1
|
She F, Zhang T, Lee TH. Multifaceted role of zipper-interacting protein kinase beyond cell death: Implication of ZIPK dysregulation in neuronal and vascular injuries. Pharmacol Res 2025; 216:107793. [PMID: 40409521 DOI: 10.1016/j.phrs.2025.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Zipper-interacting protein kinase (ZIPK) belongs to the death-associated protein kinase (DAPK) family and is a serine/threonine kinase. ZIPK is ubiquitously expressed in different types of tissues and cells. ZIPK is involved in many cellular functions, including cell death, smooth muscle contraction, transcriptional regulation, inflammatory signaling and the regulation of angiogenesis. The dysregulation of ZIPK has been shown to be involved in multiple diseases, including cancer, neurological diseases such as stroke, and cardiovascular diseases such as hypertension. The molecular mechanisms by which ZIPK inhibits the development of cancer have been well studied, but less is known about how ZIPK dysregulation is involved in vascular and neurological diseases. In this review, we summarize the current knowledge about the cellular processes in which ZIPK is involved and the pathological relevance of ZIPK dysregulation in diseases, with a focus on the role of ZIPK in vascular and neuronal functions. The molecular mechanisms by which ZIPK dysregulation contributes to cancer and vascular and neuronal diseases are discussed. We also review recent advances in the development of ZIPK modulators and their potential in treating vascular damage and neurological disorders. Multiple findings support that ZIPK has important functions in regulating vascular homeostasis and serves as a novel therapeutic target for alleviating neurological diseases.
Collapse
Affiliation(s)
- Fei She
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
2
|
Zhang T, Kim BM, Lee TH. Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease. Transl Neurodegener 2024; 13:4. [PMID: 38195518 PMCID: PMC10775678 DOI: 10.1186/s40035-023-00395-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-β (Aβ) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aβ and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aβ deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., 10F Ace Cheonggye Tower, 53, Seonggogae-Ro, Uiwang-Si, 16006, Gyeonggi-Do, Korea.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
3
|
Zhang T, Xia Y, Hu L, Chen D, Gan CL, Wang L, Mei Y, Lan G, Shui X, Tian Y, Li R, Zhang M, Lee TH. Death-associated protein kinase 1 mediates Aβ42 aggregation-induced neuronal apoptosis and tau dysregulation in Alzheimer's disease. Int J Biol Sci 2022; 18:693-706. [PMID: 35002518 PMCID: PMC8741852 DOI: 10.7150/ijbs.66760] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/27/2021] [Indexed: 12/22/2022] Open
Abstract
The aggregation of amyloid-β (Aβ) peptides into oligomers and fibrils is a key pathological feature of Alzheimer's disease (AD). An increasing amount of evidence suggests that oligomeric Aβ might be the major culprit responsible for various neuropathological changes in AD. Death-associated protein kinase 1 (DAPK1) is abnormally elevated in brains of AD patients and plays an important role in modulating tau homeostasis by regulating prolyl isomerase Pin1 phosphorylation. However, it remains elusive whether and how Aβ species influence the function of DAPK1, and whether this may further affect the function and phosphorylation of tau in neurons. Herein, we demonstrated that Aβ aggregates (both oligomers and fibrils) prepared from synthetic Aβ42 peptides were able to upregulate DAPK1 protein levels and thereby its function through heat shock protein 90 (HSP90)-mediated protein stabilization. DAPK1 activation not only caused neuronal apoptosis, but also phosphorylated Pin1 at the Ser71 residue, leading to tau accumulation and phosphorylation at multiple AD-related sites in primary neurons. Both DAPK1 knockout (KO) and the application of a specific DAPK1 inhibitor could effectively protect primary neurons against Aβ aggregate-induced cell death and tau dysregulation, corroborating the critical role of DAPK1 in mediating Aβ aggregation-induced neuronal damage. Our study suggests a mechanistic link between Aβ oligomerization and tau hyperphosphorylation mediated by DAPK1, and supports the role of DAPK1 as a promising target for early intervention in AD.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yongfang Xia
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Li Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Chen-Ling Gan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yingxue Mei
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Guihua Lan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xindong Shui
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yuan Tian
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Mi Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
4
|
Chae YK, Kim H. Development of an Autoinducible Plasmid for Recombinant Protein Production. Protein Pept Lett 2021; 28:1398-1407. [PMID: 34749604 DOI: 10.2174/0929866528666211105113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The production of recombinant proteins in E. coli involves such factors as host strains, expression vectors, culture media, and induction methods. The typical procedure to produce heterologous proteins consists of the following: (1) insertion of the target gene into a suitable vector to construct an overexpression plasmid, (2) transformation of a strain specialized for protein production with the constructed plasmid DNA, (3) growth of the host in a suitable medium and induction of the protein production at a right moment, and (4) further growth to get the maximum yield. There are hurdles involved in each of these steps, and researchers have developed many materials or methods, which often require special recipes or procedures. OBJECTIVE To eliminate the special requirements for the recombinant protein production by using readily available materials. Also to save time and effort in the routine protein production work. METHOD We started with a vector capable of producing a target protein fused to the C-terminus of the maltose binding protein (MBP). The mCherry (red fluorescent protein) gene was fused to MBP. It acted as a reporter in the initial screening procedure. The original lethal gene (barnase) was replaced with sacB. We chose 3 stationary phase promoters, and made hybrids of them by mixing halves from each one. The T5 promoter was replaced with these stationary phase promoters or their hybrids. The best plasmid was selected by the color intensity of the cell pellet. MBP and GST genes were inserted in place of sacB, and their production yields were compared with the original plasmid in the conventional way of expression. RESULTS We constructed an expression plasmid with an autoinducible promoter working in a host that was not specially designed for protein production and in a TB medium which did not contain any secret ingredient, nor was difficult to prepare unlike Studier's defined medium. This plasmid also contains a color indicator which turns red when protein production is successful. We tested our system with the maltose binding protein (MBP) and the glutathione S-transferase (GST), and showed that both proteins were produced to a level comparable to what the commercial medium and/or the specialized strain yielded. CONCLUSION We developed a plasmid equipped with an autoinducible promoter, a hybrid of the two promoters which were activated at the stationary phase. This plasmid does not need a special E. coli strain nor a sophisticated nor an expensive medium. It produces an intense red (or pink) color, which can be used as an indicator of a successful production of the target protein and as a predictive measure of the amount of the produced target protein. We speculate that this plasmid will have its greatest advantage when growing cells at low temperatures which would inevitably take a long time. .
Collapse
Affiliation(s)
- Young Kee Chae
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul. Korea
| | - Hakbeom Kim
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul. Korea
| |
Collapse
|
5
|
Chen D, Mei Y, Kim N, Lan G, Gan CL, Fan F, Zhang T, Xia Y, Wang L, Lin C, Ke F, Zhou XZ, Lu KP, Lee TH. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer's disease. J Pineal Res 2020; 69:e12665. [PMID: 32358852 PMCID: PMC7890046 DOI: 10.1111/jpi.12665] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Death-associated protein kinase 1 (DAPK1) is upregulated in the brains of human Alzheimer's disease (AD) patients compared with normal subjects, and aberrant DAPK1 regulation is implicated in the development of AD. However, little is known about whether and how DAPK1 function is regulated in AD. Here, we identified melatonin as a critical regulator of DAPK1 levels and function. Melatonin significantly decreases DAPK1 expression in a post-transcriptional manner in neuronal cell lines and mouse primary cortical neurons. Moreover, melatonin directly binds to DAPK1 and promotes its ubiquitination, resulting in increased DAPK1 protein degradation through a proteasome-dependent pathway. Furthermore, in tau-overexpressing mouse brain slices, melatonin treatment and the inhibition of DAPK1 kinase activity synergistically decrease tau phosphorylation at multiple sites related to AD. In addition, melatonin and DAPK1 inhibitor dramatically accelerate neurite outgrowth and increase the assembly of microtubules. Mechanistically, melatonin-mediated DAPK1 degradation increases the activity of Pin1, a prolyl isomerase known to play a protective role against tau hyperphosphorylation and tau-related pathologies. Finally, elevated DAPK1 expression shows a strong correlation with the decrease in melatonin levels in human AD brains. Combined, these results suggest that DAPK1 regulation by melatonin is a novel mechanism that controls tau phosphorylation and function and offers new therapeutic options for treating human AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yingxue Mei
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Nami Kim
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guihua Lan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Chen-Ling Gan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Fei Fan
- Fujian Provincial Key Laboratory of Neuroglia and Diseases, Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Health College, Fuzhou, Fujian, China
| | - Tao Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongfang Xia
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Chun Lin
- Fujian Provincial Key Laboratory of Neuroglia and Diseases, Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Fang Ke
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Chen D, Zhou XZ, Lee TH. Death-Associated Protein Kinase 1 as a Promising Drug Target in Cancer and Alzheimer's Disease. Recent Pat Anticancer Drug Discov 2020; 14:144-157. [PMID: 30569876 PMCID: PMC6751350 DOI: 10.2174/1574892814666181218170257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Background: Death-Associated Protein Kinase 1 (DAPK1) plays an important role in apopto-sis, tumor suppression and neurodegeneration including Alzheimer’s Disease (AD). Objective: This review will describe the diverse roles of DAPK1 in the development of cancer and AD, and the current status of drug development targeting DAPK1-based therapies. Methods: Reports of DAPK1 regulation, function and substrates were analyzed using genetic DAPK1 manipulation and chemical DAPK1 modulators. Results: DAPK1 expression and activity are deregulated in cancer and AD. It is down-regulated and/or inactivated by multiple mechanisms in many human cancers, and elicits a protective effect to counteract numerous death stimuli in cancer, including activation of the master regulator Pin1. Moreover, loss of DAPK1 expression has correlated strongly with tumor recurrence and metastasis, suggesting that lack of sufficient functional DAPK1 might contribute to cancer. In contrast, DAPK1 is highly expressed in the brains of most human AD patients and has been identified as one of the genetic factors affecting suscepti-bility to late-onset AD. The absence of DAPK1 promotes efficient learning and better memory in mice and prevents the development of AD by acting on many key proteins including Pin1 and its downstream tar-gets tau and APP. Recent patents show that DAPK1 modulation might be used to treat both cancer and AD. Conclusion: DAPK1 plays a critical role in diverse physiological processes and importantly, its deregula-tion is implicated in the pathogenesis of either cancer or AD. Therefore, manipulating DAPK1 activity and/or expression may be a promising therapeutic option for cancer or AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiao Z Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Tae H Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
7
|
Regulation of the Expression of DAPK1 by SUMO Pathway. Biomolecules 2019; 9:biom9040151. [PMID: 30999631 PMCID: PMC6523460 DOI: 10.3390/biom9040151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023] Open
Abstract
Death Associated Protein Kinase 1 (DAPK1) is an important signaling kinase mediating the biological effect of multiple natural biomolecules such as IFN-γ, TNF-α, curcumin, etc. DAPK1 is degraded through both ubiquitin-proteasomal and lysosomal degradation pathways. To investigate the crosstalk between these two DAPK1 degradation pathways, we carried out a screen using a set of ubiquitin E2 siRNAs at the presence of Tuberous Sclerous 2 (TSC2) and identified that the small ubiquitin-like molecule (SUMO) pathway is able to regulate the protein levels of DAPK1. Inhibition of the SUMO pathway enhanced DAPK1 protein levels and the minimum domain of DAPK1 protein required for this regulation is the kinase domain, suggesting that the SUMO pathway regulates DAPK1 protein levels independent of TSC2. Suppression of the SUMO pathway did not enhance DAPK1 protein stability. In addition, mutation of the potential SUMO conjugation sites on DAPK1 kinase domain did not alter its protein stability or response to SUMO pathway inhibition. These data suggested that the SUMO pathway does not regulate DAPK1 protein degradation. The exact molecular mechanism underlying this regulation is yet to be discovered.
Collapse
|
8
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
9
|
Huang Y, Lin M, Chen X, Huang C, Zhang X, Chen L, Wu K, Chen Y, Zhu Y, Lin Y. Evaluation of the prognostic and physiological functions of death associated protein kinase 1 in breast cancer. Oncol Lett 2018; 15:8261-8268. [PMID: 29805560 PMCID: PMC5958705 DOI: 10.3892/ol.2018.8439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Death associated protein kinase 1 (DAPK1) is a notable serine/threonine kinase involved in the regulation of multiple cellular pathways, including apoptosis and autophagy. Although DAPK1 is usually considered to be a tumor suppressor, it was previously reported to promote the viability of p53 mutant cancer cell lines and possess physiological oncogenic functions in breast cancer. However, the ability of endogenous DAPK1 to suppress breast cancer cell mobility has not been assessed. In the present study, the prognostic function of DAPK1 in a Chinese patient cohort was evaluated, and no significant association was observed between DAPK1 expression and patient survival or lymph node metastasis. In order to investigate the physiological function of endogenous DAPK1, stable inducible DAPK1 knockdown MCF7 and MDA-MB-231 cell lines were established. Consistent with previous studies, endogenous DAPK1 only regulated cell viability in p53 mutant MDA-MB-231 cells. However, knockdown of DAPK1 did not significantly affect cell motility of either MCF7 or MDA-MB-231 cells. Altogether, these results further explored the function of endogenous DAPK1 in breast cancer and may shed light in understanding the molecular signaling pathways regulating the physiological function of DAPK1.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Meizhen Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Chaoqun Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Xiuli Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| |
Collapse
|
10
|
Mebratu YA, Leyva-Baca I, Wathelet MG, Lacey N, Chand HS, Choi AMK, Tesfaigzi Y. Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nat Commun 2017; 8:803. [PMID: 28986568 PMCID: PMC5630627 DOI: 10.1038/s41467-017-00975-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/09/2017] [Indexed: 01/08/2023] Open
Abstract
Bik reduces hyperplastic epithelial cells by releasing calcium from endoplasmic reticulum stores and causing apoptosis, but the detailed mechanisms are not known. Here we report that Bik dissociates the Bak/Bcl-2 complex to enrich for ER-associated Bak and interacts with the kinase domain of DAPk1 to form Bik-DAPk1-ERK1/2-Bak complex. Bik also disrupts the Bcl2-IP3R interaction to cause ER Ca2+ release. The ER-associated Bak interacts with the kinase and calmodulin domains of DAPk1 to increase the contact sites of ER and mitochondria, and facilitate ER Ca2+ uptake by mitochondria. Although the Bik BH3 helix was sufficient to enrich for ER-Bak and elicit ER Ca2+ release, Bik-induced mitochondrial Ca2+ uptake is blocked with reduced Bak levels. Further, the Bik-derived peptide reduces allergen- and cigarette smoke-induced mucous cell hyperplasia in mice and in differentiated primary human airway epithelial cultures. Therefore, Bik peptides may have therapeutic potential in airway diseases associated with chronic mucous hypersecretion.Bcl-2 interacting killer (Bik) decreases airway epithelial hyperplasia via apoptosis mediated by calcium release from the endoplasmic reticulum (ER), but the mechanism is unclear. Here the authors show that Bik promotes Bak enrichment at the ER to tether mitochondria for efficient calcium transfer.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Ivan Leyva-Baca
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Marc G Wathelet
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Neal Lacey
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Hitendra S Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Augustine M K Choi
- Department of Medicine, Weill Cornell Medical Center, New York, NY, 14850, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA.
| |
Collapse
|
11
|
Zhu Y, Li S, Wang Q, Chen L, Wu K, Huang Y, Chen X, Lin Y. Quantitative and correlation analysis of the DNA methylation and expression of DAPK in breast cancer. PeerJ 2017; 5:e3084. [PMID: 28316888 PMCID: PMC5354070 DOI: 10.7717/peerj.3084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/12/2017] [Indexed: 01/21/2023] Open
Abstract
Background Death-associated protein kinase 1 (DAPK) is an important tumor suppressor kinase involved in the regulation of multiple cellular activities such as apoptosis and autophagy. DNA methylation of DAPK gene was found in various types of cancers and often correlated with the clinicopathological characteristics. However, the mRNA and protein expression of DAPK in the same sample was rarely measured. Thus, it was unclear if the correlation between DAPK gene methylation and clinicopathological parameters was due to the loss of DAPK expression. Methods In this study, the DNA methylation rate, mRNA and protein expression of DAPK was quantitatively detected in 15 pairs of breast cancer patient samples including tumor (T) and adjacent non-tumor (N) tissues. Results The correlation between DNA methylation rate and mRNA expression, together with the correlation between mRNA and protein expression, was calculated. No correlation was observed between any levels using either the measurement value of each sample or the T/N ratio of each pair. Discussion These data suggested that the DNA methylation status of DAPK did not correlate well with its mRNA or protein expression. Extra caution is needed when interpreting the DNA methylation data of DAPK gene in clinical studies.
Collapse
Affiliation(s)
- Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Shuiqin Li
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| | - Qingshui Wang
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Yide Huang
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Yao Lin
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| |
Collapse
|
12
|
Verma S, Goyal S, Jamal S, Singh A, Grover A. Hsp90: Friends, clients and natural foes. Biochimie 2016; 127:227-240. [PMID: 27295069 DOI: 10.1016/j.biochi.2016.05.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/13/2022]
Abstract
Hsp90, a homodimeric ATPase, is responsible for the correct folding of a number of newly synthesized polypeptides in addition to the correct folding of denatured/misfolded client proteins. It requires several co-chaperones and other partner proteins for chaperone activity. Due to the involvement of Hsp90-dependent client proteins in a variety of oncogenic signaling pathways, Hsp90 inhibition has emerged as one of the leading strategies for anticancer chemotherapeutics. Most of Hsp90 inhibitors blocks the N terminal ATP binding pocket and prevents the conformational changes which are essential for the loading of co-chaperones and client proteins. Several other inhibitors have also been reported which disrupt chaperone cycle in ways other than binding to N terminal ATP binding pocket. The Hsp90 inhibition is associated with heat shock response, mediated by HSF-1, to overcome the loss of Hsp90 and sustain cell survival. This review is an attempt to give an over view of all the important players of chaperone cycle.
Collapse
Affiliation(s)
- Sharad Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022, India.
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022, India.
| | - Aditi Singh
- Department of Biotechnology, TERI University, VasantKunj, New Delhi 110 070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
13
|
Singh P, Ravanan P, Talwar P. Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy. Front Mol Neurosci 2016; 9:46. [PMID: 27445685 PMCID: PMC4917528 DOI: 10.3389/fnmol.2016.00046] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Abstract
Death-Associated Protein Kinase 1 (DAPK1) belongs to a family of five serine/threonine (Ser/Thr) kinases that possess tumor suppressive function and also mediate a wide range of cellular processes, including apoptosis and autophagy. The loss and gain-of–function of DAPK1 is associated with various cancer and neurodegenerative diseases respectively. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms involved in DAPK1-mediated autophagy/apoptosis. In the present review, we have discussed the structural information and various cellular functions of DAPK1 in a comprehensive manner.
Collapse
Affiliation(s)
- Pratibha Singh
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Vartholomaiou E, Echeverría PC, Picard D. Unusual Suspects in the Twilight Zone Between the Hsp90 Interactome and Carcinogenesis. Adv Cancer Res 2015; 129:1-30. [PMID: 26915999 DOI: 10.1016/bs.acr.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The molecular chaperone Hsp90 has attracted a lot of interest in cancer research ever since cancer cells were found to be more sensitive to Hsp90 inhibition than normal cells. Why that is has remained a matter of debate and is still unclear. In addition to increased Hsp90 dependence for some mutant cancer proteins and modifications of the Hsp90 machinery itself, a number of other characteristics of cancer cells probably contribute to this phenomenon; these include aneuploidy and overall increased numbers and levels of defective and mutant proteins, which all contribute to perturbed proteostasis. Work over the last two decades has demonstrated that many cancer-related proteins are Hsp90 clients, and yet only few of them have been extensively investigated, selected either on the basis of their obvious function as cancer drivers or because they proved to be convenient biomarkers for monitoring the effects of Hsp90 inhibitors. The purpose of our review is to go beyond these "usual suspects." We established a workflow to select poorly studied proteins that are related to cancer processes and qualify as Hsp90 clients. By discussing and taking a fresh look at these "unusual suspects," we hope to stimulate others to revisit them as novel therapeutic targets or diagnostic markers.
Collapse
Affiliation(s)
| | - Pablo C Echeverría
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Geneva, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Geneva, Switzerland.
| |
Collapse
|
15
|
Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation. Mol Cell Biol 2015; 36:132-43. [PMID: 26483415 DOI: 10.1128/mcb.00515-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022] Open
Abstract
Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.
Collapse
|
16
|
Narayan V, Landré V, Ning J, Hernychova L, Muller P, Verma C, Walkinshaw MD, Blackburn EA, Ball KL. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP). Mol Cell Proteomics 2015; 14:2973-87. [PMID: 26330542 PMCID: PMC4638040 DOI: 10.1074/mcp.m115.051169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/07/2022] Open
Abstract
CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control.
Collapse
Affiliation(s)
- Vikram Narayan
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Vivien Landré
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Jia Ning
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK; §CTCB, Institute of Structural and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lenka Hernychova
- ¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Petr Muller
- ¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Chandra Verma
- ‖Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543; School of Biological Sciences, Nanyang Technological University, 60 Nayang Drive, Singapore 637551
| | - Malcolm D Walkinshaw
- §CTCB, Institute of Structural and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Elizabeth A Blackburn
- §CTCB, Institute of Structural and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Kathryn L Ball
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK;
| |
Collapse
|
17
|
Benderska N, Dittrich AL, Knaup S, Rau TT, Neufert C, Wach S, Fahlbusch FB, Rauh M, Wirtz RM, Agaimy A, Srinivasan S, Mahadevan V, Rümmele P, Rapti E, Gazouli M, Hartmann A, Schneider-Stock R. miRNA-26b Overexpression in Ulcerative Colitis-associated Carcinogenesis. Inflamm Bowel Dis 2015; 21:2039-2051. [PMID: 26083618 PMCID: PMC4603667 DOI: 10.1097/mib.0000000000000453] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. METHODS Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh-frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. RESULTS miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. CONCLUSIONS We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.
Collapse
Affiliation(s)
- Natalya Benderska
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Lena Dittrich
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Knaup
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Tilman T. Rau
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- First Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Fabian B. Fahlbusch
- Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Swetha Srinivasan
- Faculty of School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | | | - Petra Rümmele
- Institute of Pathology, University Regensburg, Regensburg, Germany; and
| | - Emmanouela Rapti
- Department of Basic Biomedical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Biomedical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regine Schneider-Stock
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Death-associated protein kinase: A molecule with functional antagonistic duality and a potential role in inflammatory bowel disease (Review). Int J Oncol 2015; 47:5-15. [PMID: 25963636 PMCID: PMC4485655 DOI: 10.3892/ijo.2015.2998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
The cytoskeleton-associated serine/threonine kinase death-associated protein kinase (DAPK) has been described as a cancer gene chameleon with functional antagonistic duality in a cell type and context specific manner. The broad range of interaction partners and substrates link DAPK to inflammatory processes especially in the gut. Herein we summarize our knowledge on the role of DAPK in different cell types that play a role under inflammatory conditions in the gut. Besides some promising experimental data suggesting DAPK as an interesting drug target in inflammatory bowel disease there are many open questions regarding direct evidence for a role of DAPK in intestinal inflammation.
Collapse
|
19
|
Abstract
DAP-kinase (DAPK) is a Ca(2+)/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK's cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK's catalytic activity. For example, by virtue of protein-protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1β production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.
Collapse
Affiliation(s)
- Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
20
|
Gallagher PJ, Blue EK. Post-translational regulation of the cellular levels of DAPK. Apoptosis 2013; 19:306-15. [DOI: 10.1007/s10495-013-0936-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
22
|
Miyata Y, Nakamoto H, Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 2013; 19:347-65. [PMID: 22920906 DOI: 10.2174/138161213804143725] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 01/22/2023]
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
23
|
Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C. Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci 2013; 14:13858-72. [PMID: 23880846 PMCID: PMC3742222 DOI: 10.3390/ijms140713858] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 01/09/2023] Open
Abstract
Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.
Collapse
Affiliation(s)
- Syam Nair
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden; E-Mail:
- School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India; E-Mail:
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden; E-Mail:
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, The Rayne Institute, King’s College London St Thomas’ Hospital, London SE1 7EH, UK; E-Mail:
| | - Rajanikant Krishnamurthy
- School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India; E-Mail:
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, The Rayne Institute, King’s College London St Thomas’ Hospital, London SE1 7EH, UK; E-Mail:
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden; E-Mail:
| |
Collapse
|
24
|
da Silva VCH, Ramos CHI. The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: A target for cancer therapeutics. J Proteomics 2012; 75:2790-802. [PMID: 22236519 DOI: 10.1016/j.jprot.2011.12.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
In the cell, proteins interact within a network in which a small number of proteins are highly connected nodes or hubs. A disturbance in the hub proteins usually has a higher impact on the cell physiology than a disturbance in poorly connected nodes. In eukaryotes, the cytosolic Hsp90 is considered to be a hub protein as it interacts with molecular chaperones and co-chaperones, and has key regulatory proteins as clients, such as transcriptional factors, protein kinases and hormone receptors. The large number of Hsp90 partners suggests that Hsp90 is involved in very important functions, such as signaling, proteostasis and epigenetics. Some of these functions are dysregulated in cancer, making Hsp90 a potential target for therapeutics. The number of Hsp90 interactors appears to be so large that a precise answer to the question of how many proteins interact with this chaperone has no definitive answer yet, not even if the question refers to specific Hsp90s as one of the human cytosolic forms. Here we review the major chaperones and co-chaperones that interact with cytosolic Hsp90s, highlighting the latest findings regarding client proteins and the role that posttranslational modifications have on the function and interactions of these molecular chaperones. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP. P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | |
Collapse
|
25
|
Mechanisms of Resistance to Hsp90 Inhibitor Drugs: A Complex Mosaic Emerges. Pharmaceuticals (Basel) 2011; 4:1400-1422. [PMID: 27721330 PMCID: PMC4060131 DOI: 10.3390/ph4111400] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 01/07/2023] Open
Abstract
The molecular chaperone Hsp90 holds great promise as a cancer drug target, despite some of the initial clinical trials of Hsp90 inhibitor drugs having not lived up to expectation. Effective use of these drugs will benefit greatly from a much more detailed understanding of the factors that contribute to resistance, whether intrinsic or acquired. We review how cell culture studies have revealed a number of different mechanisms whereby cells can be rendered less susceptible to the effects of Hsp90 inhibitor treatment. A major influence is Hsp90 inhibition causing strong induction of the heat shock response, a stress response that increases cellular levels of prosurvival chaperones such as Hsp27 and Hsp70. Another problem seems to be that these inhibitors do not always access the Hsp90 proteins of the mitochondrion, forms of Hsp90 that—in cancer cells—are operating to suppress apoptosis. It should be possible to overcome these drawbacks through the appropriate drug redesign or with the combinatorial use of an Hsp90 inhibitor with a drug that targets either heat shock factor or the chaperone Hsp70. Still though, cells will often differ in the key antiapoptotic versus proapoptotic activities that are dependent on Hsp90, in the key steps in their apoptotic pathways responsive to Hsp90 inhibition or Hsp70 level, as well as the extents to which their survival is dependent on oncogenic tyrosine kinases that are clients of Hsp90. A systems approach will therefore often be required in order to establish the most prominent effects of Hsp90 inhibition in each type of cancer cell.
Collapse
|
26
|
Lee KH, Lee JH, Han SW, Im SA, Kim TY, Oh DY, Bang YJ. Antitumor activity of NVP-AUY922, a novel heat shock protein 90 inhibitor, in human gastric cancer cells is mediated through proteasomal degradation of client proteins. Cancer Sci 2011; 102:1388-1395. [PMID: 21453385 DOI: 10.1111/j.1349-7006.2011.01944.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone required for the stability of key regulators of cell survival and is an emerging target of cancer therapy. NVP-AUY922, a novel and potent inhibitor of HSP90, was evaluated against gastric cancer cell lines. NVP-AUY922 significantly inhibited the proliferation of all tested gastric cancer cell lines with 50% inhibitory concentration in the range of 2-40 nM and potently induced the degradation of growth factor receptors and other client proteins including HER-2, Akt and thymidylate synthase. HSP70 was induced by NVP-AUY922 and its binding with client proteins led to their proteasomal degradation. Moreover, the combination of NVP-AUY922 with cytotoxic chemotherapeutic agents such as 5-fluorouracil and oxaliplatin created a synergistic effect. Taken together, these preclinical data demonstrate the potent activity of NVP-AUY922 against gastric cancer cells and offer a rationale for clinical development of the agent alone or in combination with other chemotherapeutic drugs to effectively treat gastric cancer.
Collapse
Affiliation(s)
- Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Yamada R, Cao X, Butkevich AN, Millard M, Odde S, Mordwinkin N, Gundla R, Zandi E, Louie SG, Petasis NA, Neamati N. Discovery and Preclinical Evaluation of a Novel Class of Cytotoxic Propynoic Acid Carbamoyl Methyl Amides (PACMAs). J Med Chem 2011; 54:2902-14. [DOI: 10.1021/jm101655d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Roppei Yamada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Xuefei Cao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Alexey N. Butkevich
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Melissa Millard
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Srinivas Odde
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Nick Mordwinkin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Rambabu Gundla
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Ebrahim Zandi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Stan G. Louie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Nicos A. Petasis
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, ¶Department of Chemistry and Loker Hydrocarbon Research Institute, USC College, §Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, #Department of Molecular Microbiology and Immunology, Keck School of Medicine, and ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089
| |
Collapse
|
28
|
Lin Y, Henderson P, Pettersson S, Satsangi J, Hupp T, Stevens C. Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway. FEBS J 2011; 278:354-70. [PMID: 21134130 DOI: 10.1111/j.1742-4658.2010.07959.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously identified a novel interaction between tuberous sclerosis-2 (TSC2) and death-associated protein kinase-1 (DAPK), the consequence being that DAPK catalyses the inactivating phosphorylation of TSC2 to stimulate mammalian target of rapamycin complex 1 (mTORC1) activity. We now report that TSC2 binding to DAPK promotes the degradation of DAPK. We show that DAPK protein levels, but not gene expression, inversely correlate with TSC2 expression. Furthermore, altering mTORC1 activity does not affect DAPK levels, excluding indirect effects of TSC2 on DAPK protein levels through changes in mTORC1 translational control. We provide evidence that the C-terminus regulates TSC2 stability and is required for TSC2 to reduce DAPK protein levels. Importantly, using a GTPase-activating protein-dead missense mutation of TSC2, we demonstrate that the effect of TSC2 on DAPK is independent of GTPase-activating protein activity. TSC2 binds to the death domain of DAPK and we show that this interaction is required for TSC2 to reduce DAPK protein levels and half-life. Finally, we show that DAPK is regulated by the lysosome pathway and that lysosome inhibition blocks TSC2-mediated degradation of DAPK. Our study therefore establishes important functions of TSC2 and the lysosomal-degradation pathway in the control of DAPK stability, which taken together with our previous findings, reveal a regulatory loop between DAPK and TSC2 whose balance can either promote: (a) TSC2 inactivation resulting in mTORC1 stimulation, or (b) DAPK degradation via TSC2 signalling under steady-state conditions. The fine balance between DAPK and TSC2 in this regulatory loop may have subtle but important effects on mTORC1 steady-state function.
Collapse
Affiliation(s)
- Yao Lin
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
29
|
Kimura H, Yukitake H, Tajima Y, Suzuki H, Chikatsu T, Morimoto S, Funabashi Y, Omae H, Ito T, Yoneda Y, Takizawa M. ITZ-1, a client-selective Hsp90 inhibitor, efficiently induces heat shock factor 1 activation. ACTA ACUST UNITED AC 2010; 17:18-27. [PMID: 20142037 DOI: 10.1016/j.chembiol.2009.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022]
Abstract
ITZ-1 is a chondroprotective agent that inhibits interleukin-1beta-induced matrix metalloproteinase-13 (MMP-13) production and suppresses nitric oxide-induced chondrocyte death. Here we describe its mechanisms of action. Heat shock protein 90 (Hsp90) was identified as a specific ITZ-1-binding protein. Almost all known Hsp90 inhibitors have been reported to bind to the Hsp90 N-terminal ATP-binding site and to simultaneously induce degradation and activation of its multiple client proteins. However, within the Hsp90 client proteins, ITZ-1 strongly induces heat shock factor-1 (HSF1) activation and causes mild Raf-1 degradation, but scarcely induces degradation of a broad range of Hsp90 client proteins by binding to the Hsp90 C terminus. These results may explain ITZ-1's inhibition of MMP-13 production, its cytoprotective effect, and its lower cytotoxicity. These results suggest that ITZ-1 is a client-selective Hsp90 inhibitor.
Collapse
Affiliation(s)
- Haruhide Kimura
- Pharmaceutical Research Division, Takeda Pharmaceutical, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Widau RC, Jin Y, Dixon SA, Wadzinski BE, Gallagher PJ. Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 2010; 285:13827-38. [PMID: 20220139 PMCID: PMC2859546 DOI: 10.1074/jbc.m109.085076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/09/2010] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor, death-associated protein kinase (DAPK), is a Ca(2+)/calmodulin-regulated Ser/Thr kinase with an important role in regulating cytoskeletal dynamics. Autophosphorylation within the calmodulin-binding domain at Ser-308 inhibits DAPK catalytic activity. Dephosphorylation of Ser-308 by a previously unknown phosphatase enhances kinase activity and proteasome-mediated degradation of DAPK. In these studies, we identified two holoenzyme forms of protein phosphatase 2A (PP2A), ABalphaC and ABdeltaC, as DAPK-interacting proteins. These phosphatase holoenzymes dephosphorylate DAPK at Ser-308 in vitro and in vivo resulting in enhanced kinase activity of DAPK. The enzymatic activity of PP2A also negatively regulates DAPK levels by enhancing proteasome-mediated degradation of the kinase. Overexpression of wild type DAPK induces cell rounding and detachment in HEK293 cells; however, this effect is not observed following expression of an inactive DAPK S308E mutant. Finally, activation of DAPK by PP2A was found to be required for ceramide-induced anoikis. Together, our results provide a mechanism by which PP2A and DAPK activities control cell adhesion and anoikis.
Collapse
Affiliation(s)
- Ryan C. Widau
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yijun Jin
- the Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, and
| | - Shelley A. Dixon
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Brian E. Wadzinski
- the Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Patricia J. Gallagher
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
31
|
The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J 2010; 29:1748-61. [PMID: 20389280 DOI: 10.1038/emboj.2010.62] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 03/18/2010] [Indexed: 01/05/2023] Open
Abstract
Death-associated protein kinase (DAPK) was identified as a mediator of interferon (IFN)-induced cell death. How IFN controls DAPK activation remains largely unknown. Here, we identify the BTB-Kelch protein KLHL20 as a negative regulator of DAPK. KLHL20 binds DAPK and Cullin 3 (Cul3) via its Kelch-repeat domain and BTB domain, respectively. The KLHL20-Cul3-ROC1 E3 ligase complex promotes DAPK polyubiquitination, thereby inducing the proteasomal degradation of DAPK. Accordingly, depletion of KLHL20 diminishes DAPK ubiquitination and degradation. The KLHL20-mediated DAPK ubiquitination is suppressed in cells receiving IFN-alpha or IFN-gamma, which induces an enrichment/sequestration of KLHL20 in the PML nuclear bodies, thereby separating KLHL20 from DAPK. Consequently, IFN triggers the stabilization of DAPK. This mechanism of DAPK stabilization is crucial for determining IFN responsiveness of tumor cells and contributes to IFN-induced autophagy. This study identifies KLHL20-Cul3-ROC1 as an E3 ligase for DAPK ubiquitination and reveals a regulatory mechanism of DAPK, through blocking its accessibility to this E3 ligase, in IFN-induced apoptotic and autophagic death. Our findings may be relevant to the problem of IFN resistance in cancer therapy.
Collapse
|
32
|
Udono H, Ichiyanagi T, Mizukami S, Imai T. Heat shock proteins in antigen trafficking–Implications on antigen presentation to T cells. Int J Hyperthermia 2009; 25:617-25. [DOI: 10.3109/02656730902902183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
33
|
Zhang L, Gallagher PJ. Mind bomb 1 regulation of cFLIP interactions. Am J Physiol Cell Physiol 2009; 297:C1275-83. [PMID: 19710364 PMCID: PMC2777394 DOI: 10.1152/ajpcell.00214.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/19/2009] [Indexed: 02/08/2023]
Abstract
Mind bomb 1 (Mib1) is a multidomain E3 ligase that directs ubiquitination of the Notch ligands Delta and Jagged to promote their endocytosis. Here we examine Notch-independent functions of Mib1 and find that its activities are linked to the initiation of the extrinsic cell death pathway. Expression of Mib1 induces a spontaneous, caspase-dependent cell death. Consistent with this, depletion of endogenous Mib1 decreases tumor-necrosis factor (TNF)-induced cell death. Mib1 was found to bind to cellular Fas-associated death domain (FADD)-like IL-1b converting enzyme (FLICE)-like inhibitory proteins (cFLIP-L and cFLIP-S), whereas only cFLIP-s can inhibit Mib1-induced cell death. The interaction between Mib1 and cFLIP decreases the association of caspase-8 with cFLIP, which activates caspase-8 and induces cell death. Collectively, these results suggest that in addition to a central role in Notch signaling, Mib1 has an important role in regulating the extrinsic cell death pathway.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | |
Collapse
|
34
|
Lin Y, Hupp TR, Stevens C. Death-associated protein kinase (DAPK) and signal transduction: additional roles beyond cell death. FEBS J 2009; 277:48-57. [DOI: 10.1111/j.1742-4658.2009.07411.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Bajbouj K, Poehlmann A, Kuester D, Drewes T, Haase K, Hartig R, Teller A, Kliche S, Walluscheck D, Ivanovska J, Chakilam S, Ulitzsch A, Bommhardt U, Leverkus M, Roessner A, Schneider-Stock R. RETRACTED: Identification of phosphorylated p38 as a novel DAPK-interacting partner during TNFalpha-induced apoptosis in colorectal tumor cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:557-70. [PMID: 19628771 DOI: 10.2353/ajpath.2009.080853] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Death-associated protein kinase (DAPK) is a serine/threonine kinase that contributes to pro-apoptotic signaling on cytokine exposure. The role of DAPK in macrophage-associated tumor cell death is currently unknown. Recently, we suggested a new function for DAPK in the induction of apoptosis during the interaction between colorectal tumor cells and tumor-associated macrophages. Using a cell-culture model with conditioned supernatants of differentiated/activated macrophages (U937) and human HCT116 colorectal tumor cells, we replicated DAPK-associated tumor cell death; this model likely reflects the in vivo tumor setting. In this study, we show that tumor necrosis factor-alpha exposure under conditions of macrophage activation induced DAPK-dependent apoptosis in the colorectal tumor cell line HCT116. Simultaneously, early phosphorylation of p38 mitogen-activated protein kinase (phospho-p38) was observed. We identified the phospho-p38 mitogen-activated protein kinase as a novel interacting protein of DAPK in tumor necrosis factor-alpha-induced apoptosis. The general relevance of this interaction was verified in two colorectal cell lines without functional p53 (ie, HCT116 p53(-/-) and HT29 mutant) and in human colon cancer and ulcerative colitis tissues. Supernatants of freshly isolated human macrophages were also able to induce DAPK and phospho-p38. Our findings highlight the mechanisms that underlie DAPK regulation in tumor cell death evoked by immune cells.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- Experimental Tumor Pathology, Institute of Pathology, University of Erlangen-Nuremberg, Universitätsstr. 22, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The alternative splice variant of DAPK-1, s-DAPK-1, induces proteasome-independent DAPK-1 destabilization. Mol Cell Biochem 2009; 328:101-7. [DOI: 10.1007/s11010-009-0079-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
|
37
|
Hsp90 and a tyrosine embedded in the Hsp90 recognition loop are required for the Fer tyrosine kinase activity. Cell Signal 2008; 21:588-96. [PMID: 19159681 DOI: 10.1016/j.cellsig.2008.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 01/17/2023]
Abstract
Hsp90 is a key regulator of tyrosine kinases activity and is therefore considered as a promising target for intervention with deregulated signaling pathways in malignant cells. Here we describe a novel Hsp90 client - the intracellular tyrosine kinase, Fer, which is subjected to a unique regulatory regime by this chaperone. Inhibition of Hsp90 activity led to proteasomal degradation of the Fer enzyme. However, circumventing the dependence of Fer accumulation on Hsp90, revealed the dependence of the Fer kinase activity and its ability to phosphorylate Stat3 on the chaperone, expressing the necessity of Hsp90 for its function. Mutation analysis unveiled a tyrosine (Tyr(616)) embedded in the Hsp90 recognition loop, which is required for the kinase activity of Fer. Replacement of this tyrosine by phenylalanine (Y616F) disabled the auto-phosphorylation activity of Fer and abolished its ability to phosphorylate Stat3. Notably, surrounding the replaced Y616F with subtle mutations restored the auto and trans-phosphorylation activities of Fer suggesting that Y(616) is not itself an essential auto-phosphorylation site of the kinase. Taken together, our results portray Hsp90 and its recognition loop as novel positive regulators of the Fer tyrosine kinase stability and activity.
Collapse
|
38
|
|
39
|
Zhang M, Botër M, Li K, Kadota Y, Panaretou B, Prodromou C, Shirasu K, Pearl LH. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J 2008; 27:2789-98. [PMID: 18818696 PMCID: PMC2556094 DOI: 10.1038/emboj.2008.190] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 08/02/2008] [Indexed: 12/04/2022] Open
Abstract
Sgt1 is an adaptor protein implicated in a variety of processes, including formation of the kinetochore complex in yeast, and regulation of innate immunity systems in plants and animals. Sgt1 has been found to associate with SCF E3 ubiquitin ligases, the CBF3 kinetochore complex, plant R proteins and related animal Nod-like receptors, and with the Hsp90 molecular chaperone. We have determined the crystal structure of the core Hsp90-Sgt1 complex, revealing a distinct site of interaction on the Hsp90 N-terminal domain. Using the structure, we developed mutations in Sgt1 interfacial residues, which specifically abrogate interaction with Hsp90, and disrupt Sgt1-dependent functions in vivo, in plants and yeast. We show that Sgt1 bridges the Hsp90 molecular chaperone system to the substrate-specific arm of SCF ubiquitin ligase complexes, suggesting a role in SCF assembly and regulation, and providing multiple complementary routes for ubiquitination of Hsp90 client proteins.
Collapse
Affiliation(s)
- Minghao Zhang
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Marta Botër
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
| | - Kuoyu Li
- Chemical Biology Research Group, Pharmaceutical Science Division, King's College London, London, UK
| | - Yasuhiro Kadota
- Plant Immunity Research Group, RIKEN Plant Science Center, Yokohama, Japan
| | - Barry Panaretou
- Chemical Biology Research Group, Pharmaceutical Science Division, King's College London, London, UK
| | - Chrisostomos Prodromou
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Ken Shirasu
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
- Plant Immunity Research Group, RIKEN Plant Science Center, Yokohama, Japan
| | - Laurence H Pearl
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| |
Collapse
|
40
|
Abstract
The molecular chaperone Hsp90 (90 kDa heat-shock protein) is a remarkably versatile protein involved in the stress response and in normal homoeostatic control mechanisms. It interacts with 'client proteins', including protein kinases, transcription factors and others, and either facilitates their stabilization and activation or directs them for proteasomal degradation. By this means, Hsp90 displays a multifaceted ability to influence signal transduction, chromatin remodelling and epigenetic regulation, development and morphological evolution. Hsp90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis at the N-terminus. The cycle is also regulated by a group of co-chaperones and accessory proteins. Here we review the biology of the Hsp90 molecular chaperone, emphasizing recent progress in our understanding of structure-function relationships and the identification of new client proteins. In addition we describe the exciting progress that has been made in the development of Hsp90 inhibitors, which are now showing promise in the clinic for cancer treatment. We also identify the gaps in our current understanding and highlight important topics for future research.
Collapse
|
41
|
Chuang YT, Fang LW, Lin-Feng MH, Chen RH, Lai MZ. The Tumor Suppressor Death-Associated Protein Kinase Targets to TCR-Stimulated NF-κB Activation. THE JOURNAL OF IMMUNOLOGY 2008; 180:3238-49. [DOI: 10.4049/jimmunol.180.5.3238] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|