1
|
Li L, Zhang X, Xu G, Xue R, Li S, Wu S, Yang Y, Lin Y, Lin J, Liu G, Gao S, Zhang Y, Ye Q. Transcriptional Regulation of De Novo Lipogenesis by SIX1 in Liver Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404229. [PMID: 39258807 PMCID: PMC11538671 DOI: 10.1002/advs.202404229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Indexed: 09/12/2024]
Abstract
De novo lipogenesis (DNL), a hallmark of cancer, facilitates tumor growth and metastasis. Therapeutic drugs targeting DNL are being developed. However, how DNL is directly regulated in cancer remains largely unknown. Here, transcription factor sine oculis homeobox 1 (SIX1) is shown to directly increase the expression of DNL-related genes, including ATP citrate lyase (ACLY), fatty acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1), via histone acetyltransferases amplified in breast cancer 1 (AIB1) and lysine acetyltransferase 7 (HBO1/KAT7), thus promoting lipogenesis. SIX1 expression is regulated by insulin/lncRNA DGUOK-AS1/microRNA-145-5p axis, which also modulates DNL-related gene expression as well as DNL. The DGUOK-AS1/microRNA-145-5p/SIX1 axis regulates liver cancer cell proliferation, invasion, and metastasis in vitro and in vivo. In patients with liver cancer, SIX1 expression is positively correlated with DGUOK-AS1 and SCD1 expression and is negatively correlated with microRNA-145-5p expression. DGUOK-AS1 is a good predictor of prognosis. Thus, the DGUOK-AS1/microRNA-145-5p/SIX1 axis strongly links DNL to tumor growth and metastasis and may become an avenue for liver cancer therapeutic intervention.
Collapse
Affiliation(s)
- Ling Li
- Beijing Institute of BiotechnologyBeijing100071China
| | - Xiujuan Zhang
- Beijing Institute of BiotechnologyBeijing100071China
| | - Guang Xu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijing100069China
| | - Rui Xue
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shuo Li
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shumeng Wu
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yuanjun Yang
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yanni Lin
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Jing Lin
- Beijing Institute of BiotechnologyBeijing100071China
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
| | - Guoxiao Liu
- Department of General SurgeryThe First Medical Center of PLA General HospitalBeijing100853China
| | - Shan Gao
- Zhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthSoutheast UniversityNanjing210096China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Qinong Ye
- Beijing Institute of BiotechnologyBeijing100071China
| |
Collapse
|
2
|
Deng H, Rao X, Zhang S, Chen L, Zong Y, Zhou R, Meng R, Dong X, Wu G, Li Q. Protein kinase CK2: An emerging regulator of cellular metabolism. Biofactors 2024; 50:624-633. [PMID: 38158592 DOI: 10.1002/biof.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The protein kinase casein kinase 2 (CK2) exerts its influence on the metabolism of three major cellular substances by phosphorylating essential protein molecules involved in various cellular metabolic pathways. These substances include hormones, especially insulin, rate-limiting enzymes, transcription factors of key genes, and cytokines. This regulatory role of CK2 is closely tied to important cellular processes such as cell proliferation and apoptosis. Additionally, tumor cells undergo metabolic reprogramming characterized by aerobic glycolysis, accelerated lipid β-oxidation, and abnormally active glutamine metabolism. In this context, CK2, which is overexpressed in various tumors, also plays a pivotal role. Hence, this review aims to summarize the regulatory mechanisms of CK2 in diverse metabolic pathways and tumor development, providing novel insights for the diagnosis, treatment, and prognosis of metabolism-related diseases and cancers.
Collapse
Affiliation(s)
- Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
A soy glycinin derived octapeptide protects against MCD diet induced non-alcoholic fatty liver disease in mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhang J, Zhu M, Li Q, Tang T, Wen L, Zhong J, Zhang R, Yu XQ, Lu Y. Genome-wide identification and characterization of basic helix-loop-helix transcription factors in Spodoptera litura upon pathogen infection. INSECT SCIENCE 2022; 29:977-992. [PMID: 34687267 DOI: 10.1111/1744-7917.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play an important role in a wide range of metabolic and developmental processes in eukaryotes, and bHLH proteins also participate in immune responses, especially in plants. However, their roles in insects upon entomopathogen infection are unknown. In this study, 54 bHLH genes in 41 families were identified in a polyphagous pest, Spodoptera litura, including a new bHLH gene in group B, which is specifically present in Lepidoptera and was thus named Lep. The conserved amino acids in the bHLH domain, structural architecture, and chromosomal distribution of bHLH genes in S. litura were analyzed. The bHLH genes in Plutella xylostella and Apis mellifera were also updated, and genome-wide comparison and phylogenetic analysis of bHLH members in 5 holometabolous insects were performed. The expression profiles of S. litura bHLH (SlbHLH) genes in 3 tissues at different developmental stages and their responses to S. litura nucleopolyhedrovirus (SpltNPV), Nomuraea rileyi (Nr), and Bacillus thuringiensis (Bt) infection were investigated. More SlbHLHs in group B were expressed and differentially expressed during pathogen infections, and SlbHLHs tended to be downregulated in the midgut of S. litura larvae after B. thuringiensis treatment. Our study provides an overview of bHLH family members in S. litura and their responses to different pathogens used for pest biocontrol. These findings on bHLH members may contribute to uncovering the mechanism of host-pathogen interaction.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Insulin-Responsive Transcription Factors. Biomolecules 2021; 11:biom11121886. [PMID: 34944530 PMCID: PMC8699568 DOI: 10.3390/biom11121886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The hormone insulin executes its function via binding and activating of the insulin receptor, a receptor tyrosine kinase that is mainly expressed in skeletal muscle, adipocytes, liver, pancreatic β-cells, and in some areas of the central nervous system. Stimulation of the insulin receptor activates intracellular signaling cascades involving the enzymes extracellular signal-regulated protein kinase-1/2 (ERK1/2), phosphatidylinositol 3-kinase, protein kinase B/Akt, and phospholipase Cγ as signal transducers. Insulin receptor stimulation is correlated with multiple physiological and biochemical functions, including glucose transport, glucose homeostasis, food intake, proliferation, glycolysis, and lipogenesis. This review article focuses on the activation of gene transcription as a result of insulin receptor stimulation. Signal transducers such as protein kinases or the GLUT4-induced influx of glucose connect insulin receptor stimulation with transcription. We discuss insulin-responsive transcription factors that respond to insulin receptor activation and generate a transcriptional network executing the metabolic functions of insulin. Importantly, insulin receptor stimulation induces transcription of genes encoding essential enzymes of glycolysis and lipogenesis and inhibits genes encoding essential enzymes of gluconeogenesis. Overall, the activation or inhibition of insulin-responsive transcription factors is an essential aspect of orchestrating a wide range of insulin-induced changes in the biochemistry and physiology of insulin-responsive tissues.
Collapse
|
7
|
Chen S, Zhou L, Sun J, Qu Y, Chen M. The Role of cAMP-PKA Pathway in Lactate-Induced Intramuscular Triglyceride Accumulation and Mitochondria Content Increase in Mice. Front Physiol 2021; 12:709135. [PMID: 34588991 PMCID: PMC8473783 DOI: 10.3389/fphys.2021.709135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The glycolytic product of exercise, lactate, has long been recognized to promote lipid accumulation by activation of G-protein-coupled receptor 81 (GPR81) and inhibition of the cyclic adenosine monophosphate-protein kinase A (cAMP -PKA) pathway in adipose tissue. Whether lactate causes a similar process in skeletal muscle is unclear. Lactate might also improve mitochondria content in skeletal muscle; however, the mechanism is not clarified either. In this study, using intramuscular injection of lactate to the gastrocnemius and intraperitoneal injection of forskolin (activator of cAMP-PKA pathway), we identified the role of the cAMP-PKA pathway in lactate-induced intramuscular triglyceride accumulation and mitochondrial content increase. The intramuscular triglyceride level in the gastrocnemius increased after 5weeks of lactate injection (p<0.05), and this effect was blocked by forskolin injection (p<0.05). Corresponding expression level changes of GPR81, P-PKA/PKA, P-CREB/cAMP-response element binding protein (CREB), and proteins related to lipid metabolism suggest that lactate could induce intramuscular triglyceride accumulation partly through the inhibition of the cAMP-PKA pathway. Meanwhile, the intramuscular expression of citrate synthase (CS) and the activity of CS increased after 5weeks of lactate injection (p<0.05), but the change of CS expression was not blocked by forskolin injection, suggesting other mechanisms might exist. Consequently, exploration for other potential mechanisms that might contribute to the lactate-induced mitochondria content increase was conducted. We found an increase in the contents of lactate-related metabolites in skeletal muscle mitochondria after acute lactate injection (the p-value of each analysis is less than 0.05). LHDA was also validated to exist in mitochondria in this study. These results provide a possibility for metabolism-related mechanisms of lactate-induced mitochondria content increase. Future study is needed to validate this hypothesis. In conclusion, lactate-induced intramuscular triglyceride accumulation is achieved by inhibition of lipolysis, and this process is regulated by the cAMP-PKA pathway. Promoted lipogenesis also contributes to lactate-induced triglyceride accumulation, and this process might also be regulated by the cAMP-PKA pathway. Lactate injection might increase mitochondria content and cAMP-PKA pathway might have a limited contribution, while other metabolism-related mechanisms might play a prominent role.
Collapse
Affiliation(s)
- Siyu Chen
- Institute of Sports Science, Sichuan University, Chengdu, China
| | - Lei Zhou
- Institute of Sports Science, Sichuan University, Chengdu, China
| | - Jingquan Sun
- Institute of Sports Science, Sichuan University, Chengdu, China.,School of Physical Education and Sports, Sichuan University, Chengdu, China
| | - Yaqian Qu
- Institute of Sports Science, Sichuan University, Chengdu, China
| | - Min Chen
- Institute of Sports Science, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines 2021; 9:biomedicines9091192. [PMID: 34572378 PMCID: PMC8470239 DOI: 10.3390/biomedicines9091192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.
Collapse
|
9
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L, Giudetti AM. Expanding Roles of De Novo Lipogenesis in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3575. [PMID: 33808259 PMCID: PMC8036647 DOI: 10.3390/ijerph18073575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
In recent years, lipid metabolism has gained greater attention in several diseases including cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating tumor cells to maintain their membrane composition and energetic functions during enhanced growth. However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These metabolic differences are specifically associated with genomic and proteomic changes that can perturb lipogenic enzymes and related pathways. This behavior is further supported by the observation that breast cancer patients can be stratified according to their molecular profiles. Moreover, the discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the functional contribution of lipogenic enzymes and associated transcription factors in the regulation of tumorigenic processes.
Collapse
Affiliation(s)
- Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, 73100 Lecce, Italy
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| |
Collapse
|
11
|
Lv H, Meng Q, Wang N, Duan X, Hou X, Lin Y. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) regulates acetate- and β-hydroxybutyrate-induced milk fat synthesis by increasing FASN expression in mammary epithelial cells of dairy cows. J Dairy Sci 2021; 104:6212-6221. [PMID: 33663853 DOI: 10.3168/jds.2020-18975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022]
Abstract
Increasing acetate and β-hydroxybutyrate (BHB) supply to lactating cows will increase milk fat synthesis. However, the underlying molecular mechanism remains largely unknown. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) is a lipid droplet-associated protein that promotes intracellular triacylglycerol accumulation. In the present study, using gene overexpression and knockdown, we detected the contributions of CIDEC on milk fat synthesis in mammary epithelial cells of dairy cows in the presence of acetate and BHB. The results showed that knockdown of CIDEC decreased fatty acid synthase (FASN) expression and intracellular triacylglycerol content, whereas overexpression of CIDEC had the opposite effect. The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) regulates cell growth and differentiation in the mammary gland. We demonstrated that the FASN promoter had a canonical C/EBPβ binding sequence. CEBPB overexpression upregulated FASN expression and milk fat synthesis, whereas CEBPB knockdown had the opposite effect. Moreover, knockdown of CEBPB attenuated the promoting effects of CIDEC on acetate- and BHB-induced FASN transcription. Taken together, our data showed that acetate and BHB induced FASN expression in mammary epithelial cells of dairy cows in a CIDEC-C/EBPβ-dependent manner, which provides new insights into the understanding of the molecular events involved in milk fat synthesis.
Collapse
Affiliation(s)
- He Lv
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Qingyu Meng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Nan Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Duan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Hou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ye Lin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Perez VM, Gabell J, Behrens M, Wase N, DiRusso CC, Black PN. Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPARα-regulated genes. J Biol Chem 2020; 295:5737-5750. [PMID: 32188695 PMCID: PMC7186177 DOI: 10.1074/jbc.ra120.012730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2-/-) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2-/- mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2-/- mice and a total of 91 in female Fatp2-/- mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator-activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2-/- liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.
Collapse
Affiliation(s)
- Vincent M Perez
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Jeffrey Gabell
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Mark Behrens
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Nishikant Wase
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Concetta C DiRusso
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, Nebraska 68588
| | - Paul N Black
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
13
|
Ma P, Huang R, Jiang J, Ding Y, Li T, Ou Y. Potential use of C-phycocyanin in non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2020; 526:906-912. [PMID: 32279997 DOI: 10.1016/j.bbrc.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
C-phycocyanin (C-PC) is a kind of photosynthetically assisted pigment, which is ubiquitous in cyanobacteria cells. We investigated the effect of C-PC on non-alcoholic fatty liver disease (NAFLD) and its mechanism. Through oil red O staining, TC/TG detection, liver SOD/MDA detection and liver H&E staining, we found that C-PC could significantly reduce the lipid accumulation in the steatosis L02 cells and the liver of non-alcoholic steatohepatitis (NASH) mice, and improve the antioxidant capacity of liver. The results of Western Blotting showed that C-PC upregulated the expression of AMPK phosphorylation and downregulated SREBP-1c and its target genes ACC and FAS expression levels. Furthermore, C-PC also upregulated the expression of transcription factor PPARα, which was regulated by AMPK, and its target genes CPT1 level. In addition, C-PC could promote AMPK phosphorylation in hepatocytes while increasing the phosphorylation level of ACC in vivo and in vitro. Besides, C-PC could also improve the liver inflammatory infiltration by upregulated the expression of PPARγ and downregulated the expression of CD36, IL6 and TNFα. These results indicate that C-PC may improve hepatic lipid accumulation and inflammation in the non-alcoholic fatty liver mice by activating AMPK pathway of hepatocytes. The finding provides important help for the research and development of C-PC in the nutraceuticals and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Peng Ma
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Rongrong Huang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Jingyao Jiang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yuan Ding
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Tingting Li
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China.
| |
Collapse
|
14
|
Hu S, Cho EH, Lee JY. Histone Deacetylase 9: Its Role in the Pathogenesis of Diabetes and Other Chronic Diseases. Diabetes Metab J 2020; 44:234-244. [PMID: 32347025 PMCID: PMC7188980 DOI: 10.4093/dmj.2019.0243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
As a member of the class IIa histone deacetylases (HDACs), HDAC9 catalyzes the deacetylation of histones and transcription factors, commonly leading to the suppression of gene transcription. The activity of HDAC9 is regulated transcriptionally and post-translationally. HDAC9 is known to play an essential role in regulating myocyte and adipocyte differentiation and cardiac muscle development. Also, recent studies have suggested that HDAC9 is involved in the pathogenesis of chronic diseases, including cardiovascular diseases, osteoporosis, autoimmune disease, cancer, obesity, insulin resistance, and liver fibrosis. HDAC9 modulates the expression of genes related to the pathogenesis of chronic diseases by altering chromatin structure in their promotor region or reducing the transcriptional activity of their respective transcription factors. This review summarizes the current knowledge of the regulation of HDAC9 expression and activity. Also, the roles of HDAC9 in the pathogenesis of chronic diseases are discussed, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Eun Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ji Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
15
|
SREBP1-dependent de novo fatty acid synthesis gene expression is elevated in malignant melanoma and represents a cellular survival trait. Sci Rep 2019; 9:10369. [PMID: 31316083 PMCID: PMC6637239 DOI: 10.1038/s41598-019-46594-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
de novo fatty acid biosynthesis (DNFA) is a hallmark adaptation of many cancers that supports survival, proliferation, and metastasis. Here we elucidate previously unexplored aspects of transcription regulation and clinical relevance of DNFA in cancers. We show that elevated expression of DNFA genes is characteristic of many tumor types and correlates with poor prognosis, especially in melanomas. Elevated DNFA gene expression depends on the SREBP1 transcription factor in multiple melanoma cell lines. SREBP1 predominantly binds to the transcription start sites of DNFA genes, regulating their expression by recruiting RNA polymerase II to promoters for productive transcription elongation. We find that SREBP1-regulated DNFA represents a survival trait in melanoma cells, regardless of proliferative state and oncogenic mutation status. Indeed, malignant melanoma cells exhibit elevated DNFA gene expression after the BRAF/MEK signaling pathway is blocked (e.g. by BRAF inhibitors), and DNFA expression remains higher in melanoma cells resistant to vemurafenib treatment than in untreated cells. Accordingly, DNFA pathway inhibition, whether by direct targeting of SREBP1 with antisense oligonucleotides, or through combinatorial effects of multiple DNFA enzyme inhibitors, exerts potent cytotoxic effects on both BRAFi-sensitive and -resistant melanoma cells. Altogether, these results implicate SREBP1 and DNFA enzymes as enticing therapeutic targets in melanomas.
Collapse
|
16
|
Xiaoli AM, Song Z, Yang F. Lipogenic SREBP-1a/c transcription factors activate expression of the iron regulator hepcidin, revealing cross-talk between lipid and iron metabolisms. J Biol Chem 2019; 294:12743-12753. [PMID: 31270208 DOI: 10.1074/jbc.ra119.009644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
The sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors best known for stimulating the expression of genes encoding key lipogenic enzymes. However, SREBP functions beyond lipid metabolism are less understood. Here, we show that hepcidin antimicrobial peptide (Hamp), encoding the hormone hepcidin essential for iron homeostasis and regulated by dietary iron and inflammation, is a target gene of the two SREBP isoforms SREBP-1a/c. We found that in tissue culture, mature, active, and nuclear forms of the SREBP-1a/c proteins induce endogenous Hamp gene expression and increase the Hamp promoter activity primarily via three regulatory sequences, including an E-box. Moreover, ChIP experiments revealed that SREBP-1a binds to the Hamp gene promoter. Overexpression of nuclear SREBP-1a under the control of the phosphoenolpyruvate carboxylase-1 (Pck1) promoter in mice increased hepatic Hamp mRNA and blood hepcidin levels, and as expected, caused fatty liver. Consistent with the known effects of Hamp up-regulation, SREBP-1a-overexpressing mice displayed signs of dysregulation in iron metabolism, including reduced serum iron and increased hepatic and splenic iron storage. Conversely, liver-specific depletion of the nuclear forms of SREBPs, as in SREBP cleavage-activating protein knockout mice, impaired lipopolysaccharide-induced up-regulation of hepatic Hamp Together, these results indicate that the SREBP-1a/c transcription regulators activate hepcidin expression and thereby contribute to the control of mammalian iron metabolism.
Collapse
Affiliation(s)
- Alus M Xiaoli
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ziyi Song
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Fajun Yang
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
17
|
Chao HW, Chao SW, Lin H, Ku HC, Cheng CF. Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2019; 20:298. [PMID: 30642126 PMCID: PMC6359196 DOI: 10.3390/ijms20020298] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Industrialized society-caused dysregular human behaviors and activities such as overworking, excessive dietary intake, and sleep deprivation lead to perturbations in the metabolism and the development of metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide, affects around 30% and 25% of people in Western and Asian countries, respectively, which leads to numerous medical costs annually. Insulin resistance is the major hallmark of NAFLD and is crucial in the pathogenesis and for the progression from NAFLD to non-alcoholic steatohepatitis (NASH). Excessive dietary intake of saturated fats and carbohydrate-enriched foods contributes to both insulin resistance and NAFLD. Once NAFLD is established, insulin resistance can promote the progression to the more severe state of liver endangerment like NASH. Here, we review current and potential studies for understanding the complexity between insulin-regulated glycolytic and lipogenic homeostasis and the underlying causes of NAFLD. We discuss how disruption of the insulin signal is associated with various metabolic disorders of glucoses and lipids that constitute both the metabolic syndrome and NAFLD.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shi-Wei Chao
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei 11031, Taiwan.
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
- Department of Pediatrics, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
18
|
Per-Arnt-Sim Kinase (PASK) Deficiency Increases Cellular Respiration on a Standard Diet and Decreases Liver Triglyceride Accumulation on a Western High-Fat High-Sugar Diet. Nutrients 2018; 10:nu10121990. [PMID: 30558306 PMCID: PMC6316003 DOI: 10.3390/nu10121990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes and the related disease metabolic syndrome are epidemic in the United States, in part due to a shift in diet and decrease in physical exercise. PAS kinase is a sensory protein kinase associated with many of the phenotypes of these diseases, including hepatic triglyceride accumulation and metabolic dysregulation in male mice placed on a high-fat diet. Herein we provide the first characterization of the effects of western diet (high-fat high-sugar, HFHS) on Per-Arnt-Sim kinase mice (PASK−/−) and the first characterization of both male and female PASK−/− mice. Soleus muscle from the PASK−/− male mice displayed a 2-fold higher oxidative phosphorylation capacity than wild type (WT) on the normal chow diet. PASK−/− male mice were also resistant to hepatic triglyceride accumulation on the HFHS diet, displaying a 2.7-fold reduction in hepatic triglycerides compared to WT mice on the HFHS diet. These effects on male hepatic triglyceride were further explored through mass spectrometry-based lipidomics. The absence of PAS kinase was found to affect many of the 44 triglycerides analyzed, preventing hepatic triglyceride accumulation in response to the HFHS diet. In contrast, the female mice showed resistance to hepatic triglyceride accumulation on the HFHS diet regardless of genotype, suggesting the effects of PAS kinase may be masked.
Collapse
|
19
|
Han LQ, Gao TY, Yang GY, Loor JJ. Overexpression of SREBF chaperone (SCAP) enhances nuclear SREBP1 translocation to upregulate fatty acid synthase (FASN) gene expression in bovine mammary epithelial cells. J Dairy Sci 2018; 101:6523-6531. [PMID: 29680640 DOI: 10.3168/jds.2018-14382] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/04/2018] [Indexed: 11/19/2022]
Abstract
Fatty acid synthase is a key enzyme for the synthesis of milk fat in the ruminant mammary gland. In nonruminants, sterol regulatory element binding protein 1 (SREBP1) is a regulator of FASN gene expression, and SREBF chaperone (SCAP) is essential for SREBP1 maturation and activity. However, the role of SCAP on the regulation of FASN gene expression in ruminants is unknown. The objective of this study was to investigate the transcriptional regulation of FASN by overexpressing SCAP in bovine mammary epithelial cells. A bovine SCAP expression vector, SREBP1 expression vector, and the promoter of FASN were cloned. The transcription factor binding sites of FASN promoter were predicted using bioinformatics analysis. After transfection with FASN promoter vectors in the immortalized bovine mammary epithelial cell line MAC-T, we co-overexpressed the SCAP + SREBP1 expression vector with pcDNA3.1 vector as control. The effect of SCAP + SREBP1 overexpression on the regulation of FASN was investigated using luciferase assay, immunofluorescence, Western blot, real-time PCR, and lipid droplet staining. We observed that co-overexpression of SCAP + SREBP1 significantly increased activity of the FASN promoter containing a sterol response element binding site. The FASN mRNA abundance and lipid droplet formation increased due to co-overexpression of SCAP + SREBP1. Compared with overexpression of SREBP1 alone, co-overexpression of SCAP + SREBP1 enhanced the nuclear translocation and nuclear SREBP1 protein abundance. Overall, as in nonruminants cells, results indicate that SCAP is essential for promoting nuclear translocation of SREBP1 and activation of FASN gene transcription, leading to lipid droplet formation in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- L Q Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P.R. China; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - T Y Gao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - G Y Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, P.R. China.
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
20
|
Chang YH, Chen YL, Huang WC, Liou CJ. Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway. Biochem Biophys Res Commun 2017; 495:197-203. [PMID: 29113798 DOI: 10.1016/j.bbrc.2017.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/28/2023]
Abstract
The fucoxanthin, isolated from brown algae, was reported to have multiple biological functions to anti-inflammation, anti-tumor, and ameliorated obesity in mice. In this study we investigated whether fucoxanthin could inhibit lipids accumulation in FL83B hepatocytes. FL83B cells were induced as fatty liver cell model by 0.5 mM oleic acid for 48 h, and treated with various concentration of fucoxanthin for 24 h. The results demonstrated that fucoxanthin significantly suppressed lipid accumulation and decreased lipid peroxidation in hepatocytes. Fucoxanthin could decrease lipogenesis-related transcription factor expression, including sterol regulatory element-binding proteins 1c and peroxisome proliferator-activated receptor γ. It also reduced fatty acid synthase expression and increased adipose triglyceride lipase and the phosphorylation of hormone-sensitive lipase production for lipolysis. Furthermore, fucoxanthin significantly increased phosphorylation of AMP-activated protein kinase (AMPK), and decreased activity of acetyl-CoA carboxylase for regulating fatty acid synthesis. The results suggest that fucoxanthin is an effective marine nature compound for increasing lipolysis and inhibiting lipogenesis in oleic acid induced fatty liver cells through promoted Sirt1/AMPK pathway.
Collapse
Affiliation(s)
- Yi-Hsien Chang
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Ya-Ling Chen
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan.
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan; Department of Nursing, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan.
| |
Collapse
|
21
|
Viscarra JA, Wang Y, Hong IH, Sul HS. Transcriptional activation of lipogenesis by insulin requires phosphorylation of MED17 by CK2. Sci Signal 2017; 10:eaai8596. [PMID: 28223413 PMCID: PMC5376069 DOI: 10.1126/scisignal.aai8596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
De novo lipogenesis is precisely regulated by nutritional and hormonal conditions. The genes encoding various enzymes involved in this process, such as fatty acid synthase (FASN), are transcriptionally activated in response to insulin. We showed that USF1, a key transcription factor for FASN activation, directly interacted with the Mediator subunit MED17 at the FASN promoter. This interaction recruited Mediator, which can bring POL II and other general transcription machinery to the complex. Moreover, we showed that MED17 was phosphorylated at Ser53 by casein kinase 2 (CK2) in the livers of fed mice or insulin-stimulated hepatocytes, but not in the livers of fasted mice or untreated hepatocytes. Furthermore, activation of the FASN promoter in response to insulin required this CK2-mediated phosphorylation event, which occurred only in the absence of p38 MAPK-mediated phosphorylation at Thr570 Overexpression of a nonphosphorylatable S53A MED17 mutant or knockdown of MED17, as well as CK2 knockdown or inhibition, impaired hepatic de novo fatty acid synthesis and decreased triglyceride content in mice. These results demonstrate that CK2-mediated phosphorylation of Ser53 in MED17 is required for the transcriptional activation of lipogenic genes in response to insulin.
Collapse
Affiliation(s)
- Jose A Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Il-Hwa Hong
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Wan PJ, Yuan SY, Wang WX, Chen X, Lai FX, Fu Q. A Genome-Wide Identification and Analysis of the Basic Helix-Loop-Helix Transcription Factors in Brown Planthopper, Nilaparvata lugens. Genes (Basel) 2016; 7:genes7110100. [PMID: 27869716 PMCID: PMC5126786 DOI: 10.3390/genes7110100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest of rice, Nilaparvata lugens, may provide novel tools for pest management. Here, a genome-wide survey for bHLH sequences identified 60 bHLH sequences (NlbHLHs) encoded in the draft genome of N. lugens. Phylogenetic analysis of the bHLH domains successfully classified these genes into 40 bHLH families in group A (25), B (14), C (10), D (1), E (8) and F (2). The number of NlbHLHs with introns is higher than many other insect species, and the average intron length is shorter than those of Acyrthosiphon pisum. High number of ortholog families of NlbHLHs was found suggesting functional conversation for these proteins. Compared to other insect species studied, N. lugens has the highest number of bHLH members. Furthermore, gene duplication events of SREBP, Kn(col), Tap, Delilah, Sim, Ato and Crp were found in N. lugens. In addition, a putative full set of NlbHLH genes is defined and compared with another insect species. Thus, our classification of these NlbHLH members provides a platform for further investigations of bHLH protein functions in the regulation of N. lugens, and of insects in general.
Collapse
Affiliation(s)
- Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - San-Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xu Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Feng-Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
23
|
Lin HP, Cheng ZL, He RY, Song L, Tian MX, Zhou LS, Groh BS, Liu WR, Ji MB, Ding C, Shi YH, Guan KL, Ye D, Xiong Y. Destabilization of Fatty Acid Synthase by Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth. Cancer Res 2016; 76:6924-6936. [PMID: 27758890 DOI: 10.1158/0008-5472.can-16-1597] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Fatty acid synthase (FASN) is the terminal enzyme in de novo lipogenesis and plays a key role in cell proliferation. Pharmacologic inhibitors of FASN are being evaluated in clinical trials for treatment of cancer, obesity, and other diseases. Here, we report a previously unknown mechanism of FASN regulation involving its acetylation by KAT8 and its deacetylation by HDAC3. FASN acetylation promoted its degradation via the ubiquitin-proteasome pathway. FASN acetylation enhanced its association with the E3 ubiquitin ligase TRIM21. Acetylation destabilized FASN and resulted in decreased de novo lipogenesis and tumor cell growth. FASN acetylation was frequently reduced in human hepatocellular carcinoma samples, which correlated with increased HDAC3 expression and FASN protein levels. Our results suggest opportunities to target FASN acetylation as an anticancer strategy. Cancer Res; 76(23); 6924-36. ©2016 AACR.
Collapse
Affiliation(s)
- Huai-Peng Lin
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhou-Li Cheng
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruo-Yu He
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Li-Sha Zhou
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Beezly S Groh
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Min-Biao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Chen Ding
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Jang H, Lee GY, Selby CP, Lee G, Jeon YG, Lee JH, Cheng KKY, Titchenell P, Birnbaum MJ, Xu A, Sancar A, Kim JB. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun 2016; 7:12180. [PMID: 27412556 PMCID: PMC4947181 DOI: 10.1038/ncomms12180] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
SREBP1c is a key lipogenic transcription factor activated by insulin in the postprandial state. Although SREBP1c appears to be involved in suppression of hepatic gluconeogenesis, the molecular mechanism is not thoroughly understood. Here we show that CRY1 is activated by insulin-induced SREBP1c and decreases hepatic gluconeogenesis through FOXO1 degradation, at least, at specific circadian time points. SREBP1c−/− and CRY1−/− mice show higher blood glucose than wild-type (WT) mice in pyruvate tolerance tests, accompanied with enhanced expression of PEPCK and G6Pase genes. CRY1 promotes degradation of nuclear FOXO1 by promoting its binding to the ubiquitin E3 ligase MDM2. Although SREBP1c fails to upregulate CRY1 expression in db/db mice, overexpression of CRY1 attenuates hyperglycaemia through reduction of hepatic FOXO1 protein and gluconeogenic gene expression. These data suggest that insulin-activated SREBP1c downregulates gluconeogenesis through CRY1-mediated FOXO1 degradation and that dysregulation of hepatic SREBP1c-CRY1 signalling may contribute to hyperglycaemia in diabetic animals. The clock protein Cry regulates hepatic glucose metabolism. Here the authors show that SREBP1c, activated by insulin signalling after feeding, directly regulates Cry transcription at specific circadian time points, and that Cry represses hepatic glucose production by promoting proteasomal degradation of Foxo1.
Collapse
Affiliation(s)
- Hagoon Jang
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Gha Young Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, CB # 7260, Chapel Hill, North Carolina 27599-7260, USA
| | - Gung Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Yong Geun Jeon
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Jae Ho Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Kenneth King Yip Cheng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Paul Titchenell
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Morris J Birnbaum
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, CB # 7260, Chapel Hill, North Carolina 27599-7260, USA
| | - Jae Bum Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
25
|
Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 2016; 16:678-89. [PMID: 26490400 DOI: 10.1038/nrm4074] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Jose Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Sun-Joong Kim
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
26
|
Zhang P, Li L, Bao Z, Huang F. Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism. Nutr Metab (Lond) 2016; 13:30. [PMID: 27127533 PMCID: PMC4848843 DOI: 10.1186/s12986-016-0090-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
The switching defective/sucrose non-fermenting (SWI/SNF) complexes play an important role in hepatic lipid metabolism regulating both transcriptional activation and repression. BAF60a is a core subunit of the SWI/SNF chromatin-remodeling complexes that activates the transcription of fatty acid oxidation genes during fasting/glucagon. BAF60c, another subunit of SWI/SNF complexes, is recruited to form the lipoBAF complex that activates lipogenic genes, promoting lipogenesis and increasing the triglyceride level in response to feeding/insulin. Interestingly, hepatocytes located in the periportal and perivenous zones of the liver display a remarkable heterogeneity in the activity of various enzymes, metabolic functions and gene expression. Especially, fatty-acid oxidation was shown to be mostly periportal, whereas lipogenesis was mostly perivenous. Therefore, the present review highlights the role of of SWI/SNF regulating lipid metabolism under nutritional and hormonal control, which may be associated with hepatocyte heterogeneity.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lulu Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
27
|
Pashaj A, Xia M, Moreau R. α-Lipoic acid as a triglyceride-lowering nutraceutical. Can J Physiol Pharmacol 2015; 93:1029-41. [PMID: 26235242 DOI: 10.1139/cjpp-2014-0480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Considering the current obesity epidemic in the United States (>100 million adults are overweight or obese), the prevalence of hypertriglyceridemia is likely to grow beyond present statistics of ∼30% of the population. Conventional therapies for managing hypertriglyceridemia include lifestyle modifications such as diet and exercise, pharmacological approaches, and nutritional supplements. It is critically important to identify new strategies that would be safe and effective in lowering hypertriglyceridemia. α-Lipoic acid (LA) is a naturally occurring enzyme cofactor found in the human body in small quantities. A growing body of evidence indicates a role of LA in ameliorating metabolic dysfunction and lipid anomalies primarily in animals. Limited human studies suggest LA is most efficacious in situations where blood triglycerides are markedly elevated. LA is commercially available as dietary supplements and is clinically shown to be safe and effective against diabetic polyneuropathies. LA is described as a potent biological antioxidant, a detoxification agent, and a diabetes medicine. Given its strong safety record, LA may be a useful nutraceutical, either alone or in combination with other lipid-lowering strategies, when treating severe hypertriglyceridemia and diabetic dyslipidemia. This review examines the current evidence regarding the use of LA as a means of normalizing blood triglycerides. Also presented are the leading mechanisms of action of LA on triglyceride metabolism.
Collapse
Affiliation(s)
- Anjeza Pashaj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
28
|
Li J, Luo J, Xu H, Wang M, Zhu J, Shi H, Haile AB, Wang H, Sun Y. Fatty acid synthase promoter: Characterization, and transcriptional regulation by sterol regulatory element binding protein-1 in goat mammary epithelial cells. Gene 2015; 561:157-64. [DOI: 10.1016/j.gene.2015.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
|
29
|
Seo MS, Kim JH, Kim HJ, Chang KC, Park SW. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes. Toxicol Appl Pharmacol 2015; 284:113-24. [DOI: 10.1016/j.taap.2015.02.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/14/2015] [Accepted: 02/21/2015] [Indexed: 02/06/2023]
|
30
|
Pdx1 and USF transcription factors co-ordinately regulate Alx3 gene expression in pancreatic β-cells. Biochem J 2014; 463:287-96. [DOI: 10.1042/bj20140643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the transcriptional mechanisms regulating the expression of Alx3 in pancreatic islets. We found that the transcriptional transactivation of Alx3 in β-cells requires the co-operation of the islet-specific homeoprotein Pdx1 with the transcription factors USF1 and USF2.
Collapse
|
31
|
Lupp S, Götz C, Khadouma S, Horbach T, Dimova EY, Bohrer AM, Kietzmann T, Montenarh M. The upstream stimulatory factor USF1 is regulated by protein kinase CK2 phosphorylation. Cell Signal 2014; 26:2809-17. [PMID: 25194820 DOI: 10.1016/j.cellsig.2014.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022]
Abstract
The upstream stimulatory factors 1 (USF1) and 2 (USF2) are transcription factors which bind to E-box motifs of various promoters regulating a variety of different cellular processes. Only little is known about the regulation of USFs. Here, we identified protein kinase CK2 as an enzyme that phosphorylates USF1 but not USF2. Using deletion mutants and point mutants we were able to identify threonine 100 as the major phosphorylation site for CK2. It is well known that USF1 and USF2 form hetero-dimers. Binding studies revealed that the inhibition of CK2 kinase activity by a specific inhibitor enhanced binding of USF1 to USF2. Furthermore, transactivation studies showed that the inhibition of CK2 phosphorylation of USF1 stimulated transcription from the glucokinase promoter as well as the fatty acid synthetase promoter but not from the heme oxygenase-1 promoter. Thus, we have shown for the first time that CK2 phosphorylation of USF1 modulates two functionally important properties of USF1, namely hetero-dimerization and transactivation.
Collapse
Affiliation(s)
- Sarah Lupp
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany.
| | - Sunia Khadouma
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna-Maria Bohrer
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
32
|
Lamaziere A, Wolf C, Quinn PJ. How lipidomics provides new insight into drug discovery. Expert Opin Drug Discov 2014; 9:819-36. [DOI: 10.1517/17460441.2014.914026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Suppression of adipogenesis by valproic acid through repression of USF1-activated fatty acid synthesis in adipocytes. Biochem J 2014; 459:489-503. [DOI: 10.1042/bj20131476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Valproic acid suppresses the accumulation of the intracellular lipids through suppression of fatty acid synthesis via repression of USF1-mediated expression of the fatty acid synthase gene in adipocytes.
Collapse
|
34
|
Danai LV, Guilherme A, Guntur KV, Straubhaar J, Nicoloro SM, Czech MP. Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling. J Lipid Res 2013; 54:2697-707. [PMID: 23924694 PMCID: PMC3770083 DOI: 10.1194/jlr.m038802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/05/2013] [Indexed: 11/20/2022] Open
Abstract
Adipose tissue lipogenesis is paradoxically impaired in human obesity, promoting ectopic triglyceride (TG) deposition, lipotoxicity, and insulin resistance. We previously identified mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4), a sterile 20 protein kinase reported to be upstream of c-Jun NH2-terminal kinase (JNK) signaling, as a novel negative regulator of insulin-stimulated glucose transport in adipocytes. Using full-genome microarray analysis we uncovered a novel role for Map4k4 as a suppressor of lipid synthesis. We further report here the surprising finding that Map4k4 suppresses adipocyte lipogenesis independently of JNK. Thus, while Map4k4 silencing in adipocytes enhances the expression of lipogenic enzymes, concomitant with increased conversion of (14)C-glucose and (14)C-acetate into TGs and fatty acids, JNK1 and JNK2 depletion causes the opposite effects. Furthermore, high expression of Map4k4 fails to activate endogenous JNK, while Map4k4 depletion does not attenuate JNK activation by tumor necrosis factor α. Map4k4 silencing in cultured adipocytes elevates both the total protein expression and cleavage of sterol-regulated element binding protein-1 (Srebp-1) in a rapamycin-sensitive manner, consistent with Map4k4 signaling via mechanistic target of rapamycin complex 1 (mTORC1). We show Map4k4 depletion requires Srebp-1 upregulation to increase lipogenesis and further show that Map4k4 promotes AMP-protein kinase (AMPK) signaling and the phosphorylation of mTORC1 binding partner raptor (Ser792) to inhibit mTORC1. Our results indicate that Map4k4 inhibits adipose lipogenesis by suppression of Srebp-1 in an AMPK- and mTOR-dependent but JNK-independent mechanism.
Collapse
Affiliation(s)
- Laura V. Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Juerg Straubhaar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sarah M. Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
35
|
Czech MP, Tencerova M, Pedersen DJ, Aouadi M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56:949-64. [PMID: 23443243 PMCID: PMC3652374 DOI: 10.1007/s00125-013-2869-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.
Collapse
Affiliation(s)
- M P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
36
|
Wang Y, Sul HS. Transcriptional regulation of lipogenesis and its contribution to hepatosteatosis. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J Gastroenterol 2013; 48:182-92. [PMID: 22722903 DOI: 10.1007/s00535-012-0612-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/08/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Fatty acid synthase (FAS) inhibitors could be a therapeutic target in cancer treatment. However, only a few FAS inhibitors showing clinical potential have been reported. Oridonin is a diterpenoid isolated from Rabdosia rubescens. Although it has antiproliferative activity in cancers, little was known about its anticancer effect on colorectal cancer. In this regard, we aimed to investigate if oridonin could be a novel FAS inhibitor and its anticancer mechanism in human colorectal cancer cells. METHODS Two human colorectal cancer cell lines SW480 and SW620 were used as models for this study. RESULTS We demonstrated that oridonin reduced viability and induced apoptosis in colorectal cancer cells. Knockdown of the expression of FAS in colorectal cancer cells by siRNA induced apoptosis. This led us to examine whether oridonin-induced apoptosis was mediated by FAS suppression in these cells. We found that oridonin effectively inhibited FAS and SREBP1 mRNA and protein expression in human colorectal cancer cells. In a transient reporter assay, oridonin also reduced transcriptional activity of the FAS promoter region containing the SREBP1 binding site. The FAS inhibition was paralleled by reduction in cellular palmitate and stearic acid. Upregulation of SREBP1 and FAS expression by insulin rescued these cells from oridonin-induced apoptosis. CONCLUSION These results not only provide a novel molecular mechanism for the anticancer effect of oridonin in colorectal cancer, but also suggest oridonin could be a novel FAS inhibitor in cancer treatment. These results strengthen the scientific basis for the therapeutic use of oridonin in colorectal cancer.
Collapse
|
38
|
Wang Y, Wong RHF, Tang T, Hudak CS, Yang D, Duncan RE, Sul HS. Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin. Mol Cell 2012; 49:283-97. [PMID: 23219531 DOI: 10.1016/j.molcel.2012.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/19/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022]
Abstract
Fatty acid and triglyceride synthesis is induced in response to feeding and insulin. This lipogenic induction involves coordinate transcriptional activation of lipogenic enzymes, including fatty acid synthase and glycerol-3-phosphate acyltransferase. We recently reported the importance of USF-1 phosphorylation and subsequent acetylation in insulin-induced lipogenic gene activation. Here, we show that Brg1/Brm-associated factor (BAF) 60c is a specific chromatin remodeling component for lipogenic gene transcription in liver. In response to insulin, BAF60c is phosphorylated at S247 by atypical PKCζ/λ, which causes translocation of BAF60c to the nucleus and allows a direct interaction of BAF60c with USF-1 that is phosphorylated by DNA-PK and acetylated by P/CAF. Thus, BAF60c is recruited to form the lipoBAF complex to remodel chromatin structure and to activate lipogenic genes. Consequently, BAF60c promotes lipogenesis in vivo and increases triglyceride levels, demonstrating its role in metabolic adaption to activate the lipogenic program in response to feeding and insulin.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Bochkis IM, Schug J, Ye DZ, Kurinna S, Stratton SA, Barton MC, Kaestner KH. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2. PLoS Genet 2012; 8:e1002770. [PMID: 22737085 PMCID: PMC3380847 DOI: 10.1371/journal.pgen.1002770] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023] Open
Abstract
Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq) that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution. The duplication of a gene from a common ancestor, resulting in two copies known as paralogs, plays an important role in evolution. Newly duplicated genes must acquire new functions in order to remain relevant, otherwise they are lost via mutation over time. We have performed genome-wide location analysis (ChIP–Seq) in adult liver to examine the differences between two paralogous DNA binding proteins, Foxa1 and Foxa2. While Foxa1 and Foxa2 bind a number of common genomic locations, each protein also localizes to distinct regulatory regions. Sites specific for Foxa1 also contain a DNA motif bound by tumor suppressor p53 and are found near genes important to cell cycle regulation, while Foxa2-only sites are found near genes essential to steroid and lipid metabolism. Hence, Foxa1 and Foxa2 have developed unique functions in adult liver, contributing to the maintenance of both genes during evolution.
Collapse
Affiliation(s)
- Irina M. Bochkis
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Diana Z. Ye
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Svitlana Kurinna
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Sabrina A. Stratton
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michelle C. Barton
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Islet autoimmunity in type 1 diabetes results in the loss of the pancreatic β-cells. The consequences of insulin deficiency in the portal vein for liver fat are poorly understood. Under normal conditions, the portal vein provides 75% of the liver blood supply. Recent studies suggest that non-alcoholic fatty liver disease (NAFLD) may be more common in type 1 diabetes than previously thought, and may serve as an independent risk marker for some chronic diabetic complications. The pathogenesis of NAFLD remains obscure, but it has been hypothesized that hepatic fat accumulation in type 1 diabetes may be due to lipoprotein abnormalities, hyperglycemia-induced activation of the transcription factors carbohydrate response element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP-1c), upregulation of glucose transporter 2 (GLUT2) with subsequent intrahepatic fat synthesis, or a combination of these mechanisms. Novel approaches to non-invasive determinations of liver fat may clarify the consequences for liver metabolism when the pancreas has ceased producing insulin. This article aims to review the factors potentially contributing to hepatic steatosis in type 1 diabetes, and to assess the feasibility of using liver fat as a prognostic and/or diagnostic marker for the disease. It provides a background and a case for possible future studies in the field.
Collapse
Affiliation(s)
- Simon E Regnell
- Lund University, CRC, Department of Clinical Sciences, Diabetes and Celiac Disease Unit, Skåne University Hospital, Malmö, Sweden.
| | | |
Collapse
|
41
|
Kohyama-Koganeya A, Nabetani T, Miura M, Hirabayashi Y. Glucosylceramide synthase in the fat body controls energy metabolism in Drosophila. J Lipid Res 2011; 52:1392-9. [PMID: 21550991 DOI: 10.1194/jlr.m014266] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucosylceramide synthase (GlcT-1) catalyzes the synthesis of glucosylceramide (GlcCer), the core structure of major glycosphingolipids (GSLs). Obesity is a metabolic disorder caused by an imbalance between energy uptake and expenditure, resulting in excess stored body fat. Recent studies have shown that GSL levels are increased in obese rodents and that pharmacologically reducing GSL levels by inhibiting GlcCer synthesis improves adipocyte function. However, the molecular mechanism underlying these processes is still not clearly understood. Using Drosophila as a model animal, we report that GlcT-1 expression in the fat body, which is equivalent to mammalian adipose tissue, regulates energy metabolism. Overexpression of GlcT-1 increases stored nutrition (triacylglycerol and carbohydrate) levels. Conversely, reduced expression of GlcT-1 in the fat body causes a reduction of fat storage. This regulation occurs, at least in part, through the activation of p38-ATF2 signaling. Furthermore, we found that GlcCer is the sole GSL of the fat body, indicating that regulation of GlcCer synthesis by GlcT-1 in the fat body is responsible for regulating energy homeostasis. Both GlcT-1 and p38-ATF2 signaling are evolutionarily conserved, leading us to propose an evolutionary perspective in which GlcT-1 appears to be one of the key factors that control fat metabolism.
Collapse
Affiliation(s)
- Ayako Kohyama-Koganeya
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
42
|
Kong X, Shen Y, Jiang N, Fei X, Mi J. Emerging roles of DNA-PK besides DNA repair. Cell Signal 2011; 23:1273-80. [PMID: 21514376 DOI: 10.1016/j.cellsig.2011.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 03/13/2011] [Accepted: 04/04/2011] [Indexed: 10/24/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a DNA-activated serine/threonine protein kinase, and abundantly expressed in almost all mammalian cells. The roles of DNA-PK in DNA-damage repair pathways, including non-homologous end-joining (NHEJ) repair and homologous recombinant (HR) repair, have been studied intensively. However, the high levels of DNA-PK in human cells are somewhat paradoxical in that it does not impart any increased ability to repair DNA damage. If DNA-PK essentially exceeds the demand for DNA damage repair, why do human cells universally express such high levels of this huge complex? DNA-PK has been recently reported to be involved in metabolic gene regulation in response to feeding/insulin stimulation; our studies have also suggested a role of DNA-PK in the regulation of the homeostasis of cell proliferation. These novel findings expand our horizons about the importance of DNA-PK.
Collapse
Affiliation(s)
- Xianming Kong
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
43
|
Li Y. The tandem affinity purification technology: an overview. Biotechnol Lett 2011; 33:1487-99. [PMID: 21424840 DOI: 10.1007/s10529-011-0592-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/08/2011] [Indexed: 02/07/2023]
Abstract
Tandem affinity purification (TAP) is a methodology for the isolation of protein complexes from endogenous sources. It involves incorporation of a dual-affinity tag into the protein of interest and introduction of the construct into desired cell lines or organisms. Using the two affinity handles, the protein complex assembled under physiological conditions, which contains the tagged target protein and its interacting partners, can be isolated by a sequential purification scheme. Compared with single-step purification, TAP greatly reduces non-specific background and isolates protein complexes with higher purity. TAP-based protein retrieval plus mass spectrometry-based analysis has become a standard approach for identification and characterization of multi-protein complexes. The present article gives an overview of the TAP method, with a focus on its key feature-the dual-affinity tag. In addition, the application of this technology in various systems is briefly discussed.
Collapse
Affiliation(s)
- Yifeng Li
- Protein Production Core Facility, Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7303 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
44
|
Wong RHF, Sul HS. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol 2010; 10:684-91. [PMID: 20817607 PMCID: PMC3092640 DOI: 10.1016/j.coph.2010.08.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 02/04/2023]
Abstract
Transcription of enzymes involved in FA and TAG synthesis is coordinately induced in lipogenic tissues by feeding and insulin treatment. The three major transcription factors involved are USF, SREBP-1c, and LXRα. New insights into the insulin-signaling pathway(s) that control(s) lipogenic gene transcription via these factors have recently been revealed. Dephosphorylation/activation of DNA-PK by PP1 causes phosphorylation of USF that in turn recruits P/CAF to be acetylated for transcriptional activation. SREBP-1c can be induced by mTORC1, bifurcating lipogenesis from AKT-activated gluconeogenesis. LXRα may serve as a glucose sensor and, along with ChREBP, may activate lipogenic genes in the fed state. Dysregulation of FA and TAG metabolism often contributes to metabolic diseases such as obesity, diabetes, and cardiovascular diseases. Transcription factors and signaling molecules involved in transcriptional activation of FA and TAG synthesis represent attractive targets for the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Roger H F Wong
- Department of Nutritional Science and Toxicology, and Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
45
|
Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 2010; 51:1513-23. [PMID: 20124555 DOI: 10.1194/jlr.m004812] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We previously observed that treatment of mice with a dominant negative form of cJun (dn-cJun) increased the expression of genes involved in lipid metabolism and modulated the expression of nine microRNAs (miR). To investigate the potential effect of these miRs on the expression of the genes of lipid metabolism, we performed studies in cultured HepG2 cells. Transfection of HepG2 cells with sense or antisense miR-370 or miR-122 upregulated and downregulated, respectively, the transcription factor sterol-regulatory element binding protein 1c (SREBP-1c) and the enzymes diacylglycerol acyltransferase-2 (DGAT2), fatty acid synthase (FAS), and acyl-CoA carboxylase 1 (ACC1) that regulate fatty acid and triglyceride biosynthesis. The other seven miRs identified by the miR array screening did not affect the expression of lipogenic genes. miR-370 upregulated the expression of miR-122. Furthermore, the effect of miR-370 on the expression of the lipogenic genes was abolished by antisense miR-122. miR-370 targets the 3' untranslated region (UTR) of Cpt1alpha, and it downregulated the expression of the carnitine palmitoyl transferase 1alpha (Cpt1alpha) gene as well as the rate of beta oxidation. Our data suggest that miR-370 acting via miR-122 may have a causative role in the accumulation of hepatic triglycerides by modulating initially the expression of SREBP-1c, DGAT2, and Cpt1alpha and, subsequently, the expression of other genes that affect lipid metabolism.
Collapse
Affiliation(s)
- Dimitrios Iliopoulos
- Department of Biological Chemistry and Molecular Pharmacology, School of Medicine, Harvard University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Roger H. F. Wong
- Department of Nutritional Science and Toxicology, and Comparative Biochemistry Program, University of California, Berkeley, CA, 94720
| | - Hei Sook Sul
- Department of Nutritional Science and Toxicology, and Comparative Biochemistry Program, University of California, Berkeley, CA, 94720
| |
Collapse
|
47
|
Wong RH, Chang I, Hudak CSS, Hyun S, Kwan HY, Sul HS. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 2009; 136:1056-72. [PMID: 19303849 PMCID: PMC2768498 DOI: 10.1016/j.cell.2008.12.040] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/25/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Fatty acid synthase (FAS) is a central enzyme in lipogenesis and transcriptionally activated in response to feeding and insulin signaling. The transcription factor USF is required for the activation of FAS transcription, and we show here that USF phosphorylation by DNA-PK, which is dephosphorylated by PP1 in response to feeding, triggers a switch-like mechanism. Under fasting conditions, USF-1 is deacetylated by HDAC9, causing promoter inactivation. In contrast, feeding induces the recruitment of DNA-PK to USF-1 and its phosphorylation, which then allows recruitment of P/CAF, resulting in USF-1 acetylation and FAS promoter activation. DNA break/repair components associated with USF induce transient DNA breaks during FAS activation. In DNA-PK-deficient SCID mice, feeding-induced USF-1 phosphorylation/acetylation, DNA breaks, and FAS activation leading to lipogenesis are impaired, resulting in decreased triglyceride levels. Our study demonstrates that a kinase central to the DNA damage response mediates metabolic gene activation.
Collapse
Affiliation(s)
- Roger H.F. Wong
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720
| | - Inhwan Chang
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720
| | - Carolyn S. S. Hudak
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720
| | - Suzanne Hyun
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720
| | - Hiu-Yee Kwan
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720
| | - Hei Sook Sul
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720
| |
Collapse
|
48
|
Dickson ME, Tian X, Liu X, Davis DR, Sigmund CD. Upstream stimulatory factor is required for human angiotensinogen expression and differential regulation by the A-20C polymorphism. Circ Res 2008; 103:940-7. [PMID: 18802024 PMCID: PMC2678906 DOI: 10.1161/circresaha.108.180653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among naturally occurring polymorphisms in the 5' flanking region of the human angiotensinogen (AGT) gene, the -20 and -217 polymorphisms have the strongest effects on AGT regulation in AGT-expressing cells derived from liver, kidney, brain, and fat. These polymorphisms may affect allele-specific transcription factor binding, and the high-expressing alleles are both relatively common. We show herein that the -20C allele has higher transcriptional activity than -20A, and the -20A allele confers no additional transactivation potential beyond that of a mutated vector. Gel-shift assays show that upstream stimulatory factor (USF)1 and USF2 preferentially bind the -20C allele, whereas the -20A allele retains a low affinity USF binding site. Plasmid immunoprecipitation assays confirmed preferential association of USF1 with the -20C allele in transfected HepG2 cells. Chromatin immunoprecipitation confirmed that USF1 binds to the endogenous AGT -20C allele in CCF cells, the only cell line tested that carries the -20C allele, and to the human AGT promoter in liver and adipose tissue from transgenic mice. Transduction of AGT-expressing cells with short hairpin RNAs specifically targeting USF1 or USF2, resulted in cell- and allele-specific attenuation of AGT promoter activity. In vivo, knockdown of USF expression in the liver of transgenic mice expressing the -20C allele of AGT resulted in lower AGT expression, a decrease in circulating human AGT protein but no change in expression of GAPDH or hepatocyte nuclear factor-4alpha. We conclude that USF1 functionally and differentially regulates AGT expression via the -20 polymorphism and that the differential expression exhibited by -20 can be accounted for by differential association with USF1.
Collapse
Affiliation(s)
- Matthew E. Dickson
- Genetics and MSTP Programs, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Xin Tian
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Xuebo Liu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deborah R. Davis
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D. Sigmund
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
49
|
Yoshida M, Harada N, Yamamoto H, Taketani Y, Nakagawa T, Yin Y, Hattori A, Zenitani T, Hara S, Yonemoto H, Nakamura A, Nakano M, Mawatari K, Teshigawara K, Arai H, Hosaka T, Takahashi A, Yoshimoto K, Nakaya Y. Identification of cis-acting promoter sequences required for expression of the glycerol-3-phosphate acyltransferase 1 gene in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:39-52. [PMID: 18983939 DOI: 10.1016/j.bbalip.2008.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/24/2008] [Accepted: 09/30/2008] [Indexed: 11/17/2022]
Abstract
Glycerol-3-phosphate acyltransferase 1 (GPAT1) is a rate limiting enzyme in de novo glycerophospholipid synthesis. The murine GPAT1 promoter sequence (the "classical" sequence) was reported previously. However, the organization of this DNA sequence does not fully match the mouse genome sequences on NCBI/GenBank. Here we have identified net cis-acting promoter sequences for the mouse GPAT1 gene: promoter 1a which includes part of the classical sequence and the downstream promoter 1b. Promoter 1a facilitates transcription of two alternative GPAT1 transcript variants, GPAT1-V1 and V2, while promoter 1b produces a third transcript variant, GPAT1-V3. Upstream stimulating factor-1 (USF-1) controlled both promoters whereas sterol regulatory element-binding protein-1 (SREBP-1) exclusively regulated promoter 1a activity in vitro. Feeding increased GPAT1-V1 and V2, but not V3 mRNA levels in mouse liver. The obese condition of db/db mice did not alter the hepatic expression levels of any of the three GPAT1 variants. Feeding enhanced hepatic mRNA levels, intranuclear protein levels and promoter 1a-binding levels of SREBP-1, but not of USF-1. Thus, promoter 1a was exclusively activated by routine feeding in vivo. Our results indicate differential roles of the two promoters in the regulation of hepatic GPAT1 gene expression in mice.
Collapse
Affiliation(s)
- Masaki Yoshida
- Department of Nutrition and Metabolism, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Choi SM, Cho HJ, Cho H, Kim KH, Kim JB, Park H. Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Res 2008; 36:6372-85. [PMID: 18838394 PMCID: PMC2582599 DOI: 10.1093/nar/gkn620] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sterol regulatory element binding protein-1c (SREBP-1c) is a basic helix–loop–helix (bHLH) homodimeric transactivator, which induces itself and several lipogenic enzymes, notably fatty acid synthase (FAS). We demonstrated that hypoxia-inducible factor (HIF) represses the SREBP-1c gene by inducing Stimulated with retinoic acid (Stra)13/Differentiated embryo chondrocyte 1(DEC1) and its isoform, DEC2. Stra13/DEC1 and DEC2 are bHLH homodimeric transcription repressors. We found that both Stra13 and DEC2 inhibit SREBP-1c-induced transcription by competing with SREBP-1c for binding to the E-box in the SREBP-1c promoter and/or by interacting with SREBP-1c protein. DEC2 is instantly and temporarily induced in acute hypoxia, while Stra13 is induced in prolonged hypoxia. This expression profile reflects the finding that Stra13 represses DEC2, thus maintains low level of DEC2 in prolonged hypoxia. DEC2-siRNA restores the hypoxic repression but Stra13-siRNA fails to do so, suggesting that DEC2 is the major initiator of hypoxic repression of SREBP-1c, whereas Stra13 substitutes for DEC2 in prolonged hypoxia. Our findings imply that Stra13 and DEC2 are the mediators to repress SREBP-1c gene in response to hypoxia. By doing so, HIF and its targets, Stra13 and DEC2 reduce the ATP consuming anabolic lipogenesis prior to the actual decrease of ATP acting as a feed-forward mechanism.
Collapse
Affiliation(s)
- Su Mi Choi
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|