1
|
Eldeeb MH, Camacho Lopez LJ, Fontanesi F. Mitochondrial respiratory supercomplexes of the yeast Saccharomyces cerevisiae. IUBMB Life 2024; 76:485-504. [PMID: 38529880 DOI: 10.1002/iub.2817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
The functional and structural relationship among the individual components of the mitochondrial respiratory chain constitutes a central aspect of our understanding of aerobic catabolism. This interplay has been a subject of intense debate for over 50 years. It is well established that individual respiratory enzymes associate into higher-order structures known as respiratory supercomplexes, which represent the evolutionarily conserved organizing principle of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, supercomplexes are formed by a complex III homodimer flanked by one or two complex IV monomers, and their high-resolution structures have been recently elucidated. Despite the wealth of structural information, several proposed supercomplex functions remain speculative and our understanding of their physiological relevance is still limited. Recent advances in the field were made possible by the construction of yeast strains where the association of complex III and IV into supercomplexes is impeded, leading to diminished respiratory capacity and compromised cellular competitive fitness. Here, we discuss the experimental evidence and hypotheses relative to the functional roles of yeast respiratory supercomplexes. Moreover, we review the current models of yeast complex III and IV assembly in the context of supercomplex formation and highlight the data scattered throughout the literature suggesting the existence of cross talk between their biogenetic processes.
Collapse
Affiliation(s)
- Mazzen H Eldeeb
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Lizeth J Camacho Lopez
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Lenaz G, Nesci S, Genova ML. Understanding differential aspects of microdiffusion (channeling) in the Coenzyme Q and Cytochrome c regions of the mitochondrial respiratory system. Mitochondrion 2024; 74:101822. [PMID: 38040170 DOI: 10.1016/j.mito.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Over the past decades, models of the organization of mitochondrial respiratory system have been controversial. The goal of this perspective is to assess this "conflict of models" by focusing on specific kinetic evidence in the two distinct segments of Coenzyme Q- and Cytochrome c-mediated electron transfer. Respiratory supercomplexes provide kinetic advantage by allowing a restricted diffusion of Coenzyme Q and Cytochrome c, and short-range interaction with their partner enzymes. In particular, electron transfer from NADH is compartmentalized by channeling of Coenzyme Q within supercomplexes, whereas succinate oxidation proceeds separately using the free Coenzyme Q pool. Previous evidence favoring Coenzyme Q random diffusion in the NADH-dependent electron transfer is due to downstream flux interference and misinterpretation of results. Indeed, electron transfer by complexes III and IV via Cytochrome c is less strictly dependent on substrate channeling in mammalian mitochondria. We briefly describe these differences and their physiological implications.
Collapse
Affiliation(s)
- Giorgio Lenaz
- University of Bologna, Via Zamboni 33, 40126 Bologna, Italy.
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Maria Luisa Genova
- Department of Biomedical and Neuromotor Sciences, O.U. Biochemistry, University of Bologna, Via Irnerio 48, 40126 Bologna, BO, Italy.
| |
Collapse
|
3
|
Nesci S, Algieri C, Trombetti F, Fabbri M, Lenaz G. Two separate pathways underlie NADH and succinate oxidation in swine heart mitochondria: Kinetic evidence on the mobile electron carriers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148977. [PMID: 37059413 DOI: 10.1016/j.bbabio.2023.148977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
We have investigated NADH and succinate aerobic oxidation in frozen and thawed swine heart mitochondria. Simultaneous oxidation of NADH and succinate showed complete additivity under a variety of experimental conditions, suggesting that the electron fluxes originating from NADH and succinate are completely independent and do not mix at the level of the so-called mobile diffusible components. We ascribe the results to mixing of the fluxes at the level of cytochrome c in bovine mitochondria: the Complex IV flux control coefficient in NADH oxidation was high in swine mitochondria but very low in bovine mitochondria, suggesting a stronger interaction of cytochrome c with the supercomplex in the former. This was not the case in succinate oxidation, in which Complex IV exerted little control also in swine mitochondria. We interpret the data in swine mitochondria as restriction of the NADH flux by channelling within the I-III2-IV supercomplex, whereas the flux from succinate shows pool mixing for both Coenzyme Q and probably cytochrome c. The difference between the two types of mitochondria may be ascribed to different lipid composition affecting the cytochrome c binding properties, as suggested by breaks in Arrhenius plots of Complex IV activity occurring at higher temperatures in bovine mitochondria.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, Pad 11, 40138 Bologna, BO, Italy
| |
Collapse
|
4
|
Cioffi F, Giacco A, Goglia F, Silvestri E. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells 2022; 11:cells11060997. [PMID: 35326451 PMCID: PMC8947633 DOI: 10.3390/cells11060997] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Collapse
|
5
|
Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021; 35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome c in the yeast III-IV respiratory supercomplex. Proc Natl Acad Sci U S A 2021; 118:2021157118. [PMID: 33836592 DOI: 10.1073/pnas.2021157118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) c In Saccharomyces cerevisiae and some other organisms, these complexes assemble into larger CIII2CIV1/2 supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the S. cerevisiae supercomplex cyt. c-mediated QH2:O2 oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. c show the positively charged cyt. c bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. c travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. c must diffuse in three dimensions, formation of the CIII2CIV1/2 supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. c This mechanism enables the CIII2CIV1/2 supercomplex to increase QH2:O2 oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.
Collapse
|
7
|
Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R, Špunda V, Garab G. Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions. Cells 2021; 10:2363. [PMID: 34572012 PMCID: PMC8472583 DOI: 10.3390/cells10092363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 12/22/2022] Open
Abstract
In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.
Collapse
Affiliation(s)
- Ondřej Dlouhý
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
| | - Václav Karlický
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Ottó Zsiros
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Ildikó Domonkos
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Irena Kurasová
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - András F. Wacha
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | | | - Attila Bóta
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
| | - Vladimír Špunda
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Győző Garab
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| |
Collapse
|
8
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Miller EK, Pahlavani M, Ramalingam L, Scoggin S, Moustaid-Moussa N. Uncoupling protein 1-independent effects of eicosapentaenoic acid in brown adipose tissue of diet-induced obese female mice. J Nutr Biochem 2021; 98:108819. [PMID: 34271101 DOI: 10.1016/j.jnutbio.2021.108819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Brown adipose tissue (BAT) plays a key role in energy expenditure through its thermogenic function, making its activation a popular target to reduce obesity. We recently reported that male mice housed at thermoneutrality with uncoupling protein 1 (UCP1) deficiency had increased weight gain and glucose intolerance, but eicosapentaenoic acid (EPA) ameliorated these effects. Whether female mice respond similarly to lack of UCP1 and to EPA remains unknown. We hypothesize that the effects of EPA on BAT activation are independent of UCP1 expression. We used female wild type (WT) and UCP1 knockout (KO) mice housed at thermoneutrality (30°C) as an obesogenic environment and fed them high fat (HF) diets with or without EPA for up to 14 weeks. Body weight (BW), body composition, and insulin and glucose tolerance tests were performed during the feeding trial. At termination, serum and BAT were harvested for further analyses. Mice in the KO-EPA group had significantly lower BW than KO-HF mice. In addition, KO-HF mice displayed significantly impaired glucose tolerance compared to their WT-HF littermates. However, EPA significantly enhanced glucose clearance in the KO mice compared to KO-HF mice. Protein levels of the mitochondrial cytochrome C oxidase subunits I, II, and IV were significantly lower in KO mice compared to WT. Our findings support that ablation of UCP1 is detrimental to energy metabolism of female mice in thermoneutral conditions. However, unexpectedly, EPA's protective effects against diet-induced obesity and glucose intolerance in these mice were independent of UCP1.
Collapse
Affiliation(s)
- Emily K Miller
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Mandana Pahlavani
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Latha Ramalingam
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York ,13210
| | - Shane Scoggin
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
10
|
Nesci S, Lenaz G. The mitochondrial energy conversion involves cytochrome c diffusion into the respiratory supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148394. [PMID: 33631178 DOI: 10.1016/j.bbabio.2021.148394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/02/2023]
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy.
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Section of Biochemistry, Alma Mater Studiorum University of Bologna, Via Irnerio, 48, 40126 Bologna, BO, Italy.
| |
Collapse
|
11
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
12
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
13
|
Miranda-Astudillo HV, Yadav KNS, Boekema EJ, Cardol P. Supramolecular associations between atypical oxidative phosphorylation complexes of Euglena gracilis. J Bioenerg Biomembr 2021; 53:351-363. [PMID: 33646522 PMCID: PMC8124061 DOI: 10.1007/s10863-021-09882-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
In vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - P Cardol
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
| |
Collapse
|
14
|
The road to the structure of the mitochondrial respiratory chain supercomplex. Biochem Soc Trans 2021; 48:621-629. [PMID: 32311046 PMCID: PMC7200630 DOI: 10.1042/bst20190930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
The four complexes of the mitochondrial respiratory chain are critical for ATP production in most eukaryotic cells. Structural characterisation of these complexes has been critical for understanding the mechanisms underpinning their function. The three proton-pumping complexes, Complexes I, III and IV associate to form stable supercomplexes or respirasomes, the most abundant form containing 80 subunits in mammals. Multiple functions have been proposed for the supercomplexes, including enhancing the diffusion of electron carriers, providing stability for the complexes and protection against reactive oxygen species. Although high-resolution structures for Complexes III and IV were determined by X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessitated advances in sample preparation and the development of cryo-electron microscopy techniques. We now enjoy structures for these beautiful complexes isolated from multiple organisms and in multiple states and together they provide important insights into respiratory chain function and the role of the supercomplex. While we as non-structural biologists use these structures for interpreting our own functional data, we need to remind ourselves that they stand on the shoulders of a large body of previous structural studies, many of which are still appropriate for use in understanding our results. In this mini-review, we discuss the history of respiratory chain structural biology studies leading to the structures of the mammalian supercomplexes and beyond.
Collapse
|
15
|
Ukolova IV, Kondakova MA, Kondratov IG, Sidorov AV, Borovskii GB, Voinikov VK. New insights into the organisation of the oxidative phosphorylation system in the example of pea shoot mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148264. [PMID: 32663476 DOI: 10.1016/j.bbabio.2020.148264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
The physical and functional organisation of the OXPHOS system in mitochondria in vivo remains elusive. At present, different models of OXPHOS arrangement, representing either highly ordered respiratory strings or, vice versa, a set of randomly dispersed supercomplexes and respiratory complexes, have been suggested. In the present study, we examined a supramolecular arrangement of the OXPHOS system in pea shoot mitochondria using digitonin solubilisation of its constituents, which were further analysed by classical BN-related techniques and a multidimensional gel electrophoresis system when required. As a result, in addition to supercomplexes I1III2, I1III2IVn and III2IV1-2, dimer V2, and individual complexes I-V previously detected in plant mitochondria, new OXPHOS structures were also revealed. Of them, (1) a megacomplex (IIxIIIyIVz)n including complex II, (2) respirasomes I2III4IVn with two copies of complex I and dimeric complex III2, (3) a minor new supercomplex IV1Va2 comigrating with I1III2, and (4) a second minor form of ATP synthase, Va, were found. The activity of singular complexes I, IV, and V was higher than the activity of the associated forms. The detection of new supercomplex IV1Va2, along with assemblies I1III2 and I1-2III2-4IVn, prompted us to suggest the occurrence of in vivo oxphosomes comprising complexes I, III2, IV, and V. The putative oxphosome's stoichiometry, historical background, assumed functional significance, and subcompartmental location are discussed herein.
Collapse
Affiliation(s)
- Irina V Ukolova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia.
| | - Marina A Kondakova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| | - Ilya G Kondratov
- Limnological Institute SB RAS, 3, Ulan-Batorskaya St., Irkutsk 664033, Russia
| | - Alexander V Sidorov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia; Irkutsk State Medical University, 1, Krasnogo Vosstaniya St., Irkutsk 664003, Russia
| | - Gennadii B Borovskii
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| | - Victor K Voinikov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| |
Collapse
|
16
|
Franco LVR, Su CH, Burnett J, Teixeira LS, Tzagoloff A. Atco, a yeast mitochondrial complex of Atp9 and Cox6, is an assembly intermediate of the ATP synthase. PLoS One 2020; 15:e0233177. [PMID: 32413073 PMCID: PMC7228087 DOI: 10.1371/journal.pone.0233177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (oxphos) is the process by which the ATP synthase conserves the energy released during the oxidation of different nutrients as ATP. The yeast ATP synthase consists of three assembly modules, one of which is a ring consisting of 10 copies of the Atp9 subunit. We previously reported the existence in yeast mitochondria of high molecular weight complexes composed of mitochondrially encoded Atp9 and of Cox6, an imported structural subunit of cytochrome oxidase (COX). Pulse-chase experiments indicated a correlation between the loss of newly translated Atp9 complexed to Cox6 and an increase of newly formed Atp9 ring, but did not exclude the possibility of an alternate source of Atp9 for ring formation. Here we have extended studies on the functions and structure of this complex, referred to as Atco. We show that Atco is the exclusive source of Atp9 for the ATP synthase assembly. Pulse-chase experiments show that newly translated Atp9, present in Atco, is converted to a ring, which is incorporated into the ATP synthase with kinetics characteristic of a precursor-product relationship. Even though Atco does not contain the ring form of Atp9, cross-linking experiments indicate that it is oligomeric and that the inter-subunit interactions are similar to those of the bona fide ring. We propose that, by providing Atp9 for biogenesis of ATP synthase, Atco complexes free Cox6 for assembly of COX. This suggests that Atco complexes may play a role in coordinating assembly and maintaining proper stoichiometry of the two oxphos enzymes
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- Department of Microbiology, University of São Paulo, São Paulo, SP, Brazil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Julia Burnett
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Lorisa Simas Teixeira
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kinetic advantage of forming respiratory supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148193. [PMID: 32201307 DOI: 10.1016/j.bbabio.2020.148193] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Components of respiratory chains in mitochondria and some aerobic bacteria assemble into larger, multiprotein membrane-bound supercomplexes. Here, we address the functional significance of supercomplexes composed of respiratory-chain complexes III and IV. Complex III catalyzes oxidation of quinol and reduction of water-soluble cytochrome c (cyt c), while complex IV catalyzes oxidation of the reduced cyt c and reduction of dioxygen to water. We focus on two questions: (i) under which conditions does diffusion of cyt c become rate limiting for electron transfer between these two complexes? (ii) is there a kinetic advantage of forming a supercomplex composed of complexes III and IV? To answer these questions, we use a theoretical approach and assume that cyt c diffuses in the water phase while complexes III and IV either diffuse independently in the two dimensions of the membrane or form supercomplexes. The analysis shows that the electron flux between complexes III and IV is determined by the equilibration time of cyt c within the volume of the intermembrane space, rather than the cyt c diffusion time constant. Assuming realistic relative concentrations of membrane-bound components and cyt c and that all components diffuse independently, the data indicate that electron transfer between complexes III and IV can become rate limiting. Hence, there is a kinetic advantage of bringing complexes III and IV together in the membrane to form supercomplexes.
Collapse
|
18
|
Gottschalk B, Klec C, Leitinger G, Bernhart E, Rost R, Bischof H, Madreiter-Sokolowski CT, Radulović S, Eroglu E, Sattler W, Waldeck-Weiermair M, Malli R, Graier WF. MICU1 controls cristae junction and spatially anchors mitochondrial Ca 2+ uniporter complex. Nat Commun 2019; 10:3732. [PMID: 31427612 PMCID: PMC6700202 DOI: 10.1038/s41467-019-11692-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Recently identified core proteins (MICU1, MCU, EMRE) forming the mitochondrial Ca2+ uniporter complex propelled investigations into its physiological workings. Here, we apply structured illumination microscopy to visualize and localize these proteins in living cells. Our data show that MICU1 localizes at the inner boundary membrane (IBM) due to electrostatic interaction of its polybasic domain. Moreover, this exclusive localization of MICU1 is important for the stability of cristae junctions (CJ), cytochrome c release and mitochondrial membrane potential. In contrast to MICU1, MCU and EMRE are homogeneously distributed at the inner mitochondrial membrane under resting conditions. However, upon Ca2+ elevation MCU and EMRE dynamically accumulate at the IBM in a MICU1-dependent manner. Eventually, our findings unveil an essential function of MICU1 in CJ stabilization and provide mechanistic insights of how sophistically MICU1 controls the MCU-Complex while maintaining the structural mitochondrial membrane framework.
Collapse
Affiliation(s)
- Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Christiane Klec
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/2, 8010, Graz, Austria
| | - Eva Bernhart
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - René Rost
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Snježana Radulović
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/2, 8010, Graz, Austria
| | - Emrah Eroglu
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
- BioTechMed Graz, Mozartgasse 12/2, Graz, 8010, Austria
| | - Markus Waldeck-Weiermair
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
- BioTechMed Graz, Mozartgasse 12/2, Graz, 8010, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/2, Graz, 8010, Austria.
| |
Collapse
|
19
|
Lethal Interaction of Nuclear and Mitochondrial Genotypes in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:2225-2234. [PMID: 31076384 PMCID: PMC6643882 DOI: 10.1534/g3.119.400315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drosophilamelanogaster, like most animal species, displays considerable genetic variation in both nuclear and mitochondrial DNA (mtDNA). Here we tested whether any of four natural mtDNA variants was able to modify the effect of the phenotypically mild, nuclear tko25t mutation, affecting mitochondrial protein synthesis. When combined with tko25t, the mtDNA from wild strain KSA2 produced pupal lethality, accompanied by the presence of melanotic nodules in L3 larvae. KSA2 mtDNA, which carries a substitution at a conserved residue of cytochrome b that is predicted to be involved in subunit interactions within respiratory complex III, conferred drastically decreased respiratory capacity and complex III activity in the tko25t but not a wild-type nuclear background. The complex III inhibitor antimycin A was able to phenocopy effects of the tko25t mutation in the KSA2 mtDNA background. This is the first report of a lethal, nuclear-mitochondrial interaction within a metazoan species, representing a paradigm for understanding genetic interactions between nuclear and mitochondrial genotype relevant to human health and disease.
Collapse
|
20
|
Mitochondrial respirasome works as a single unit and the cross-talk between complexes I, III 2 and IV stimulates NADH dehydrogenase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:618-627. [PMID: 31251900 DOI: 10.1016/j.bbabio.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/20/2022]
Abstract
Ustilago maydis is an aerobic basidiomycete that depends on oxidative phosphorylation for its ATP supply, pointing to the mitochondrion as a key player in its energy metabolism. Mitochondrial respiratory complexes I, III2, and IV occur in supramolecular structures named respirasome. In this work, we characterized the subunit composition and the kinetics of NADH:Q oxidoreductase activity of the digitonine-solubilized respirasome (1600 kDa) and the free-complex I (990 kDa). In the presence of 2,6-dimethoxy-1,4-benzoquinone (DBQ) and cytochrome c, both the respirasome NADH:O2 and the NADH:DBQ oxidoreductase activities were inhibited by rotenone, antimycin A or cyanide. A value of 2.4 for the NADH oxidized/oxygen reduced ratio was determined for the respirasome activity, while ROS production was less than 0.001% of the oxygen consumption rate. Analysis of the NADH:DBQ oxidoreductase activity showed that respirasome was 3-times more active and showed higher affinity than free-complex I. The results suggest that the contacts between complexes I, III2 and IV in the respirasome increase the catalytic efficiency of complex I and regulate its activity to prevent ROS production.
Collapse
|
21
|
The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1039-1052. [PMID: 30951877 DOI: 10.1016/j.bbalip.2019.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Cardiolipin (CL) is a key phospholipid of the mitochondria. A loss of CL content and remodeling of CL's acyl chains is observed in several pathologies. Strong shifts in CL concentration and acyl chain composition would presumably disrupt mitochondrial inner membrane biophysical organization. However, it remains unclear in the literature as to which is the key regulator of mitochondrial membrane biophysical properties. We review the literature to discriminate the effects of CL concentration and acyl chain composition on mitochondrial membrane organization. A widely applicable theme emerges across several pathologies, including cardiovascular diseases, diabetes, Barth syndrome, and neurodegenerative ailments. The loss of CL, often accompanied by increased levels of lyso-CLs, impairs mitochondrial inner membrane organization. Modest remodeling of CL acyl chains is not a major driver of impairments and only in cases of extreme remodeling is there an influence on membrane properties.
Collapse
|
22
|
|
23
|
Rathore S, Berndtsson J, Marin-Buera L, Conrad J, Carroni M, Brzezinski P, Ott M. Cryo-EM structure of the yeast respiratory supercomplex. Nat Struct Mol Biol 2018; 26:50-57. [PMID: 30598556 DOI: 10.1038/s41594-018-0169-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Respiratory chain complexes execute energy conversion by connecting electron transport with proton translocation over the inner mitochondrial membrane to fuel ATP synthesis. Notably, these complexes form multi-enzyme assemblies known as respiratory supercomplexes. Here we used single-particle cryo-EM to determine the structures of the yeast mitochondrial respiratory supercomplexes III2IV and III2IV2, at 3.2-Å and 3.5-Å resolutions, respectively. We revealed the overall architecture of the supercomplex, which deviates from the previously determined assemblies in mammals; obtained a near-atomic structure of the yeast complex IV; and identified the protein-protein and protein-lipid interactions implicated in supercomplex formation. Take together, our results demonstrate convergent evolution of supercomplexes in mitochondria that, while building similar assemblies, results in substantially different arrangements and structural solutions to support energy conversion.
Collapse
Affiliation(s)
- Sorbhi Rathore
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lorena Marin-Buera
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Julian Conrad
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
24
|
Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc 1. Nat Struct Mol Biol 2018; 26:78-83. [PMID: 30598554 PMCID: PMC6330080 DOI: 10.1038/s41594-018-0172-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023]
Abstract
Cytochrome c oxidase (complex IV, CIV) is known in mammals to exist independently or in association with other respiratory proteins to form supercomplexes (SCs). In Saccharomyces cerevisiae, CIV is found solely in an SC with cytochrome bc1 (complex III, CIII). Here, we present the cryogenic electron microscopy (cryo-EM) structure of S. cerevisiae CIV in a III2IV2 SC at 3.3 Å resolution. While overall similarity to mammalian homologs is high, we found notable differences in the supernumerary subunits Cox26 and Cox13; the latter exhibits a unique arrangement that precludes CIV dimerization as seen in bovine. A conformational shift in the matrix domain of Cox5A-involved in allosteric inhibition by ATP-may arise from its association with CIII. The CIII-CIV arrangement highlights a conserved interaction interface of CIII, albeit one occupied by complex I in mammalian respirasomes. We discuss our findings in the context of the potential impact of SC formation on CIV regulation.
Collapse
|
25
|
Fernie AR, Zhang Y, Sweetlove LJ. Passing the Baton: Substrate Channelling in Respiratory Metabolism. RESEARCH (WASHINGTON, D.C.) 2018; 2018:1539325. [PMID: 31549022 PMCID: PMC6750097 DOI: 10.1155/2018/1539325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Despite species-specific differences in the pathways of respiratory metabolism are remarkably conserved across the kingdoms of life with glycolysis, the tricarboxylic acid cycle, and mitochondrial electron transport chain representing the major components of the process in the vast majority of organisms. In addition to being of critical importance in fueling life itself these pathways serve as interesting case studies for substrate channelling with research on this theme having been carried out for over 40 years. Here we provide a cross-kingdom review of the ample evidence for protein-protein interaction and enzyme assemblies within the three component pathways as well as describing the scarcer available evidence for substrate channelling itself.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lee J. Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
26
|
Schäfer J, Dawitz H, Ott M, Ädelroth P, Brzezinski P. Structural and functional heterogeneity of cytochrome c oxidase in S. cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:699-704. [PMID: 29746825 DOI: 10.1016/j.bbabio.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Respiration in Saccharomyces cerevisiae is regulated by small proteins such as the respiratory supercomplex factors (Rcf). One of these factors (Rcf1) has been shown to interact with complexes III (cyt. bc1) and IV (cytochrome c oxidase, CytcO) of the respiratory chain and to modulate the activity of the latter. Here, we investigated the effect of deleting Rcf1 on the functionality of CytcO, purified using a protein C-tag on core subunit 1 (Cox1). Specifically, we measured the kinetics of ligand binding to the CytcO catalytic site, the O2-reduction activity and changes in light absorption spectra. We found that upon removal of Rcf1 a fraction of the CytcO is incorrectly assembled with structural changes at the catalytic site. The data indicate that Rcf1 modulates the assembly and activity of CytcO by shifting the equilibrium of structural sub-states toward the fully active, intact form.
Collapse
Affiliation(s)
- Jacob Schäfer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Hannah Dawitz
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
27
|
Lobo-Jarne T, Ugalde C. Respiratory chain supercomplexes: Structures, function and biogenesis. Semin Cell Dev Biol 2018; 76:179-190. [PMID: 28743641 PMCID: PMC5780262 DOI: 10.1016/j.semcdb.2017.07.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Over the past sixty years, researchers have made outmost efforts to clarify the structural organization and functional regulation of the complexes that configure the mitochondrial respiratory chain. As a result, the entire composition of each individual complex is practically known and, aided by notable structural advances in mammals, it is now widely accepted that these complexes stablish interactions to form higher-order supramolecular structures called supercomplexes and respirasomes. The mechanistic models and players that regulate the function and biogenesis of such superstructures are still under intense debate, and represent one of the hottest topics of the mitochondrial research field at present. Noteworthy, understanding the pathways involved in the assembly and organization of respiratory chain complexes and supercomplexes is of high biomedical relevance because molecular alterations in these pathways frequently result in severe mitochondrial disorders. The purpose of this review is to update the structural, biogenetic and functional knowledge about the respiratory chain supercomplexes and assembly factors involved in their formation, with special emphasis on their implications in mitochondrial disease. Thanks to the integrated data resulting from recent structural, biochemical and genetic approaches in diverse biological systems, the regulation of the respiratory chain function arises at multiple levels of complexity.
Collapse
Affiliation(s)
- Teresa Lobo-Jarne
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain.
| |
Collapse
|
28
|
Guo R, Gu J, Zong S, Wu M, Yang M. Structure and mechanism of mitochondrial electron transport chain. Biomed J 2018; 41:9-20. [PMID: 29673555 PMCID: PMC6138618 DOI: 10.1016/j.bj.2017.12.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022] Open
Abstract
Respiration is one of the most vital and basic features of living organisms. In mammals, respiration is accomplished by respiratory chain complexes located on the mitochondrial inner membrane. In the past century, scientists put tremendous efforts in understanding these complexes, but failed to solve the high resolution structure until recently. In 2016, three research groups reported the structure of respiratory chain supercomplex from different species, and fortunately the structure solved by our group has the highest resolution. In this review, we will compare the recently solved structures of respirasome, probe into the relationship between cristae shape and respiratory chain organization, and discuss the highly disputed issues afterwards. Besides, our group reported the first high resolution structure of respirasome and medium resolution structure of megacomplex from cultured human cells this year. Definitely, these supercomplex structures will provide precious information for conquering the mitochondrial malfunction diseases.
Collapse
Affiliation(s)
- Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing, China; Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Conserved in situ arrangement of complex I and III 2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. Proc Natl Acad Sci U S A 2018. [PMID: 29519876 PMCID: PMC5866595 DOI: 10.1073/pnas.1720702115] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We used electron cryo-tomography and subtomogram averaging to investigate the structure of complex I and its supramolecular assemblies in the inner mitochondrial membrane of mammals, fungi, and plants. Tomographic volumes containing complex I were averaged at ∼4 nm resolution. Principal component analysis indicated that ∼60% of complex I formed a supercomplex with dimeric complex III, while ∼40% were not associated with other respiratory chain complexes. The mutual arrangement of complex I and III2 was essentially conserved in all supercomplexes investigated. In addition, up to two copies of monomeric complex IV were associated with the complex I1III2 assembly in bovine heart and the yeast Yarrowia lipolytica, but their positions varied. No complex IV was detected in the respiratory supercomplex of the plant Asparagus officinalis Instead, an ∼4.5-nm globular protein density was observed on the matrix side of the complex I membrane arm, which we assign to γ-carbonic anhydrase. Our results demonstrate that respiratory chain supercomplexes in situ have a conserved core of complex I and III2, but otherwise their stoichiometry and structure varies. The conserved features of supercomplex assemblies indicate an important role in respiratory electron transfer.
Collapse
|
30
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Sun JY, Song Y, Ma ZP, Zhang HJ, Yang ZD, Cai ZH, Zhou J. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom. MARINE ENVIRONMENTAL RESEARCH 2017; 131:183-194. [PMID: 29017729 DOI: 10.1016/j.marenvres.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Contamination and eutrophication have caused serious ecological events (such as algal bloom) in coastal area. During this ecological process, microbial community structure is critical for algal bloom succession. The diversity and composition of bacteria and archaea communities in algal blooms have been widely investigated; however, those of fungi are poorly understood. To fill this gap, we used pyrosequencing and correlation approaches to assess fungal patterns and associations during a dinoflagellate (Noctiluca scintillans) bloom. Phylum level fungal types were predominated by Ascomycota, Chytridiomycota, Mucoromycotina, and Basidiomycota. At the genus level drastic changes were observed with Hysteropatella, Malassezia and Saitoella dominating during the initial bloom stage, while Malassezia was most abundant (>50%) during onset and peak-bloom stages. Saitoella and Lipomyces gradually became more abundant and, in the decline stage, contributed almost 70% of sequences. In the terminal stage of the bloom, Rozella increased rapidly to a maximum of 50-60%. Fungal population structure was significantly influenced by temperature and substrate (N and P) availability (P < 0.05). Inter-specific network analyses demonstrated that Rozella and Saitoella fungi strongly impacted the ecological trajectory of N. scintillans. The functional prediction show that symbiotrophic fungi was dominated in the onset stage; saprotroph type was the primary member present during the exponential growth period; whereas pathogentroph type fungi enriched in decline phase. Overall, fungal communities and functions correlated significantly with N. scintillans processes, suggesting that they may regulate dinoflagellate bloom fates. Our results will facilitate deeper understanding of the ecological importance of marine fungi and their roles in algal bloom formation and collapse.
Collapse
Affiliation(s)
- Jing-Yun Sun
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu Province, PR China
| | - Yu Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhi-Ping Ma
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Huai-Jing Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Duo Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu Province, PR China; The Provincial Education Key Laboratory of Screening, Evaluation and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
32
|
Guo R, Zong S, Wu M, Gu J, Yang M. Architecture of Human Mitochondrial Respiratory Megacomplex I 2III 2IV 2. Cell 2017; 170:1247-1257.e12. [PMID: 28844695 DOI: 10.1016/j.cell.2017.07.050] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
Abstract
The respiratory megacomplex represents the highest-order assembly of respiratory chain complexes, and it allows mitochondria to respond to energy-requiring conditions. To understand its architecture, we examined the human respiratory chain megacomplex-I2III2IV2 (MCI2III2IV2) with 140 subunits and a subset of associated cofactors using cryo-electron microscopy. The MCI2III2IV2 forms a circular structure with the dimeric CIII located in the center, where it is surrounded by two copies each of CI and CIV. Two cytochrome c (Cyt.c) molecules are positioned to accept electrons on the surface of the c1 state CIII dimer. Analyses indicate that CII could insert into the gaps between CI and CIV to form a closed ring, which we termed the electron transport chain supercomplex. The structure not only reveals the precise assignment of individual subunits of human CI and CIII, but also enables future in-depth analysis of the electron transport chain as a whole.
Collapse
Affiliation(s)
- Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
33
|
Singhal RK, Kruse C, Heidler J, Strecker V, Zwicker K, Düsterwald L, Westermann B, Herrmann JM, Wittig I, Rapaport D. Coi1 is a novel assembly factor of the yeast complex III-complex IV supercomplex. Mol Biol Cell 2017; 28:mbc.E17-02-0093. [PMID: 28794267 PMCID: PMC5620370 DOI: 10.1091/mbc.e17-02-0093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/30/2023] Open
Abstract
The yeast bc1 complex (complex III) and cytochrome oxidase (complex IV) are mosaics of core subunits encoded by the mitochondrial genome and additional nuclear-encoded proteins imported from the cytosol. Both complexes build in the mitochondrial inner membrane various supramolecular assemblies. The formation of the individual complexes and their supercomplexes depends on the activity of dedicated assembly factors. We identified a so far uncharacterized mitochondrial protein (open reading frame YDR381C-A) as an important assembly factor for complex III, complex IV, and their supercomplexes. Therefore, we named this protein Cox interacting (Coi) 1. Deletion of COI1 results in decreased respiratory growth, reduced membrane potential, and hampered respiration, as well as slow fermentative growth at low temperature. In addition, coi1Δ cells harbour reduced steady-state levels of subunits of complexes III and IV as well as of the assembled complexes and supercomplexes. Interaction of Coi1 with respiratory chain subunits seems transient, as it appears to be a stoichiometric subunit neither of complex III nor of complex IV. Collectively, this work identifies a novel protein that plays a role in the assembly of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Ravi K Singhal
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Christine Kruse
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Juliana Heidler
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Valentina Strecker
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Klaus Zwicker
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lea Düsterwald
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
- Cluster of Excellence "Macromolecular Complexes", Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Meera C, Meenakumari S, Thirumavalavan M, Pachaiappan R. Isolation and characterization of α-amylase inhibitor from Leucas aspera (Willd) Link: α-amylase assay combined with FPLC chromatography for expedited identification. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2017; 26:346-355. [DOI: 10.1007/s13562-017-0397-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
35
|
Abstract
Respiratory chain dysfunction plays an important role in human disease and aging. It is now well established that the individual respiratory complexes can be organized into supercomplexes, and structures for these macromolecular assemblies, determined by electron cryo-microscopy, have been described recently. Nevertheless, the reason why supercomplexes exist remains an enigma. The widely held view that they enhance catalysis by channeling substrates is challenged by both structural and biophysical information. Here, we evaluate and discuss data and hypotheses on the structures, roles, and assembly of respiratory-chain supercomplexes and propose a future research agenda to address unanswered questions.
Collapse
Affiliation(s)
- Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - James N Blaza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
36
|
Garlich J, Strecker V, Wittig I, Stuart RA. Mutational Analysis of the QRRQ Motif in the Yeast Hig1 Type 2 Protein Rcf1 Reveals a Regulatory Role for the Cytochrome c Oxidase Complex. J Biol Chem 2017; 292:5216-5226. [PMID: 28167530 DOI: 10.1074/jbc.m116.758045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
The yeast Rcf1 protein is a member of the conserved family of proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or HIGD1) family. Rcf1 interacts with components of the mitochondrial oxidative phosphorylation system, in particular the cytochrome bc1 (complex III)-cytochrome c oxidase (complex IV) supercomplex (termed III-IV) and the ADP/ATP carrier proteins. Rcf1 plays a role in the assembly and modulation of the activity of complex IV; however, the molecular basis for how Rcf1 influences the activity of complex IV is currently unknown. Hig1 type 2 isoforms, which include the Rcf1 protein, are characterized in part by the presence of a conserved motif, (Q/I)X3(R/H)XRX3Q, termed here the QRRQ motif. We show that mutation of conserved residues within the Rcf1 QRRQ motif alters the interactions between Rcf1 and partner proteins and results in the destabilization of complex IV and alteration of its enzymatic properties. Our findings indicate that Rcf1 does not serve as a stoichiometric component, i.e. as a subunit of complex IV, to support its activity. Rather, we propose that Rcf1 serves to dynamically interact with complex IV during its assembly process and, in doing so, regulates a late maturation step of complex IV. We speculate that the Rcf1/Hig1 proteins play a role in the incorporation and/or remodeling of lipids, in particular cardiolipin, into complex IV and. possibly, other mitochondrial proteins such as ADP/ATP carrier proteins.
Collapse
Affiliation(s)
- Joshua Garlich
- From the Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233 and
| | - Valentina Strecker
- Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Rosemary A Stuart
- From the Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233 and
| |
Collapse
|
37
|
Björck ML, Zhou S, Rydström Lundin C, Ott M, Ädelroth P, Brzezinski P. Reaction of S. cerevisiae mitochondria with ligands: Kinetics of CO and O 2 binding to flavohemoglobin and cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:182-188. [PMID: 27871795 DOI: 10.1016/j.bbabio.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Kinetic methods used to investigate electron and proton transfer within cytochrome c oxidase (CytcO) are often based on the use of light to dissociate small ligands, such as CO, thereby initiating the reaction. Studies of intact mitochondria using these methods require identification of proteins that may bind CO and determination of the ligand-binding kinetics. In the present study we have investigated the kinetics of CO-ligand binding to S. cerevisiae mitochondria and cellular extracts. The data indicate that CO binds to two proteins, CytcO and a (yeast) flavohemoglobin (yHb). The latter has been shown previously to reside in both the cell cytosol and the mitochondrial matrix. Here, we found that yHb resides also in the intermembrane space and binds CO in its reduced state. As observed previously, we found that the yHb population in the mitochondrial matrix binds CO, but only after removal of the inner membrane. The mitochondrial yHb (in both the intermembrane space and the matrix) recombines with CO with τ≅270ms, which is significantly slower than observed with the cytosolic yHb (main component τ≅1.3ms). The data indicate that the yHb populations in the different cell compartments differ in structure.
Collapse
Affiliation(s)
- Markus L Björck
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Shu Zhou
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Camilla Rydström Lundin
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
38
|
Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell 2016; 7:854-865. [PMID: 27743346 PMCID: PMC5205662 DOI: 10.1007/s13238-016-0329-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 11/02/2022] Open
Abstract
Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.
Collapse
|
39
|
Graf S, Fedotovskaya O, Kao WC, Hunte C, Ädelroth P, Bott M, von Ballmoos C, Brzezinski P. Rapid Electron Transfer within the III-IV Supercomplex in Corynebacterium glutamicum. Sci Rep 2016; 6:34098. [PMID: 27682138 PMCID: PMC5040959 DOI: 10.1038/srep34098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Complex III in C. glutamicum has an unusual di-heme cyt. c1 and it co-purifies with complex IV in a supercomplex. Here, we investigated the kinetics of electron transfer within this supercomplex and in the cyt. aa3 alone (cyt. bc1 was removed genetically). In the reaction of the reduced cyt. aa3 with O2, we identified the same sequence of events as with other A-type oxidases. However, even though this reaction is associated with proton uptake, no pH dependence was observed in the kinetics. For the cyt. bc1-cyt. aa3 supercomplex, we observed that electrons from the c-hemes were transferred to CuA with time constants 0.1–1 ms. The b-hemes were oxidized with a time constant of 6.5 ms, indicating that this electron transfer is rate-limiting for the overall quinol oxidation/O2 reduction activity (~210 e−/s). Furthermore, electron transfer from externally added cyt. c to cyt. aa3 was significantly faster upon removal of cyt. bc1 from the supercomplex, suggesting that one of the c-hemes occupies a position near CuA. In conclusion, isolation of the III-IV-supercomplex allowed us to investigate the kinetics of electron transfer from the b-hemes, via the di-heme cyt. c1 and heme a to the heme a3-CuB catalytic site of cyt. aa3.
Collapse
Affiliation(s)
- Simone Graf
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
40
|
Abstract
The hypermetabolic effects of thyroid hormones (THs), the major endocrine regulators of metabolic rate, are widely recognized. Although, the cellular mechanisms underlying these effects have been extensively investigated, much has yet to be learned about how TH regulates diverse cellular functions. THs have a profound impact on mitochondria, the organelles responsible for the majority of cellular energy production, and several studies have been devoted to understand the respective importance of the nuclear and mitochondrial pathways for organelle activity. During the last decades, several new aspects of both THs (i.e., metabolism, transport, mechanisms of action, and the existence of metabolically active TH derivatives) and mitochondria (i.e., dynamics, respiratory chain organization in supercomplexes, and the discovery of uncoupling proteins other than uncoupling protein 1) have emerged, thus opening new perspectives to the investigation of the complex relationship between thyroid and the mitochondrial compartment. In this review, in the light of an historical background, we attempt to point out the present findings regarding thyroid physiology and the emerging recognition that mitochondrial dynamics as well as the arrangement of the electron transport chain in mitochondrial cristae contribute to the mitochondrial activity. We unravel the genomic and nongenomic mechanisms so far studied as well as the effects of THs on mitochondrial energetics and, principally, uncoupling of oxidative phosphorylation via various mechanisms involving uncoupling proteins. The emergence of new approaches to the question as to what extent and how the action of TH can affect mitochondria is highlighted. © 2016 American Physiological Society. Compr Physiol 6:1591-1607, 2016.
Collapse
Affiliation(s)
- Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| |
Collapse
|
41
|
Smirnova IA, Sjöstrand D, Li F, Björck M, Schäfer J, Östbye H, Högbom M, von Ballmoos C, Lander GC, Ädelroth P, Brzezinski P. Isolation of yeast complex IV in native lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2984-2992. [PMID: 27620332 DOI: 10.1016/j.bbamem.2016.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 12/31/2022]
Abstract
We used the amphipathic styrene maleic acid (SMA) co-polymer to extract cytochrome c oxidase (CytcO) in its native lipid environment from S. cerevisiae mitochondria. Native nanodiscs containing one CytcO per disc were purified using affinity chromatography. The longest cross-sections of the native nanodiscs were 11nm×14nm. Based on this size we estimated that each CytcO was surrounded by ~100 phospholipids. The native nanodiscs contained the same major phospholipids as those found in the mitochondrial inner membrane. Even though CytcO forms a supercomplex with cytochrome bc1 in the mitochondrial membrane, cyt. bc1 was not found in the native nanodiscs. Yet, the loosely-bound Respiratory SuperComplex factors were found to associate with the isolated CytcO. The native nanodiscs displayed an O2-reduction activity of ~130 electrons CytcO-1s-1 and the kinetics of the reaction of the fully reduced CytcO with O2 was essentially the same as that observed with CytcO in mitochondrial membranes. The kinetics of CO-ligand binding to the CytcO catalytic site was similar in the native nanodiscs and the mitochondrial membranes. We also found that excess SMA reversibly inhibited the catalytic activity of the mitochondrial CytcO, presumably by interfering with cyt. c binding. These data point to the importance of removing excess SMA after extraction of the membrane protein. Taken together, our data shows the high potential of using SMA-extracted CytcO for functional and structural studies.
Collapse
Affiliation(s)
- Irina A Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russian Federation
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fei Li
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Markus Björck
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jacob Schäfer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
42
|
Kao WC, Kleinschroth T, Nitschke W, Baymann F, Neehaul Y, Hellwig P, Richers S, Vonck J, Bott M, Hunte C. The obligate respiratory supercomplex from Actinobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1705-14. [PMID: 27472998 DOI: 10.1016/j.bbabio.2016.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/27/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
Abstract
Actinobacteria are closely linked to human life as industrial producers of bioactive molecules and as human pathogens. Respiratory cytochrome bcc complex and cytochrome aa3 oxidase are key components of their aerobic energy metabolism. They form a supercomplex in the actinobacterial species Corynebacterium glutamicum. With comprehensive bioinformatics and phylogenetic analysis we show that genes for cyt bcc-aa3 supercomplex are characteristic for Actinobacteria (Actinobacteria and Acidimicrobiia, except the anaerobic orders Actinomycetales and Bifidobacteriales). An obligatory supercomplex is likely, due to the lack of genes encoding alternative electron transfer partners such as mono-heme cyt c. Instead, subunit QcrC of bcc complex, here classified as short di-heme cyt c, will provide the exclusive electron transfer link between the complexes as in C. glutamicum. Purified to high homogeneity, the C. glutamicum bcc-aa3 supercomplex contained all subunits and cofactors as analyzed by SDS-PAGE, BN-PAGE, absorption and EPR spectroscopy. Highly uniform supercomplex particles in electron microscopy analysis support a distinct structural composition. The supercomplex possesses a dimeric stoichiometry with a ratio of a-type, b-type and c-type hemes close to 1:1:1. Redox titrations revealed a low potential bcc complex (Em(ISP)=+160mV, Em(bL)=-291mV, Em(bH)=-163mV, Em(cc)=+100mV) fined-tuned for oxidation of menaquinol and a mixed potential aa3 oxidase (Em(CuA)=+150mV, Em(a/a3)=+143/+317mV) mediating between low and high redox potential to accomplish dioxygen reduction. The generated molecular model supports a stable assembled supercomplex with defined architecture which permits energetically efficient coupling of menaquinol oxidation and dioxygen reduction in one supramolecular entity.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Thomas Kleinschroth
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Wolfgang Nitschke
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/Aix Marseille Univ, FR3479, 13009 Marseille, France
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/Aix Marseille Univ, FR3479, 13009 Marseille, France
| | - Yashvin Neehaul
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Chimie de la matière complexe, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Chimie de la matière complexe, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Sebastian Richers
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany.
| |
Collapse
|
43
|
Regulatory role of the respiratory supercomplex factors in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:E4476-85. [PMID: 27432958 DOI: 10.1073/pnas.1601196113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The respiratory supercomplex factors (Rcf) 1 and 2 mediate supramolecular interactions between mitochondrial complexes III (ubiquinol-cytochrome c reductase; cyt. bc1) and IV (cytochrome c oxidase; CytcO). In addition, removal of these polypeptides results in decreased activity of CytcO, but not of cyt. bc1 In the present study, we have investigated the kinetics of ligand binding, the single-turnover reaction of CytcO with O2, and the linked cyt. bc1-CytcO quinol oxidation-oxygen-reduction activities in mitochondria in which Rcf1 or Rcf2 were removed genetically (strains rcf1Δ and rcf2Δ, respectively). The data show that in the rcf1Δ and rcf2Δ strains, in a significant fraction of the population, ligand binding occurs over a time scale that is ∼100-fold faster (τ ≅ 100 μs) than observed with the wild-type mitochondria (τ ≅ 10 ms), indicating structural changes. This effect is specific to removal of Rcf and not dissociation of the cyt. bc1-CytcO supercomplex. Furthermore, in the rcf1Δ and rcf2Δ strains, the single-turnover reaction of CytcO with O2 was incomplete. This observation indicates that the lower activity of CytcO is caused by a fraction of inactive CytcO rather than decreased CytcO activity of the entire population. Furthermore, the data suggest that the Rcf1 polypeptide mediates formation of an electron-transfer bridge from cyt. bc1 to CytcO via a tightly bound cyt. c We discuss the significance of the proposed regulatory mechanism of Rcf1 and Rcf2 in the context of supramolecular interactions between cyt. bc1 and CytcO.
Collapse
|
44
|
Complex I function in mitochondrial supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:991-1000. [DOI: 10.1016/j.bbabio.2016.01.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/02/2023]
|
45
|
Arnarez C, Marrink SJ, Periole X. Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes. Chem Sci 2016; 7:4435-4443. [PMID: 30155091 PMCID: PMC6014297 DOI: 10.1039/c5sc04664e] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondria produce most of the ATP consumed by cells through the respiratory chain in their inner membrane. This process involves protein complexes assembled into larger structures, the respiratory supercomplexes (SCs). Cardiolipin (CL), the mitochondrial signature phospholipid, is crucial for the structural and functional integrity of these SCs, but it is as yet unclear by what mechanism it operates. Our data disclose the mechanism for bulk CL in gluing SCs, steering their formation, and suggest how it may stabilize specific interfaces. We describe self-assembly molecular dynamics simulations of 9 cytochrome bc1 (CIII) dimers and 27 cytochrome c oxidase (CIV) monomers from bovine heart mitochondria embedded in a CL-containing model lipid bilayer, aimed at mimicking the crowdedness and complexity of mitochondrial membranes. The simulations reveal a large diversity of interfaces, including those of existing experimental CIII/CIV SC models and an alternative interface with CIV rotated by 180°. SC interfaces enclose 4 to 12 CLs, a ∼10 fold enrichment from the bulk. Half of these CLs glue complexes together using CL binding sites at the surface of both complexes. Free energy calculations demonstrate a larger CL binding strength, compared to other mitochondrial lipids, that is exclusive to these binding sites and results from non-additive electrostatic and van der Waals forces. This study provides a key example of the ability of lipids to selectively mediate protein-protein interactions by altering all ranges of forces, lubricate protein interfaces and act as traffic control agents steering proteins together.
Collapse
Affiliation(s)
- C Arnarez
- Groningen Biomolecular Sciences and Biotechnology Institute , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; ; Tel: +31-503632462
| | - S J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; ; Tel: +31-503632462
| | - X Periole
- Groningen Biomolecular Sciences and Biotechnology Institute , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; ; Tel: +31-503632462
| |
Collapse
|
46
|
Strecker V, Kadeer Z, Heidler J, Cruciat CM, Angerer H, Giese H, Pfeiffer K, Stuart RA, Wittig I. Supercomplex-associated Cox26 protein binds to cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:1643-52. [PMID: 27091403 PMCID: PMC7140176 DOI: 10.1016/j.bbamcr.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Here we identified a hydrophobic 6.4kDa protein, Cox26, as a novel component of yeast mitochondrial supercomplex comprising respiratory complexes III and IV. Multi-dimensional native and denaturing electrophoretic techniques were used to identify proteins interacting with Cox26. The majority of the Cox26 protein was found non-covalently bound to the complex IV moiety of the III-IV supercomplexes. A population of Cox26 was observed to exist in a disulfide bond partnership with the Cox2 subunit of complex IV. No pronounced growth phenotype for Cox26 deficiency was observed, indicating that Cox26 may not play a critical role in the COX enzymology, and we speculate that Cox26 may serve to regulate or support the Cox2 protein. Respiratory supercomplexes are assembled in the absence of the Cox26 protein, however their pattern slightly differs to the wild type III-IV supercomplex appearance. The catalytic activities of complexes III and IV were observed to be normal and respiration was comparable to wild type as long as cells were cultivated under normal growth conditions. Stress conditions, such as elevated temperatures resulted in mild decrease of respiration in non-fermentative media when the Cox26 protein was absent.
Collapse
Affiliation(s)
- Valentina Strecker
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany
| | - Zibirnisa Kadeer
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | - Juliana Heidler
- Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany
| | - Cristina-Maria Cruciat
- Fakultät Angewandte Naturwissenschaften, Hochschule Esslingen, University of Applied Sciences, D-73728 Esslingen, Germany
| | - Heike Angerer
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe University of Frankfurt, Germany
| | - Heiko Giese
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, D-60325 Frankfurt am Main, Germany
| | - Kathy Pfeiffer
- Department of Functional Proteomics, Medizinisches Proteom-Center, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Ilka Wittig
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany.
| |
Collapse
|
47
|
Melo AMP, Teixeira M. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:190-7. [PMID: 26546715 DOI: 10.1016/j.bbabio.2015.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
48
|
De March M, Brancatelli G, Demitri N, De Zorzi R, Hickey N, Geremia S. A general exit strategy of monoheme cytochromes c and c2 in electron transfer complexes? IUBMB Life 2015; 67:694-700. [PMID: 26311433 DOI: 10.1002/iub.1410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/28/2015] [Indexed: 11/06/2022]
Abstract
Using our previously reported maps of the electrostatic surface of horse heart ferri- and ferro-cyt c, comparisons were made between the complementary electrostatic surfaces of three cyt c peroxidase-cyt c complexes and the photosynthetic reaction center-cyt c complex, considering both iron oxidation states. The results obtained were consistent with a sliding mechanism for the electron shuttle on the surface of the protein complexes, promoted by the change in iron oxidation state. This mechanism was found to be in agreement with theoretical and NMR studies reported in the literature. Importantly, the analysis also provided a rationale for recognition of nonproductive associations. As we have previously reported the same conclusion on examination of redox partners of cyt c in the mitochondrial respiratory pathway, our hypothesis is that the proposed mechanism could represent a general exit strategy of monoheme cyts c and c2 in electron transfer complexes.
Collapse
Affiliation(s)
- Matteo De March
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Trieste, Italy
| | - Giovanna Brancatelli
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Trieste, Italy
| | - Nicola Demitri
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Trieste, Italy
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Trieste, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Trieste, Italy
| |
Collapse
|
49
|
Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 2015; 72:39-51. [PMID: 25841081 DOI: 10.1016/j.micron.2015.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022]
Abstract
Bioenergetic reactions in chloroplasts and mitochondria are catalyzed by large multi-subunit membrane proteins. About two decades ago it became clear that several of these large membrane proteins further associate into supercomplexes and since then a number of new ones have been described. In this review we focus on supercomplexes involved in light harvesting and electron transfer in the primary reactions of oxygenic photosynthesis and on the mitochondrial supercomplexes that catalyze electron transfer and ATP synthesis in oxidative phosphorylation. Functional and structural aspects are overviewed. In addition, several relevant technical aspects are discussed, including membrane solubilization with suitable detergents and methods of purification. Some open questions are addressed, such as the lack of high-resolution structures, the outstanding gaps in the knowledge about supercomplexes involved in cyclic electron transport in photosynthesis and the unusual mitochondrial protein complexes of protists and in particular of ciliates.
Collapse
|
50
|
Porras CAM, Bai Y. Respiratory supercomplexes: plasticity and implications. Front Biosci (Landmark Ed) 2015; 20:621-34. [PMID: 25553469 DOI: 10.2741/4327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plasticity model of the electron transport chain has slowly begun to replace both the liquid model of free complexes and the solid model of supercomplexes. The plasticity model predicts that respiratory complexes exist and function both as single complexes and as supercomplexes. The advantages of this system is an electron transport train which is able to adapt to changes in its environment. This review will investigate the current body of work on supercomplexes including their assembly, regulation, and plasticity, and particularly their role in the generation of reactive oxygen species and aging.
Collapse
Affiliation(s)
- Christina Ann-Marie Porras
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|