1
|
Zhang J, Song Y, Wang X, Wang X, Li S, Song X, Zhao C, Qi J, Tian Y, Zhao B, Zheng X, Xing Y. The transcription factor PITX1 cooperates with super-enhancers to regulate the expression of DUSP4 and inhibit pyroptosis in pulmonary artery smooth muscle cells. Respir Res 2025; 26:149. [PMID: 40241046 PMCID: PMC12004679 DOI: 10.1186/s12931-025-03222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a highly fatal pathophysiological syndrome. The group 1 pulmonary arterial hypertension (PAH) is characterized by acute pulmonary vasoconstriction and chronic vascular remodeling caused by hyperplasia and hypertrophy of pulmonary artery smooth muscle cells (PASMCs) and chronic inflammation. Pyroptosis is an inflammatory mode of cell death that is regulated by super-enhancers (SEs) and occurs in the setting of tumors and cardiovascular diseases. However, whether SEs are involved in the pathological process of pyroptosis in PAH and the specific mechanism involved remain unclear. METHODS Here, we identified the SE target gene DUSP4 via ChIP-seq with an anti-H3K27ac antibody, and bioinformatics predictions revealed that the transcription factor PITX1 can bind to the promoter and SE sequences of DUSP4. The AAV5 vector was used to deliver shRNAs targeting PITX1 and DUSP4 to PASMCs. RESULTS PITX1 overexpression reversed the increase in right ventricular systolic pressure and pulmonary vascular remodeling, restored the PAAT/PAVTI ratio in hypoxic pulmonary hypertension (HPH, Group 3 PH) and SuHx PAH (Group 1 PAH) mice, and suppressed pyroptosis in pulmonary vascular cells. However, knockdown of DUSP4 counteracted the effects of PITX1 overexpression. Similar results were obtained in cultured PASMCs. In addition, treatment with the SE inhibitors JQ1 and iBET decreased the transcription of DUSP4 and increased the expression of hypoxia-induced pyroptosis proteins in PASMCs. CONCLUSION We confirmed that PITX1 can promote DUSP4 expression by binding to the DUSP4 promoter and SE to reduce pyroptosis in hypoxic PASMCs, providing new insights into the role of SEs and pyroptosis in pulmonary vascular remodeling and a theoretical basis for the treatment of PAH and related diseases.
Collapse
MESH Headings
- Animals
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Mice
- Pyroptosis/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Dual-Specificity Phosphatases/genetics
- Dual-Specificity Phosphatases/biosynthesis
- Mitogen-Activated Protein Kinase Phosphatases/genetics
- Mitogen-Activated Protein Kinase Phosphatases/biosynthesis
- Cells, Cultured
- Male
- Mice, Inbred C57BL
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Paired Box Transcription Factors
Collapse
Affiliation(s)
- Jingya Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yuyu Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xinru Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xu Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Songyue Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xinyue Song
- College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chong Zhao
- Department of Literature Retrieval, Harbin Medical University, Daqing, 150081, Heilongjiang, People's Republic of China
| | - Jing Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yunyun Tian
- Department of Pathology, Gaozhou People's Hospital, Gaozhou, 525299, Guangdong, People's Republic of China
| | - Baoshan Zhao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Medical Genetics, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China.
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Mandal J, Jones TN, Liberto JM, Gaillard S, Wang TL, Shih IM. Dual Inhibition of SYK and EGFR Overcomes Chemoresistance by Inhibiting CDC6 and Blocking DNA Replication. Cancer Res 2024; 84:3881-3893. [PMID: 39120597 DOI: 10.1158/0008-5472.can-24-0769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Targeting multiple signaling pathways has been proposed as a strategy to overcome resistance to single-pathway inhibition in cancer therapy. A previous study in epithelial ovarian cancers identified hyperactivity of spleen tyrosine kinase (SYK) and EGFR, which mutually phosphorylate and activate each other. Given the potential for pharmacologic inhibition of both kinases with clinically available agents, this study aimed to assess the antitumor efficacy of both pharmacologic and genetic SYK and EGFR coinhibition using a multifaceted approach. We assessed the coinactivation effects in chemoresistant ovarian cancer cell lines, patient-derived organoids, and xenograft models. Dual inhibition of SYK and EGFR in chemoresistant ovarian cancer cells elicited a synergistic antitumor effect. Notably, the combined inhibition activated the DNA damage response, induced G1 cell-cycle arrest, and promoted apoptosis. The phosphoproteomic analysis revealed that perturbation of SYK and EGFR signaling induced a significant reduction in both phosphorylated and total protein levels of cell division cycle 6, a crucial initiator of DNA replication. Together, this study provides preclinical evidence supporting dual inhibition of SYK and EGFR as a promising treatment for chemoresistant ovarian cancer by disrupting DNA synthesis and impairing formation of the prereplication complex. These findings warrant further clinical investigation to explore the potential of this combination therapy in overcoming drug resistance and improving patient outcomes. Significance: SYK and EGFR coinhibition exerts synergistic anticancer effects in chemoresistant ovarian cancer, providing a strategy to treat chemotherapy-resistant ovarian cancers using clinically available agents by targeting critical signaling pathways involved in DNA replication.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tiffany Nicole Jones
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juliane Marie Liberto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephanie Gaillard
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Escobar Moreno JD, Fajardo Castiblanco JL, Riaño Rodriguez LC, Barrios Ospina PM, Zabala Bello CA, Muñoz Roa EN, Rivera Escobar HM. miRNAs Involvement in Modulating Signalling Pathways Involved in Ros-Mediated Oxidative Stress in Melanoma. Antioxidants (Basel) 2024; 13:1326. [PMID: 39594467 PMCID: PMC11591318 DOI: 10.3390/antiox13111326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/28/2024] Open
Abstract
Reactive oxygen species (ROS) are intermediates in oxidation-reduction reactions with the capacity to modify biomolecules and temporarily or permanently alter cell behaviour through signalling pathways under physiological and pathophysiological conditions where there is an imbalance between oxidative factors and the antioxidant response of the organism, a phenomenon known as oxidative stress. Evidence suggests that the differential modulation of ROS-mediated oxidative stress occurs in the pathogenesis and progression of melanoma, and that this imbalance in redox homeostasis appears to be functionally linked to microRNA (miRNA o miRs)-mediated non-mutational epigenetic reprogramming involving genes and transcription factors. The relationship between ROS-mediated stress control, tumour microenvironment, and miRNA expression in melanoma is not fully understood. The aim of this review is to analyse the involvement of miRNAs in the modulation of the signalling pathways involved in ROS-mediated oxidative stress in melanoma. It is hoped that these considerations will contribute to the understanding of the mechanisms associated with a potential epigenetic network regulation, where the modulation of oxidative stress is consolidated as a common factor in melanoma, and therefore, a potential footprint poorly documented.
Collapse
Affiliation(s)
- José Daniel Escobar Moreno
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - José Luis Fajardo Castiblanco
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - Laura Camila Riaño Rodriguez
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - Paula Marcela Barrios Ospina
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - Carlos Andrés Zabala Bello
- Laboratory of Animal Cytogenetics, Faculty of Veterinary Medicine and Animal Science, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Esther Natalia Muñoz Roa
- PhD Program in Biological Sciences, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Hernán Mauricio Rivera Escobar
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
- Department of Interdisciplinary Studies—DEI, Instituto de Educación a Distancia—IDEAD, BIOPESA Research Group, University of Tolima, Ibagué 730006, Colombia
| |
Collapse
|
4
|
Qian X, DeGennaro EM, Talukdar M, Akula SK, Lai A, Shao DD, Gonzalez D, Marciano JH, Smith RS, Hylton NK, Yang E, Bazan JF, Barrett L, Yeh RC, Hill RS, Beck SG, Otani A, Angad J, Mitani T, Posey JE, Pehlivan D, Calame D, Aydin H, Yesilbas O, Parks KC, Argilli E, England E, Im K, Taranath A, Scott HS, Barnett CP, Arts P, Sherr EH, Lupski JR, Walsh CA. Loss of non-motor kinesin KIF26A causes congenital brain malformations via dysregulated neuronal migration and axonal growth as well as apoptosis. Dev Cell 2022; 57:2381-2396.e13. [PMID: 36228617 PMCID: PMC10585591 DOI: 10.1016/j.devcel.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 01/16/2023]
Abstract
Kinesins are canonical molecular motors but can also function as modulators of intracellular signaling. KIF26A, an unconventional kinesin that lacks motor activity, inhibits growth-factor-receptor-bound protein 2 (GRB2)- and focal adhesion kinase (FAK)-dependent signal transduction, but its functions in the brain have not been characterized. We report a patient cohort with biallelic loss-of-function variants in KIF26A, exhibiting a spectrum of congenital brain malformations. In the developing brain, KIF26A is preferentially expressed during early- and mid-gestation in excitatory neurons. Combining mice and human iPSC-derived organoid models, we discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Our findings illustrate the pathogenesis of KIF26A loss-of-function variants and identify the surprising versatility of this non-motor kinesin.
Collapse
Affiliation(s)
- Xuyu Qian
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen M DeGennaro
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maya Talukdar
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard, MIT MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diane D Shao
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jack H Marciano
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S Smith
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Norma K Hylton
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard, MIT MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Edward Yang
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Lee Barrett
- Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca C Yeh
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Sean Hill
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha G Beck
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aoi Otani
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jolly Angad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Osman Yesilbas
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Kendall C Parks
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleina England
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiho Im
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ajay Taranath
- Department of Medical Imaging, South Australia Medical Imaging, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia; Australian Genomics, Parkville, VIC, Australia
| | - Christopher P Barnett
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Pediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Varela T, Conceição N, Laizé V, Cancela ML. Transcriptional regulation of human DUSP4 gene by cancer-related transcription factors. J Cell Biochem 2021; 122:1556-1566. [PMID: 34254709 DOI: 10.1002/jcb.30078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is responsible for the dephosphorylation and inactivation of ERK, JNK and p38, which are mitogen-activated protein kinases involved in cell proliferation, differentiation and apoptosis, but also in inflammation processes. Given its importance for cellular signalling, DUSP4 is subjected to a tight regulation and there is growing evidence that its expression is dysregulated in several tumours. However, the mechanisms underlying DUSP4 transcriptional regulation remain poorly understood. Here, we analysed the regulation of the human DUSP4 promoters 1 and 2, located upstream of exons 1 and 2, respectively, by the cancer-related transcription factors (TFs) STAT3, FOXA1, CTCF and YY1. The presence of binding sites for these TFs was predicted in both promoters through the in silico analysis of DUSP4, and their functionality was assessed through luciferase activity assays. Regulatory activity of the TFs tested was found to be promoter-specific. While CTCF stimulated the activity of promoter 2 that controls the transcription of variants 2 and X1, STAT3 stimulated the activity of promoter 1 that controls the transcription of variant 1. YY1 positively regulated both promoters, although to different extents. Through site-directed mutagenesis, the functionality of YY1 binding sites present in promoter 2 was confirmed. This study provides novel insights into the transcriptional regulation of DUSP4, contributing to a better comprehension of the mechanisms of its dysregulation observed in several types of cancer.
Collapse
Affiliation(s)
- Tatiana Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
6
|
Choi JC, Wu W, Phillips E, Plevin R, Sera F, Homma S, Worman HJ. Elevated dual specificity protein phosphatase 4 in cardiomyopathy caused by lamin A/C gene mutation is primarily ERK1/2-dependent and its depletion improves cardiac function and survival. Hum Mol Genet 2019; 27:2290-2305. [PMID: 29668927 DOI: 10.1093/hmg/ddy134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) encoding the nuclear intermediate filament proteins lamins A and C cause a group of tissue-selective diseases, the most common of which is dilated cardiomyopathy (herein referred to as LMNA cardiomyopathy) with variable skeletal muscle involvement. We previously showed that cardiomyocyte-specific overexpression of dual specificity protein phosphatase 4 (DUSP4) is involved in the pathogenesis of LMNA cardiomyopathy. However, how mutations in LMNA activate Dusp4 expression and whether it is necessary for the development of LMNA cardiomyopathy are currently unknown. We now show that female LmnaH222P/H222P mice, a model for LMNA cardiomyopathy, have increased Dusp4 expression and hyperactivation of extracellular signal-regulated kinase (ERK) 1/2 with delayed kinetics relative to male mice, consistent with the sex-dependent delay in the onset and progression of disease. Mechanistically, we show that the H222P amino acid substitution in lamin A enhances its binding to ERK1/2 and increases sequestration at the nuclear envelope. Finally, we show that genetic deletion of Dusp4 has beneficial effects on heart function and prolongs survival in LmnaH222P/H222P mice. These results further establish Dusp4 as a key contributor to the pathogenesis of LMNA cardiomyopathy and a potential target for drug therapy.
Collapse
Affiliation(s)
- Jason C Choi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Elizabeth Phillips
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Fusako Sera
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Shunichi Homma
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicol In Vitro 2014; 29:638-46. [PMID: 25482991 DOI: 10.1016/j.tiv.2014.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022]
Abstract
The research of chitosan-based nanogel for biomedical applications has grown exponentially in the last years; however, its biocompatibility is still insufficiently reported. Hence, the present work provides a thorough study of the biocompatibility of a glycol chitosan (GC) nanogel. The obtained results showed that GC nanogel induced slight decrease on metabolic activity of RAW, 3T3 and HMEC cell cultures, although no effect on cell membrane integrity was verified. The nanogel does not promote cell death by apoptosis and/or necrosis, exception made for the HMEC cell line challenged with the higher GC nanogel concentration. Cell cycle arrest on G1 phase was observed only in the case of RAW cells. Remarkably, the nanogel is poorly internalized by bone marrow derived macrophages and does not trigger the activation of the complement system. GC nanogel blood compatibility was confirmed through haemolysis and whole blood clotting time assays. Overall, the results demonstrated the safety of the use of the GC nanogel as drug delivery system.
Collapse
|
8
|
Silica nanoparticles induced metabolic stress through EGR1, CCND, and E2F1 genes in human mesenchymal stem cells. Appl Biochem Biotechnol 2014; 175:1181-92. [PMID: 25374141 DOI: 10.1007/s12010-014-1342-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023]
Abstract
The SiO2 synthesized in bulk form, adopting the conventional methods for application in food industry applications, may also contain nano-sized particles. On account of the unique physico-chemical properties, the SiO2 particulates, such as size and shape, cause metabolic toxicity in cells. Poor understanding of the molecular level nanotoxicity resulting from high-volume synthetic SiO2 exposures in humans is a serious issue, since these particles may also contribute to metabolic stress-mediated chronic diseases. In the present study, we examined the structural characteristics of these nano-sized silica particles adopting SEM and dynamic light scattering (DLS) and assessed the alterations in the cell cycle induced by these silica particles in human mesenchymal stem cells (hMSCs) adopting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay, morphological changes in the cells adopting fluorescent microscopy, cell cycle analysis adopting flow cytometry, and the expression of genes linked to cell cycle (i.e., proliferating cell nuclear antigen (PCNA), early growth response protein (EGR1), E2F transcription factor (E2F1), cyclin D1, cyclin C, and cyclin D3) adopting qPCR. The SEM and DLS studies indicated that the commercial grade SiO2-NPs were in the nano-scale range. Alterations in the cytoplasmic organization, nuclear morphology, cell cycle progression, and expression of genes linked to cell cycle-dependent metabolic stress through EGR1, CCND, and E2F1 genes were the primary indicators of metabolic stress. Overall, the results of this study demonstrate that synthetic SiO2 acutely affects hMSC through cell cycle-dependent oxidative stress gene network. The toxicity mechanisms (both acute and chronic) of food grade silica should be investigated in greater depth with special reference to food safety.
Collapse
|
9
|
Kumar P P, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, Lessnick SL, Moon AM. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. eLife 2014; 3. [PMID: 24876127 PMCID: PMC4071561 DOI: 10.7554/elife.02805] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a crucial tumor suppressor mechanism. We discovered a CAPERα/TBX3 repressor complex required to prevent senescence in primary cells and mouse embryos. Critical, previously unknown roles for CAPERα in controlling cell proliferation are manifest in an obligatory interaction with TBX3 to regulate chromatin structure and repress transcription of CDKN2A-p16INK and the RB pathway. The IncRNA UCA1 is a direct target of CAPERα/TBX3 repression whose overexpression is sufficient to induce senescence. In proliferating cells, we found that hnRNPA1 binds and destabilizes CDKN2A-p16INK mRNA whereas during senescence, UCA1 sequesters hnRNPA1 and thus stabilizes CDKN2A-p16INK. Thus CAPERα/TBX3 and UCA1 constitute a coordinated, reinforcing mechanism to regulate both CDKN2A-p16INK transcription and mRNA stability. Dissociation of the CAPERα/TBX3 co-repressor during oncogenic stress activates UCA1, revealing a novel mechanism for oncogene-induced senescence. Our elucidation of CAPERα and UCA1 functions in vivo provides new insights into senescence induction, and the oncogenic and developmental properties of TBX3. DOI:http://dx.doi.org/10.7554/eLife.02805.001 Cell division and growth are essential for survival. But it is equally important that cells can stop dividing, because failing to do so can lead to the uncontrolled tumor growth seen in cancer. One such quality control mechanism is called senescence, which stops the growth and multiplication of cells that are old, damaged or behaving in ways that may harm the organism. All cells eventually stop dividing and undergo senescence, but a number of factors may trigger the process early, such as DNA damage, stress or the appearance of cancer-causing proteins. Senescence can be harmful if it occurs too early in life and interferes with normal growth. Severe birth defects—including fatal heart problems and limb malformations—occur if senescence is inappropriately triggered early in development. Mutations in a gene encoding a protein called TBX3 have been linked to these severe birth defects. Normally, TBX3 stops the production of other proteins that trigger senescence in early development, and helps to maintain stable conditions in adult cells. Understanding how it does so could help scientists understand normal cell function and aging, and also help to find ways to trigger senescence in cancerous cells. Kumar et al. found that a protein called CAPERα—for short Coactivator of AP1 and Estrogen Receptor—forms a complex with TBX3 that stops cells dividing in living organisms in at least two different ways. One way is by altering how DNA is folded. The other way involves a non-coding strand of RNA from a gene called UCA1: this RNA prevents the degradation of proteins that stop cell division. In normal proliferating cells, the CAPERα/TBX3 protein complex prevents the production of UCA1 RNA. In contrast, in cells that received a cancer causing stimulus, TBX3 and CAPERα physically separate: this activates production of UCA1 RNA and causes senescence. Further studies will be required to establish exactly how the CAPERα/TBX3 protein complex interacts with DNA and RNA to control senescence and prevent cancer. DOI:http://dx.doi.org/10.7554/eLife.02805.002
Collapse
Affiliation(s)
- Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Uchenna Emechebe
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
| | - Richard Smith
- The Centre for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - Barry Moore
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Stephen L Lessnick
- Department of Pediatrics, University of Utah, Salt Lake City, United States
| | - Anne M Moon
- Weis Center for Research, Geisinger Clinic, Danville, United States
| |
Collapse
|
10
|
Prabhakar S, Asuthkar S, Lee W, Chigurupati S, Zakharian E, Tsung AJ, Velpula KK. Targeting DUSPs in glioblastomas - wielding a double-edged sword? Cell Biol Int 2013; 38:145-53. [PMID: 24155099 DOI: 10.1002/cbin.10201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/04/2013] [Indexed: 12/22/2022]
Abstract
Several dual-specificity phosphatases (DUSPs) that play key roles in the direct or indirect inactivation of different MAP kinases (MAPKs) have been implicated in human cancers over the past decade. This has led to a growing interest in identifying DUSPs and their specific inhibitors for further testing and validation as therapeutic targets in human cancers. However, the lack of understanding of the complex regulatory mechanisms and cross-talks between MAPK signaling pathways, combined with the fact that DUSPs can act as a double-edged sword in cancer progression, calls for a more careful and thorough investigation. Among the various types of brain cancer, glioblastoma multiforme (GBM) is notorious for its aggressiveness and resistance to current treatment modalities. This has led to the search for new molecular targets, particularly those involving various signaling pathways. DUSPs appear to be a promising target, but much more information on DUSP targets and their effects on GBM is needed before potential therapies can be developed, tested, and validated. This review identifies and summarize the specific roles of DUSP1, DUSP4, DUSP6 and DUSP26 that have been implicated in GBM.
Collapse
Affiliation(s)
- Sheila Prabhakar
- Department of Natural and Health Sciences, Southeastern University, Lakeland, Florida, 33801, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Jeong MW, Kang TH, Kim W, Choi YH, Kim KT. Mitogen-activated protein kinase phosphatase 2 regulates histone H3 phosphorylation via interaction with vaccinia-related kinase 1. Mol Biol Cell 2012; 24:373-84. [PMID: 23223570 PMCID: PMC3564537 DOI: 10.1091/mbc.e12-06-0456] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) is a histone kinase that phosphorylates histone H3 at Thr-3 and Ser-10. This study shows that mitogen-activated protein kinase phosphatase 2 regulates this phosphorylation negatively via interaction with VRK1, regardless of VRK1’s phosphatase activity. Mitogen-activated protein kinase phosphatase 2 (MKP2) is a member of the dual-specificity MKPs that regulate MAP kinase signaling. However, MKP2 functions are still largely unknown. In this study, we showed that MKP2 could regulate histone H3 phosphorylation under oxidative stress conditions. We found that MKP2 inhibited histone H3 phosphorylation by suppressing vaccinia-related kinase 1 (VRK1) activity. Moreover, this regulation was dependent on the selective interaction with VRK1, regardless of its phosphatase activity. The interaction between MKP2 and VRK1 mainly occurred in the chromatin, where histones are abundant. We also observed that the protein level of MKP2 and its interaction with histone H3 increased from G1 to M phase during the cell cycle, which is similar to the VRK1 profile. Furthermore, MKP2 specifically regulated the VRK1-mediated histone H3 phosphorylation at M phase. Taken together, these data suggest a novel function of MKP2 as a negative regulator of VRK1-mediated histone H3 phosphorylation.
Collapse
Affiliation(s)
- Min-Woo Jeong
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Gröschl B, Bettstetter M, Giedl C, Woenckhaus M, Edmonston T, Hofstädter F, Dietmaier W. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int J Cancer 2012; 132:1537-46. [DOI: 10.1002/ijc.27834] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022]
|
13
|
Cornell TT, Fleszar A, McHugh W, Blatt NB, Le Vine AM, Shanley TP. Mitogen-activated protein kinase phosphatase 2, MKP-2, regulates early inflammation in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L251-8. [PMID: 22683570 PMCID: PMC3423860 DOI: 10.1152/ajplung.00063.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/01/2012] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is mediated by an early proinflammatory response resulting from either a direct or indirect insult to the lung mediating neutrophil infiltration and consequent disruption of the alveolar capillary membrane ultimately leading to refractory hypoxemia. The mitogen-activated protein kinase (MAPK) pathways are a key component of the molecular response activated by those insults triggering the proinflammatory response in ALI. The MAPK pathways are counterbalanced by a set of dual-specific phosphatases (DUSP) that deactivate the kinases by removing phosphate groups from tyrosine or threonine residues. We have previously shown that one DUSP, MKP-2, regulates the MAPK pathway in a model of sepsis-induced inflammation; however, the role of MKP-2 in modulating the inflammatory response in ALI has not been previously investigated. We utilized both MKP-2-null (MKP-2(-/-)) mice and MKP-2 knockdown in a murine macrophage cell line to elucidate the role of MKP-2 in regulating inflammation during ALI. Our data demonstrated attenuated proinflammatory cytokine production as well as decreased neutrophil infiltration in the lungs of MKP-2(-/-) mice following direct, intratracheal LPS. Importantly, when challenged with a viable pathogen, this decrease in neutrophil infiltration did not impact the ability of MKP-2(-/-) mice to clear either gram-positive or gram-negative bacteria. Furthermore, MKP-2 knockdown led to an attenuated proinflammatory response and was associated with an increase in phosphorylation of ERK and induction of a related DUSP, MKP-1. These data suggest that altering MKP-2 activity may have therapeutic potential to reduce lung inflammation in ALI without impacting pathogen clearance.
Collapse
Affiliation(s)
- Timothy T Cornell
- Division of Pediatric Critical Care Medicine, Dept. of Pediatrics and Communicable Diseases, Univ. of Michigan Medical School, C S Mott Children's Hospital, Ann Arbor, MI 48109-0243, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The MKPs (mitogen-activated protein kinase phosphatases) are a family of at least ten DUSPs (dual-specificity phosphatases) which function to terminate the activity of the MAPKs (mitogen-activated protein kinases). Several members have already been demonstrated to have distinct roles in immune function, cancer, fetal development and metabolic disorders. One DUSP of renewed interest is the inducible nuclear phosphatase MKP-2, which dephosphorylates both ERK (extracellular-signal-regulated kinase) and JNK (c-Jun N-terminal kinase) in vitro. Recently, the understanding of MKP-2 function has been advanced due to the development of mouse knockout models, which has resulted in the discovery of novel roles for MKP-2 in the regulation of sepsis, infection and cell-cycle progression that are distinct from those of other DUSPs. However, many functions for MKP-2 still await to be characterized.
Collapse
|
15
|
Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proc Natl Acad Sci U S A 2012; 109:E879-88. [PMID: 22434910 DOI: 10.1073/pnas.1109797109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T cell-dependent B-cell responses decline with age, suggesting defective CD4 T-cell function. CD4 memory T cells from individuals older than 65 y displayed increased and sustained transcription of the dual-specific phosphatase 4 (DUSP4) that shortened expression of CD40-ligand (CD40L) and inducible T-cell costimulator (ICOS) (both P < 0.001) and decreased production of IL-4, IL-17A, and IL-21 (all P < 0.001) after in vitro activation. In vivo after influenza vaccination, activated CD4 T cells from elderly individuals had increased DUSP4 transcription (P = 0.002), which inversely correlated with the expression of CD40L (r = 0.65, P = 0.002), ICOS (r = 0.57, P = 0.008), and IL-4 (r = 0.66, P = 0.001). In CD4 KO mice reconstituted with DUSP4 OT-II T cells, DUSP4 had a negative effect on the expansion of antigen-specific B cells (P = 0.003) and the production of ova-specific antibodies (P = 0.03) after immunization. Silencing of DUSP4 in memory CD4 T cells improved CD40L (P < 0.001), IL-4 (P = 0.007), and IL-21 (P = 0.04) expression significantly more in the elderly than young adults. Consequently, the ability of CD4 memory T cells to support B-cell differentiation that was impaired in the elderly (P = 0.004) was restored. Our data suggest that increased DUSP4 expression in activated T cells in the elderly in part accounts for defective adaptive immune responses.
Collapse
|
16
|
Lawan A, Al-Harthi S, Cadalbert L, McCluskey AG, Shweash M, Grassia G, Grant A, Boyd M, Currie S, Plevin R. Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival. J Biol Chem 2011; 286:12933-43. [PMID: 21317287 DOI: 10.1074/jbc.m110.181370] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase-2 (MKP-2) is a type 1 nuclear dual specific phosphatase (DUSP) implicated in a number of cancers. We examined the role of MKP-2 in the regulation of MAP kinase phosphorylation, cell proliferation, and survival responses in mouse embryonic fibroblasts (MEFs) derived from a novel MKP-2 (DUSP-4) deletion mouse. We show that serum and PDGF induced ERK-dependent MKP-2 expression in wild type MEFs but not in MKP-2(-/-) MEFs. PDGF stimulation of sustained ERK phosphorylation was enhanced in MKP-2(-/-) MEFs, whereas anisomycin-induced JNK was only marginally increased. However, marked effects upon cell growth parameters were observed. Cellular proliferation rates were significantly reduced in MKP-2(-/-) MEFs and associated with a significant increase in cell doubling time. Infection with adenoviral MKP-2 reversed the decrease in proliferation. Cell cycle analysis revealed a block in G(2)/M phase transition associated with cyclin B accumulation and enhanced cdc2 phosphorylation. MEFs from MKP-2(-/-) mice also showed enhanced apoptosis when stimulated with anisomycin correlated with increased caspase-3 cleavage and γH2AX phosphorylation. Increased apoptosis was reversed by adenoviral MKP-2 infection and correlated with selective inhibition of JNK signaling. Collectively, these data demonstrate for the first time a critical non-redundant role for MKP-2 in regulating cell cycle progression and apoptosis.
Collapse
Affiliation(s)
- Ahmed Lawan
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hepatitis B virus X protein promotes liver cell proliferation via a positive cascade loop involving arachidonic acid metabolism and p-ERK1/2. Cell Res 2010; 20:563-75. [DOI: 10.1038/cr.2010.49] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
18
|
Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infect Immun 2010; 78:2868-76. [PMID: 20351138 DOI: 10.1128/iai.00018-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sepsis results from a dysregulation of the regulatory mechanisms of the pro- and anti-inflammatory response to invading pathogens. The mitogen-activated protein (MAP) kinase cascades are key signal transduction pathways involved in the cellular production of cytokines. The dual-specific phosphatase 1 (DUSP 1), mitogen-activated protein kinase phosphatase-1 (MKP-1), has been shown to be an important negative regulator of the inflammatory response by regulating the p38 and Jun N-terminal protein kinase (JNK) MAP kinase pathways to influence pro- and anti-inflammatory cytokine production. MKP-2, also a dual-specific phosphatase (DUSP 4), is a phosphatase highly homologous with MKP-1 and is known to regulate MAP kinase signaling; however, its role in regulating the inflammatory response is not known. We hypothesized a regulatory role for MKP-2 in the setting of sepsis. Mice lacking the MKP-2 gene had a survival advantage over wild-type mice when challenged with intraperitoneal lipopolysaccharide (LPS) or a polymicrobial infection via cecal ligation and puncture. The MKP-2(-/-) mice also exhibited decreased serum levels of both pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-alpha], interleukin-1beta [IL-1beta], IL-6) and anti-inflammatory cytokines (IL-10) following endotoxin challenge. Isolated bone marrow-derived macrophages (BMDMs) from MKP-2(-/-) mice showed increased phosphorylation of the extracellular signal-regulated kinase (ERK), decreased phosphorylation of JNK and p38, and increased induction of MKP-1 following LPS stimulation. The capacity for cytokine production increased in MKP-2(-/-) BMDMs following MKP-1 knockdown. These data support a mechanism by which MKP-2 targets ERK deactivation, thereby decreasing MKP-1 and thus removing the negative inhibition of MKP-1 on cytokine production.
Collapse
|
19
|
Cadalbert LC, Sloss CM, Cunningham MR, Al-Mutairi M, McIntire A, Shipley J, Plevin R. Differential regulation of MAP kinase activation by a novel splice variant of human MAP kinase phosphatase-2. Cell Signal 2010; 22:357-65. [PMID: 19843478 DOI: 10.1016/j.cellsig.2009.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/10/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
MAP kinase phosphatase-2 (MKP-2) is a member of the family of dual specificity phosphatases that functions to inactivate the ERK and JNK MAP kinase signalling pathways. Here, we identify a novel human MKP-2 variant (MKP-2-S) lacking the MAP kinase binding site but retaining the phosphatase catalytic domain. Endogenous MKP-2-S transcripts and proteins were found in PC3 prostate and MDA-MB-231 breast cancer cells and also human prostate biopsies. Cellular transfection of MKP-2-S gave rise to a nuclear protein of 33kDa which displayed phosphatase activity comparable to the formerly described long form of MKP-2 (MKP-2-L). Due to its lack of a kinase interacting motif (KIM), MKP-2-S did not bind to JNK or ERK; MKP-2-L bound ERK and to a lesser extent JNK. Protein turnover of adenoviral expressed MKP-2-S was accelerated relative to MKP-2-L, with a greater susceptibility to proteosomal-mediated degradation. MKP-2-S retained its ability to deactivate JNK in a similar manner as MKP-2-L and was an effective inhibitor of LPS-stimulated COX-2 induction. However, unlike MKP-2-L, MKP-2-S was unable to reverse serum-induced ERK activation or significantly inhibit endothelial cell proliferation. These findings reveal the occurrence of a novel splice variant of MKP-2 which is unable to bind ERK and may be significant in the dysregulation of MAP kinase activity in certain disease states, particularly in breast and prostate cancers.
Collapse
Affiliation(s)
- Laurence C Cadalbert
- Division of Physiology and Pharmacology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Engelmann D, Knoll S, Ewerth D, Steder M, Stoll A, Pützer BM. Functional interplay between E2F1 and chemotherapeutic drugs defines immediate E2F1 target genes crucial for cancer cell death. Cell Mol Life Sci 2010; 67:931-48. [PMID: 20013022 PMCID: PMC11115677 DOI: 10.1007/s00018-009-0222-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/04/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
The E2F1 transcription factor enhances apoptosis by DNA damage in tumors lacking p53. To elucidate the mechanism of a potential cooperation between E2F1 and chemotherapy, whole-genome microarrays of chemoresistant tumor cell lines were performed focusing on the identification of cooperation response genes (CRG). This gene class is defined by a synergistic expression response upon endogenous E2F1 activation and drug treatment. Cluster analysis revealed an expression pattern of CRGs similar to E2F1 mono-therapy, suggesting that chemotherapeutics enhance E2F1-dependent gene expression at the transcriptional level. Using this approach as a tool to explore E2F1-driven gene expression in response to anticancer drugs, we identified novel apoptosis genes such as the tumor suppressor TIEG1/KLF10 as direct E2F1 targets. We show that TIEG1/KLF10 is transcriptionally activated by E2F1 and crucial for E2F1-mediated chemosensitization of cancer cells. Our results provide a broader picture of E2F1-regulated genes in conjunction with cytotoxic treatment that allows the design of more rational therapeutics.
Collapse
Affiliation(s)
- David Engelmann
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Susanne Knoll
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Daniel Ewerth
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Marc Steder
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Anja Stoll
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Brigitte M. Pützer
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
21
|
Waha A, Felsberg J, Hartmann W, von dem Knesebeck A, Mikeska T, Joos S, Wolter M, Koch A, Yan PS, Endl E, Wiestler OD, Reifenberger G, Pietsch T, Waha A. Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells. Cancer Res 2010; 70:1689-99. [PMID: 20124482 DOI: 10.1158/0008-5472.can-09-3218] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Critical tumor suppression pathways in brain tumors have yet to be fully defined. Along with mutational analyses, genome-wide epigenetic investigations may reveal novel suppressor elements. Using differential methylation hybridization, we identified a CpG-rich region of the promoter of the dual-specificity mitogen-activated protein kinase phosphatase-2 gene (DUSP4/MKP-2) that is hypermethylated in gliomas. In 83 astrocytic gliomas and 5 glioma cell lines examined, hypermethylation of the MKP-2 promoter was found to occur relatively more frequently in diffuse or anaplastic astrocytomas and secondary glioblastomas relative to primary glioblastomas. MKP-2 hypermethylation was associated with mutations in TP53 and IDH1, exclusive of EGFR amplification, and with prolonged survival of patients with primary glioblastoma. Expression analysis established that promoter hypermethylation correlated with reduced expression of MKP-2 mRNA and protein. Consistent with a regulatory role, reversing promoter hypermethylation by treating cells with 5-aza-2'-deoxycytidine increased MKP-2 mRNA levels. Furthermore, we found that glioblastoma cell growth was inhibited by overexpression of exogenous MKP-2. Our findings reveal MKP-2 as a common epigenetically silenced gene in glioma, the inactivation of which may play a significant role in glioma development.
Collapse
Affiliation(s)
- Anke Waha
- Department of Neuropathology, University of Bonn, D-53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Establishment of extracellular signal-regulated kinase 1/2 bistability and sustained activation through Sprouty 2 and its relevance for epithelial function. Mol Cell Biol 2010; 30:1783-99. [PMID: 20123980 DOI: 10.1128/mcb.01003-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our objective was to establish an experimental model of a self-sustained and bistable extracellular signal-regulated kinase 1/2 (ERK1/2) signaling process. A single stimulation of cells with cytokines causes rapid ERK1/2 activation, which returns to baseline in 4 h. Repeated stimulation leads to sustained activation of ERK1/2 but not Jun N-terminal protein kinase (JNK), p38, or STAT6. The ERK1/2 activation lasts for 3 to 7 days and depends upon a positive-feedback mechanism involving Sprouty 2. Overexpression of Sprouty 2 induces, and its genetic deletion abrogates, ERK1/2 bistability. Sprouty 2 directly activates Fyn kinase, which then induces ERK1/2 activation. A genome-wide microarray analysis shows that the bistable phospho-ERK1/2 (pERK1/2) does not induce a high level of gene transcription. This is due to its nuclear exclusion and compartmentalization to Rab5+ endosomes. Cells with sustained endosomal pERK1/2 manifest resistance against growth factor withdrawal-induced cell death. They are primed for heightened cytokine production. Epithelial cells from cases of human asthma and from a mouse model of chronic asthma manifest increased pERK1/2, which is associated with Rab5+ endosomes. The increase in pERK1/2 was associated with a simultaneous increase in Sprouty 2 expression in these tissues. Thus, we have developed a cellular model of sustained ERK1/2 activation, which may provide a mechanistic understanding of self-sustained biological processes in chronic illnesses such as asthma.
Collapse
|
23
|
Blüher M, Bashan N, Shai I, Harman-Boehm I, Tarnovscki T, Avinaoch E, Stumvoll M, Dietrich A, Klöting N, Rudich A. Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body Insulin sensitivity. J Clin Endocrinol Metab 2009; 94:2507-15. [PMID: 19351724 DOI: 10.1210/jc.2009-0002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Adipose tissue in obesity is thought to be exposed to various stresses, predominantly in intraabdominal depots. We recently reported that p38MAPK and Jun N-terminal kinase (JNK), but not ERK and inhibitory-kappaB kinase beta, are more highly expressed and activated in human omental (OM) adipose tissue in obesity. OBJECTIVE The aim was to investigate upstream components of the pathways that culminate in activation of p38MAPK and JNK. SETTING AND PATIENTS Phosphorylation and expression of kinases were studied in paired samples of OM and sc adipose tissue from lean and obese subjects of two different cohorts (n = 36 and n = 196) by Western and real-time PCR analyses. The association with fat distribution, macrophage infiltration, insulin sensitivity, and glucose metabolism was assessed by correlation analyses. RESULTS The amount of phosphorylated forms of the kinases provided evidence for an activated stress-sensing pathway consisting of the MAP3K Ask1 (but not MLK3 or Tak1), and the MAP2Ks MKK4, 3/6, (but not MKK7), specifically in OM. OM Ask1-mRNA was more highly expressed in predominantly intraabdominally obese persons and most strongly correlated with estimated visceral fat. Diabetes was associated with higher OM Ask1-mRNA only in the lean group. In OM, macrophage infiltration strongly correlated with Ask1-mRNA, but the obesity-associated increase in Ask1-mRNA could largely be attributed to the adipocyte cell fraction. Finally, multivariate regression analyses revealed OM-Ask1 as an independent predictor of whole-body glucose uptake in euglycemic-hyperinsulinemic clamps. CONCLUSIONS An Ask1-MKK4-p38MAPK/JNK pathway reflects adipocyte stress associated with adipose tissue inflammation, linking visceral adiposity to whole-body insulin resistance in obesity.
Collapse
Affiliation(s)
- Matthias Blüher
- Department of Medicine, University of Leipzig, 04107 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
You J, Mi D, Zhou X, Qiao L, Zhang H, Zhang X, Ye L. A positive feedback between activated extracellularly regulated kinase and cyclooxygenase/lipoxygenase maintains proliferation and migration of breast cancer cells. Endocrinology 2009; 150:1607-17. [PMID: 19008312 DOI: 10.1210/en.2008-0616] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis of breast cancer cells is the leading cause of death in breast cancer patients. Why do breast cancer cells with high metastatic potential always keep in high proliferation and migration? The endogenous signaling pathways associated with tumor metastasis remain unclear. In the present study, we address whether a link between ERK and the enzymes associated with arachidonic acid (AA) metabolism contributes to the proliferation and migration of breast cancer cells. To identify endogenous signaling pathways involved in sustaining proliferation and migration of breast cancer cells, we performed parallel studies of human breast cancer cell lines that differ in their metastatic potential. Our data showed that cell lines with high metastatic potential, including LM-MCF-7 and MDA-MB-231, exhibited significantly high, sustained levels of phosphorylated ERK (pERK) 1/2 relative to MCF-7 cells. Our findings showed that beta-catenin, cyclin D1, and survivin serve downstream effectors of pERK1/2, whereas Gi/o proteins, phospholipase C, and protein kinase C serve upstream activators of pERK1/2. In addition, AA metabolites were able to activate Gi/o proteins, phospholipase C, protein kinase C, and pERK1/2 cascades through cyclooxygenase and lipoxygenase. In contrast, activated ERK1/2 promoted AA metabolism through a positive feedback loop, which conduces to a high proliferative potential and the migration of the breast cancer cells. Together, our data provide new mechanistic insights into possible endogenous signaling metastatic signaling pathways involved in maintaining proliferation and migration of breast cancer cells.
Collapse
Affiliation(s)
- Jiacong You
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
De Meyer T, Bijsmans ITGW, Van de Vijver KK, Bekaert S, Oosting J, Van Criekinge W, van Engeland M, Sieben NLG. E2Fs mediate a fundamental cell-cycle deregulation in high-grade serous ovarian carcinomas. J Pathol 2009; 217:14-20. [PMID: 18991331 DOI: 10.1002/path.2452] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several studies described a role for the E2F/Rb pathway in ovarian serous carcinomas (SCAs). Since E2F/Rb pathway deregulation is a general hallmark of human cancer, it remains unclear whether this deregulation is of particular importance in SCAs or whether it reflects a common oncological feature. Here, we have clarified this issue by the examination of microarray expression profiles of SCAs and particularly by the comparison with another, less malignant, ovarian cancer type, serous borderline tumours (SBTs). Results were validated by quantitative RT-PCR, both on the microarray samples and on an independent panel, and TP53 mutation analysis was performed. This integrated analysis revealed a significant increase in the expression of the transcription factors E2F1 and E2F3 in SCAs, when compared to SBTs. This was associated with vast overexpression of E2F target genes in SCAs compared to SBTs. High-grade SCAs in particular exhibited a major deregulated E2F target expression pattern. Generally, overexpression of E2F targets in SCAs appeared to be well structured since those targets considered negative regulators of the cell cycle or promoters of apoptosis were usually not overexpressed in SCAs. Similar to E2F target deregulation, TP53 mutations were identified in SCA3s, to a lesser extent in SCA1s, and not in SBTs. These results suggest that a structured, generally up-regulated E2F transcription factor activity is associated with a global cell-cycle disturbance in high-grade SCAs and exceeds typical E2F/Rb pathway disruption in tumours, at least compared with SBTs.
Collapse
Affiliation(s)
- T De Meyer
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hasegawa T, Enomoto A, Kato T, Kawai K, Miyamoto R, Jijiwa M, Ichihara M, Ishida M, Asai N, Murakumo Y, Ohara K, Niwa Y, Goto H, Takahashi M. Roles of induced expression of MAPK phosphatase-2 in tumor development in RET-MEN2A transgenic mice. Oncogene 2008; 27:5684-95. [PMID: 18542059 DOI: 10.1038/onc.2008.182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/14/2008] [Accepted: 05/07/2008] [Indexed: 01/04/2023]
Abstract
Germline mutations in the RET tyrosine kinase gene are responsible for the development of multiple endocrine neoplasia 2A and 2B (MEN2A and MEN2B). However, knowledge of the fundamental principles that determine the mutant RET-mediated signaling remains elusive. Here, we report increased expression of mitogen-activated protein kinase phosphatase-2 (MKP-2) in carcinomas developed in transgenic mice carrying RET with the MEN2A mutation (RET-MEN2A). The expression of MKP-2 was not only induced by RET-MEN2A or RET-MEN2B mutant proteins but also by the activation of endogenous RET by its ligand, glial cell line-derived neurotrophic factor (GDNF). MKP-2 expression was also evident in the MKK-f cell line, which was established from a mammary tumor developed in a RET-MEN2A transgenic mouse. Inhibition of MKP-2 attenuated the in vitro and in vivo proliferation of MKK-f cells, which was mediated by the suppression of cyclin B1 expression. Furthermore, we found that MKP-2 is highly expressed in medullary thyroid carcinomas derived from MEN2A patients. These findings suggest that the increased expression of MKP-2 may play a crucial role in oncogenic signaling downstream of mutant RET, leading to deregulation of cell cycle.
Collapse
Affiliation(s)
- T Hasegawa
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
28
|
Korotayev K, Chaussepied M, Ginsberg D. ERK activation is regulated by E2F1 and is essential for E2F1-induced S phase entry. Cell Signal 2008; 20:1221-6. [PMID: 18396012 DOI: 10.1016/j.cellsig.2008.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/18/2008] [Indexed: 11/28/2022]
Abstract
The E2F family of transcription factors regulates a diverse array of cellular functions including cell cycle progression, cell differentiation and apoptosis. Recent studies indicate that E2F1 influences the activity of signal transduction pathways. We identify here a novel link between E2F1 and the Ras/Raf/MEK/ERK signaling pathway, namely that E2F1 levels affect growth factor-induced ERK phosphorylation. Specifically, downregulating E2F1 inhibits PDGF-induced ERK phosphorylation and ectopic expression of E2F1 sensitizes cells to PDGF. We demonstrate that E2F1 induces ERK activation via a transcriptional mechanism and upregulates the expression of two guanine nucleotide exchange factors, RASGRP1 and RASGEF1B, which promote Ras activation. Furthermore, we show that E2F1-induced ERK activity is essential for E2F1-induced S phase entry. Current literature dictates that the cyclin D/pRB/E2F pathway lies downstream of the mitogenically activated Ras/Raf/MEK/ERK cascade. Our results indicate that the relationship between these signaling modules is not a simple unidirectional linear one and suggests there exists a positive feedback loop that may enhance both ERK signaling and E2F1 activity.
Collapse
Affiliation(s)
- Katya Korotayev
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|