1
|
Benhammou JN, Qiao B, Ko A, Sinnett-Smith J, Pisegna JR, Rozengurt E. Lipophilic statins inhibit YAP coactivator transcriptional activity in HCC cells through Rho-mediated modulation of actin cytoskeleton. Am J Physiol Gastrointest Liver Physiol 2023; 325:G239-G250. [PMID: 37366601 PMCID: PMC10511177 DOI: 10.1152/ajpgi.00089.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of liver-related death. Lipophilic statins have been associated with a decrease in HCC incidence, raising the possibility of their use as chemoprevention agents. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have emerged as an important pro-oncogenic mechanism in HCC. Statins modulate YAP/TAZ in other solid tumors, but few studies have assessed their mechanisms in HCC. We aimed to delineate how lipophilic statins regulate YAP protein localization by interrogating the mevalonate pathway in a stepwise manner using pharmacological and genetical approaches in HCC cells. Huh7 and Hep3B HCC cells were treated with the lipophilic statins cerivastatin and atorvastatin. YAP protein localization was determined using quantitative immunofluorescence (IF) imaging. The gene expression of CTGF and CYR61, known YAP/TEA-domain DNA-binding factor (TEAD)-regulated genes, was measured using quantitative real-time PCR. Rescue experiments were conducted using metabolites of the mevalonate pathway including mevalonic acid and geranylgeranyl pyrophosphate (GG-PP). The cellular cytoskeleton was assessed using F-actin IF staining. YAP protein was extruded from the nucleus to the cytoplasm with statin treatment. Consistently, CTGF and CYR61 mRNA expression significantly decreased with statins. Cytoskeletal structure was also compromised with statins. Gene expression, YAP protein localization, and cytoskeletal structure were all restored to baseline with exogenous GG-PP but not with other metabolites of the mevalonate pathway. Direct Rho GTPase inhibitor treatment mirrored the statin effects on YAP. YAP protein localization is regulated by lipophilic statins via Rho GTPases, causing cytoskeletal structural changes and is independent of cholesterol metabolites.NEW & NOTEWORTHY Statins are widely used for the treatment of cardiovascular diseases. Recently, their use has been associated with a decrease in the incidence of hepatocellular carcinoma (HCC); however, their mechanism(s) has remained elusive. In this study, we delineate the mechanism by which statins affect the Yes-associated protein (YAP), which has emerged as a key oncogenic pathway in HCC. We investigate each step of the mevalonate pathway and demonstrate that statins regulate YAP via Rho GTPases.
Collapse
Affiliation(s)
- Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States
| | - Bo Qiao
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - Arthur Ko
- Center for Genetic Medicine Research, Childrens National Research Institute, Washington, District of Columbia, United States
| | - James Sinnett-Smith
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
| | - Joseph R Pisegna
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States
| | - Enrique Rozengurt
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, California, United States
- Division of Gastroenterology, Hepatology and Parental Nutrition, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States
| |
Collapse
|
2
|
Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E, Kobayashi H, Beautrait A, Borrull A, Asnacios A, Bouvier M, Scott MGH, Marullo S, Enslen H. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci 2020; 77:5259-5279. [PMID: 32040695 PMCID: PMC11104786 DOI: 10.1007/s00018-020-03471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isaure Lot
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Kusumika Saha
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Guillaume Abadie
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mireille Lambert
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Eleonore Decosta
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hiroyuki Kobayashi
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Alexandre Beautrait
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Aurélie Borrull
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Michel Bouvier
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mark G H Scott
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hervé Enslen
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
3
|
Focal adhesion kinase PTK2 autophosphorylation is not required for the activation of sodium–hydrogen exchange by decreased cell volume in the preimplantation mouse embryo. ZYGOTE 2019; 27:173-179. [DOI: 10.1017/s0967199419000212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryRecovery from decreased cell volume is accomplished by a regulated increase of intracellular osmolarity. The acute response is activation of inorganic ion transport into the cell, the main effector of which is the Na+/H+ exchanger NHE1. NHE1 is rapidly activated by a cell volume decrease in early embryos, but how this occurs is incompletely understood. Elucidating cell volume-regulatory mechanisms in early embryos is important, as it has been shown that their dysregulation results in preimplantation developmental arrest. The kinase JAK2 has a role in volume-mediated NHE1 activation in at least some cells, including 2-cell stage mouse embryos. However, while 2-cell embryos show partial inhibition of NHE1 when JAK2 activity is blocked, NHE1 activation in 1-cell embryos is JAK2-independent, implying a requirement for additional signalling mechanisms. As focal adhesion kinase (FAK aka PTK2) becomes phosphorylated and activated in some cell types in response to decreased cell volume, we sought to determine whether it was involved in NHE1 activation in the early mouse embryo. FAK activity requires initial autophosphorylation of a tyrosine residue, Y397. However, FAK Y397 phosphorylation levels were not increased in either 1- or 2-cell embryos after cell volume was decreased. Furthermore, the selective FAK inhibitor PF-562271 did not affect NHE1 activation at concentrations that essentially eliminated Y397 phosphorylation. Thus, autophosphorylation of FAK Y397 does not appear to be required for NHE1 activation induced by a decrease in cell volume in early mouse embryos.
Collapse
|
4
|
Anti-Inflammatory and Anti-Apoptotic Effects of Acer Palmatum Thumb. Extract, KIOM-2015EW, in a Hyperosmolar-Stress-Induced In Vitro Dry Eye Model. Nutrients 2018; 10:nu10030282. [PMID: 29495608 PMCID: PMC5872700 DOI: 10.3390/nu10030282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to assess the anti-inflammatory and anti-apoptotic effects of KIOM-2015EW, the hot-water extract of maple leaves in hyperosmolar stress (HOS)-induced human corneal epithelial cells (HCECs). HCECs were exposed to hyperosmolar medium and exposed to KIOM-2015EW with or without the hyperosmolar media. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 production and apoptosis were observed, and the activation of mitogen-activated protein kinases (MAPKs) including extracellular signal regulated kinase (ERK), p38 and c-JUN N-terminal kinase (JNK) signaling and nuclear factor (NF)-κB was confirmed. Compared to isomolar medium, the induction of cell cytotoxicity significantly increased in HCECs exposed to hyperosmolar medium in a time-dependent manner. KIOM-2015EW-treatment significantly reduced the mRNA and protein expression of pro-inflammatory mediators and apoptosis. KIOM-2015EW-treatment inhibited HOS-induced MAPK signaling activation. Additionally, the HOS-induced increase in NF-κB phosphorylation was attenuated by KIOM-2015EW. The results demonstrated that KIOM-2015EW protects the ocular surface by suppressing inflammation in dry eye disease, and suggest that KIOM-2015EW may be used to treat several ocular surface diseases where inflammation plays a key role.
Collapse
|
5
|
Amara S, Majors C, Roy B, Hill S, Rose KL, Myles EL, Tiriveedhi V. Critical role of SIK3 in mediating high salt and IL-17 synergy leading to breast cancer cell proliferation. PLoS One 2017; 12:e0180097. [PMID: 28658303 PMCID: PMC5489190 DOI: 10.1371/journal.pone.0180097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is a well-known precursor for cancer development and proliferation. We have recently demonstrated that high salt (NaCl) synergizes with sub-effective interleukin (IL)-17 to induce breast cancer cell proliferation. However, the exact molecular mechanisms mediating this effect are unclear. In our current study, we adopted a phosphoproteomic-based approach to identify salt modulated kinase-proteome specific molecular targets. The phosphoprotemics based binary comparison between heavy labelled MCF-7 cells treated with high salt (Δ0.05 M NaCl) and light labelled MCF-7 cells cultured under basal conditions demonstrated an enhanced phosphorylation of Serine-493 of SIK3 protein. The mRNA transcript and protein expression analysis of SIK3 in MCF-7 cells demonstrated a synergistic enhancement following co-treatment with high salt and sub-effective IL-17 (0.1 ng/mL), as compared to either treatments alone. A similar increase in SIK3 expression was observed in other breast cancer cell lines, MDA-MB-231, BT20, and AU565, while non-malignant breast epithelial cell line, MCF10A, did not induce SIK3 expression under similar conditions. Biochemical studies revealed mTORC2 acted as upstream mediator of SIK3 phosphorylation. Importantly, cell cycle analysis by flow cytometry demonstrated SIK3 induced G0/G1-phase release mediated cell proliferation, while SIK3 silencing abolished this effect. Also, SIK3 induced pro-inflammatory arginine metabolism, as evidenced by upregulation of the enzymes iNOS and ASS-1, along with downregulation of anti-inflammatory enzymes, arginase-1 and ornithine decarboxylase. Furthermore, gelatin zymography analysis has demonstrated that SIK3 induced expression of tumor metastatic CXCR4 through MMP-9 activation. Taken together, our data suggests a critical role of SIK3 in mediating three important hallmarks of cancer namely, cell proliferation, inflammation and metastasis. These studies provide a mechanistic basis for the future utilization of SIK3 as a key drug discovery target to improve breast cancer therapy.
Collapse
Affiliation(s)
- Suneetha Amara
- Department of Medicine, St Thomas-Midtown, Nashville, Tennessee, United States of America
| | - Ciera Majors
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | - Bipradas Roy
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | - Salisha Hill
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, United States of America.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elbert L Myles
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
6
|
Chatterji T, Varkaris AS, Parikh NU, Song JH, Cheng CJ, Schweppe RE, Alexander S, Davis JW, Troncoso P, Friedl P, Kuang J, Lin SH, Gallick GE. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells. Oncotarget 2016; 6:10175-94. [PMID: 25868388 PMCID: PMC4496348 DOI: 10.18632/oncotarget.3391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.
Collapse
Affiliation(s)
- Tanushree Chatterji
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Andreas S Varkaris
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Stephanie Alexander
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cell Biology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| |
Collapse
|
7
|
Ohtake J, Sakurai M, Hoshino Y, Tanemura K, Sato E. Expression of focal adhesion kinase in mouse cumulus-oocyte complexes, and effect of phosphorylation at Tyr397 on cumulus expansion. Mol Reprod Dev 2015; 82:218-31. [PMID: 25692763 DOI: 10.1002/mrd.22464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023]
Abstract
We investigated the expression of focal adhesion kinase (FAK) in mouse cumulus-oocyte complexes (COCs), as well as the role of FAK phosphorylation at Tyr397 during oocyte maturation. The effect of inhibiting FAK phosphorylation at Tyr397 during in vitro maturation (IVM) on subsequent fertilization and preimplantation embryo development was also examined. Western blotting analyses revealed that total and Tyr397-phosphorylated FAK were expressed in vivo in both cumulus cells and oocytes. Immunocytochemical studies localized this kinase throughout the cytoplasm of cumulus cells and oocytes; in particular, Tyr397-phosphorylated FAK tended to accumulate in regions where cumulus cells contact each other. Interestingly, the in vivo level of Tyr397 phosphorylation in cumulus cells was significantly lower after compared to before cumulus expansion. Addition of FAK inhibitor 14, which specifically blocks phosphorylation at Tyr397, stimulated oocyte meiotic maturation and cumulus expansion during IVM in the absence of follicle-stimulating hormone (FSH). Reverse-transcriptase PCR showed that the mRNA expression of hyaluronan synthase 2 (Has2), a marker of cumulus expansion, was significantly induced in cumulus cells. Subsequent in vitro fertilization and culture showed that more oocytes developed to the blastocyst stage when they were treated with FAK inhibitor 14 during IVM, although the blastocyst total cell number was lower than in oocytes stimulated with FSH. These results indicate that FAK is involved in the maturation of COCs; specifically, phosphorylation at Tyr397 may regulate cumulus expansion via the expression of Has2 mRNA in cumulus cells, which could affect the developmental competence of oocytes.
Collapse
Affiliation(s)
- Jun Ohtake
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
8
|
Rasmussen LJH, Müller HSH, Jørgensen B, Pedersen SF, Hoffmann EK. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells. Am J Physiol Cell Physiol 2014; 308:C101-10. [PMID: 25377086 DOI: 10.1152/ajpcell.00070.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms linking cell volume sensing to volume regulation in mammalian cells remain incompletely understood. Here, we test the hypothesis that activation of nonreceptor tyrosine kinases Src, focal adhesion kinase (FAK), and Janus kinase-2 (Jak2) occurs after osmotic shrinkage of NIH3T3 fibroblasts and contributes to volume regulation by activation of NKCC1. FAK phosphorylation at Tyr397, Tyr576/577, and Tyr861 was increased rapidly after exposure to hypertonic (575 mOsm) saline, peaking after 10 (Tyr397, Tyr576/577) and 10-30 min (Tyr861). Shrinkage-induced Src family kinase autophosphorylation (pTyr416-Src) was induced after 2-10 min, and immunoprecipitation indicated that this reflected phosphorylation of Src itself, rather than Fyn and Yes. Phosphorylated Src and FAK partly colocalized with vinculin, a focal adhesion marker, after hypertonic shrinkage. The Src inhibitor pyrazolopyrimidine-2 (PP2, 10 μM) essentially abolished shrinkage-induced FAK phosphorylation at Tyr576/577 and Tyr861, yet not at Tyr397, and inhibited shrinkage-induced NKCC1 activity by ∼50%. The FAK inhibitor PF-573,228 augmented shrinkage-induced Src phosphorylation, and inhibited shrinkage-induced NKCC1 activity by ∼15%. The apparent role of Src in NKCC1 activation did not reflect phosphorylation of myosin light chain kinase (MLC), which was unaffected by shrinkage and by PP2, but may involve Jak2, a known target of Src, which was rapidly activated by osmotic shrinkage and inhibited by PP2. Collectively, our findings suggest a major role for Src and possibly the Jak2 axis in shrinkage-activation of NKCC1 in NIH3T3 cells, whereas no evidence was found for major roles for FAK and MLC in this process.
Collapse
Affiliation(s)
| | | | - Bente Jørgensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Else Kay Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Wang L, Dai W, Lu L. Osmotic stress-induced phosphorylation of H2AX by polo-like kinase 3 affects cell cycle progression in human corneal epithelial cells. J Biol Chem 2014; 289:29827-35. [PMID: 25202016 DOI: 10.1074/jbc.m114.597161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased concentrations of extracellular solutes affect cell function and fate by stimulating cellular responses, such as evoking MAPK cascades, altering cell cycle progression, and causing apoptosis. Our study results here demonstrate that hyperosmotic stress induced H2AX phosphorylation (γH2AX) by an unrevealed kinase cascade involving polo-like kinase 3 (Plk3) in human corneal epithelial (HCE) cells. We found that hyperosmotic stress induced DNA-double strand breaks and increased γH2AX in HCE cells. Phosphorylation of H2AX at serine 139 was catalyzed by hyperosmotic stress-induced activation of Plk3. Plk3 directly interacted with H2AX and was colocalized with γH2AX in the nuclei of hyperosmotic stress-induced cells. Suppression of Plk3 activity by overexpression of a kinase-silencing mutant or by knocking down Plk3 mRNA effectively reduced γH2AX in hyperosmotic stress-induced cells. This was consistent with results that show γH2AX was markedly suppressed in the Plk3(-/-) knock-out mouse corneal epithelial layer in response to hyperosmotic stimulation. The effect of hyperosmotic stress-activated Plk3 and increased γH2AX in cell cycle progression showed an accumulation of G2/M phase, altered population in G1 and S phases, and increased apoptosis. Our results for the first time reveal that hyperosmotic stress-activated Plk3 elicited γH2AX. This Plk3-mediated activation of γH2AX subsequently regulates the cell cycle progression and cell fate.
Collapse
Affiliation(s)
- Ling Wang
- From the Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502 and
| | - Wei Dai
- the Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Luo Lu
- From the Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502 and
| |
Collapse
|
10
|
Böhm BB, Freund I, Krause K, Kinne RW, Burkhardt H. ADAM15 adds to apoptosis resistance of synovial fibroblasts by modulating focal adhesion kinase signaling. ACTA ACUST UNITED AC 2014; 65:2826-34. [PMID: 23918525 DOI: 10.1002/art.38109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the contribution of ADAM15, a disintegrin metalloproteinase that is up-regulated in the rheumatoid arthritis (RA) synovial membrane, to the characteristic resistance of RA synovial fibroblasts (RASFs) to apoptosis induction by genotoxic stress or stimulation with proapoptotic FasL, which is present at high concentrations in RA synovial fluid. METHODS Caspase 3/7 activity and the total apoptosis rate in RASFs upon exposure to the DNA-damaging agent camptothecin or FasL were determined using enzyme assays and annexin V staining. Phosphorylated signaling proteins were analyzed by immunoblotting. RNA interference was used to silence ADAM15 expression. NF-κB activity was determined by enzyme-linked immunosorbent assay. RESULTS RASFs displayed significantly higher caspase 3/7 activity upon camptothecin and FasL exposure when ADAM15 had been down-regulated by specific small interfering RNAs. Upon FasL stimulation, RASFs phosphorylated focal adhesion kinase (FAK) and c-Src (Src), and activated phosphatidylinositol 3-kinase as well as the transcription factor NF-κB. This ADAM15-dependent, FasL-induced activation of antiapoptotic kinases and NF-κB was demonstrated by a marked reduction of apoptosis upon knockdown of ADAM15 protein expression. Inhibitors specifically interfering with FAK and Src signaling, such as FAK inhibitor 14 and dasatinib, potently induce apoptosis in RASFs, with significant enhancement by the silencing of ADAM15. CONCLUSION ADAM15 contributes to apoptosis resistance in RASFs by activating the Src/FAK pathway upon FasL exposure, rendering the FAK/Src signaling pathway an interesting target for potential therapeutic intervention in RA.
Collapse
Affiliation(s)
- Beate B Böhm
- Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
11
|
FAK-heterozygous mice display enhanced tumour angiogenesis. Nat Commun 2013; 4:2020. [PMID: 23799510 PMCID: PMC3712492 DOI: 10.1038/ncomms3020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/17/2013] [Indexed: 12/26/2022] Open
Abstract
Genetic ablation of endothelial focal adhesion kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularization. Here we show that reduced stromal FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumour growth in vivo. Our results highlight a potential novel role for FAK as a nonlinear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis.
Collapse
|
12
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
13
|
Hsieh YH, van der Heyde H, Oh ES, Guan JL, Chang PL. Osteopontin mediates tumorigenic transformation of a preneoplastic murine cell line by suppressing anoikis: An Arg-Gly-Asp-dependent-focal adhesion kinase-caspase-8 axis. Mol Carcinog 2013; 54:379-92. [DOI: 10.1002/mc.22108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Yu-Hua Hsieh
- Department of Nutrition Sciences, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
| | | | - Eok-Soo Oh
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Department of Life Sciences; Ewha Woman's University; Seoul Korea
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Department of Internal Medicine; University of Michigan Medical School; Ann Arbor Michigan
| | - Pi-Ling Chang
- Department of Nutrition Sciences, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
- Department of Dermatology, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
- Department of Comprehensive Cancer Center, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
| |
Collapse
|
14
|
Fonseca C, Voabil P, Carvalho AS, Matthiesen R. Tools for protein posttranslational modifications analysis: FAK, a case study. Methods Mol Biol 2013; 1007:335-58. [PMID: 23666734 DOI: 10.1007/978-1-62703-392-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent advances in mass spectrometry have resulted in an exponential increase in annotation of posttranslational modifications (PTMs). Just in the Swiss-Prot Knowledgebase, there are 89,931 of a total of 27 characterized PTM types reported experimentally. A single protein can be dynamically modified during its lifetime for regulation of its function. Considering a PTM can occur at different levels and the number of different PTMs described, the number of possibilities for a single protein is unthinkable. Narrowing the study to a single PTM can be rather unmerited considering that most proteins are heavily modified. Currently crosstalk between PTMs is plentifully reported in the literature. The example of amino acids serine and threonine on one hand and lysine on the other hand, as targets of different modifications, demand a more global analysis approach of a protein. Besides the direct competition for the same amino acid, a PTM can directly or indirectly influence other PTMs in the same protein molecule by for example steric hindrance due to close proximity between the modifications or creation of a binding site such as an SH2 binding domain for protein recruitment and further modifications. Given the complexity of PTMs a number of tools have been developed to archive, analyze, and visualize modifications. VISUALPROT is presented here to demonstrate the usefulness of visualizing all annotated protein features such as amino acid content, domains, amino acid modification sites and single amino acid polymorphisms in a single image. VISUALPROT application is demonstrated for the protein focal adhesion kinase (FAK) as an example. FAK is a highly phosphorylated cytoplasmatic tyrosine kinase comprising different domains and regions. FAK is crucial for integrating signals from integrins and receptor tyrosine kinases in processes such as cell survival, proliferation, and motility.
Collapse
Affiliation(s)
- Catarina Fonseca
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | |
Collapse
|
15
|
Fried D, Böhm BB, Krause K, Burkhardt H. ADAM15 protein amplifies focal adhesion kinase phosphorylation under genotoxic stress conditions. J Biol Chem 2012; 287:21214-23. [PMID: 22544741 DOI: 10.1074/jbc.m112.347120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADAM15, a disintegrin and metalloproteinase, is capable of counteracting genotoxic stress-induced apoptosis by the suppression of caspase-3 activation. A cell line expressing the membrane-bound ADAM15 without its cytoplasmic tail, however, lost this anti-apoptotic property, suggesting a crucial role of the intracellular domain as a scaffold for recruitment of survival signal-transducing kinases. Accordingly, an enhanced phosphorylation of FAK at Tyr-397, Tyr-576, and Tyr-861 was detected upon genotoxic stress by camptothecin in ADAM15-transfected T/C28a4 cells, but not in transfectants expressing an ADAM15 mutant without the cytoplasmic tail. Accordingly, a specific binding of the cytoplasmic ADAM15 domain to the C terminus of FAK could be shown by mammalian two-hybrid, pulldown, and far Western studies. In cells expressing full-length ADAM15, a concomitant activation of Src at Tyr-416 was detected upon camptothecin exposure. Cells transfected with a chimeric construct consisting of the extracellular IL-2 receptor α-chain and the cytoplasmic ADAM15 domain were IL-2-stimulated to prove that the ADAM15 tail can transduce a percepted extracellular signal to enhance FAK and Src phosphorylation. Our studies further demonstrate Src binding to FAK but not a direct Src interaction with ADAM15, suggesting FAK as a critical intracellular adaptor for ADAM15-dependent enhancement of FAK/Src activation. Moreover, the apoptosis induction elicited by specific inhibitors (PP2, FAK 14 inhibitor) of FAK/Src signaling was significantly reduced by ADAM15 expression. The newly uncovered counter-regulatory response to genotoxic stress in a chondrocytic survival pathway is potentially also relevant to apoptosis resistance in neoplastic growth.
Collapse
Affiliation(s)
- Dorothee Fried
- Division of Rheumatology, Goethe University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
16
|
Wortmann A, He Y, Christensen ME, Linn M, Lumley JW, Pollock PM, Waterhouse NJ, Hooper JD. Cellular settings mediating Src Substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734. J Biol Chem 2011; 286:42303-42315. [PMID: 21994943 DOI: 10.1074/jbc.m111.227462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.
Collapse
Affiliation(s)
- Andreas Wortmann
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - Yaowu He
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - Melinda E Christensen
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - MayLa Linn
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - John W Lumley
- Wesley Medical Centre, Auchenflower, Queensland 4066, Australia
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - Nigel J Waterhouse
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - John D Hooper
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101.
| |
Collapse
|
17
|
Pedersen SF, Kapus A, Hoffmann EK. Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 2011; 22:1587-97. [PMID: 21852585 DOI: 10.1681/asn.2010121284] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular osmolarity and whole body volume homeostasis. There are a variety of molecular signals that respond to perturbations in cell volume and osmosensors or volume sensors responding to these signals. The early signals of volume perturbation include integrins, the cytoskeleton, receptor tyrosine kinases, and transient receptor potential channels. We also present current evidence on the localization and function of central and peripheral systemic osmosensors and conclude with a brief look at the still limited evidence on pathophysiological conditions associated with deranged sensing of cell volume.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
18
|
Wang L, Dai W, Lu L. Hyperosmotic stress-induced corneal epithelial cell death through activation of Polo-like kinase 3 and c-Jun. Invest Ophthalmol Vis Sci 2011; 52:3200-6. [PMID: 21296815 DOI: 10.1167/iovs.10-6485] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Hyperosmotic stress causes cell shrinkage, perturbs cell function, and damages DNA, resulting in cell cycle arrest and apoptosis. In the present study, the authors explore the mechanism involving hyperosmotic stress-induced activation of c-Jun/AP-1 through a novel Plk3 pathway in human corneal epithelial cells. METHODS Human primary corneal epithelial cells and cell line were cultured in a serum-free keratinocyte medium and DMEM/F12 medium containing 10% FBS in a 37°C incubator supplied with 5% CO(2), respectively. Western blot analysis was used to determine protein expression and phosphorylation levels. Protein kinase activities were measured by immunocomplex kinase assay. Cell viability and apoptosis were determined by MTT assay and caspase-3 (DEVDase) activity. RESULTS It was found that hyperosmotic stress-induced increases in the phosphorylation of c-Jun, resulting in apoptosis through the activation of Plk3 in human corneal epithelial cells. Plk3 was activated by extracellular hyperosmotic stress to directly phosphorylate c-Jun in the serine 63 and 73 residues. Hyperosmotic stress-induced c-Jun phosphorylation was enhanced by overexpression of constitutively positive Plk3 mutants and suppressed by the knockdown of Plk3 mRNA with Plk3-specific siRNA. Further studies indicated that the phosphorylation of c-Jun by Plk3 was responsible for hyperosmotic stress-induced apoptosis, which was independent from activation of the JNK signaling pathway in human corneal epithelial cells. CONCLUSIONS These results, for the first time, provide a novel and alternative signaling mechanism that involves hyperosmotic stress-induced activation of the Plk3 pathway in addition to JNK/p38 MAPK pathways to regulate the c-Jun/AP-1 transcriptional complex and human corneal epithelial cell fate.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | |
Collapse
|
19
|
Wang L, Payton R, Dai W, Lu L. Hyperosmotic stress-induced ATF-2 activation through Polo-like kinase 3 in human corneal epithelial cells. J Biol Chem 2010; 286:1951-8. [PMID: 21098032 DOI: 10.1074/jbc.m110.166009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated extracellular solute concentration (hyperosmotic stress) perturbs cell function and stimulates cell responses by evoking MAPK cascades and activating AP-1 transcription complex resulting in alterations of gene expression, cell cycle arrest, and apoptosis. The results presented here demonstrate that hyperosmotic stress elicited increases in ATF-2 phosphorylation through a novel Polo-like kinase 3 (Plk3) pathway in human corneal epithelial (HCE) cells. We found in hyperosmotic stress-induced HCE cells that Plk3 transferred to the nuclear compartment and was colocalized with ATF-2 in nuclei. Kinase activity of Plk3 was significantly activated by hyperosmotic stimulation. Further downstream, active Plk3 phosphorylated ATF-2 at the Thr-71 site in vivo and in vitro. Overexpression of Plk3 and its mutants enhanced hyperosmotic stress-induced ATF-2 phosphorylation. In contrast, suppression of Plk3 by knocking down Plk3 mRNA effectively diminished the effect of hyperosmotic stress-induced ATF-2 phosphorylation. The effect of hyperosmotic stress-induced activation of Plk3 on ATF-2 transcription factor function was also examined in CRE reporter-overexpressed HCE cells. Our results for the first time reveal that hyperosmotic stress can activate the Plk3 signaling pathway that subsequently regulates the AP-1 complex by directly phosphorylating ATF-2 independent from the effects of JNK and p38 activation.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
20
|
Hu B, He X, Li A, Qiu Q, Li C, Liang D, Zhao P, Ma J, Coffey RJ, Zhan Q, Wu G. Cystogenesis in ARPKD results from increased apoptosis in collecting duct epithelial cells of Pkhd1 mutant kidneys. Exp Cell Res 2010; 317:173-87. [PMID: 20875407 DOI: 10.1016/j.yexcr.2010.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/09/2010] [Accepted: 09/19/2010] [Indexed: 12/14/2022]
Abstract
Mutations in the PKHD1 gene result in autosomal recessive polycystic kidney disease (ARPKD) in humans. To determine the molecular mechanism of the cystogenesis in ARPKD, we recently generated a mouse model for ARPKD that carries a targeted mutation in the mouse orthologue of human PKHD1. The homozygous mutant mice display hepatorenal cysts whose phenotypes are similar to those of human ARPKD patients. By littermates of this mouse, we developed two immortalized renal collecting duct cell lines with Pkhd1 and two without. Under nonpermissive culture conditions, the Pkhd1(-/-) renal cells displayed aberrant cell-cell contacts and tubulomorphogenesis. The Pkhd1(-/-) cells also showed significantly reduced cell proliferation and elevated apoptosis. To validate this finding in vivo, we examined proliferation and apoptosis in the kidneys of Pkhd1(-/-) mice and their wildtype littermates. Using proliferation (PCNA and Histone-3) and apoptosis (TUNEL and caspase-3) markers, similar results were obtained in the Pkhd1(-/-) kidney tissues as in the cells. To identify the molecular basis of these findings, we analyzed the effect of Pkhd1 loss on multiple putative signaling regulators. We demonstrated that the loss of Pkhd1 disrupts multiple major phosphorylations of focal adhesion kinase (FAK), and these disruptions either inhibit the Ras/C-Raf pathways to suppress MEK/ERK activity and ultimately reduce cell proliferation, or suppress PDK1/AKT to upregulate Bax/caspase-9/caspase-3 and promote apoptosis. Our findings indicate that apoptosis may be a major player in the cyst formation in ARPKD, which may lead to new therapeutic strategies for human ARPKD.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Cell Line, Transformed
- Cell Proliferation
- Crosses, Genetic
- Cysts/genetics
- Disease Models, Animal
- Epithelial Cells/metabolism
- Genes, cdc
- Genotype
- Humans
- In Vitro Techniques
- Kidney/metabolism
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Phenotype
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/metabolism
- Polycystic Kidney, Autosomal Recessive/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Cell Surface/genetics
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Bo Hu
- Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Whyte J, Bergin O, Bianchi A, McNally S, Martin F. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Res 2010; 11:209. [PMID: 19818165 PMCID: PMC2790844 DOI: 10.1186/bcr2361] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.
Collapse
Affiliation(s)
- Jacqueline Whyte
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
22
|
Morales SA, Mareninov S, Coulam P, Wadehra M, Goodglick L, Braun J, Gordon LK. Functional consequences of interactions between FAK and epithelial membrane protein 2 (EMP2). Invest Ophthalmol Vis Sci 2009; 50:4949-56. [PMID: 19494199 DOI: 10.1167/iovs.08-3315] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Collagen gel contraction by ARPE-19 is controlled by epithelial membrane protein 2 (EMP2) through focal adhesion kinase (FAK) activation. The purpose of this study was to test the role of EMP2 in the cellular context of FAK activation. METHODS The ARPE-19 cell line was recombinantly modified to increase the expression of EMP2 and was used in this study. Quantification of FAK and Src phosphorylation was determined with Western blot analysis of whole cell lysates with the use of specific antibodies for different target sites of phosphorylation. Coimmunoprecipitation of whole cell lysates with an antibody against EMP2, followed by Western blot analysis and identification of FAK, was performed. Focal adhesions and their relationship to EMP2 were identified with immunofluorescence and confocal microscopy. F-actin distribution was identified using fluorescence microscopy, and alpha- smooth muscle actin (alpha-SMA) expression was quantified with Western blot analysis and specific antibodies. Adhesion to collagen type I was determined with a binding assay. RESULTS EMP2 overexpression led to increased FAK phosphorylation at all measured phosphorylation sites. Coimmunoprecipitation and confocal microscopy provided evidence for a physical association between EMP2 and FAK. Increased EMP2 was also associated with altered distribution of focal adhesions, changes in actin organization, increased alpha-SMA expression, and increased adherence to a collagen-coated surface. CONCLUSIONS The EMP2-FAK association represents a novel protein-protein interaction, not previously reported, that demonstrates significant functional cellular responses in the context of in vitro models of proliferative vitreoretinopathy (PVR).
Collapse
Affiliation(s)
- Shawn A Morales
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tomar A, Lim ST, Lim Y, Schlaepfer DD. A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 2009; 122:1852-62. [PMID: 19435801 DOI: 10.1242/jcs.046870] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Directional motility is a complex process requiring the spatiotemporal integration of signals that regulate cytoskeletal changes, and the establishment of an anteroposterior or polarized cell axis. Focal adhesion kinase (FAK) promotes cell migration, but a molecular role for FAK in promoting cell polarity remains undefined. Here, using wound healing and Golgi-reorientation analyses, we show that fibroblast, endothelial and carcinoma polarity during cell migration requires FAK and is associated with a complex between FAK, p120RasGAP and p190RhoGAP (p190A), leading to p190A tyrosine phosphorylation. Fibronectin-integrin-mediated FAK activation and phosphorylation promote SH2-mediated binding of p120RasGAP to FAK and FAK-mediated p190A tyrosine phosphorylation. The association of p120RasGAP with FAK facilitates the formation of a FAK-p120RasGAP-p190A complex targeted to leading-edge focal adhesions by FAK. Knockdown of p120RasGAP, mutation of FAK Y397 or inhibition of FAK activity prevent the association of FAK with p190A and subsequent tyrosine phosphorylation of p190A, and result in the loss of cell polarity. Because reconstitution of FAK-null fibroblasts with FAK or a Pyk2-FAK chimera restore the normal decrease in RhoA GTP binding upon cell spreading on fibronectin, our studies support a model whereby FAK activity facilitates the recruitment and stabilization of a p120RasGAP-p190A complex at leading-edge focal adhesions connected to the transient inhibition of RhoA activity and the regulation of cell polarity.
Collapse
Affiliation(s)
- Alok Tomar
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
24
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
25
|
Behmoaram E, Bijian K, Jie S, Xu Y, Darnel A, Bismar TA, Alaoui-Jamali MA. Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1540-50. [PMID: 18832579 DOI: 10.2353/ajpath.2008.080292] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early cancer cell migration and invasion of neighboring tissues are mediated by multiple events, including activation of focal adhesion signaling. Key regulators include the focal adhesion kinase (FAK) and FAK-related proline-rich tyrosine kinase 2 (Pyk2), whose distinct functions in cancer progression remain unclear. Here, we compared Pyk2 and FAK expression in breast cancer and their effects on ErbB-2-induced tumorigenesis and the potential therapeutic utility of targeting Pyk2 compared with FAK in preclinical models of breast cancer. Pyk2 is overexpressed in tissues from early and advanced breast cancers and overexpressed with both FAK and epidermal growth factor receptor-2 (ErbB-2) in a subset of breast cancer cases. Down-regulation of Pyk2 in ErbB-2-positive, FAK-proficient, and FAK-deficient cells reduced cell proliferation, which correlated with reduced mitogen-activated protein kinase (MAPK) activity. In contrast, Pyk2 silencing had little impact on cell migration and invasion. In vivo, Pyk2 down-regulation reduced primary tumor growth induced by a metastatic variant of ErbB-2-positive MDA 231 breast cancer cells but had little effect on lung metastases in contrast to FAK down-regulation. Dual reduction of Pyk2 and FAK expression resulted in strong inhibition of both primary tumor growth and lung metastases. Together, these data support the cooperative function of Pyk2 and FAK in breast cancer progression and suggest that dual inhibition of FAK and Pyk2 is an efficient therapeutic approach for targeting invasive breast cancer.
Collapse
Affiliation(s)
- Emy Behmoaram
- Department of Pathology, Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Stuible M, Dubé N, Tremblay ML. PTP1B regulates cortactin tyrosine phosphorylation by targeting Tyr446. J Biol Chem 2008; 283:15740-6. [PMID: 18387954 DOI: 10.1074/jbc.m710534200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The emergence of protein-tyrosine phosphatase 1B (PTP1B) as a potential drug target for treatment of diabetes, obesity, and cancer underlies the importance of understanding its full range of cellular functions. Here, we have identified cortactin, a central regulator of actin cytoskeletal dynamics, as a substrate of PTP1B. A trapping mutant of PTP1B binds cortactin at the phosphorylation site Tyr(446), the regulation and function of which have not previously been characterized. We show that phosphorylation of cortactin Tyr(446) is induced by hyperosmolarity and potentiates apoptotic signaling during prolonged hyperosmotic stress. This study advances the importance of Tyr(446) in the regulation of cortactin and provides a potential mechanism to explain the effects of PTP1B on processes including cell adhesion, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Matthew Stuible
- McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
27
|
Abstract
G protein-coupled receptor (GPCR) agonists, including neurotransmitters, hormones, chemokines, and bioactive lipids, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. Typically, the binding of an agonistic ligand to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the activity of phospholipases C, D, and A2 leading to the synthesis of lipid-derived second messengers, Ca2+ fluxes and subsequent activation of protein phosphorylation cascades, including PKC/PKD, Raf/MEK/ERK, and Akt/mTOR/p70S6K is an important early response to mitogenic GPCR agonists. The EGF receptor (EGFR) tyrosine kinase has emerged as a transducer in the signaling by GPCRs, a process termed transactivation. GPCR signal transduction also induces striking morphological changes and rapid tyrosine phosphorylation of multiple cellular proteins, including the non-receptor tyrosine kinases Src, focal adhesion kinase (FAK), and the adaptor proteins CAS and paxillin. The pathways stimulated by GPCRs are extensively interconnected by synergistic and antagonistic crosstalks that play a critical role in signal transmission, integration, and dissemination. The purpose of this article is to review recent advances in defining the pathways that play a role in transducing mitogenic responses induced by GPCR agonists.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| |
Collapse
|