1
|
del Moral-Martinez M, Sánchez-Uceta P, Clemente-Gonzalez R, Moreno-SanJuan S, Puentes-Pardo JD, Khaldy H, Lopez-Perez D, Arnedo J, Casado J, Martínez-Heredia L, Carazo A, León J. iNOS-Produced Nitric Oxide from Cancer Cells as an Intermediate of Stemness Regulation by PARP-1 in Colorectal Cancer. Biomolecules 2025; 15:125. [PMID: 39858519 PMCID: PMC11763104 DOI: 10.3390/biom15010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
PARP-1 has been linked to the progression of several types of cancer. We have recently reported that PARP-1 influences tumor progression in CRC through the regulation of CSCs in a p53-dependent manner. In this study, we propose that nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) could act as a mediator. We evaluated the expression of iNOS in a cohort of patients previously used to analyze the effects of PARP-1 on CRC in relation to p53 status. We also developed an in vitro model in which PARP-1 was stably overexpressed. In CRC patients, iNOS expression correlated with the differentiation grade, and with a high expression of CSC markers, although only in wild-type p53 tumors, as previously found for PARP-1. In vitro, overexpression of PARP-1 induced increased growth and stemness in wild-type p53 cells, while exerting the opposite effect on mutated ones, as expected. Treatment with 1400 W, a selective inhibitor of iNOS, or gene silencing of the gene counteracted the effects of PARP-1 in both p53 wild-type and p53 mutated cells. Given that the development of resistance has been demonstrated after treatment with PARP-1 inhibitors, iNOS could be considered a new therapeutic target in CRC, although only in patients with wild-type p53 tumors.
Collapse
Affiliation(s)
- María del Moral-Martinez
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Paula Sánchez-Uceta
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | | | - Sara Moreno-SanJuan
- Servicio de Microscopía y Citometría, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Jose D. Puentes-Pardo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Huda Khaldy
- Servicio de Biología Fundamental, Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
| | - David Lopez-Perez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4258, USA
| | - Javier Arnedo
- Departamento de Estadística e Investigación Operativa, Universidad de Granada, 18071 Granada, Spain
| | - Jorge Casado
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Luis Martínez-Heredia
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Instituto de Salud Carlos III, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Angel Carazo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Unidad de Gestión de Microbiología, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
2
|
Kaboub K, Abu-Taha H, Arrouasse J, Shaham-Barda E, Wasserberg N, Hayman-Manzur L, Friedenberg A, Levy-Barda A, Goren I, Levi Z, Banai-Eran H, Avni-Biron I, Ollech JE, Sharar-Fischler T, Yanai H, Cohen-Kedar S, Dotan I, Rabinowitz KM. Discordant Effects of Janus Kinase Inhibition Ex Vivo on Inflammatory Responses in Colonic Compared to Ileal Mucosa. J Crohns Colitis 2025; 19:jjae117. [PMID: 39073573 DOI: 10.1093/ecco-jcc/jjae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Accepted: 07/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIMS Janus kinase [JAK] inhibitors are used for treating inflammatory bowel diseases [IBD]. We aimed to identify the molecular effects of JAK inhibition in human intestinal mucosa, considering IBD location and phenotype. METHODS Colonic and ileal explants from patients with ulcerative colitis [UC], Crohn's disease [CD], and non-IBD controls [NC] were assessed for levels of phosphorylated signal transducers and activators of transcription [p-STAT] and expression of inflammatory genes in response to an ex vivo JAK inhibitor [tofacitinib]. Cytokine production by lamina propria lymphocytes in response to tofacitinib was assessed. Human intestinal organoids were used to investigate the effects of JAK inhibitors on inducible nitric oxide synthase [iNOS] expression. RESULTS Explants were collected from 68 patients [UC = 20, CD = 20, NC = 28]. p-STAT1/3/5 inhibition rates varied, being higher in colonic compared to ileal explants. p-STAT1/3 inhibition rates negatively correlated with levels of C-reactive protein [CRP]. While significant alterations in 120 of 255 inflammatory genes were observed in colonic explants, only 30 were observed in ileal NC explants. In colonic explants from UC, significant alterations were observed in five genes, including NOS2. JAK inhibition significantly decreased Th1/Th2/Th17-related cytokine production from lamina propria lymphocytes. Various JAK inhibitors reduced the interferon-γ-induced increase in iNOS expression in organoids. CONCLUSIONS A site-specific anti-inflammatory effect of JAK inhibition by tofacitinib was noted, whereby the colon was more robustly affected than the ileum. The ex vivo response to tofacitinib is individual. JAK inhibition may attenuate inflammation by decreasing iNOS expression. Ex vivo mucosal platforms may be a valuable resource for studying personalized drug effects in patients with IBD.
Collapse
Affiliation(s)
- Kawsar Kaboub
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center and Tel-Aviv University, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hanan Abu-Taha
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center and Tel-Aviv University, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Jessica Arrouasse
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center and Tel-Aviv University, Petah-Tikva, Israel
| | - Efrat Shaham-Barda
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center and Tel-Aviv University, Petah-Tikva, Israel
| | - Nir Wasserberg
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Surgery, Beilinson Campus, Rabin Medical Center, Petah-Tikva, Israel
| | - Lucille Hayman-Manzur
- Department of Pathology, Beilinson Campus, Rabin Medical Center, Petah-Tikva, Israel
| | - Adi Friedenberg
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Idan Goren
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Zohar Levi
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagar Banai-Eran
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Avni-Biron
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Jacob E Ollech
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Tali Sharar-Fischler
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Henit Yanai
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center and Tel-Aviv University, Petah-Tikva, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center and Tel-Aviv University, Petah-Tikva, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren M Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center and Tel-Aviv University, Petah-Tikva, Israel
| |
Collapse
|
3
|
Saban Güler M, Arslan S, Ağagündüz D, Cerqua I, Pagano E, Berni Canani R, Capasso R. Butyrate: A potential mediator of obesity and microbiome via different mechanisms of actions. Food Res Int 2025; 199:115420. [PMID: 39658184 DOI: 10.1016/j.foodres.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Butyrate, a short-chain fatty acid, is a crucial product of gut microbial fermentation with significant implications for various metabolic and physiological processes. Dietary sources of butyrate are limited, primarily derived from the fermentation of dietary fibers by butyrate-producing gut bacteria. Butyrate exerts its effects primarily as a histone deacetylase (HDAC) inhibitor and through signaling pathways involving G protein-coupled receptors (GPCRs). Its diverse benefits include promoting gut health, enhancing energy metabolism, and potentially alleviating complications associated with obesity. However, the exact role of butyrate in obesity is still under investigation, with a limited number of human trials necessitating further research to determine its efficacy and safety profile. Moreover, butyrate impact on the gut-brain axis and its modulation of microbiome effect on behavior highlight its broader importance in regulating host physiology. A thorough understanding of the metabolic pathways and mechanisms of butyrate is essential for developing targeted interventions for metabolic disorders. Continued research is crucial to fully realize its therapeutic potential and optimize its clinical applications in human health. In summary, this review illuminates the multifaceted role of butyrate as a potential mediator of obesity and related metabolic changes.
Collapse
Affiliation(s)
- Meryem Saban Güler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey.
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy.
| |
Collapse
|
4
|
Tang Y, Li Q, Zhou Z, Bai H, Xiao N, Xie J, Li C. Nitric oxide-based multi-synergistic nanomedicine: an emerging therapeutic for anticancer. J Nanobiotechnology 2024; 22:674. [PMID: 39497134 PMCID: PMC11536969 DOI: 10.1186/s12951-024-02929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Gas therapy has emerged as a promising approach for treating cancer, with gases like NO, H2S, and CO showing positive effects. Among these, NO is considered a key gas molecule with significant potential in stopping cancer progression. However, due to its high reactivity and short half-life, delivering NO directly to tumors is crucial for enhancing cancer treatment. NO-driven nanomedicines (NONs) have been developed to effectively deliver NO donors to tumors, showing great progress in recent years. This review provides an overview of the latest advancements in NO-based cancer nanotherapeutics. It discusses the types of NO donors used in current research, the mechanisms of action behind NO therapy for cancer, and the different delivery systems for NO donors in nanotherapeutics. It also explores the potential of combining NO donors with other treatments for enhanced cancer therapy. Finally, it examines the future prospects and challenges of using NONs in clinical settings for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Qiyu Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Huayang Bai
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Wiens KR, Brooks NAH, Riar I, Greuel BK, Lindhout IA, Klegeris A. Psilocin, the Psychoactive Metabolite of Psilocybin, Modulates Select Neuroimmune Functions of Microglial Cells in a 5-HT 2 Receptor-Dependent Manner. Molecules 2024; 29:5084. [PMID: 39519725 PMCID: PMC11547910 DOI: 10.3390/molecules29215084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroinflammation that is caused by microglia, the main immune cells of the brain, contributes to neurodegenerative diseases. Psychedelics, including psilocybin and lysergic acid diethylamide (LSD), possess certain anti-inflammatory properties and, therefore, should be considered as drug candidates for treating neuroinflammatory pathologies. When ingested, psilocybin is rapidly dephosphorylated to yield psilocin, which crosses the blood-brain barrier and exerts psychotropic activity by interacting with the 5-hydroxytryptamine 2A receptors (5-HT2ARs) on neurons. Since microglia express all three 5-HT2R isoforms, we hypothesized that, by interacting with these receptors, psilocin beneficially modulates select neuroimmune functions of microglia. We used microglia-like cell lines to demonstrate that psilocin, at non-toxic concentrations, did not affect the secretion of tumor necrosis factor (TNF) by immune-stimulated microglial cells, but significantly inhibited their phagocytic activity, the release of reactive oxygen species (ROS), and nitric oxide (NO) production. The inhibitory activity of psilocin on the latter two functions was similar to that of two selective 5-HT2R agonists, namely, 25I-NBOH and Ro60-0175. The role of this subfamily of receptors was further demonstrated by the application of 5-HT2R antagonists cyproheptadine and risperidone. Psilocin should be considered a novel drug candidate that might be effective in treating neuroimmune disorders, such as neurodegenerative diseases, where reactive microglia are significant contributors.
Collapse
Affiliation(s)
| | | | | | | | | | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
6
|
Bajpai P, Agarwal S, Afaq F, Al Diffalha S, Chandrashekar DS, Kim HG, Shelton A, Miller CR, Singh SK, Singh R, Varambally S, Nagaraju GP, Manne A, Paluri R, Khushman M, Manne U. Combination of dual JAK/HDAC inhibitor with regorafenib synergistically reduces tumor growth, metastasis, and regorafenib-induced toxicity in colorectal cancer. J Exp Clin Cancer Res 2024; 43:192. [PMID: 38992681 PMCID: PMC11238352 DOI: 10.1186/s13046-024-03106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Treatment with regorafenib, a multiple-kinase inhibitor, to manage metastatic colorectal cancers (mCRCs) shows a modest improvement in overall survival but is associated with severe toxicities. Thus, to reduce regorafenib-induced toxicity, we used regorafenib at low concentration along with a dual JAK/HDAC small-molecule inhibitor (JAK/HDACi) to leverage the advantages of both JAK and HDAC inhibition to enhance antitumor activity. The therapeutic efficacy and safety of the combination treatment was evaluated with CRC models. METHODS The cytotoxicity of JAK/HDACi, regorafenib, and their combination were tested with normal colonic and CRC cells exhibiting various genetic backgrounds. Kinomic, ATAC-seq, RNA-seq, cell cycle, and apoptosis analyses were performed to evaluate the cellular functions/molecular alterations affected by the combination. Efficacy of the combination was assessed using patient-derived xenograft (PDX) and experimental metastasis models of CRC. To evaluate the interplay between tumor, its microenvironment, and modulation of immune response, MC38 syngeneic mice were utilized. RESULTS The combination therapy decreased cell viability; phosphorylation of JAKs, STAT3, EGFR, and other key kinases; and inhibited deacetylation of histone H3K9, H4K8, and alpha tubulin proteins. It induced cell cycle arrest at G0-G1 phase and apoptosis of CRC cells. Whole transcriptomic analysis showed that combination treatment modulated molecules involved in apoptosis, extracellular matrix-receptor interaction, and focal adhesion pathways. It synergistically reduces PDX tumor growth and experimental metastasis, and, in a syngeneic mouse model, the treatment enhances the antitumor immune response as evidenced by higher infiltration of CD45 and cytotoxic cells. Pharmacokinetic studies showed that combination increased the bioavailability of regorafenib. CONCLUSIONS The combination treatment was more effective than with regorafenib or JAK/HDACi alone, and had minimal toxicity. A clinical trial to evaluate this combination for treatment of mCRCs is warranted.
Collapse
Affiliation(s)
- Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abigail Shelton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Ryan Miller
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Singh
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ashish Manne
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ravi Paluri
- Department of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Moh'd Khushman
- Department of Medicine, Washington University in St. Louis/Siteman Cancer Center, St. Louis, MO, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Patel H, Minkah NK, Kumar S, Zanghi G, Schepis A, Goswami D, Armstrong J, Abatiyow BA, Betz W, Reynolds L, Camargo N, Sheikh AA, Kappe SHI. Malaria blood stage infection suppresses liver stage infection via host-induced interferons but not hepcidin. Nat Commun 2024; 15:2104. [PMID: 38453916 PMCID: PMC10920859 DOI: 10.1038/s41467-024-46270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Malaria-causing Plasmodium parasites first replicate as liver stages (LS), which then seed symptomatic blood stage (BS) infection. Emerging evidence suggests that these stages impact each other via perturbation of host responses, and this influences the outcome of natural infection. We sought to understand whether the parasite stage interplay would affect live-attenuated whole parasite vaccination, since the efficacy of whole parasite vaccines strongly correlates with their extend of development in the liver. We thus investigated the impact of BS infection on LS development of genetically attenuated and wildtype parasites in female rodent malaria models and observed that for both, LS infection suffered severe suppression during concurrent BS infection. Strikingly and in contrast to previously published studies, we find that the BS-induced iron-regulating hormone hepcidin is not mediating suppression of LS development. Instead, we demonstrate that BS-induced host interferons are the main mediators of LS developmental suppression. The type of interferon involved depended on the BS-causing parasite species. Our study provides important mechanistic insights into the BS-mediated suppression of LS development. This has direct implications for understanding the outcomes of live-attenuated Plasmodium parasite vaccination in malaria-endemic areas and might impact the epidemiology of natural malaria infection.
Collapse
Affiliation(s)
- Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Biley A Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amina A Sheikh
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Vergroesen JE, Jarrar ZA, Weiss S, Frost F, Ansari AS, Nguyen P, Kraaij R, Medina-Gomez C, Völzke H, Tost F, Amin N, van Duijn CM, Klaver CCW, Jürgens C, Hammond CJ, Ramdas WD. Glaucoma Patients Have a Lower Abundance of Butyrate-Producing Taxa in the Gut. Invest Ophthalmol Vis Sci 2024; 65:7. [PMID: 38315494 PMCID: PMC10851784 DOI: 10.1167/iovs.65.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose Glaucoma is an eye disease that is the most common cause of irreversible blindness worldwide. It has been suggested that gut microbiota can produce reactive oxygen species and pro-inflammatory cytokines that may travel from the gastric mucosa to distal sites, for example, the optic nerve head or trabecular meshwork. There is evidence for a gut-eye axis, as microbial dysbiosis has been associated with retinal diseases. We investigated the microbial composition in patients with glaucoma and healthy controls. Moreover, we analyzed the association of the gut microbiome with intraocular pressure (IOP; risk factor of glaucoma) and vertical cup-to-disc ratio (VCDR; quantifying glaucoma severity). Methods The discovery analyses included participants of the Rotterdam Study and the Erasmus Glaucoma Cohort. A total of 225 patients with glaucoma and 1247 age- and sex-matched participants without glaucoma were included in our analyses. Stool samples were used to generate 16S rRNA gene profiles. We assessed associations with 233 genera and species. We used data from the TwinsUK and the Study of Health in Pomerania (SHIP) to replicate our findings. Results Several butyrate-producing taxa (e.g. Butyrivibrio, Caproiciproducens, Clostridium sensu stricto 1, Coprococcus 1, Ruminococcaceae UCG 007, and Shuttleworthia) were less abundant in people with glaucoma compared to healthy controls. The same taxa were also associated with lower IOP and smaller VCDR. The replication analyses confirmed the findings from the discovery analyses. Conclusions Large human studies exploring the link between the gut microbiome and glaucoma are lacking. Our results suggest that microbial dysbiosis plays a role in the pathophysiology of glaucoma.
Collapse
Affiliation(s)
- Joëlle E. Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Zakariya A. Jarrar
- Department of Ophthalmology, King's College London, London, United Kingdom
- Department of Twins Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Stefan Weiss
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Abdus S. Ansari
- Department of Ophthalmology, King's College London, London, United Kingdom
- Department of Twins Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Picard Nguyen
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Frank Tost
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia M. van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, University of Basel, Basel, Switzerland
| | - Clemens Jürgens
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Chris J. Hammond
- Department of Ophthalmology, King's College London, London, United Kingdom
- Department of Twins Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Wishal D. Ramdas
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Yue R, Wei X, Hao L, Dong H, Guo W, Sun X, Zhao J, Zhou Z, Zhong W. Promoting intestinal antimicrobial defense and microbiome symbiosis contributes to IL-22-mediated protection against alcoholic hepatitis in mice. Front Immunol 2023; 14:1289356. [PMID: 37908362 PMCID: PMC10613651 DOI: 10.3389/fimmu.2023.1289356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background The hepatoprotective effect of interleukin 22 (IL-22) has been reported in several models of liver injuries, including alcohol-associated liver disease (ALD). However, the intestinal role of IL-22 in alcoholic hepatitis remains to be elucidated. Methods Intestinal IL-22 levels were measured in mice fed with alcohol for 8 weeks. IL-22 was then administered to alcohol-fed mice to test its protective effects on alleviating alcoholic hepatitis, focusing on intestinal protection. Acute IL-22 treatment was conducted in mice to further explore the link between IL-22 and the induction of antimicrobial peptide (AMP). Intestinal epithelial cell-specific knockout of signal transducer and activator of transcription 3 (STAT3) mice were generated and used for organoid study to explore its role in IL-22-mediated AMP expression and gut barrier integrity. Results After alcohol feeding for 8 weeks, the intestinal levels of IL-22 were significantly reduced in mice. IL-22 treatment to alcohol-fed mice mitigated liver injury as indicated by normalized serum transaminase levels, improved liver histology, reduced lipid accumulation, and attenuated inflammation. In the intestine, alcohol-reduced Reg3γ and α-defensins levels were reversed by IL-22 treatment. IL-22 also improved gut barrier integrity and decreased endotoxemia in alcohol-fed mice. While alcohol feeding significantly reduced Akkermansia, IL-22 administration dramatically expanded this commensal bacterium in mice. Regardless of alcohol, acute IL-22 treatment induced a fast and robust induction of intestinal AMPs and STAT3 activation. By using in vitro cultured intestinal organoids isolated from WT mice and mice deficient in intestinal epithelial-STAT3, we further demonstrated that STAT3 is required for IL-22-mediated AMP expression. In addition, IL-22 also regulates intestinal epithelium differentiation as indicated by direct regulation of sodium-hydrogen exchanger 3 via STAT3. Conclusion Our study suggests that IL-22 not only targets the liver but also benefits the intestine in many aspects. The intestinal effects of IL-22 include regulating AMP expression, microbiota, and gut barrier function that is pivotal in ameliorating alcohol induced translocation of gut-derived bacterial pathogens and liver inflammation.
Collapse
Affiliation(s)
- Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
10
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
11
|
Saleri R, Borghetti P, Ravanetti F, Cavalli V, Ferrari L, De Angelis E, Andrani M, Martelli P. Effects of different short-chain fatty acids (SCFA) on gene expression of proteins involved in barrier function in IPEC-J2. Porcine Health Manag 2022; 8:21. [PMID: 35590351 PMCID: PMC9118747 DOI: 10.1186/s40813-022-00264-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (β-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2). Results The SCFA tested showed significant effects on IPEC-J2, which proved to be dependent on the type and specific concentration of the fatty acid. Acetate stimulated cell viability and NO production in a dose-dependent manner (P < 0.05), and specifically, 5 mM acetate activated the barrier response through claudin-4, and immunity through β-defensin 1 (P < 0.05). The same effect on these parameters was shown by propionate supplementation, especially at 1 mM (P < 0.05). Contrarily, lactate and butyrate showed different effects compared to acetate and propionate, as they did not stimulate an increase of cell viability and regulated barrier integrity through zonula occludens-1 and occludin, especially at 30 mM and 0.5 mM, respectively (P < 0.05). Upon supplementation with SCFA, the increase of NO release at low levels proved not to have detrimental effects on IPEC-J2 proliferation/survival, and in the case of acetate and propionate, such levels were associated with beneficial effects. Furthermore, the results showed that SCFA supplementation induced β-defensin 1 (P < 0.05) that, in turn, may have been involved in the inhibition of TNF-α and NF-κB gene expression (P < 0.05). Conclusions The present study demonstrates that the supplementation with specific SCFA in IPEC-J2 can significantly modulate the process of barrier protection, and that particularly acetate and propionate sustain cell viability, low oxidative stress activity and intestinal barrier function.
Collapse
Affiliation(s)
- Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
12
|
Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23:ijms23105354. [PMID: 35628164 PMCID: PMC9140893 DOI: 10.3390/ijms23105354] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.
Collapse
|
13
|
Chou PH, Luo CK, Wali N, Lin WY, Ng SK, Wang CH, Zhao M, Lin SW, Yang PM, Liu PJ, Shie JJ, Wei TT. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci 2022; 29:20. [PMID: 35313878 PMCID: PMC8939146 DOI: 10.1186/s12929-022-00803-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is a worldwide cancer with rising annual incidence. New medications for patients with CRC are still needed. Recently, fluorescent chemical probes have been developed for cancer imaging and therapy. Signal transducer and activator of transcription 1 (STAT1) has complex functions in tumorigenesis and its role in CRC still needs further investigation. Methods RNA sequencing datasets in the NCBI GEO repository were analyzed to investigate the expression of STAT1 in patients with CRC. Xenograft mouse models, tail vein injection mouse models, and azoxymethane/dextran sodium sulfate (AOM/DSS) mouse models were generated to study the roles of STAT1 in CRC. A ligand-based high-throughput virtual screening approach combined with SWEETLEAD chemical database analysis was used to discover new STAT1 inhibitors. A newly designed and synthesized fluorescently labeled 4’,5,7-trihydroxyisoflavone (THIF) probe (BODIPY-THIF) elucidated the mechanistic actions of STAT1 and THIF in vitro and in vivo. Colonosphere formation assay and chick chorioallantoic membrane assay were used to evaluate stemness and angiogenesis, respectively. Results Upregulation of STAT1 was observed in patients with CRC and in mouse models of AOM/DSS-induced CRC and metastatic CRC. Knockout of STAT1 in CRC cells reduced tumor growth in vivo. We then combined a high-throughput virtual screening approach and analysis of the SWEETLEAD chemical database and found that THIF, a flavonoid abundant in soybeans, was a novel STAT1 inhibitor. THIF inhibited STAT1 phosphorylation and might bind to the STAT1 SH2 domain, leading to blockade of STAT1-STAT1 dimerization. The results of in vitro and in vivo binding studies of THIF and STAT1 were validated. The pharmacological treatment with BODIPY-THIF or ablation of STAT1 via a CRISPR/Cas9-based strategy abolished stemness and angiogenesis in CRC. Oral administration of BODIPY-THIF attenuated colitis symptoms and tumor growth in the mouse model of AOM/DSS-induced CRC. Conclusions This study demonstrates that STAT1 plays an oncogenic role in CRC. BODIPY-THIF is a new chemical probe inhibitor of STAT1 that reduces stemness and angiogenesis in CRC. BODIPY-THIF can be a potential tool for CRC therapy as well as cancer cell imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00803-4.
Collapse
Affiliation(s)
- Pei-Hsuan Chou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Yen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan
| | - Chun-Hao Wang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Mingtao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43210, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, 43210, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pin-Jung Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, 1st Section, Taipei, 10051, Taiwan. .,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
14
|
González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021; 47:102165. [PMID: 34662811 PMCID: PMC8577496 DOI: 10.1016/j.redox.2021.102165] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by colonic bacteria and obtained from the diet, have been linked to beneficial effects on human health associated with their metabolic and signaling properties. Their physiological functions are related to their aliphatic tail length and dependent on the activation of specific membrane receptors. In this review, we focus on the mechanisms underlying SCFAs mediated protection against oxidative and mitochondrial stress and their role in regulating metabolic pathways in specific tissues. We critically evaluate the evidence for their cytoprotective roles in suppressing inflammation and carcinogenesis and the consequences of aging. The ability of these natural compounds to induce signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), contributes to the maintenance of redox homeostasis under physiological conditions. SCFAs may thus serve as nutritional and therapeutic agents in healthy aging and in vascular and other diseases such as diabetes, neuropathologies and cancer. SCFAs are a link between the microbiota, redox signaling and host metabolism. SCFAs modulate Nrf2 redox signaling through specific free fatty acid receptors. Butyrate induces epigenetic regulation and/or Nrf2 nuclear translocation. Butyrate and propionate protect the blood-brain barrier by facilitating docosahexaenoic acid transport. Regulation of redox homeostasis by SCFAs supports their potential as therapeutic nutrients in health and disease.
Collapse
Affiliation(s)
- Carmen González-Bosch
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Emily Boorman
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
15
|
Pirola CJ, Sookoian S. The lipidome in nonalcoholic fatty liver disease: actionable targets. J Lipid Res 2021; 62:100073. [PMID: 33845089 PMCID: PMC8121699 DOI: 10.1016/j.jlr.2021.100073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease. Recent technological advances, combined with OMICs experiments and explorations involving different biological samples, have uncovered vital aspects of NAFLD biology. In this review, we summarize recent work by our group and others that expands what is known about the role of lipidome in NAFLD pathogenesis. We discuss how pathway and enrichment analyses were performed by integrating a list of query metabolites derived from text-mining existing NAFLD-lipidomics studies, resulting in the identification of nine Kyoto Encyclopedia of Genes and Genomes dysregulated pathways, including biosynthesis of unsaturated fatty acids, butanoate metabolism, synthesis and degradation of ketone bodies, sphingolipid, arachidonic acid and pyruvate metabolism, and numerous nonsteroidal antiinflammatory drug pathways predicted from The Small Molecule Pathway Database. We also summarize an integrated pathway-level analysis of genes and lipid-related metabolites associated with NAFLD, which shows overrepresentation of signal transduction, selenium micronutrient network, Class A/1Rhodopsin-like receptors and G protein-coupled receptor ligand binding, and G protein-coupled receptor downstream signaling. Generated gene-metabolite-disease interaction networks indicate that NAFLD and arterial hypertension are interlinked by molecular signatures. Finally, we discuss how mining pathways and associations among metabolites, lipids, genes, and proteins can be exploited to infer networks and potential pharmacological targets and how lipidomic studies may provide insight into the interrelationships among metabolite clusters that modify NAFLD biology, genetic susceptibility, diet, and the gut microbiome.
Collapse
Affiliation(s)
- Carlos J Pirola
- Instituto de Investigaciones Médicas A Lanari, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Genética y Biología Molecular de Enfermedades Complejas, Instituto of Investigaciones Médicas (IDIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Silvia Sookoian
- Instituto de Investigaciones Médicas A Lanari, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Hepatología Clínica y Molecular, Instituto of Investigaciones Médicas (IDIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Su X, Zhang Q, Yue J, Wang Y, Zhang Y, Yang R. TRIM59 suppresses NO production by promoting the binding of PIAS1 and STAT1 in macrophages. Int Immunopharmacol 2020; 89:107030. [PMID: 33045573 DOI: 10.1016/j.intimp.2020.107030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Macrophages, which can secret various inflammation mediators, have an essential role in tumor growth and metastasis. However, the mechanism(s) to regulate the production of inflammation mediator is not completely clear. Here we found that TRIM 59 could inhibit the production of NO and the expression of inducible nitric oxide synthase (iNOS), cytochrome c oxidase subunit2 (COX2) and TNFα. TRIM59 mediated suppression on nitric oxide (NO) production is through inhibiting the activation of JAK2-STAT1 signal pathway. In response to LPS, TRIM59 in macrophages was translocated from cytoplasm to nucleus and directly bound with STAT1. During this process, TRIM59 could recruit much more PIAS1 to bind with STAT1 to suppress the activation of STAT1. Finally, TRIM59 modified macrophages could promote tumor growth. Thus, TRIM59 mediated suppression on NO production by promoting the binding of PIAS1 and STAT1 in macrophages may regulate tumor growth.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jianmei Yue
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
17
|
Ngo HTT, Hwang E, Kang H, Park B, Seo SA, Yi TH. Anti-inflammatory Effects of Achillea millefolium on Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1121-1140. [PMID: 32668966 DOI: 10.1142/s0192415x2050055x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Achillea millefolium L. (AM) is an aromatic herb with a variety of pharmacological properties, such as anti-inflammatory and anti-allergic activities. However, AM's effects on atopic dermatitis (AD) have not been investigated. This study evaluates the anti-AD activity of 50% ethanol-extracted AM in murine macrophage Raw 264.7 cells, in tumor necrosis factor-alpha/interferon-gamma (TNF-[Formula: see text]/IFN-[Formula: see text])-stimulated human immortal keratinocyte HaCaT cells in vitro, and in Biostir-AD-treated NC/Nga mice in vivo. The results showed that AM significantly downregulated expression of pro-inflammatory cytokines, such as INOS, COX-2, and interleukin (IL)-6 in lipopolysaccharide (LPS)-treated Raw 264.7 cells. The mRNA expressions of INOS, COX-2, and IL-6 decreased by 76.1%, 69.3%, and 31.8%, respectively. Overexpression of chemokines, such as activation-regulated chemokine and macrophage-derived chemokine, regulated on activation of normal T-cell expressed and secreted, and IL-8 was inhibited by 70.01%, 52.91%, 73.53%, and 18.93%, respectively, in TNF-[Formula: see text]/IFN-[Formula: see text]-stimulated HaCaT cells by downregulating the mitogen-activated protein kinase, I[Formula: see text]B[Formula: see text], and the signal transducer and activator of transcription 1 signaling pathways. AD-like symptoms, such as elevated serum immunoglobin E levels, epidermal thickening, high dermatitis severity score, transepidermal water loss, and reduced skin hydration, were relieved by the dietary administration of AM in Biostir-AD-treated NC/Nga mice. In addition, filaggrin expression increased significantly in AM-treated groups. These results suggest that AM could be a useful candidate for AD treatment.
Collapse
Affiliation(s)
- Hien T T Ngo
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Eunson Hwang
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Hyungoo Kang
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Bom Park
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Seul A Seo
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
18
|
Couto MR, Gonçalves P, Magro F, Martel F. Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacol Res 2020; 159:104947. [DOI: 10.1016/j.phrs.2020.104947] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
|
19
|
Abstract
PURPOSE Butyrate is a short-chain fatty acid produced in the intestine. It is controversial whether butyrate is protective or destructive for the intestinal epithelium in the development of diseases like necrotizing enterocolitis (NEC), and its mechanism of action remains unclear. We aimed to determine the effect of butyrate on the intestinal epithelium by studying its effects on intestinal epithelial cells (IEC-18) exposed to injury and in vivo by investigating the effects on the intestine in an experimental model of NEC. METHODS A) In vitro study: Butyrate was given to normal IEC-18 to determine the dose triggering injury. Based on above results, low dose butyrate (1 mM) was given to H2O2-injured cells to determine its effect against inflammation. B) In vivo study: NEC was induced by hypoxia and gavage feeding between postnatal day P5 and P9 (n = 8). Breastfed mice were used as control (n = 7). Butyrate (150 mM) was administered by enema on P6 in NEC (n = 6). Distal ileum was harvested on P9. RESULTS High dose (16 mM) butyrate upregulated inflammatory marker IL-6, while low dose butyrate protected cells from injury by reducing IL-6 expression. Similarly, compared with NEC alone, NEC mice who received butyrate had reduced intestinal damage, reduced IL-6 and NF-ĸB expression, and increased intestinal tight junction marker Claudin-7. CONCLUSION Butyrate has opposite effects depending on the dose administered. Butyrate can protect cells from H2O2-induced injury and can in vivo protect the intestine from NEC. This beneficial effect is because of downregulation of inflammation and enhancement of intestinal barrier.
Collapse
|
20
|
Jiang M, Ye J, Wang X, Li N, Wang Y, Shi Y. Phosphatase SHP1 impedes mesenchymal stromal cell immunosuppressive capacity modulated by JAK1/STAT3 and P38 signals. Cell Biosci 2020; 10:65. [PMID: 32467752 PMCID: PMC7227316 DOI: 10.1186/s13578-020-00428-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are multiple stromal cells existing in various tissues and have already been employed in animal models and clinical trials to treat immune disorders through potent immunosuppressive capacity. Our previous reports have suggested that MSC immunosuppression is not intrinsic but is acquired upon combined inflammatory cytokine treatment. However, the understanding of detailed molecular mechanisms involved in MSC immunomodulation remains incomplete. Results In the study, we report that MSCs derived from viable motheaten (mev) mice, with deficiency in SH2 domain-containing phosphatase-1 (SHP1), exhibited remarkable increased suppressive effect on activated splenocyte proliferation. Consistently, when MSCs were treated with combined inflammatory cytokines, SHP1-deficient MSCs produced dramatically more iNOS expression compared with wild-type MSCs. SHP1 was found to suppress the phosphorylation of JAK1/STAT3 and P38 signals. The classical animal model of concanavalin A (ConA)-induced liver injury was applied to examine the role of SHP1 in modulation MSC-therapeutic effect in vivo. Consistent with the results in vitro, SHP1-deficient MSCs exhibited dramatically more effective protection against ConA-induced hepatitis, compared to WT MSCs. Conclusion Taken together, our study reveals a possible role for SHP1 in modulation of MSC immunosuppression regulated by JAK1/STAT3 and P38 signals.
Collapse
Affiliation(s)
- Menghui Jiang
- 1School of Public Health, Qingdao University, Qingdao, China
| | - Jiayin Ye
- 3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xuefeng Wang
- 2The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Na Li
- 3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ying Wang
- 3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yufang Shi
- 1School of Public Health, Qingdao University, Qingdao, China.,2The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
21
|
Nitric Oxide Modulation by Folic Acid Fortification. Antioxidants (Basel) 2020; 9:antiox9050393. [PMID: 32392814 PMCID: PMC7278735 DOI: 10.3390/antiox9050393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/02/2022] Open
Abstract
Folic acid (FA) can be protected the neural tube defects (NTDs) causing nitric oxide (NO) induction, but the alleviation mechanism of the detailed FA function against NO has not yet been clarified. This study focused on elucidation of the interaction of FA and NO. FA suppressed nitrite accumulation as the NO indicator in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, then the expression of the iNOS gene due to the LPS treatment was not inhibited by FA, suggesting that FA can modulate against NO or nitrogen radicals. NOR3 (4-ethyl-2-hydroxyamino-5-nitro-3-hexenamide) as the NO donor was used for evaluation of the NO scavenging activity of FA. FA suppressed the nitrite accumulation in a dose-dependent manner. To confirm the reaction product of FA and NO (FA-NO), liquid chromatography–mass spectrometry (LC/MS) was used to measure a similar system containing NOR3 and FA, and then detected the mass numbers of the FA-NO as m/z 470.9 (M + H)+ and m/z 469.1 (M − H)−. In addition, the adducts of the FA-NO derived from 14NO and 15NO gave individual mass numbers of the isotopic ratio of nitrogen for the following products: FA-14NO, m/z 471.14 (M + H)+; m/z 469.17 (M − H)− and FA-15NO, m/z 472.16 (M + H)+; m/z 470.12 (M − H)–. To clarify the detailed NO scavenging action of FA, an electron spin resonance (ESR) study for radical detecting of the system containing carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as an NO detection reagent in the presence of NOR3 and FA was performed. The carboxy-PTI (2-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl) radical produced from the reaction with NO reduced in the presence of FA showing that FA can directly scavenge NO. These results indicated that NO scavenging activity of FA reduced the accumulation of nitrite in the LPS-stimulated RAW264.7 cells. The NO modulation due to FA would be responsible for the alleviation from the failure in neural tube formation causing a high level of NO production.
Collapse
|
22
|
Linghang Q, Yiyi X, Guosheng C, Kang X, Jiyuan T, Xiong L, Guangzhong W, Shuiqing L, Yanju L. Effects of Atractylodes Oil on Inflammatory Response and Serum Metabolites in Adjuvant Arthritis Rats. Biomed Pharmacother 2020; 127:110130. [PMID: 32289576 DOI: 10.1016/j.biopha.2020.110130] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Atractylodes Rhizoma is one of two principal components in Ermiaosan, a well-known traditional Chinese medicine for the treatment of rheumatoid arthritis (RA). Atractylodes oil (AO) represents a potential alternative treatment for RA. The purpose of this study was to investigate the effect of AO in rats with Adjuvant Arthritis (AA) by exploration of changes in serum metabolites using gas chromatography-mass spectrometry (GC-MS). Foot thickness and arthritis score, ankle joint pathological structure, the concentrations of TNF-α, IL-1β, IL-6, IL-17 and the expression of MMPs in ankle joint tissue were measured as indicators of efficacy of treatment using AO. In addition, multivariate statistical analysis was used to identify differential production of metabolites and biomarkers, and to analyze metabolic pathways. The results demonstrate that administration of AO resulted in a good therapeutic effect in the AA rat model, with significantly improved joint swelling, reduced joint score, and inhibition of inflammation, synovial pannus hyperplasia, and bone and cartilage destruction. Furthermore, AO was found to exert its effect against rheumatoid arthritis principally by differentially affecting 11 metabolites and six metabolic pathways, predominantly related to abnormal amino acid metabolism, in addition to energy-related metabolic pathways. This study evaluated the capability of AO to effectively treat AA rats, providing a novel strategy for the treatment of RA.
Collapse
Affiliation(s)
- Qu Linghang
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China
| | - Xu Yiyi
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China
| | - Cao Guosheng
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Xu Kang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, PR China
| | - Tu Jiyuan
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Lin Xiong
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China
| | - Wang Guangzhong
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Li Shuiqing
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Liu Yanju
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China.
| |
Collapse
|
23
|
Sun W, Sun J, Li M, Xu Q, Zhang X, Tang Z, Chen J, Zhen J, Sun Z. The effects of dietary sodium butyrate supplementation on the growth performance, carcass traits and intestinal microbiota of growing-finishing pigs. J Appl Microbiol 2020; 128:1613-1623. [PMID: 32048746 DOI: 10.1111/jam.14612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
AIM This study was carried out to investigate the effects of dietary sodium butyrate supplementation on growth performance, carcass traits and intestinal of growing-finishing pigs. METHODS AND RESULTS Thirty pigs (27·4 ± 0·4 kg) were randomly assigned to receive one of three diets: basal diet (negative control group), basal diet + 40 ppm zinc bacitracin (positive control group) and basal diet + 0·2% sodium butyrate (sodium butyrate group), respectively. The experiment lasted for 69 days, including 3 days for diet and housing condition adaptation. On day 70, five piglets from each diet group were slaughtered for collecting blood and tissue samples. When compared to the control group, final body weight, daily body weight gain and daily feed intake of pigs in the sodium butyrate group were increased (P < 0·05) and feed intake/body weight gain ratio was decreased (P < 0·05). Carcass weight of pigs in the sodium butyrate group was higher than that of pigs in the negative and positive groups (P < 0·05); backfat thickness of pigs in the positive group was higher than that of pigs in the negative group and sodium butyrate group (P < 0·001). When compared to the negative and positive groups, pigs fed diet supplemented with sodium butyrate showed a increased relative abundance of bacteroidetes in the caecum and a decreased relative abundance of fiemicutes and proteobacteria in the caecum (P < 0·05). CONCLUSION The results indicated that dietary sodium butyrate supplementation increased growth performance of growing-finishing pigs and improved the carcass traits and intestinal health. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotic-free feed has become an inevitable worldwide trend. This study showed that dietary sodium butyrate supplementation improved the growth performance and intestinal health of growing-finishing pigs. Thus, sodium butyrate can be applied in growing-finishing pig feed as an alternative of antibiotics.
Collapse
Affiliation(s)
- W Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - M Li
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Q Xu
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - X Zhang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Z Tang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Chen
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Zhen
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Z Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| |
Collapse
|
24
|
Huang C, Wu XF, Wang XL. Trichostatin a inhibits phenotypic transition and induces apoptosis of the TAF-treated normal colonic epithelial cells through regulation of TGF-β pathway. Int J Biochem Cell Biol 2019; 114:105565. [PMID: 31278993 DOI: 10.1016/j.biocel.2019.105565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Tumor-associated fibroblasts (TAFs) contribute to transdifferentiation of stromal cells in tumor microenvironment. Epithelial-mesenchymal transition (EMT) is a procedure of phenotypic remodeling of epithelial cells and extensively exists in local tumoral stroma. Histone deacetylase (HDAC) inhibitor Tricostatin A (TSA) and sodium butyrate (SB) are reported to play important roles in the regulation of biological behaviour of cancer cells. However, whether TSA or SB is involved in control of EMT in colon epithelial cells induced by TAFs remains unidentified. In present study, we used conditioned medium (CM) form TAF-like CCD-18Co cells to stimulate 2D- and 3D-cultured colon epithelial HCoEpiC cells for 24 h and 4 d. We found that the CCD-18Co CM triggered multiple morphological changes in HCoEpiCs including prolonged cell diameters, down-regulation of E-cadherin and up-regulation of vimentin and α-SMA. Besides, ZEB1 and Snail expression and migration were also promoted by the CM. These phenomena were abolised by 5 μg/ml LY364947, a TGF-β receptor inhibitor. CCD-18Co induced up-regulation of HDAC1 and HDAC2 in the 2D and 3D models, while no change of HDAC4 exprerssion was found. Treatment of 2 μg/ml TSA reversed the CCD-18Co-induced morphological changes and migration of the HCoEpiCs, and suppressed the downregulation of E-cadherin and upregulation of vimentin, α-SMA, ZEB1 and Snail. However, the suppressive effect of 4 mg/ml SB on the EMT was not observed. TSA down-regulated the expressions of Smad2/3, p-Smad2/3 amd HDAC4. Besides, TSA promoted the apoptosis rate (36.84 ± 6.52%) comparing with the CCD-18Co-treated HCoEpiCs (3.52 ± 0.85%, P < 0.05), with promotion of Bax (0.5893±0.0498 in 2D and 0.8867±0.0916 in 3D) and reduction of Bcl-2 (0.0476±0.0053 in 2D and 0.0294±0.0075 in 3D). TSA stimulated expression of phosphorylated-p38 MAPK in 2D (0.3472±0.0249) and 3D (0.3188±0.0248). After pre-treatment with p38 MAPK inhibitor VX-702 (0.5 mg/ml), the apoptosis rate of TSA was decreased in 2D (10.32%) and 3D (5.26%). Our observations demonstrate that epigenetic treatment with HDAC inhibitor TSA may be a useful therapeutic tool for the reversion of TAF-induced EMT in colon epithelium through mediating canonical Smads pathway and non-canonical p38 MAPK signalling.
Collapse
Affiliation(s)
- Chao Huang
- Department of Traditional Chinese Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, 518100, China.
| | - Xiao-Fen Wu
- Department of Endocrinology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China
| | - Xiu-Lian Wang
- Health Management Centre, Affiliated Bao'an Hospital of Traditional Chinese Medicine of Shenzhen, Traditional Chinese Medicine University Of Guangzhou, Shenzhen, 518100, China
| |
Collapse
|
25
|
He L, Du J, Chen Y, Liu C, Zhou M, Adhikari S, Rubin DT, Pekow J, Li YC. Renin-angiotensin system promotes colonic inflammation by inducing T H17 activation via JAK2/STAT pathway. Am J Physiol Gastrointest Liver Physiol 2019; 316:G774-G784. [PMID: 30995068 PMCID: PMC6620584 DOI: 10.1152/ajpgi.00053.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies suggest that the renin-angiotensin system (RAS) is a pathogenic factor for colitis. The goal of this study was to elucidate the molecular mechanism whereby angiotensin II (ANG II) promotes colonic inflammation. We found that renin was highly induced in colonic biopsies from patients with ulcerative colitis or Crohn's disease, and colonic renin and ANG II levels were markedly increased in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model, indicating that the colonic RAS is activated in colitis. Renin transgenic (RenTg) mice exhibited increased phosphorylation in Janus kinase-2 (JAK2) and signal transducer and activator of transcription1/3 (STAT1/3) within colonic mucosa at baseline and following TNBS induction, suggesting that ANG II promotes colonic inflammation via the JAK2/STAT1/3 pathway. Treatment with pan-JAK inhibitor tofacitinib blocked JAK2 and STAT1/3 phosphorylation, attenuated T helper (TH)1 and TH17 responses, alleviated colitis, and prevented death of RenTg mice in TNBS model. ANG II stimulated JAK2/STAT1/3 phosphorylation in both Jurkat T lymphocytes and HCT116 epithelial cells. In vitro polarization assays demonstrated that ANG II directly promoted TH17 polarization, but not TH1 polarization, via JAK2/STAT1/3. ANG II stimulation of transforming growth factor-β1 (TGFβ1), IL-6, myosin light chain kinase, and p53 upregulated modulator of apoptosis in HCT116 cells was also mediated by JAK2/STAT1/3. These observations suggest that ANG II promotes TH17 polarization directly as well as indirectly by inducing production of TH17-polarizing cytokines (e.g., TGFβ1 and IL-6) from colonic epithelial cells, both via the JAK2/STAT pathway. Therefore, colonic RAS promotes colonic inflammation, at least in part, by stimulating TH17 activation. NEW & NOTEWORTHY This study demonstrates that the local renin-angiotensin system in the colon is activated in colitis development, which promotes mucosal T helper cell activation through the JAK2/STAT pathway. These observations provide molecular evidence that the renin-angiotensin system is a pathogenic factor for the development of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lei He
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | - Jie Du
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois,2Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yinyin Chen
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois,3Department of Nephrology, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Chunyan Liu
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois,4Department of Pathology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Min Zhou
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois,5Division of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sarbani Adhikari
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | - David T. Rubin
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | - Joel Pekow
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | - Yan Chun Li
- 1Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| |
Collapse
|
26
|
The Impact of Chronic Intestinal Inflammation on Brain Disorders: the Microbiota-Gut-Brain Axis. Mol Neurobiol 2019; 56:6941-6951. [DOI: 10.1007/s12035-019-1572-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
|
27
|
Ramirez VT, Godinez DR, Brust-Mascher I, Nonnecke EB, Castillo PA, Gardner MB, Tu D, Sladek JA, Miller EN, Lebrilla CB, Bevins CL, Gareau MG, Reardon C. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathog 2019; 15:e1007719. [PMID: 30973939 PMCID: PMC6478367 DOI: 10.1371/journal.ppat.1007719] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/23/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses.
Collapse
Affiliation(s)
- Valerie T. Ramirez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Dayn R. Godinez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Eric B. Nonnecke
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Patricia A. Castillo
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Mariana Barboza Gardner
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Diane Tu
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Jessica A. Sladek
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Elaine N. Miller
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Melanie G. Gareau
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
28
|
Zhang Y, Geng S, Prasad GL, Li L. Suppression of Neutrophil Antimicrobial Functions by Total Particulate Matter From Cigarette Smoke. Front Immunol 2018; 9:2274. [PMID: 30337926 PMCID: PMC6180193 DOI: 10.3389/fimmu.2018.02274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic cigarette smoking is widely known to alter immune functions and compromise host defense against microbial infection. Neutrophils play an essential role in the immune defense against microbial pathogens and also participate in the development of the inflammatory responses. However, there is limited information about the effects of cigarette smoking on neutrophil response. In this study, cultured bone marrow neutrophils were exposed to total particulate matter (TPM) from cigarette smoke. We found that TPM not only reduced LPS-induced TNFα production, but also suppressed neutrophil bactericidal activity. We also observed that TPM priming reduced the expression of NADPH oxidase component gp91 and iNOS, molecules important for bacterial killing. Mechanistically, we documented that TPM-primed neutrophils have reduced STAT1 activation following subsequent LPS challenge. STAT1 is a key transcription factor responsible for the expression of inflammatory genes as well as gp91 and iNOS. Collectively, reduced STAT1 activation and reduced NADPH oxidase/iNOS may potentially explain the compromised anti-microbial function of TPM-programmed neutrophils. Taken together, our findings reveal that the key innate immune neutrophil is subject to reprogramming by smoking to adopt an immune-suppressed state, potentially responsible for chronic smoking-mediated immunosuppression.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - G. L. Prasad
- RAI Services Company, Winston-Salem, NC, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
29
|
Nunes C, Almeida L, Barbosa RM, Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct 2018; 8:387-396. [PMID: 28067377 DOI: 10.1039/c6fo01529h] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Current treatment strategies for inflammatory bowel diseases (IBDs) are associated with a lower efficacy and with several side effects that strongly affect the quality of life of IBD patients. Consequently, the development of new therapies, combining efficacy and safety is an important goal in the field of intestinal inflammation. In this context, evidence supports that polyphenols can be promising candidates due to their ability to modulate intracellular inflammatory signalling cascades. Luteolin, a naturally occurring flavonoid, exhibits anti-inflammatory properties in several models of inflammation. However, its action against intestinal inflammation has been poorly explored. Therefore, there is a lack of scientific knowledge about the potential impact of luteolin in the intestinal inflammation, particularly regarding the underlying molecular mechanisms by which luteolin can exert its anti-inflammatory action. We assessed the potential anti-inflammatory effect of luteolin in a cellular model of intestinal inflammation using cytokine-stimulated HT-29 colon epithelial cells, and the underlying key molecular mechanisms were identified. Luteolin significantly inhibited interleukine-8 (IL-8) production, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression and nitric oxide (˙NO) overproduction induced by cytokines, indicating that luteolin negatively modulates key inflammatory signalling cascades underlying intestinal inflammation. Mechanistically, the inhibition of the JAK/STAT pathway was identified as a critical mechanism by which luteolin exerts its intestinal anti-inflammatory action. This study uncovers novel molecular mechanisms by which luteolin may act against intestinal inflammation, which might support the use of luteolin as a future therapeutic strategy in IBD.
Collapse
Affiliation(s)
- Carla Nunes
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Leonor Almeida
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - João Laranjinha
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
30
|
El-Salhy M, Mazzawi T. Fecal microbiota transplantation for managing irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 2018; 12:439-445. [PMID: 29493330 DOI: 10.1080/17474124.2018.1447380] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a widespread gastrointestinal disorder affecting 11.2% of the world adult population. The intestinal microbiome is thought to play a pivotal role in the pathophysiology of IBS. The composition of the fecal microbiome in IBS patients differs from that in healthy individuals, but the exact bacteria species involved in the development of IBS remain to be determined. There is also an imbalance between useful and harmful bacteria (dysbiosis) in the intestinal microbiome in patients with IBS. Consuming prebiotics, probiotics, or synbiotics has a limited effect on IBS symptoms. In contrast, fecal microbiome transplantation (FMT) in IBS patients reverses the dysbiosis to normobiosis and reduces the IBS symptoms in about 70% of patients, and is not associated with any serious adverse events. Area covered: The available data on the microbiome and FMT in IBS regarding the efficacy of FMT in managing IBS were found using a PubMed search of these topics. Expert commentary: FMT is a promising tool for managing irritable syndrome. It appears to be effective, easy, and inexpensive procedure. However, more controlled studies involving larger cohorts of IBS are needed before FMT can be used as a routine procedure in the clinic.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Section for Gastroenterology, Department of Medicine , Stord Hospital , Stord , Norway.,b Section for Gastroenterology, Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Tarek Mazzawi
- b Section for Gastroenterology, Department of Clinical Medicine , University of Bergen , Bergen , Norway
| |
Collapse
|
31
|
Abstract
The gut microbiota, as the main member in gut microecology, is an essential mediator in health and disease. The gut microbiota interacts with various organs and systems in the body, including brain, lung, liver, bone, cardiovascular system, and others. Microbiota-derived metabolites such as the short chain fatty acid (SCFA) butyrate are primary signals, which link the gut microbiota and physiology. Recently, the gut microbiota has been identified as the origin of a number of diseases by influencing the related cell signaling pathways such as WNT/beta-catenin pathway in colorectal cancer and T cell receptor signaling in the central nervous system. Moreover, several microRNAs participate in signaling networks through the intervention of the gut microbiota. The interaction between the gut microbiota and miRNAs plays a crucial role in vascular dysfunction and hepatocellular carcinoma (HCC). In this review, we will report and discuss recent findings about the crosstalk between the gut microbiota and physical organs and how the gut microbiota and miRNAs regulate each other while influencing the host via genes, proteins, or metabolites.
Collapse
Affiliation(s)
- Qingqing Feng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
32
|
Gonçalves P, Araújo JR, Di Santo JP. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:558-572. [PMID: 29462379 DOI: 10.1093/ibd/izx029] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Gut microbiota has a fundamental role in the energy homeostasis of the host and is essential for proper "education" of the immune system. Intestinal microbial communities are able to ferment dietary fiber releasing short-chain fatty acids (SCFAs). The SCFAs, particularly butyrate (BT), regulate innate and adaptive immune cell generation, trafficing, and function. For example, BT has an anti-inflammatory effect by inhibiting the recruitment and proinflammatory activity of neutrophils, macrophages, dendritic cells, and effector T cells and by increasing the number and activity of regulatory T cells. Gut microbial dysbiosis, ie, a microbial community imbalance, has been suggested to play a role in the development of inflammatory bowel disease (IBD). The relationship between dysbiosis and IBD has been difficult to prove, especially in humans, and is probably complex and dynamic, rather than one of a simple cause and effect relationship. However, IBD patients have dysbiosis with reduced numbers of SCFAs-producing bacteria and reduced BT concentration that is linked to a marked increase in the number of proinflammatory immune cells in the gut mucosa of these patients. Thus, microbial dysbiosis and reduced BT concentration may be a factor in the emergence and severity of IBD. Understanding the relationship between microbial dysbiosis and reduced BT concentration to IBD may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - João Ricardo Araújo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1202, Paris, France
| | - James P Di Santo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| |
Collapse
|
33
|
JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation. Stem Cell Reports 2017; 10:17-26. [PMID: 29276155 PMCID: PMC5768934 DOI: 10.1016/j.stemcr.2017.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/26/2023] Open
Abstract
The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs) and slowly cycling, reserve ISCs (r-ISCs). Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.
Collapse
|
34
|
Zhang S, Ma J, Sheng L, Zhang D, Chen X, Yang J, Wang D. Total Coumarins from Hydrangea paniculata Show Renal Protective Effects in Lipopolysaccharide-Induced Acute Kidney Injury via Anti-inflammatory and Antioxidant Activities. Front Pharmacol 2017; 8:872. [PMID: 29311915 PMCID: PMC5735979 DOI: 10.3389/fphar.2017.00872] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/10/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Septic acute kidney injury (AKI) causes high mortality in critical care units, and no effective therapy exists in clinical treatment. In the current study, water and ethanol extracts of Hydrangea paniculata (HP), a traditional Chinese medicinal plant, were used to test its renoprotective effects in a lipopolysaccharide (LPS)-induced murine model of septic AKI. Methods: C57BL/6 mice were orally pretreated with HP three times, and then intraperitoneal LPS injection was used to induce septic AKI. Blood from animals was collected for biochemical analysis and kidneys were obtained for pathological analysis. Kidney tissue homogenates were used to investigate the effect of HP on inflammation and oxidative stress. Immunohistochemistry was used to investigate tubular cell apoptosis. Flow cytometry was conducted to analyze leukocyte infiltration into the kidneys. Blood cell counts were used to analyze changes in peripheral leukocytes. In vitro studies with Ana1 and HK-2 cells stimulated by LPS were used to investigate the anti-inflammatory effects and inhibition of signaling pathways by HP. Results: HP significantly decreased blood urea nitrogen and plasma neutrophil gelatinase-associated lipocalin concentrations, as well as tubulointerstitium injuries in septic AKI mice. Moreover, HP administration improved animal survival following lethal LPS injections. HP ameliorated apoptosis of tubular cells by inhibiting the cleavage of caspase 3 and caspase 7. HP also showed pronounced antioxidant activity in AKI kidneys. HP showed anti-inflammatory effects by inhibiting the infiltration of neutrophils and macrophages into kidney tissues induced by LPS, as well as inhibiting the production of cytokines and chemokines. Possible molecular mechanisms included HP inhibition of NF-κB nuclear translocation in LPS-induced macrophages and tubular cells, and reduction of STAT3, STAT1, and ERK1/2 phosphorylation stimulated by LPS in vitro. Single acute toxicity tests confirmed that HP, even at 5 g/kg dosage, does not cause animal death. Pharmacokinetics also showed that coumarins from HP could be metabolized into two bioactive compounds, umbelliferone, and esculetin. Conclusions: HP extract may protect renal function in LPS-induced AKI by anti-inflammatory and antioxidant activities, and has potential in the critical care of AKI.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingzhi Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
The Peptidylarginine Deiminase Inhibitor Cl-Amidine Suppresses Inducible Nitric Oxide Synthase Expression in Dendritic Cells. Int J Mol Sci 2017; 18:ijms18112258. [PMID: 29077055 PMCID: PMC5713228 DOI: 10.3390/ijms18112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
The conversion of peptidylarginine into peptidylcitrulline by calcium-dependent peptidylarginine deiminases (PADs) has been implicated in the pathogenesis of a number of diseases, identifying PADs as therapeutic targets for various diseases. The PAD inhibitor Cl-amidine ameliorates the disease course, severity, and clinical manifestation in multiple disease models, and it also modulates dendritic cell (DC) functions such as cytokine production, antigen presentation, and T cell proliferation. The beneficial effects of Cl-amidine make it an attractive compound for PAD-targeting therapeutic strategies in inflammatory diseases. Here, we found that Cl-amidine inhibited nitric oxide (NO) generation in a time- and dose-dependent manner in maturing DCs activated by lipopolysaccharide (LPS). This suppression of NO generation was independent of changes in NO synthase (NOS) enzyme activity levels but was instead dependent on changes in inducible NO synthase (iNOS) transcription and expression levels. Several upstream signaling pathways for iNOS expression, including the mitogen-activated protein kinase, nuclear factor-κB p65 (NF-κB p65), and hypoxia-inducible factor 1 pathways, were not affected by Cl-amidine. By contrast, the LPS-induced signal transducer and the activator of transcription (STAT) phosphorylation and activator protein-1 (AP-1) transcriptional activities (c-Fos, JunD, and phosphorylated c-Jun) were decreased in Cl-amidine-treated DCs. Inhibition of Janus kinase/STAT signaling dramatically suppressed iNOS expression and NO production, whereas AP-1 inhibition had no effect. These results indicate that Cl-amidine-inhibited STAT activation may suppress iNOS expression. Additionally, we found mildly reduced cyclooxygenase-2 expression and prostaglandin E2 production in Cl-amidine-treated DCs. Our findings indicate that Cl-amidine acts as a novel suppressor of iNOS expression, suggesting that Cl-amidine has the potential to ameliorate the effects of excessive iNOS/NO-linked immune responses.
Collapse
|
36
|
Lee DY, Hwang CJ, Choi JY, Park MH, Song MJ, Oh KW, Son DJ, Lee SH, Han SB, Hong JT. Inhibitory Effect of Carnosol on Phthalic Anhydride-Induced Atopic Dermatitis via Inhibition of STAT3. Biomol Ther (Seoul) 2017; 25:535-544. [PMID: 28655070 PMCID: PMC5590798 DOI: 10.4062/biomolther.2017.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 12/23/2022] Open
Abstract
Carnosol is a phenolic antioxidant present in rosemary (Rosmarinus officinalis). It is known for anti-inflammatory effects, analgesic activity and anti-cancer effects. However, no study has been dedicated yet to its effect on atopic dermatitis (AD). Here, we show that carnosol effectively inhibited LPS-induced nitric oxide (NO) generation and expression of inflammatory marker proteins (iNOS and COX-2) in RAW 264.7 cells. In addition, carnosol effectively inhibits the phosphorylation of STAT3 and DNA binding activity in RAW 264.7 cells. Pull down assay and docking model analysis showed that carnosol directly binds to the DNA binding domain (DBD) of STAT3. We next examined the anti-atopic activity of carnosol (0.05 µg/cm2) using 5% Phthalic anhydride (PA)-induced AD model in HR1 mice. Carnosol treatment significantly reduced 5% PA-induced AD like skin inflammation in skin tissues compared with control mice. Moreover, carnosol treatment inhibits the expression of iNOS and COX-2 in skin tissue. In addition, the levels of TNF-α, IL-1β, and Immunoglobulin-E in blood serum was significantly decreased in carnosol treated mice compared with those of 5% PA treated group. Furthermore, the activation of STAT3 in skin tissue was decreased in carnosol treated mice compared with control mice. In conclusion, these findings suggest that carnosol exhibited a potential anti-AD activity by inhibiting pro-inflammatory mediators through suppression of STAT3 activation via direct binding to DBD of STAT3.
Collapse
Affiliation(s)
- Do Yeon Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Min Ji Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seung Hwa Lee
- Department of Industrial Cosmetics, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
37
|
El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 2017; 23:5068-5085. [PMID: 28811704 PMCID: PMC5537176 DOI: 10.3748/wjg.v23.i28.5068] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease.
Collapse
|
38
|
El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome (Review). Int J Mol Med 2017; 40:607-613. [PMID: 28731144 PMCID: PMC5548066 DOI: 10.3892/ijmm.2017.3072] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder. It is widely believed that IBS is caused by a deficient intake of dietary fiber, and most physicians recommend that patients with IBS increase their intake of dietary fiber in order to relieve their symptoms. However, different types of dietary fiber exhibit marked differences in physical and chemical properties, and the associated health benefits are specific for each fiber type. Short-chain soluble and highly fermentable dietary fiber, such as oligosaccharides results in rapid gas production that can cause abdominal pain/discomfort, abdominal bloating/distension and flatulence in patients with IBS. By contrast, long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber, such as psyllium results in a low gas production and the absence of the symptoms related to excessive gas production. The effects of type of fiber have been documented in the management of IBS, and it is known to improve the overall symptoms in patients with IBS. Dietary fiber acts on the gastrointestinal tract through several mechanisms, including increased fecal mass with mechanical stimulation/irritation of the colonic mucosa with increasing secretion and peristalsis, and the actions of fermentation byproducts, particularly short-chain fatty acids, on the intestinal microbiota, immune system and the neuroendocrine system of the gastrointestinal tract. Fiber supplementation, particularly psyllium, is both safe and effective in improving IBS symptoms globally. Dietary fiber also has other health benefits, such as lowering blood cholesterol levels, improving glycemic control and body weight management.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Synne Otterasen Ystad
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5020 Bergen, Norway
| | - Tarek Mazzawi
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Doris Gundersen
- Department of Research and Innovation, Helse-Fonna, 5528 Haugesund, Norway
| |
Collapse
|
39
|
Immunomodulatory effect of low molecular-weight seleno-aminopolysaccharides in intestinal epithelial cells. Int J Biol Macromol 2017; 99:570-577. [DOI: 10.1016/j.ijbiomac.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/18/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
|
40
|
Wei Z, Xiao C, Guo C, Zhang X, Wang Y, Wang J, Yang Z, Fu Y. Sodium acetate inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation. Microb Pathog 2017; 107:116-121. [PMID: 28351710 DOI: 10.1016/j.micpath.2017.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Bovine mastitis is one of the most costly and prevalent disease affecting dairy cows worldwide. It was reported that Staphylococcus aureus could internalize into bovine mammary epithelial cells (bMEC) and induce mastitis. Some short chain fatty acids (SCFA) have shown to suppress S. aureus invasion into bMEC and regulate antimicrobial peptides expression. But it has not been evaluated that sodium acetate has the similar effect. The aim of this study was to investigate the effect of sodium acetate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus. Gentamicin protection assay showed that the invasion of S. aureus into bMEC was inhibited by sodium acetate in a dose-dependent manner. Sodium acetate (0.25-5 mM) did not affect S. aureus growth and bMEC viability. The TAP gene level was decreased, while the BNBD5 mRNA level was enhanced in sodium acetate treated bMEC. In sodium acetate treated and S. aureus challenged bMEC, the TAP gene expression was increased and BNBD5 gene expression was not modified at low concentrations, but decreased at high concentrations. The Nitric oxide (NO) production of bMEC after S. aureus stimulation was decreased by sodium acetate treatment. Furthermore, sodium acetate treatment suppressed S. aureus-induced NF-κB activation in bMEC in a dose manner. In conclusion, our results suggested that sodium acetate exerts an inhibitory property on S. aureus internalization and modulates antimicrobial peptides gene expression.
Collapse
Affiliation(s)
- Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Chong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Changming Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yanan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Jingjing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China; Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| |
Collapse
|
41
|
Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus. Sci Rep 2016; 6:31845. [PMID: 27545457 PMCID: PMC4992823 DOI: 10.1038/srep31845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/26/2016] [Indexed: 11/17/2022] Open
Abstract
Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish.
Collapse
|
42
|
Aguilar EC, Santos LCD, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, da Silva JF, Mendes BP, Capettini LSA, Teixeira LG, Lemos VS, Alvarez-Leite JI. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J Nutr Biochem 2016; 34:99-105. [PMID: 27261536 DOI: 10.1016/j.jnutbio.2016.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022]
Abstract
Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site.
Collapse
Affiliation(s)
- Edenil C Aguilar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais; Departamento de Fisiologia, Universidade Federal de Minas Gerais
| | | | - Alda J Leonel
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais
| | | | | | | | | | | | | | | | - Virginia S Lemos
- Departamento de Fisiologia, Universidade Federal de Minas Gerais
| | | |
Collapse
|
43
|
Orriols M, Varona S, Martí-Pàmies I, Galán M, Guadall A, Escudero JR, Martín-Ventura JL, Camacho M, Vila L, Martínez-González J, Rodríguez C. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Cardiovasc Res 2016; 110:431-42. [DOI: 10.1093/cvr/cvw082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
|
44
|
Natarajan SB, Kim YS, Hwang JW, Park PJ. Immunomodulatory properties of shellfish derivatives associated with human health. RSC Adv 2016. [DOI: 10.1039/c5ra26375a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Some vital components of marine shellfish are documented as an important source for both nutritional and pharmacological applications.
Collapse
Affiliation(s)
| | - Yon-Suk Kim
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Jin-Woo Hwang
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Pyo-Jam Park
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| |
Collapse
|
45
|
Simon PS, Sharman SK, Lu C, Yang D, Paschall AV, Tulachan SS, Liu K. The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 2015; 15:770. [PMID: 26497740 PMCID: PMC4619452 DOI: 10.1186/s12885-015-1808-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/16/2015] [Indexed: 01/23/2023] Open
Abstract
Background Inducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined. Methods iNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1 and NF-κB association with the chromatin DNA of the nos2 promoter. Results We show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS expression. More interestingly, we observed that the p65/p65 and p50/p50 homodimers, not the canonical p65/p50 heterodimer, directly binds to the nos2 promoter to regulate iNOS expression in myeloid cells. Conclusions IFNγ-induced IRF8 acts in concert with NF-κB to regulate iNOS expression in both colon carcinoma and myeloid cells. In myeloid cells, the NF-κB complexes that bind to the nos2 promoter are p65/p65 and p50/p50 homodimers.
Collapse
Affiliation(s)
- Priscilla S Simon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Sidhartha S Tulachan
- Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
46
|
Chen YC, Huang LT, Tain YL, Chen CC, Sheen JM, Tiao MM, Tsai CM, Kuo HC, Huang CC, Chang KA, Yu HR. Prenatal glucocorticoid contributed to rat lung dysplasia is related to asymmetric dimethylarginine/nitric oxide pathway. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0859-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Legrand P, Rioux V. Specific roles of saturated fatty acids: Beyond epidemiological data. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| | - Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| |
Collapse
|
48
|
Ghorbani P, Santhakumar P, Hu Q, Djiadeu P, Wolever TM, Palaniyar N, Grasemann H. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. Eur Respir J 2015; 46:1033-45. [DOI: 10.1183/09031936.00143614] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/30/2015] [Indexed: 11/05/2022]
Abstract
The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5–2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5–2.5 mM) SCFA concentrations increased, while high (25–50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth ofPseudomonas aeruginosain a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.
Collapse
|
49
|
Cai B, Cai JP, Luo YL, Chen C, Zhang S. The Specific Roles of JAK/STAT Signaling Pathway in Sepsis. Inflammation 2015; 38:1599-608. [DOI: 10.1007/s10753-015-0135-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Kim NJ, Ahn KB, Jeon JH, Yun CH, Finlay BB, Han SH. Lipoprotein in the cell wall of Staphylococcus aureus is a major inducer of nitric oxide production in murine macrophages. Mol Immunol 2015; 65:17-24. [PMID: 25600878 DOI: 10.1016/j.molimm.2014.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/18/2014] [Accepted: 12/26/2014] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that causes inflammation at infection sites by inducing various inflammatory mediators such as nitric oxide (NO). To identify the staphylococcal virulence factors contributing to NO production, we compared the ability of ethanol-killed wild-type S. aureus and mutant strains lacking lipoteichoic acid (ΔltaS), lipoproteins (Δlgt), or d-alanine (ΔdltA) to stimulate NO production in a murine macrophage cell line, RAW 264.7, and the primary macrophages derived from C57BL/6 mice. Wild-type, ΔltaS, and ΔdltA strains induced NO production in a dose-dependent manner but this response was not observed when the cells were stimulated with the Δlgt strain. Moreover, purified lipoproteins triggered NO production in macrophages. Coincident with NO induction, the wild-type, ΔltaS, and ΔdltA strains induced expression of inducible NO synthase (iNOS) at both mRNA and protein levels whereas Δlgt failed to induce iNOS protein or mRNA. Transient transfection followed by a reporter gene assay and Western blotting experiments demonstrated that wild-type, ΔltaS, and ΔdltA strains, but not the Δlgt strain, induced substantial activation of NF-κB and STAT1 phosphorylation, both of which are known to be crucial for iNOS expression. Moreover, wild-type, ΔltaS, and ΔdltA strains increased Toll-like receptor 2 (TLR2) activation, which is known to mediate S. aureus-induced innate immunity, whereas the Δlgt strain did not. Collectively, these results suggest that lipoproteins in the cell wall of S. aureus play a major role in the induction of NO production in murine macrophages through activation of the TLR2 receptor.
Collapse
Affiliation(s)
- Nam Joong Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Ki Bum Ahn
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korean National Institute of Health, Cheongwon-gun, Chungbuk 363-951, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|