, Valadkhan S, Schiemann WP. The lncRNA BORG Drives Breast Cancer Metastasis and Disease Recurrence. Sci Rep 2017; 7:12698. [PMID: 28983112 PMCID: PMC5629202 DOI: 10.1038/s41598-017-12716-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as potent regulators of breast cancer development and progression, including the metastatic spread of disease. Through in silico and biological analyses, we identified a novel lncRNA, BMP/OP-Responsive Gene (BORG), whose expression directly correlates with aggressive breast cancer phenotypes, as well as with metastatic competence and disease recurrence in multiple clinical cohorts. Mechanistically, BORG elicits the metastatic outgrowth of latent breast cancer cells by promoting the localization and transcriptional repressive activity of TRIM28, which binds BORG and induces substantial alterations in carcinoma proliferation and survival. Moreover, inhibiting BORG expression in metastatic breast cancer cells impedes their metastatic colonization of the lungs of mice, implying that BORG acts as a novel driver of the genetic and epigenetic alterations that underlie the acquisition of metastatic and recurrent phenotypes by breast cancer cells.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bing Zhang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Fereshteh Kenari Jahanbani
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hannah L Gilmore
- Department of Pathology, University Hospitals, Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jenny C Chang
- Houston Methodist Research Center, Houston, TX, 77030, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
22
|
Herzig JK, Bullinger L, Tasdogan A, Zimmermann P, Schlegel M, Teleanu V, Weber D, Rücker FG, Paschka P, Dolnik A, Schneider E, Kuchenbauer F, Heidel FH, Buske C, Döhner H, Döhner K, Gaidzik VI. Protein phosphatase 4 regulatory subunit 2 (PPP4R2) is recurrently deleted in acute myeloid leukemia and required for efficient DNA double strand break repair. Oncotarget 2017; 8:95038-95053. [PMID: 29221109 PMCID: PMC5707003 DOI: 10.18632/oncotarget.21119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously identified a recurrent deletion at chromosomal band 3p14.1-p13 in patients with acute myeloid leukemia (AML). Among eight protein-coding genes, this microdeletion affects the protein phosphatase 4 regulatory subunit 2 (PPP4R2), which plays an important role in DNA damage response (DDR). Investigation of mRNA expression during murine myelopoiesis determined that Ppp4r2 is higher expressed in more primitive hematopoietic cells. PPP4R2 expression in primary AML samples compared to healthy bone marrow was significantly lower, particularly in patients with 3p microdeletion or complex karyotype. To identify a functional role of PPP4R2 in hematopoiesis and leukemia, we genetically inactivated Ppp4r2 by RNAi in murine hematopoietic stem and progenitor cells and murine myeloid leukemia. Furthermore, we ectopically expressed PPP4R2 in a deficient human myeloid leukemic cell line. While PPP4R2 is involved in DDR of both hematopoietic and leukemic cells, our findings indicate that PPP4R2 deficiency impairs de-phosphorylation of phosphorylated key DDR proteins KRAB-domain associated protein 1 (pKAP1), histone variant H2AX (γH2AX), tumor protein P53 (pP53), and replication protein A2 (pRPA2). Potential impact of affected DNA repair processes in primary AML cases with regard to differential PPP4R2 expression or 3p microdeletion is also supported by our results obtained by gene expression profiling and whole exome sequencing. Impaired DDR and increased DNA damage by PPP4R2 suppression is one possible mechanism by which the 3p microdeletion may contribute to the pathogenesis of AML. Further studies are warranted to determine the potential benefit of inefficient DNA repair upon PPP4R2 deletion to the development of therapeutic agents.
Collapse
Affiliation(s)
- Julia K Herzig
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Alpaslan Tasdogan
- Institute of Immunology, Ulm University, Ulm, Germany.,Current/Present address: Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
| | - Philipp Zimmermann
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Martin Schlegel
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Veronica Teleanu
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Anna Dolnik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Edith Schneider
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian H Heidel
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Innere Medizin II, Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
23
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
24
|
He X, Riceberg J, Soucy T, Koenig E, Minissale J, Gallery M, Bernard H, Yang X, Liao H, Rabino C, Shah P, Xega K, Yan ZH, Sintchak M, Bradley J, Xu H, Duffey M, England D, Mizutani H, Hu Z, Guo J, Chau R, Dick LR, Brownell JE, Newcomb J, Langston S, Lightcap ES, Bence N, Pulukuri SM. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol 2017; 13:1164-1171. [PMID: 28892090 DOI: 10.1038/nchembio.2463] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/21/2017] [Indexed: 01/29/2023]
Abstract
Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.
Collapse
Affiliation(s)
- Xingyue He
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Jessica Riceberg
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Teresa Soucy
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Erik Koenig
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - James Minissale
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Melissa Gallery
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Hugues Bernard
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Xiaofeng Yang
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Hua Liao
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Claudia Rabino
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Pooja Shah
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Kristina Xega
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Zhong-Hua Yan
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Mike Sintchak
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - John Bradley
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - He Xu
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Matt Duffey
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Dylan England
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Hirotake Mizutani
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Zhigen Hu
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Jianping Guo
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Ryan Chau
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Lawrence R Dick
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - James E Brownell
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - John Newcomb
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Steve Langston
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Eric S Lightcap
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Neil Bence
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Sai M Pulukuri
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Pecháčková S, Burdová K, Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J Mol Med (Berl) 2017; 95:589-599. [PMID: 28439615 PMCID: PMC5442293 DOI: 10.1007/s00109-017-1536-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
DNA damage response (DDR) pathway protects cells from genome instability and prevents cancer development. Tumor suppressor p53 is a key molecule that interconnects DDR, cell cycle checkpoints, and cell fate decisions in the presence of genotoxic stress. Inactivating mutations in TP53 and other genes implicated in DDR potentiate cancer development and also influence the sensitivity of cancer cells to treatment. Protein phosphatase 2C delta (referred to as WIP1) is a negative regulator of DDR and has been proposed as potential pharmaceutical target. Until recently, exploitation of WIP1 inhibition for suppression of cancer cell growth was compromised by the lack of selective small-molecule inhibitors effective at cellular and organismal levels. Here, we review recent advances in development of WIP1 inhibitors and discuss their potential use in cancer treatment.
Collapse
Affiliation(s)
- Soňa Pecháčková
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Kamila Burdová
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic.
| |
Collapse
|
26
|
Cesaro E, Sodaro G, Montano G, Grosso M, Lupo A, Costanzo P. The Complex Role of the ZNF224 Transcription Factor in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:191-222. [PMID: 28215224 DOI: 10.1016/bs.apcsb.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.
Collapse
Affiliation(s)
- E Cesaro
- University of Naples Federico II, Naples, Italy
| | - G Sodaro
- University of Naples Federico II, Naples, Italy
| | - G Montano
- BioMedical Center, Lund University, Lund, Sweden
| | - M Grosso
- University of Naples Federico II, Naples, Italy
| | - A Lupo
- University of Sannio, Benevento, Italy
| | - P Costanzo
- University of Naples Federico II, Naples, Italy.
| |
Collapse
|
27
|
Mita P, Savas JN, Briggs EM, Ha S, Gnanakkan V, Yates JR, Robins DM, David G, Boeke JD, Garabedian MJ, Logan SK. URI Regulates KAP1 Phosphorylation and Transcriptional Repression via PP2A Phosphatase in Prostate Cancer Cells. J Biol Chem 2016; 291:25516-25528. [PMID: 27780869 PMCID: PMC5207251 DOI: 10.1074/jbc.m116.741660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells.
Collapse
Affiliation(s)
- Paolo Mita
- From the Institute of Systems Genetics and
- the Departments of Biochemistry and Molecular Pharmacology
| | - Jeffrey N Savas
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Erica M Briggs
- the Departments of Biochemistry and Molecular Pharmacology
| | - Susan Ha
- Urology, and
- the Departments of Biochemistry and Molecular Pharmacology
| | - Veena Gnanakkan
- the Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - John R Yates
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Diane M Robins
- the Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Gregory David
- the Departments of Biochemistry and Molecular Pharmacology
| | - Jef D Boeke
- From the Institute of Systems Genetics and
- the Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
- the Departments of Biochemistry and Molecular Pharmacology
| | - Michael J Garabedian
- Urology, and
- Microbiology at New York University School of Medicine, New York, New York 10016
| | - Susan K Logan
- Urology, and
- the Departments of Biochemistry and Molecular Pharmacology
| |
Collapse
|
28
|
Qi Z, Cai S, Cai J, Chen L, Yao Y, Chen L, Mao Y. miR-491 regulates glioma cells proliferation by targeting TRIM28 in vitro. BMC Neurol 2016; 16:248. [PMID: 27905892 PMCID: PMC5131408 DOI: 10.1186/s12883-016-0769-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023] Open
Abstract
Background MicroRNAs are significantly involved in tumorigenesis and progression of glioma. However, the critical part they play in glioma have not been fully elaborated. miR-491 and Tripartite motif containing 28 (TRIM28) are reported to aberrantly express in glioblastoma multiforme (GBM). Here, we detected miR-491 and TRIM28 expression and function in glioma cells. Methods We analyzed miR-491 expressions in 20 primary human GBM tissues and 6 control brain tissues by qRT-PCR assays and searched for The Cancer Genome Atlas (TCGA) database. Then we predicted possible mRNA target of miR-491 by TargetScan/MicroRNA and confirmed it via luciferase reporter assays. Knock-down of miR-491 and transfection of pLenti-TRIM28 were performed in U251 and U87 cells. Proliferation ability was examined by MTT and clone formation assays. Results miR-491 expression was obviously reduced in GBM cells and tissues. There was a positive correlation between the down-regulation of miR-491 and poor prognosis. Spearman’s correlation analysis demonstrated that miR-491 expression was negatively correlated with TRIM28 protein level. Possible mRNA binding sites of miR-491 predicted by TargetScan/MicroRNA were proved by luciferase assays. Clone formation and MTT assays indicated that up-regulation of miR-491 inhibited the proliferation of glioma cells. Conclusions miR-491 regulates glioma cells proliferation in vitro by targeting TRIM28. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0769-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengyong Cai
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Cai
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China. .,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
29
|
TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol 2016; 126:19-26. [PMID: 26476730 DOI: 10.1007/s11060-015-1897-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/17/2015] [Indexed: 10/22/2022]
Abstract
Tripartite motif (TRIM) proteins are involved in tumorigenesis. Here, we examined the expression, biological function, and clinical significance of tripartite motif containing 28 (TRIM28) in glioma, a locally aggressive brain tumor. First, TRIM28 expression was significantly higher in glioma (n = 138) than in non-glioma controls (n = 6). TRIM28 expression was positively correlated with tumor malignancy, and associated with poor overall survival (OS) and progression-free survival (PFS). Notably, TRIM28 expression was negatively correlated with p21 expression in patients with glioblastoma multiforme (GBM). A multivariate analysis that included relevant measures indicated that high TRIM28 expression is an independent prognostic factor for poor OS and PFS in GBM patients. In experiments with cultured glioma cells, down-regulating TRIM28 with shRNA increased p21 expression, and induced cell cycle arrest at the G1 phase. In a xenograft model, down-regulating TRIM28 suppressed tumor growth. These results indicate that over-expression of TRIM28 is associated with poor outcome in glioma patients.
Collapse
|
30
|
Cheng CT, Kuo CY, Ouyang C, Li CF, Chung Y, Chan DC, Kung HJ, Ann DK. Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Res 2016; 76:5006-5018. [PMID: 27364555 PMCID: PMC5316485 DOI: 10.1158/0008-5472.can-15-2921] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial dynamics during nutrient starvation of cancer cells likely exert profound effects on their capability for metastatic progression. Here, we report that KAP1 (TRIM28), a transcriptional coadaptor protein implicated in metastatic progression in breast cancer, is a pivotal regulator of mitochondrial fusion in glucose-starved cancer cells. Diverse metabolic stresses induced Ser473 phosphorylation of KAP1 (pS473-KAP1) in a ROS- and p38-dependent manner. Results from live-cell imaging and molecular studies revealed that during the first 6 to 8 hours of glucose starvation, mitochondria initially underwent extensive fusion, but then subsequently fragmented in a pS473-KAP1-dependent manner. Mechanistic investigations using phosphorylation-defective mutants revealed that KAP1 Ser473 phosphorylation limited mitochondrial hyperfusion in glucose-starved breast cancer cells, as driven by downregulation of the mitofusin protein MFN2, leading to reduced oxidative phosphorylation and ROS production. In clinical specimens of breast cancer, reduced expression of MFN2 corresponded to poor prognosis in patients. In a mouse xenograft model of human breast cancer, there was an association in the core region of tumors between MFN2 downregulation and the presence of highly fragmented mitochondria. Collectively, our results suggest that KAP1 Ser473 phosphorylation acts through MFN2 reduction to restrict mitochondrial hyperfusion, thereby contributing to cancer cell survival under conditions of sustained metabolic stress. Cancer Res; 76(17); 5006-18. ©2016 AACR.
Collapse
Affiliation(s)
- Chun-Ting Cheng
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California. Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
| | - Ching-Ying Kuo
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - Ching Ouyang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yiyin Chung
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - David C Chan
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California. National Health Research Institutes, Miaoli, Taiwan
| | - David K Ann
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California. Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California.
| |
Collapse
|
31
|
Teratake Y, Kuga C, Hasegawa Y, Sato Y, Kitahashi M, Fujimura L, Watanabe-Takano H, Sakamoto A, Arima M, Tokuhisa T, Hatano M. Transcriptional repression of p27 is essential for murine embryonic development. Sci Rep 2016; 6:26244. [PMID: 27196371 PMCID: PMC4872541 DOI: 10.1038/srep26244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022] Open
Abstract
The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf−/−) mice. Nczf−/− mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf−/− mice. p27 expression was increased in E8.0 Nczf−/− mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf−/−; p27−/− double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo.
Collapse
Affiliation(s)
- Youichi Teratake
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Chisa Kuga
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Yuta Hasegawa
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Yoshiharu Sato
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masayasu Kitahashi
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Haruko Watanabe-Takano
- Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Akemi Sakamoto
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan.,Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masafumi Arima
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Takeshi Tokuhisa
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan.,Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| |
Collapse
|
32
|
|
33
|
KAP1 is overexpressed in hepatocellular carcinoma and its clinical significance. Int J Clin Oncol 2016; 21:927-933. [PMID: 27095111 DOI: 10.1007/s10147-016-0979-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The transcriptional regulator in embryonic development, KAP1, has been proved could promote cell proliferation and metastatic progression in a variety of human cancers. However, the role of KAP1 in hepatocellular carcinoma (HCC) remains unclear. The purpose of this study is to investigate the relationship of KAP1 expression with the progression and prognosis of HCC. METHODS We measured the expression level of KAP1 in both human hepatoma cell lines and HCC tissues obtained from HCC patients by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. Furthermore, the effect of KAP1 expression on hepatoma cell proliferation was investigated through KAP1 knock-down strategy. Besides that, the correlation between KAP1 expression and HCC progression was analyzed. RESULTS KAP1 overexpression was proved broadly existed in the human hepatoma cell lines. Furthermore, down-regulate the expression of KAP1 by specific siRNA could inhibit cell proliferation which was partly originated from the activation of p53 mediated signal pathway. Moreover, comparisons between the cancer tissues and noncancerous tissues proved the expression level of KAP1 was significant higher in tumor tissues obtained from HCC patients. In addition, KAP1 overexpression was significantly correlated with tumor size and tumor stage and also a predictor for poor prognosis of HCC patients. CONCLUSION Our results presented here demonstrate that KAP1 plays an important role in HCC and could be regarded as a valuable biomarker for tumor diagnosis and prognosis prediction, as well as a potential target for the treatment of HCC.
Collapse
|
34
|
Abstract
This review discusses our current understanding of the small ubiquitin-like modifier (SUMO) pathway and how it functionally intersects with Ras signaling in cancer. The Ras family of small GTPases are frequently mutated in cancer. The role of the SUMO pathway in cancer and in Ras signaling is currently not well understood. Recent studies have shown that the SUMO pathway can both regulate Ras/MAPK pathway activity directly and support Ras-driven oncogenesis through the regulation of proteins that are not direct Ras effectors. We recently discovered that in Ras mutant cancer cells, the SUMOylation status of a subset of proteins is altered and one such protein, KAP1, is required for Ras-driven transformation. A better understanding of the functional interaction between the SUMO and Ras pathways could lead to new insights into the mechanism of Ras-driven oncogenesis.
Collapse
Affiliation(s)
- Haibo Zhang
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ji Luo
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
35
|
Chen K, Yu G, Gumireddy K, Li A, Yao W, Gao L, Chen S, Hao J, Wang J, Huang Q, Xu H, Ye Z. ZBRK1, a novel tumor suppressor, activates VHL gene transcription through formation of a complex with VHL and p300 in renal cancer. Oncotarget 2016; 6:6959-76. [PMID: 25749518 PMCID: PMC4466662 DOI: 10.18632/oncotarget.3134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/10/2015] [Indexed: 11/26/2022] Open
Abstract
Inactivation or mutation of the VHL gene causes various tumors, including clear cell renal cell carcinoma (ccRCC). In the present study, we identified ZBRK1 as a novel VHL interacting protein by yeast two-hybrid screening, and found a single ZBRK1-binding site located in the VHL promoter region. Ectopic expression of ZBRK1 increases transcriptional activity of the VHL, whereas the depletion of endogenous ZBRK1 by shRNA leads to reduction of VHL expression. We also demonstrate that the inhibition of VEGF transcription by ZBRK1 overexpression is dependent on VHL/HIF pathway. Moreover, VHL is confirmed to serve as a bridge component for the association of ZBRK1 and p300, which leads to an increase in ZBRK1 transcriptional activity in the VHL promoter. We further provide striking evidences that ZBRK1 acts as a tumor suppressor in renal carcinoma by a variety of in vitro and in vivo assays, and ZBRK1 may represent a molecular marker to distinguish patients with ccRCC at high risk from those with a better survival prognosis. Taken together, these findings suggest that ZBRK1 suppresses renal cancer progression perhaps by regulating VHL expression.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Anping Li
- The Wistar Institute, Philadelphia, PA, USA
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Hao
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Ji Wang
- Department of Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
|
37
|
KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification. J Virol 2015; 90:930-46. [PMID: 26537675 DOI: 10.1128/jvi.01836-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/26/2015] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for efficient viral replication. Simultaneously, KAP1 posttranslational modification is dramatically altered during infection. We observed an HAdV-mediated decrease in KAP1 SUMOylation, known to promote chromatin decondensation events. These findings indicate that HAdV induces the loss of KAP1 SUMOylation to minimize epigenetic gene silencing and to promote the SUMO modification of E1B-55K by a so far unknown mechanism.
Collapse
|
38
|
Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob DNA 2015; 6:17. [PMID: 26435754 PMCID: PMC4592553 DOI: 10.1186/s13100-015-0050-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Tandem C2H2-type zinc finger proteins (ZFPs) constitute the largest transcription factor family in animals. Tandem-ZFPs bind DNA in a sequence-specific manner through arrays of multiple zinc finger domains that allow high flexibility and specificity in target recognition. In tetrapods, a large proportion of tandem-ZFPs contain Krüppel-associated-box (KRAB) repression domains, which are able to induce epigenetic silencing through the KAP1 corepressor. The KRAB-ZFP family continuously amplified in tetrapods through segmental gene duplications, often accompanied by deletions, duplications, and mutations of the zinc finger domains. As a result, tetrapod genomes contain unique sets of KRAB-ZFP genes, consisting of ancient and recently evolved family members. Although several hundred human and mouse KRAB-ZFPs have been identified or predicted, the biological functions of most KRAB-ZFP family members have gone unexplored. Furthermore, the evolutionary forces driving the extraordinary KRAB-ZFP expansion and diversification have remained mysterious for decades. In this review, we highlight recent studies that associate KRAB-ZFPs with the repression of parasitic DNA elements in the mammalian germ line and discuss the hypothesis that the KRAB-ZFP family primarily evolved as an adaptive genomic surveillance system against foreign DNA. Finally, we comment on the computational, genetic, and biochemical challenges of studying KRAB-ZFPs and attempt to predict how these challenges may be soon overcome.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| | - David Greenberg
- The Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158 USA ; Present address: Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025 USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
39
|
Xu Y, Zhang H, Nguyen VTM, Angelopoulos N, Nunes J, Reid A, Buluwela L, Magnani L, Stebbing J, Giamas G. LMTK3 Represses Tumor Suppressor-like Genes through Chromatin Remodeling in Breast Cancer. Cell Rep 2015; 12:837-49. [PMID: 26212333 DOI: 10.1016/j.celrep.2015.06.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/23/2023] Open
Abstract
LMTK3 is an oncogenic receptor tyrosine kinase (RTK) implicated in various types of cancer, including breast, lung, gastric, and colorectal cancer. It is localized in different cellular compartments, but its nuclear function has not been investigated so far. We mapped LMTK3 binding across the genome using ChIP-seq and found that LMTK3 binding events are correlated with repressive chromatin markers. We further identified KRAB-associated protein 1 (KAP1) as a binding partner of LMTK3. The LMTK3/KAP1 interaction is stabilized by PP1α, which suppresses KAP1 phosphorylation specifically at LMTK3-associated chromatin regions, inducing chromatin condensation and resulting in transcriptional repression of LMTK3-bound tumor suppressor-like genes. Furthermore, LMTK3 functions at distal regions in tethering the chromatin to the nuclear periphery, resulting in H3K9me3 modification and gene silencing. In summary, we propose a model where a scaffolding function of nuclear LMTK3 promotes cancer progression through chromatin remodeling.
Collapse
Affiliation(s)
- Yichen Xu
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Hua Zhang
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Van Thuy Mai Nguyen
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nicos Angelopoulos
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Joao Nunes
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alistair Reid
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Laki Buluwela
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Luca Magnani
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Georgios Giamas
- Division of Cancer, Imperial College London, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
40
|
LMP1-Induced Sumoylation Influences the Maintenance of Epstein-Barr Virus Latency through KAP1. J Virol 2015; 89:7465-77. [PMID: 25948750 DOI: 10.1128/jvi.00711-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED As a herpesvirus, Epstein-Barr virus (EBV) establishes a latent infection that can periodically undergo reactivation, resulting in lytic replication and the production of new infectious virus. Latent membrane protein-1 (LMP1), the principal viral oncoprotein, is a latency-associated protein implicated in regulating viral reactivation and the maintenance of latency. We recently found that LMP1 hijacks the SUMO-conjugating enzyme Ubc9 via its C-terminal activating region-3 (CTAR3) and induces the sumoylation of cellular proteins. Because protein sumoylation can promote transcriptional repression, we hypothesized that LMP1-induced protein sumoylation induces the repression of EBV lytic promoters and helps maintain the viral genome in its latent state. We now show that with inhibition of LMP1-induced protein sumoylation, the latent state becomes less stable or leakier in EBV-transformed lymphoblastoid cell lines. The cells are also more sensitive to viral reactivation induced by irradiation, which results in the increased production and release of infectious virus, as well as increased susceptibility to ganciclovir treatment. We have identified a target of LMP1-mediated sumoylation that contributes to the maintenance of latency in this context: KRAB-associated protein-1 (KAP1). LMP1 CTAR3-mediated sumoylation regulates the function of KAP1. KAP1 also binds to EBV OriLyt and immediate early promoters in a CTAR3-dependent manner, and inhibition of sumoylation processes abrogates the binding of KAP1 to these promoters. These data provide an additional line of evidence that supports our findings that CTAR3 is a distinct functioning regulatory region of LMP1 and confirm that LMP1-induced sumoylation may help stabilize the maintenance of EBV latency. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) plays an important role in the maintenance of viral latency. Previously, we documented that LMP1 targets cellular proteins to be modified by a ubiquitin-like protein (SUMO). We have now identified a function for this LMP1-induced modification of cellular proteins in the maintenance of EBV latency. Because latently infected cells have to undergo viral reactivation in order to be vulnerable to antiviral drugs, these findings identify a new way to increase the rate of EBV reactivation, which increases cell susceptibility to antiviral therapies.
Collapse
|
41
|
Lin YH, Yuan J, Pei H, Liu T, Ann DK, Lou Z. KAP1 Deacetylation by SIRT1 Promotes Non-Homologous End-Joining Repair. PLoS One 2015; 10:e0123935. [PMID: 25905708 PMCID: PMC4408008 DOI: 10.1371/journal.pone.0123935] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
Homologous recombination and non-homologous end joining are two major DNA double-strand-break repair pathways. While HR-mediated repair requires a homologous sequence as the guiding template to restore the damage site precisely, NHEJ-mediated repair ligates the DNA lesion directly and increases the risk of losing nucleotides. Therefore, how a cell regulates the balance between HR and NHEJ has become an important issue for maintaining genomic integrity over time. Here we report that SIRT1-dependent KAP1 deacetylation positively regulates NHEJ. We show that up-regulation of KAP1 attenuates HR efficiency while promoting NHEJ repair. Moreover, SIRT1-mediated KAP1 deacetylation further enhances the effect of NHEJ by stabilizing its interaction with 53BP1, which leads to increased 53BP1 focus formation in response to DNA damage. Taken together, our study suggests a SIRT1-KAP1 regulatory mechanism for HR-NHEJ repair pathway choice.
Collapse
Affiliation(s)
- Yi-Hui Lin
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Rochester, Minnesota, United States of America
| | - Jian Yuan
- Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huadong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Tongzheng Liu
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David K. Ann
- Department of Molecular Pharmacology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Zhenkun Lou
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
42
|
Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc Natl Acad Sci U S A 2015; 112:E1724-33. [PMID: 25805818 DOI: 10.1073/pnas.1415569112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small GTPase KRAS is frequently mutated in human cancer and currently there are no targeted therapies for KRAS mutant tumors. Here, we show that the small ubiquitin-like modifier (SUMO) pathway is required for KRAS-driven transformation. RNAi depletion of the SUMO E2 ligase Ubc9 suppresses 3D growth of KRAS mutant colorectal cancer cells in vitro and attenuates tumor growth in vivo. In KRAS mutant cells, a subset of proteins exhibit elevated levels of SUMOylation. Among these proteins, KAP1, CHD1, and EIF3L collectively support anchorage-independent growth, and the SUMOylation of KAP1 is necessary for its activity in this context. Thus, the SUMO pathway critically contributes to the transformed phenotype of KRAS mutant cells and Ubc9 presents a potential target for the treatment of KRAS mutant colorectal cancer.
Collapse
|
43
|
Thompson PJ, Dulberg V, Moon KM, Foster LJ, Chen C, Karimi MM, Lorincz MC. hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells. PLoS Genet 2015; 11:e1004933. [PMID: 25611934 PMCID: PMC4303303 DOI: 10.1371/journal.pgen.1004933] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 01/23/2023] Open
Abstract
Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. Retroelements, including endogenous retroviruses (ERVs), pose a significant threat to genome stability. In mouse embryonic stem (ES) cells, the enzyme SETDB1 safeguards the genome against transcription of specific ERVs by depositing a repressive mark H3K9 trimethylation (H3K9me3). Although SETDB1 is recruited to ERVs by its binding partner KAP1, the molecular basis of this silencing pathway is not clear. Using biochemical and genetic approaches, we identified hnRNP K as a novel component of this silencing pathway that facilitates the recruitment of SETDB1 to ERVs to promote their repression. HnRNP K binds to ERV sequences via KAP1 and subsequently promotes SETDB1 binding. Together, our results reveal a novel function for hnRNP K in transcriptional silencing of ERVs and demonstrate a new regulatory mechanism governing the deposition of H3K9me3 by SETDB1 in ES cells.
Collapse
Affiliation(s)
- Peter J. Thompson
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vered Dulberg
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Chen
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad M. Karimi
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C. Lorincz
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
44
|
Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci 2015; 128:607-20. [PMID: 25609713 DOI: 10.1242/jcs.163766] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cycle. Reversal of a DNA-damage-induced checkpoint not only requires the repair of these lesions, but a cell must also prevent permanent exit from the cell cycle and actively terminate checkpoint signalling to allow cell cycle progression to resume. It is becoming increasingly clear that despite the shared mechanisms of DNA damage detection throughout the cell cycle, the checkpoint and its reversal are precisely tuned to each cell cycle phase. Furthermore, recent findings challenge the dogmatic view that complete repair is a precondition for cell cycle resumption. In this Commentary, we highlight cell-cycle-dependent differences in checkpoint signalling and recovery after a DNA DSB, and summarise the molecular mechanisms that underlie the reversal of DNA damage checkpoints, before discussing when and how cell fate decisions after a DSB are made.
Collapse
Affiliation(s)
- Indra A Shaltiel
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lenno Krenning
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wytse Bruinsma
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - René H Medema
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
45
|
di Caprio R, Ciano M, Montano G, Costanzo P, Cesaro E. KAP1 is a Novel Substrate for the Arginine Methyltransferase PRMT5. BIOLOGY 2015; 4:41-9. [PMID: 25585209 PMCID: PMC4381216 DOI: 10.3390/biology4010041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/04/2015] [Indexed: 11/16/2022]
Abstract
KRAB-associated protein 1 (KAP1), the transcriptional corepressor of Kruppel-associated box zinc finger proteins (KRAB-ZFPs), is subjected to multiple post-translational modifications that are involved in fine-tuning of the multiple biological functions of KAP1. In previous papers, we analyzed the KAP1-dependent molecular mechanism of transcriptional repression mediated by ZNF224, a member of the KRAB-ZFP family, and identified the protein arginine methyltransferase PRMT5 as a component of the ZNF224 repression complex. We demonstrated that PRMT5-mediated histone arginine methylation is required to elicit ZNF224 transcriptional repression. In this study, we show that KAP1 interacts with PRMT5 and is a novel substrate for PRMT5 methylation. Also, we present evidence that the methylation of KAP1 arginine residues regulate the KAP1-ZNF224 interaction, thus suggesting that this KAP1 post-translational modification could actively contribute to the regulation of ZNF224-mediated repression.
Collapse
Affiliation(s)
- Roberta di Caprio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Michela Ciano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Giorgia Montano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
46
|
Cui Y, Yang S, Fu X, Feng J, Xu S, Ying G. High levels of KAP1 expression are associated with aggressive clinical features in ovarian cancer. Int J Mol Sci 2014; 16:363-77. [PMID: 25548895 PMCID: PMC4307251 DOI: 10.3390/ijms16010363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/16/2014] [Indexed: 01/05/2023] Open
Abstract
KAP1 is an universal corepressor for Kruppel-associated box zinc finger proteins in both normal and tumor cells. In this study, the biological function and clinical significance of KAP1 expression in ovarian cancer were investigated. Immunohistological staining of KAP1 was evaluated in 111 patients with ovarian epithelial cancer, 15 with ovarian borderline tumor, and 20 normal ovarian tissue. The correlations of KAP1 expression with clinicopathological features were studied. Kaplan-Meier analysis and Cox proportional hazard modeling were used to assess overall survival to analyze the effect of KAP1 expression on the prognosis of ovarian cancer. The positive rates of KAP1 were significantly higher in ovarian epithelial cancer (55.7%) and borderline tumor (20.0%) than in normal ovarian tissue (5.0%) (all p < 0.01). KAP1 expression correlated significantly with clinical stage (χ2 = 14.57, p < 0.0001), pathological grade (χ2 = 6.06, p = 0.048) and metastases (χ2 =10.38, p = 0.001). Patients with high KAP 1 levels showed poor survival (p < 0.0001). Multivariate analysis showed that KAP1 high expression was an independent predictor for ovarian cancer patients (hazard ratio = 0.463; 95% confidence interval = 0.230-0.9318, p = 0.031). Functionally, depletion of KAP1 by siRNA inhibited ovarian cancer cell proliferation, cell migration. KAP1 expression correlated with aggressive clinical features in ovarian cancer. High KAP1 expression was a prognostic factor of ovarian cancer.
Collapse
Affiliation(s)
- Yanfen Cui
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Shaobin Yang
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Xin Fu
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Jingwen Feng
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Shilei Xu
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
47
|
Intermediary metabolite precursor dimethyl-2-ketoglutarate stabilizes hypoxia-inducible factor-1α by inhibiting prolyl-4-hydroxylase PHD2. PLoS One 2014; 9:e113865. [PMID: 25420025 PMCID: PMC4242664 DOI: 10.1371/journal.pone.0113865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α), a major mediator of tumor physiology, is activated during tumor progression, and its abundance is correlated with therapeutic resistance in a broad range of solid tumors. The accumulation of HIF-1α is mainly caused by hypoxia or through the mutated succinate dehydrogenase A (SDHA) or fumarate hydratase (FH) expression to inhibit its degradation. However, its activation under normoxic conditions, termed pseudohypoxia, in cells without mutated SDHA or FH is not well documented. Here, we show that dimethyl-2-ketoglutarate (DKG), a cell membrane-permeable precursor of a key metabolic intermediate, α-ketoglutarate (α-KG), known for its ability to rescue glutamine deficiency, transiently stabilized HIF-1α by inhibiting activity of the HIF prolyl hydroxylase domain-containing protein, PHD2. Consequently, prolonged DKG-treatment under normoxia elevated HIF-1α abundance and up-regulated the expression of its downstream target genes, thereby inducing a pseudohypoxic condition. This HIF-1α stabilization phenotype is similar to that from treatment of cells with desferrioxamine (DFO), an iron chelator, or dimethyloxalyglycine (DMOG), an established PHD inhibitor, but was not recapitulated with other α-KG analogues, such as Octyl-2KG, MPTOM001 and MPTOM002. Our study is the first example of an α-KG precursor to increase HIF-1α abundance and activity. We propose that DKG acts as a potent HIF-1α activator, highlighting the potential use of DKG to investigate the contribution of PHD2-HIF-1α pathway to tumor biology.
Collapse
|
48
|
Cheng CT, Kuo CY, Ann DK. KAPtain in charge of multiple missions: Emerging roles of KAP1. World J Biol Chem 2014; 5:308-320. [PMID: 25225599 PMCID: PMC4160525 DOI: 10.4331/wjbc.v5.i3.308] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/21/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023] Open
Abstract
KAP1/TRIM28/TIF1β was identified nearly twenty years ago as a universal transcriptional co-repressor because it interacts with a large KRAB-containing zinc finger protein (KRAB-ZFP) transcription factor family. Many studies demonstrate that KAP1 affects gene expression by regulating the transcription of KRAB-ZFP-specific loci, trans-repressing as a transcriptional co-repressor or epigenetically modulating chromatin structure. Emerging evidence suggests that KAP1 also functions independent of gene regulation by serving as a SUMO/ubiquitin E3 ligase or signaling scaffold protein to mediate signal transduction. KAP1 is subjected to multiple post-translational modifications (PTMs), including serine/tyrosine phosphorylation, SUMOylation, and acetylation, which coordinately regulate KAP1 function and its protein abundance. KAP1 is involved in multiple aspects of cellular activities, including DNA damage response, virus replication, cytokine production and stem cell pluripotency. Moreover, knockout of KAP1 results in embryonic lethality, indicating that KAP1 is crucial for embryonic development and possibly impacts a wide-range of (patho)physiological manifestations. Indeed, studies from conditional knockout mouse models reveal that KAP1-deficiency significantly impairs vital physiological processes, such as immune maturation, stress vulnerability, hepatic metabolism, gamete development and erythropoiesis. In this review, we summarize and evaluate current literatures involving the biochemical and physiological functions of KAP1. In addition, increasing studies on the clinical relevance of KAP1 in cancer will also be discussed.
Collapse
|
49
|
TRIM28/KAP1 regulates senescence. Immunol Lett 2014; 162:281-9. [PMID: 25160591 DOI: 10.1016/j.imlet.2014.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 01/07/2023]
Abstract
Senescence is a highly stable cell cycle arrest which limits the replication of cells with damaged genomes. The senescence program is activated during aging or in response to insults like DNA damage or oncogenic signaling. Upon induction of senescence, cells undergo profound changes on their transcription program, chromatin organization, and they secrete a complex mixture of mainly pro-inflammatory components termed the senescence-associated secretory phenotype (SASP). The SASP mediates multiple effects, including reinforcing senescence and activating immune surveillance responses. Given the important role that senescence has in aging, cancer and other pathologies, identifying mechanisms regulating senescence has therapeutic potential. Here we describe a role for TRIM28 (also known as KRAB-associated protein 1, KAP1) on mediating oncogene-induced senescence (OIS). TRIM28 accumulates during OIS becoming phosphorylated on serine 824. To investigate the role of TRIM28, we knocked down its expression and observed that the depletion of TRIM28 partially prevented cell arrest during OIS. While induction of p53 and p21 during OIS, was not affected by TRIM28 depletion, p16(INK4a) induction was partially prevented. Finally, we observed that the induction of IL8, IL6 and other SASP components were strongly suppressed upon TRIM28 depletion. In conclusion, the above-described results show that TRIM28 regulates senescence and affects the induction of the senescence-associated secretory phenotype.
Collapse
|
50
|
Yu C, Zhan L, Jiang J, Pan Y, Zhang H, Li X, Pen F, Wang M, Qin R, Sun C. KAP-1 is overexpressed and correlates with increased metastatic ability and tumorigenicity in pancreatic cancer. Med Oncol 2014; 31:25. [PMID: 24861921 DOI: 10.1007/s12032-014-0025-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/05/2014] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate the role in metastasis and prognostic value of KAP-1 in pancreatic cancer (PC). The expression of KAP-1 was analyzed by quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemical staining in 91 human PC tissue samples. Capan-2 cells were transfected with a lentiviral vector expressing KAP-1 (Capan-2/KAP-1) or the empty vector (Capan-2/vector); cell migration and invasion were assayed in vitro using Transwell migration and wound-healing assays, and in vivo using a xenograft model in nude mice. KAP-1 was found to be overexpressed in human PC, and the expression of KAP-1 correlated with clinical stage. Overexpression of KAP-1 increased the invasion and migration of Capan-2 cells in vitro. Furthermore, overexpression of KAP-1 promoted the growth and metastatic ability of PC cells in a xenograft model in nude mice. Moreover, overexpression of KAP-1 induced the epithelial-mesenchymal transition (EMT) in PC cells both in vitro and in vivo, as indicated by increased expression of mesenchymal markers such as vimentin and decreased expression of E-cadherin. This study indicates that KAP-1 may promote metastasis in PC by regulating the EMT and suggests that KAP-1 may have potential as a predictor of metastasis in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Chao Yu
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Guiyang, 550001, Guizhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|