1
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
2
|
Xiang D, Fu L, Yang Y, Liu C, He Y. Evaluating the diagnostic accuracy of heat shock proteins and their combination with Alpha-Fetoprotein in the detection of hepatocellular carcinoma: a meta-analysis. BMC Gastroenterol 2024; 24:178. [PMID: 38773451 PMCID: PMC11110180 DOI: 10.1186/s12876-024-03260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND A growing body of research suggests that heat shock proteins (HSPs) may serve as diagnostic biomarkers for hepatocellular carcinoma (HCC), but their results are still controversial. This meta-analysis endeavors to evaluate the diagnostic accuracy of HSPs both independently and in conjunction with alpha-fetoprotein (AFP) as novel biomarkers for HCC detection. METHODS Pooled statistical indices, including sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) with 95% confidence intervals (CI), were computed to assess the diagnostic accuracy of HSPs, AFP, and their combinations. Additionally, the area under the summary receiver operating characteristic (SROC) curve (AUC) was determined. RESULTS A total of 2013 HCC patients and 1031 control subjects from nine studies were included in this meta-analysis. The summary estimates for HSPs and AFP are as follows: sensitivity of 0.78 (95% CI: 0.69-0.85) compared to 0.73 (95% CI: 0.65-0.80); specificity of 0.89 (95% CI: 0.81-0.95) compared to 0.86 (95% CI: 0.77-0.91); PLR of 7.4 (95% CI: 3.7-14.9) compared to 5.1 (95% CI: 3.3-8.1); NLR of 0.24 (95% CI: 0.16-0.37) compared to 0.31 (95% CI: 0.24-0.41); DOR of 30.19 (95% CI: 10.68-85.37) compared to 16.34 (95% CI: 9.69-27.56); and AUC of 0.90 (95% CI: 0.87-0.92) compared to 0.85 (95% CI: 0.82-0.88). The pooled sensitivity, specificity, PLR, NLR, DOR and AUC were 0.90 (95% CI: 0.82-0.95), 0.94 (95% CI: 0.82-0.98), 14.5 (95% CI: 4.6-45.4), 0.11 (95% CI: 0.06-0.20), 133.34 (95% CI: 29.65-599.61), and 0.96 (95% CI: 0.94-0.98) for the combination of HSPs and AFP. CONCLUSION Our analysis suggests that HSPs have potential as a biomarker for clinical use in the diagnosis of HCC, and the concurrent utilization of HSPs and AFP shows notable diagnostic effectiveness for HCC.
Collapse
Affiliation(s)
- Dan Xiang
- Department of Laboratory Medicine, Ya'an People's Hospital, Yaan, 625000, China
| | - Lifang Fu
- Department of Laboratory Medicine, Ya'an People's Hospital, Yaan, 625000, China
| | - Ying Yang
- Department of Clinical Laboratory, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - ChengJiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China.
| | - Yong He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Sun C, Pan Q, Du M, Zheng J, Bai M, Sun W. Decoding the roles of heat shock proteins in liver cancer. Cytokine Growth Factor Rev 2024; 75:81-92. [PMID: 38182465 DOI: 10.1016/j.cytogfr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies, characterized by insidious onset and high propensity for metastasis and recurrence. Apart from surgical resection, there are no effective curative methods for HCC in recent years, due to resistance to radiotherapy and chemotherapy. Heat shock proteins (HSP) play a crucial role in maintaining cellular homeostasis and normal organism development as molecular chaperones for intracellular proteins. Both basic research and clinical data have shown that HSPs are crucial participants in the HCC microenvironment, as well as the occurrence, development, metastasis, and resistance to radiotherapy and chemotherapy in various malignancies, particularly liver cancer. This review aims to discuss the molecular mechanisms and potential clinical value of HSPs in HCC, which may provide new insights for HSP-based therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qi Pan
- Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang 110004, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ming Bai
- Second Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Liu H, Feng Y, Yang M, Huang Y, Li M, Geng Y, Ouyang P, Chen D, Yang S, Yin L, Li L, Huang X. Starvation induces hepatopancreas atrophy in Chinese mitten crab (Eriocheir sinensis) by inhibiting angiogenesis. BMC Genomics 2023; 24:612. [PMID: 37828424 PMCID: PMC10571328 DOI: 10.1186/s12864-023-09620-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The hepatopancreas of crustaceans serves as a significant organ for both the synthesis and secretion of digestive enzymes, as well as energy storage. In the event of food shortage, the hepatopancreas can provide energy for survival. To investigate the potential regulatory mechanisms of the hepatopancreas in response to starvation in Eriocheir Sinensis, transcriptome analysis, histological study and qRT-PCR were performed. RESULTS The results showed that starvation caused a decrease in the hepatopancreas index of E. sinensis, which had certain effects on the tissue structure, metabolism and angiogenesis in the hepatopancreas. In addition, WGCNA and linear regression analysis showed that the genes significantly related to the hepatopancreas index were mainly enriched in the angiogenesis pathway, in which AKT signaling played an important role. Starvation may inhibit AKT signaling pathway by reducing the expression of TGFBI, HSP27, HHEX, and EsPVF1, thereby hindering angiogenesis, promoting apoptosis, and leading to hepatopancreas atrophy. CONCLUSION These results indicate that AKT plays an important role in the angiogenesis pathway and apoptosis of the starvation induced hepatopancreas index reduction, which is beneficial to further understand the effect of starvation stress on hepatopancreas of Chinese mitten crab.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Feng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Ma Yang
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Ya Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Minghao Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Liangyu Li
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Heiserman JP, Minhas Z, Nikpayam E, Cheon DJ. Targeting Heat Shock Protein 27 and Fatty Acid Oxidation Augments Cisplatin Treatment in Cisplatin-Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2023; 24:12638. [PMID: 37628819 PMCID: PMC10454186 DOI: 10.3390/ijms241612638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulation of HSP27, FAO, and markers of apoptosis and ferroptosis in cisplatin-resistant ovarian cancer cell lines. Finally, inhibition of HSP27 and FAO with ivermectin and perhexiline enhanced the cytotoxic effect of cisplatin in A2780CIS xenograft tumors in vivo. Our results suggest that two different cisplatin-resistant ovarian cancer cell lines upregulate HSP27 and FAO to deplete cisplatin-induced ROS to attenuate cisplatin's cytotoxic effect.
Collapse
Affiliation(s)
| | | | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (J.P.H.); (E.N.)
| |
Collapse
|
6
|
Del Rosario O, Suresh K, Kallem M, Singh G, Shah A, Zheng L, Yun X, Philip NM, Putcha N, McClure MB, Jiang H, D'Alessio F, Srivastava M, Bera A, Shimoda LA, Merchant M, Rane MJ, Machamer CE, Mock J, Hagan R, Koch AL, Punjabi NM, Kolb TM, Damarla M. MK2 nonenzymatically promotes nuclear translocation of caspase-3 and resultant apoptosis. Am J Physiol Lung Cell Mol Physiol 2023; 324:L700-L711. [PMID: 36976920 PMCID: PMC10190840 DOI: 10.1152/ajplung.00340.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
We have previously identified mitogen-activated protein kinase-activated protein kinase 2 (MK2) is required for caspase-3 nuclear translocation in the execution of apoptosis; however, little is known of the underlying mechanisms. Therefore, we sought to determine the role of kinase and nonkinase functions of MK2 in promoting nuclear translocation of caspase-3. We identified two non-small cell lung cancer cell lines for use in these experiments based on low MK2 expression. Wild-type, enzymatic and cellular localization mutant MK2 constructs were expressed using adenoviral infection. Cell death was evaluated by flow cytometry. In addition, cell lysates were harvested for protein analyses. Phosphorylation of caspase-3 was determined using two-dimensional gel electrophoresis followed by immunoblotting and in vitro kinase assay. Association between MK2 and caspase-3 was evaluated using proximity-based biotin ligation assays and co-immunoprecipitation. Overexpression of MK2 resulted in nuclear translocation of caspase-3 and caspase-3-mediated apoptosis. MK2 directly phosphorylates caspase-3; however, phosphorylation status of caspase-3 or MK2-dependent phosphorylation of caspase-3 did not alter caspase-3 activity. The enzymatic function of MK2 was dispensable in nuclear translocation of caspase-3. MK2 and caspase-3 associated together and a nonenzymatic function of MK2, chaperoned nuclear trafficking, is required for caspase-3-mediated apoptosis. Taken together, our results demonstrate a nonenzymatic role for MK2 in the nuclear translocation of caspase-3. Furthermore, MK2 may function as a molecular switch in regulating the transition between the cytosolic and nuclear functions of caspase-3.
Collapse
Affiliation(s)
- Othello Del Rosario
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Karthik Suresh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Medha Kallem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gayatri Singh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Anika Shah
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Linda Zheng
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Xin Yun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Nicolas M Philip
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Nirupama Putcha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Marni B McClure
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Haiyang Jiang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Franco D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Alakesh Bera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Larissa A Shimoda
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Michael Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Madhavi J Rane
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Carolyn E Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jason Mock
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, United States
| | - Robert Hagan
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, United States
| | - Abigail L Koch
- Department of Medicine, University of Miami, School of Medicine, Miami, Florida, United States
| | - Naresh M Punjabi
- Department of Medicine, University of Miami, School of Medicine, Miami, Florida, United States
| | - Todd M Kolb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mahendra Damarla
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Kinnunen PC, Luker GD, Luker KE, Linderman JJ. Computational modeling implicates protein scaffolding in p38 regulation of Akt. J Theor Biol 2022; 555:111294. [PMID: 36195198 PMCID: PMC10394737 DOI: 10.1016/j.jtbi.2022.111294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Cells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF). Basal activity of p38 correlated inversely with amplitude of Akt and ERK activation in response to either ligand. Remarkably, small molecule inhibitors of p38 immediately decreased basal activities of Akt and ERK but increased the proportion of cells with high amplitude ligand-induced activation of Akt signaling. To identify mechanisms underlying cross-talk of p38 with Akt signaling, we developed a computational model incorporating subcellular compartmentalization of signaling molecules by scaffold proteins. Dynamics of this model revealed that subcellular scaffolding of Akt accounted for observed regulation by p38. The model also predicted that differences in the amount of scaffold protein in a subcellular compartment captured the observed single cell heterogeneity in signaling. Finally, our model predicted that reduction in kinase signaling can be accomplished by both scaffolding and direct kinase inhibition. However, scaffolding inhibition can potentiate future kinase activity by redistribution of pathway components, potentially amplifying oncogenic signaling. These studies reveal how computational modeling can decipher mechanisms of cross-talk between the p38 and Akt signaling pathways and point to scaffold proteins as central regulators of signaling dynamics and amplitude.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Gary D Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Kathryn E Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States.
| |
Collapse
|
8
|
Activation of the HSP27-AKT axis contributes to gefitinib resistance in non-small cell lung cancer cells independent of EGFR mutations. Cell Oncol (Dordr) 2022; 45:913-930. [PMID: 35931945 PMCID: PMC9579113 DOI: 10.1007/s13402-022-00696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Although epidermal growth factor receptor (EGFR)-activating mutations in non-small cell lung cancer (NSCLC) usually show sensitivity to first-generation EGFR-tyrosine kinase inhibitors (TKIs), most patients relapse because of drug resistance. Heat shock protein 27 (HSP27) has been reported to be involved in the resistance of EGFR-TKIs, although the underlying mechanism is unclear. Here, we explore the mechanisms of HSP27-mediated EGFR TKI resistance and propose novel therapeutic strategies. METHODS To determine the mechanism of HSP27 associated gefitinib resistance, differences were assessed using gefitinib-sensitive and -resistant NSCLC cell lines. In vivo xenograft experiments were conducted to elucidate the combinatorial effects of J2, a small molecule HSP27 inhibitor, and gefitinib. Analyses of human NSCLC tissues and PDX tissues were also used for comparison of HSP27 and phosphorylated AKT expression. RESULTS Large-scale cohort analysis of NSCLC cases revealed that HSP27 expression correlated well with the incidence of EGFR mutations and affected patient survival. Increased pAKT and HSP27 was observed in gefitinib-resistant cells compared with gefitinib-sensitive cells. Moreover, increased phosphorylation of HSP27 by gefitinib augmented its protein stability and potentiated its binding activity with pAKT, which resulted in increased gefitinib resistance. However, in gefitinib-sensitive cells, stronger binding activity between EGFR and HSP27 was observed. Moreover, these phenomena occurred regardless of EGFR mutation including secondary mutations, such as T790M. AKT knockdown switched HSP27-pAKT binding to HSP27-EGFR, which promoted gefitinib sensitivity in gefitinib-resistant cells. Functional inhibition of HSP27 yielded sensitization to gefitinib in gefitinib-resistant cells by inhibiting the interaction between HSP27 and pAKT. CONCLUSIONS Our results indicate that combination of EGFR-TKIs with HSP27 inhibitors may represent a good strategy to overcome resistance to EGFR-TKIs, especially in cancers exhibiting AKT pathway activation.
Collapse
|
9
|
Curcumin and Ethanol Effects in Trembler-J Schwann Cell Culture. Biomolecules 2022; 12:biom12040515. [PMID: 35454103 PMCID: PMC9025918 DOI: 10.3390/biom12040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) syndrome is the most common progressive human motor and sensory peripheral neuropathy. CMT type 1E is a demyelinating neuropathy affecting Schwann cells due to peripheral-myelin-protein-22 (PMP22) mutations, modelized by Trembler-J mice. Curcumin, a natural polyphenol compound obtained from turmeric (Curcuma longa), exhibits dose- and time-varying antitumor, antioxidant and neuroprotective properties, however, the neurotherapeutic actions of curcumin remain elusive. Here, we propose curcumin as a possible natural treatment capable of enhancing cellular detoxification mechanisms, resulting in an improvement of the neurodegenerative Trembler-J phenotype. Using a refined method for obtaining enriched Schwann cell cultures, we evaluated the neurotherapeutic action of low dose curcumin treatment on the PMP22 expression, and on the chaperones and autophagy/mammalian target of rapamycin (mTOR) pathways in Trembler-J and wild-type genotypes. In wild-type Schwann cells, the action of curcumin resulted in strong stimulation of the chaperone and macroautophagy pathway, whereas the modulation of ribophagy showed a mild effect. However, despite the promising neuroprotective effects for the treatment of neurological diseases, we demonstrate that the action of curcumin in Trembler-J Schwann cells could be impaired due to the irreversible impact of ethanol used as a common curcumin vehicle necessary for administration. These results contribute to expanding our still limited understanding of PMP22 biology in neurobiology and expose the intrinsic lability of the neurodegenerative Trembler-J genotype. Furthermore, they unravel interesting physiological mechanisms of cellular resilience relevant to the pharmacological treatment of the neurodegenerative Tremble J phenotype with curcumin and ethanol. We conclude that the analysis of the effects of the vehicle itself is an essential and inescapable step to comprehensibly assess the effects and full potential of curcumin treatment for therapeutic purposes.
Collapse
|
10
|
Li J, Jin S, Barati MT, Rane S, Lin Q, Tan Y, Cai L, Rane MJ. ERK and p38 MAPK inhibition controls NF-E2 degradation and profibrotic signaling in renal proximal tubule cells. Life Sci 2021; 287:120092. [PMID: 34715142 PMCID: PMC8665041 DOI: 10.1016/j.lfs.2021.120092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
AIMS Transforming growth factor-β (TGF-β) mediates fibrotic manifestations of diabetic nephropathy. We demonstrated proteasomal degradation of anti-fibrotic protein, nuclear factor-erythroid derived 2 (NF-E2), in TGF-β treated human renal proximal tubule (HK-11) cells and in diabetic mouse kidneys. The current study examined the role of mitogen-activated protein kinase (MAPK) pathways in mediating NF-E2 proteasomal degradation and stimulating profibrotic signaling in HK-11 cells. MAIN METHODS HK-11 cells were pretreated with vehicle or appropriate proteasome and MAPK inhibitors, MG132 (0.5 μM), SB203580 (1 μM), PD98059 (25 μM) and SP600125 (10 μM), respectively, followed by treatment with/without TGF-β (10 ng/ml, 24 h). Cell lysates and kidney homogenates from FVB and OVE26 mice treated with/without MG132 were immunoblotted with appropriate antibodies. pUse vector and pUse-NF-E2 cDNA were transfected in HK-11 cells and effects of TGF-β on JNK MAPK phosphorylation (pJNK) was examined. KEY FINDINGS We demonstrated activation of p38, ERK, and JNK MAPK pathways in TGF-β treated HK-11 cells. Dual p38 and ERK MAPK blockade prevented TGF-β-induced pSer82Hsp27, fibronectin and connective tissue growth factor (CTGF) expression while preserving NF-E2 expression. Blockade of JNK MAPK inhibited TGF-β-induced CTGF expression without preserving NF-E2 expression. MG132 treatment prevented TGF-β-induced pJNK in HK-11 cells and in type 1 diabetic OVE26 mouse kidneys, demonstrating that TGF-β- and diabetes-induced pJNK occurs downstream of proteasome activation. A direct role for NF-E2 in modulating pJNK activation was demonstrated by NF-E2 over-expression. SIGNIFICANCE ERK and p38 MAPK promotes NF-E2 proteasomal degradation while proteasome activation promotes pJNK and profibrotic signaling in renal proximal tubule cells.
Collapse
Affiliation(s)
- Jia Li
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA; Department of Nephrology, the First Hospital of Jilin University, Changchun, Jilin 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Shunying Jin
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA
| | - Michelle T Barati
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA
| | - Sanjana Rane
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA
| | - Qian Lin
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Madhavi J Rane
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Chakafana G, Spracklen TF, Kamuli S, Zininga T, Shonhai A, Ntusi NAB, Sliwa K. Heat Shock Proteins: Potential Modulators and Candidate Biomarkers of Peripartum Cardiomyopathy. Front Cardiovasc Med 2021; 8:633013. [PMID: 34222357 PMCID: PMC8241919 DOI: 10.3389/fcvm.2021.633013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a potentially life-threatening condition in which heart failure and systolic dysfunction occur late in pregnancy or within months following delivery. To date, no reliable biomarkers or therapeutic interventions for the condition exist, thus necessitating an urgent need for identification of novel PPCM drug targets and candidate biomarkers. Leads for novel treatments and biomarkers are therefore being investigated worldwide. Pregnancy is generally accompanied by dramatic hemodynamic changes, including a reduced afterload and a 50% increase in cardiac output. These increased cardiac stresses during pregnancy potentially impair protein folding processes within the cardiac tissue. The accumulation of misfolded proteins results in increased toxicity and cardiac insults that trigger heart failure. Under stress conditions, molecular chaperones such as heat shock proteins (Hsps) play crucial roles in maintaining cellular proteostasis. Here, we critically assess the potential role of Hsps in PPCM. We further predict specific associations between the Hsp types Hsp70, Hsp90 and small Hsps with several proteins implicated in PPCM pathophysiology. Furthermore, we explore the possibility of select Hsps as novel candidate PPCM biomarkers and drug targets. A better understanding of how these Hsps modulate PPCM pathogenesis holds promise in improving treatment, prognosis and management of the condition, and possibly other forms of acute heart failure.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy F Spracklen
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stephen Kamuli
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa
| | - Ntobeko A B Ntusi
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
13
|
Ramani S, Park S. HSP27 role in cardioprotection by modulating chemotherapeutic doxorubicin-induced cell death. J Mol Med (Berl) 2021; 99:771-784. [PMID: 33728476 DOI: 10.1007/s00109-021-02048-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
The common phenomenon expected from any anti-cancer drug in use is to kill the cancer cells without any side effects to non-malignant cells. Doxorubicin is an anthracycline derivative anti-cancer drug active over different types of cancers with anti-cancer activity but attributed to unintended cytotoxicity and genotoxicity triggering mitogenic signals inducing apoptosis. Administration of doxorubicin tends to both acute and chronic toxicity resulting in cardiomyopathy (left ventricular dysfunction) and congestive heart failure (CHF). Cardiotoxicity is prevented through administration of different cardioprotectants along with the drug. This review elaborates on mechanism of drug-mediated cardiotoxicity and attenuation principle by different cardioprotectants, with a focus on Hsp27 as cardioprotectant by prevention of drug-induced oxidative stress, cell survival pathways with suppression of intrinsic cell death. In conclusion, Hsp27 may offer an exciting/alternating cardioprotectant, with a wider study being need of the hour, specifically on primary cell line and animal models in conforming its cardioprotectant behaviour.
Collapse
Affiliation(s)
- Sivasubramanian Ramani
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea.
| |
Collapse
|
14
|
Ou DL, Chen CW, Hsu CL, Chung CH, Feng ZR, Lee BS, Cheng AL, Yang MH, Hsu C. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J Immunother Cancer 2021; 9:e001657. [PMID: 33753566 PMCID: PMC7986673 DOI: 10.1136/jitc-2020-001657] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regorafenib and other multikinase inhibitors may enhance antitumor efficacy of anti-program cell death-1 (anti-PD1) therapy in hepatocellular carcinoma (HCC). Its immunomodulatory effects, besides anti-angiogenesis, were not clearly defined. METHODS In vivo antitumor efficacy was tested in multiple syngeneic liver cancer models. Murine bone marrow-derived macrophages (BMDMs) were tested in vitro for modulation of polarization by regorafenib and activation of cocultured T cells. Markers of M1/M2 polarization were measured by quantitative reverse transcription PCR (RT-PCR), arginase activity, flow cytometry, and ELISA. Knockdown of p38 kinase and downstream Creb1/Klf4 signaling on macrophage polarization were confirmed by using knockdown of the upstream MAPK14 kinase, chemical p38 kinase inhibitor, and chromatin immunoprecipitation. RESULTS Regorafenib (5 mg/kg/day, corresponding to about half of human clinical dosage) inhibited tumor growth and angiogenesis in vivo similarly to DC-101 (anti-VEGFR2 antibody) but produced higher T cell activation and M1 macrophage polarization, increased the ratio of M1/M2 polarized BMDMs and proliferation/activation of cocultured T cells in vitro, indicating angiogenesis-independent immunomodulatory effects. Suppression of p38 kinase phosphorylation and downstream Creb1/Klf4 activity in BMDMs by regorafenib reversed M2 polarization. Regorafenib enhanced antitumor efficacy of adoptively transferred antigen-specific T cells. Synergistic antitumor efficacy between regorafenib and anti-PD1 was associated with multiple immune-related pathways in the tumor microenvironment. CONCLUSION Regorafenib may enhance antitumor immunity through modulation of macrophage polarization, independent of its anti-angiogenic effects. Optimization of regorafenib dosage for rational design of combination therapy regimen may improve the therapeutic index in the clinic.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/immunology
- Cell Line, Tumor
- Coculture Techniques
- Cyclic AMP Response Element-Binding Protein/metabolism
- Kruppel-Like Factor 4/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/immunology
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/enzymology
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Phenotype
- Phenylurea Compounds/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- Signal Transduction
- Tumor Microenvironment
- Tumor-Associated Macrophages/drug effects
- Tumor-Associated Macrophages/enzymology
- Tumor-Associated Macrophages/immunology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Mice
Collapse
Affiliation(s)
- Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Wei Chen
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hung Chung
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Zi-Rui Feng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bin-Shyun Lee
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiun Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
15
|
Eyermann CE, Haley JD, Alexandrova EM. The HSP-RTK-Akt axis mediates acquired resistance to Ganetespib in HER2-positive breast cancer. Cell Death Dis 2021; 12:126. [PMID: 33500390 PMCID: PMC7838268 DOI: 10.1038/s41419-021-03414-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Human epidermal growth factor receptor 2 (HER2)-positive subtype comprises 20% of sporadic breast cancers and is an aggressive disease. While targeted therapies have greatly improved its management, primary and acquired resistance remain a major roadblock to making it a curable malignancy. Ganetespib, an Hsp90 (Heat shock protein 90) small molecule inhibitor, shows preferential efficacy in HER2-positive breast cancer, including therapy-refractory cases, and has an excellent safety profile in ongoing clinical trials (38 in total, six on breast cancer). However, Ganetespib itself evokes acquired resistance, which is a significant obstacle to its clinical advancement. Here, we show that Ganetespib potently, albeit temporarily, suppresses HER2-positive breast cancer in genetic mouse models, but the animals eventually succumb via acquired resistance. We found that Ganetespib-resistant tumors upregulate several compensatory HSPs, as well as a wide network of phospho-activated receptor tyrosine kinases (RTKs), many of which are HSP clients. Downstream of p-RTKs, the MAPK pathway remains suppressed in the resistant tumors, as is HER2 itself. In contrast, the p-RTK effector Akt is stabilized and phospho-activated. Notably, pharmacological inhibition of Akt significantly delays acquired Ganetespib resistance, by 50%. These data establish Akt as a unifying actionable node downstream of the broadly upregulated HSP/p-RTK resistance program and suggests that Akt co-targeting with Ganetespib may be a superior therapeutic strategy in the clinic.
Collapse
Affiliation(s)
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| | | |
Collapse
|
16
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
17
|
P2 × 7 Receptor Inhibits Astroglial Autophagy via Regulating FAK- and PHLPP1/2-Mediated AKT-S473 Phosphorylation Following Kainic Acid-Induced Seizures. Int J Mol Sci 2020; 21:ijms21186476. [PMID: 32899862 PMCID: PMC7555659 DOI: 10.3390/ijms21186476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
Recently, we have reported that blockade/deletion of P2X7 receptor (P2X7R), an ATP-gated ion channel, exacerbates heat shock protein 25 (HSP25)-mediated astroglial autophagy (clasmatodendrosis) following kainic acid (KA) injection. In P2X7R knockout (KO) mice, prolonged astroglial HSP25 induction exerts 5′ adenosine monophosphate-activated protein kinase/unc-51 like autophagy activating kinase 1-mediated autophagic pathway independent of mammalian target of rapamycin (mTOR) activity following KA injection. Sustained HSP25 expression also enhances AKT-serine (S) 473 phosphorylation leading to astroglial autophagy via glycogen synthase kinase-3β/bax interacting factor 1 signaling pathway. However, it is unanswered how P2X7R deletion induces AKT-S473 hyperphosphorylation during autophagic process in astrocytes. In the present study, we found that AKT-S473 phosphorylation was increased by enhancing activity of focal adhesion kinase (FAK), independent of mTOR complex (mTORC) 1 and 2 activities in isolated astrocytes of P2X7R knockout (KO) mice following KA injection. In addition, HSP25 overexpression in P2X7R KO mice acted as a chaperone of AKT, which retained AKT-S473 phosphorylation by inhibiting the pleckstrin homology domain and leucine-rich repeat protein phosphatase (PHLPP) 1- and 2-binding to AKT. Therefore, our findings suggest that P2X7R may be a fine-tuner of AKT-S473 activity during astroglial autophagy by regulating FAK phosphorylation and HSP25-mediated inhibition of PHLPP1/2-AKT binding following KA treatment.
Collapse
|
18
|
Van R, Cuevas-Navarro A, Castel P, McCormick F. The molecular functions of RIT1 and its contribution to human disease. Biochem J 2020; 477:2755-2770. [PMID: 32766847 PMCID: PMC7787054 DOI: 10.1042/bcj20200442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
RIT1 is a member of the Ras family of GTPases that direct broad cellular physiological responses through tightly controlled signaling networks. The canonical Ras GTPases are well-defined regulators of the RAF/MEK/ERK pathway and mutations in these are pathogenic in cancer and a class of developmental disorders termed RASopathies. Emerging clinical evidences have now demonstrated a role for RIT1 in RASopathies, namely Noonan syndrome, and various cancers including lung adenocarcinoma and myeloid malignancies. While RIT1 has been mostly described in the context of neuronal differentiation and survival, the mechanisms underlying aberrant RIT1-mediated signaling remain elusive. Here, we will review efforts undertaken to characterize the biochemical and functional properties of the RIT1 GTPase at the molecular, cellular, and organismal level, as well as provide a phenotypic overview of different human conditions caused by RIT1 mutations. Deeper understanding of RIT1 biological function and insight to its pathogenic mechanisms are imperative to developing effective therapeutic interventions for patients with RIT1-mutant Noonan syndrome and cancer.
Collapse
Affiliation(s)
- Richard Van
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| |
Collapse
|
19
|
Jin S, Li J, Barati M, Rane S, Lin Q, Tan Y, Zheng Z, Cai L, Rane MJ. Loss of NF-E2 expression contributes to the induction of profibrotic signaling in diabetic kidneys. Life Sci 2020; 254:117783. [PMID: 32413404 DOI: 10.1016/j.lfs.2020.117783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023]
Abstract
AIMS This study aimed to examine the anti-fibrotic role of Nuclear Factor-Erythroid derived 2 (NF-E2) in human renal tubule (HK-11) cells and in type 1 and type 2 diabetic (T1D, T2D) mouse kidneys. MAIN METHODS Anti-fibrotic effects of NF-E2 were examined in transforming growth factor-β (TGF-β) treated HK-11 cells by over-expressing/silencing NF-E2 expression and determining its effects on profibrotic signaling. NF-E2 proteasomal degradation was confirmed by proteasome inhibition in HK-11 cells and diabetic mice. Clinical relevance of changes in NF-E2 expression to fibrotic changes in the kidney were assessed in T1D and T2D mouse kidneys. KEY FINDINGS NF-E2 expression was significantly decreased in TGF-β treated HK-11 cells and in kidneys of diabetic mice with concurrent increase in expression of fibrotic proteins. TGF-β treatment of HK-11 cells did not inhibit NF-E2 mRNA expression, suggesting that the post-translational changes may contribute to NF-E2 protein degradation. The down-regulation of NF-E2 expression was attributed to its proteasomal degradation, as TGF-β- and diabetes-induced NF-E2 down regulation was prevented by proteasome inhibitor treatment. In HK-11 cells TGF-β treatment decreased E-cadherin expression and induced pSer82Hsp27/NF-E2 association, likely to promote NF-E2 degradation, as Hsp27 can target proteins to the proteasome. A critical role for NF-E2 in regulation of renal fibrosis was demonstrated as over-expression of NF-E2 or silencing NF-E2 expression, decreased or increased profibrotic proteins in TGF-β-treated HK-11 cells, respectively. SIGNIFICANCE NF-E2, a novel anti-fibrotic protein, is down-regulated in diabetic kidneys. Preserving/inducing NF-E2 expression in diabetic kidneys may provide a therapeutic potential to combat DN.
Collapse
Affiliation(s)
- Shunying Jin
- Department of Medicine, Division Nephrology, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Jia Li
- Department of Nephrology, the First Hospital of Jilin University, Changchun, Jilin 130021, China; Pediatric Research Institute, Departments of Pediatrics, University of Louisville, Louisville, KY 40292, USA
| | - Michelle Barati
- Department of Medicine, Division Nephrology, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Sanjana Rane
- Department of Medicine, Division Nephrology, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Qian Lin
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville, Louisville, KY 40292, USA
| | - Yi Tan
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Zongyu Zheng
- Department of Nephrology, the First Hospital of Jilin University, Changchun, Jilin 130021, China; Pediatric Research Institute, Departments of Pediatrics, University of Louisville, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; Department of Radiation Oncology, University of Louisville, Louisville, KY 40292, USA.
| | - Madhavi J Rane
- Department of Medicine, Division Nephrology, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
20
|
Ke J, Wu G, Zhang J, Li H, Gao S, Shao M, Gao Z, Sy MS, Cao Y, Yang X, Xu J, Li C. Melanoma migration is promoted by prion protein via Akt-hsp27 signaling axis. Biochem Biophys Res Commun 2019; 523:375-381. [PMID: 31870551 DOI: 10.1016/j.bbrc.2019.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Patients with metastatic melanoma have a poorer prognosis. Prion protein (PrP) in melanoma is known to play an important role in cancer cell migration and invasion by interacting with filamin A (FLNa), a cytolinker protein. To investigate if PrP may contribute to cancer cell mobility independent of its binding to FLNa, we knocked out PRNP in M2 melanoma cell, which lacked FLNa expression. We found that deletion of PRNP in M2 significantly reduced its motility. When PRNP was deleted, the level of Akt was decreased. As a consequence, phosphorylation of small heat shock protein (hsp27) was also reduced, which resulted in polymerization of F-actin rendering the cells less migratory. Accordingly, when PrP was re-expressed in PRNP null M2 cells, the mobility of the recurred cells was rescued, so were the expression levels of Akt and phosphorylated hsp27, resulting in a decrease in the polymerization of F-actin. These results revealed that PrP can play a FLNa independent role in cytoskeletal organization and tumor cell migration by modulating Akt-hsp27-F-actin axis.
Collapse
Affiliation(s)
- Jingru Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Guiru Wu
- The Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China; Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi, Xinjiang, 832008, China
| | - Huan Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Shanshan Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Ming Shao
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Zhenxing Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, 330029, China.
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi, Xinjiang, 832008, China.
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China.
| |
Collapse
|
21
|
Adenine Nucleotide Translocase 1 Expression is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes. Cells 2019; 8:cells8121588. [PMID: 31817787 PMCID: PMC6952976 DOI: 10.3390/cells8121588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
The cardiac-specific overexpression of the adenine nucleotide translocase 1 (ANT1) has cardioprotective effects in various experimental heart disease models. Here, we analyzed the link between ANT1 expression and heat shock protein 27 (HSP27)-mediated toll-like receptor 4 (TLR4) signaling, which represents a novel communication pathway between mitochondria and the extracellular environment. The interaction between ANT1 and HSP27 was identified by co-immunoprecipitation from neonatal rat cardiomyocytes. ANT1 transgenic (ANT1-TG) cardiomyocytes demonstrated elevated HSP27 expression levels. Increased levels of HSP27 were released from the ANT1-TG cardiomyocytes under both normoxic and hypoxic conditions. Extracellular HSP27 stimulated TLR4 signaling via protein kinase B (AKT). The HSP27-mediated activation of the TLR4 pathway was more pronounced in ANT1-TG cardiomyocytes than in wild-type (WT) cardiomyocytes. HSP27-specific antibodies inhibited TLR4 activation and the expression of HSP27. Inhibition of the HSP27-mediated TLR4 signaling pathway with the TLR4 inhibitor oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) reduced the mitochondrial membrane potential (∆ψm) and increased caspase 3/7 activity, which are both markers for cell stress. Conversely, treating cardiomyocytes with recombinant HSP27 protein stimulated TLR4 signaling, induced HSP27 and ANT1 expression, and stabilized the mitochondrial membrane potential. The activation of HSP27 signaling was verified in ischemic ANT1-TG heart tissue, where it correlated with ANT1 expression and the tightness of the inner mitochondrial membrane. Our study shows a new mechanism by which ANT1 is part of the cardioprotective HSP27-mediated TLR4 signaling.
Collapse
|
22
|
Liu C, Huang X, Wang P, Pan Y, Cao D, Liu YY, Chen AJ. Interference of Hsp27 Results in Apoptosis Induced by Photodamage via Regulation of Subcellular Localization of p21 in Immortalized Human Keratinocytes. Med Sci Monit 2019; 25:7557-7566. [PMID: 31592001 PMCID: PMC6795107 DOI: 10.12659/msm.917164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Owing to the increased incidence of photodermatosis caused by ultraviolet light in recent years, it is necessary to clarify the mechanisms potential photodamage to the skin and reveal possible therapeutic targets. Heat shock protein 27 (Hsp27) is well known for suppressing apoptosis. The aim of present study was to elucidate possible photoprotective mechanism between Hsp27 and p21 on ultraviolet B (UVB)-induced photodamage. MATERIAL AND METHODS The Hsp27 gene was interfered to assess the expression of its downstream effectors, cell apoptosis, and cell proliferation ability. The cell apoptosis was tested using flow cytometry method. The cell proliferation ability was tested using Cell Counting Kit-8 (CCK-8) assay. The expression of protein was tested using western-blotting method. The expression of mRNA was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The subcellular localization was elucidated using immunofluorescence. RESULTS Hsp27 knockdown decreased cell viability and increased the incidence of UVB-induced apoptosis. Compared with control group, activation of phosphorylated-Akt (p-Akt)-dependent pathway resulted in the nuclear accumulation of p21 and suppression of cell proliferation, while promoting apoptosis in Hsp27 knockdown group. In addition, Hsp27 knockdown increased p53 expression and the Bax: Bcl-2 ratio, which further accelerated the apoptotic process. CONCLUSIONS These findings complemented the mechanism of skin photodamage and demonstrated the photoprotective mechanisms of Hsp27 in HaCaT cells, which might implicate a potential therapeutic target of photodamage and photodermatosis.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Xin Huang
- Prescriptions Department, College of Traditional Chinese Medicine, Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Yun Pan
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Di Cao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Yi-Yi Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Ai-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| |
Collapse
|
23
|
Behdarvandy M, Karimian M, Atlasi MA, Azami Tameh A. Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int 2019; 44:356-367. [PMID: 31502740 DOI: 10.1002/cbin.11237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a major common cause of death and long-term disability worldwide. Several pathophysiological events including excitotoxicity, oxidative/nitrative stress, inflammation, and apoptosis are involved in ischemic injuries. Recently, the molecular mechanisms involved in cerebral ischemia through a focus on a member of small heat shock proteins family, Hsp27, has been developed. Notably, following exposure to ischemia, Hsp27 expression in the brain could be increased rather than the normal condition and it may play an important role in neuroprotection after ischemic stroke. The neuroprotection effects of Hsp27 may arise from its anti-oxidant, anti-inflammatory, anti-apoptotic, and chaperonic properties. Moreover, some therapeutic strategies such as stem cell therapy and pharmacotherapy have been developed with Hsp27 targeting. In this review, we describe the function and structure of Hsp27 and its possible role in neuroprotection after ischemic stroke. Finally, we present current studies in stroke therapy, which focused on Hsp27 targeting.
Collapse
Affiliation(s)
- Marjan Behdarvandy
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| |
Collapse
|
24
|
Abe K, Yano T, Tanno M, Miki T, Kuno A, Sato T, Kouzu H, Nakata K, Ohwada W, Kimura Y, Sugawara H, Shibata S, Igaki Y, Ino S, Miura T. mTORC1 inhibition attenuates necroptosis through RIP1 inhibition-mediated TFEB activation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165552. [PMID: 31499159 DOI: 10.1016/j.bbadis.2019.165552] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 01/15/2023]
Abstract
Accumulating evidence indicates that necroptosis contributes to cardiovascular diseases. We recently reported suppression of autophagy by necroptotic signals in cardiomyocytes and protective action of rapamycin. Here we examined the mechanism by which mTORC1 inhibition protects cardiomyocytes from necroptosis. Necroptosis of H9c2 cells was induced by treatment with tumor necrotic factor-α (TNF) and z-VAD-fmk (zVAD), and the extent of necroptosis was determined as the level of LDH release (as % of total). TNF/zVAD increased RIP1-RIP3 interaction and LDH release from 3.4 ± 1.3% to 46.1 ± 2.3%. The effects of TNF/zVAD were suppressed by an mTORC1 inhibitor, rapamycin, and an mTORC1/2 inhibitor, Ku-0063794, but not by a p70s6K inhibitor, PF-4708671. Protection by rapamycin was not abolished by inhibitors of TAK1, IKKα/β, and cIAP, endogenous necroptosis suppressors upstream of RIP1. Rapamycin and Ku-0063794 suppressed TNF/zVAD-induced RIP1-Ser166 phosphorylation and increased phosphorylation of RIP1-Ser320, an inhibitory phosphorylation site, though such an effect on RIP1-Ser320 was not observed for PF-4708671. Protective effects of rapamycin on TNF/zVAD-induced RIP1-RIP3 binding and necroptosis were undetected in cells transfected with RIP1-S320A. In TNF/zVAD-treated cells, rapamycin and a RIP1 inhibitor, necrostatin-1, increased nuclear localization of transcriptional factor EB (TFEB) and promoted autolysosome formation from autophagosomes in a TFEB-dependent manner. Knockdown of TFEB expression attenuated rapamycin-induced protection from necroptosis in TNF/zVAD-treated cells. The results suggest that mTORC1 inhibition promotes autophagy and protects cardiomyocytes from necroptosis by a TFEB-dependent mechanism and that inhibition of RIP1 by increased phosphorylation at Ser320 is crucial in the cardiomyocyte protection afforded by mTORC1 inhibition.
Collapse
Affiliation(s)
- Koki Abe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Cell Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukishige Kimura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirohito Sugawara
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoru Shibata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Igaki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shoya Ino
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
25
|
Guo M, Sun D, Fan Z, Yuan Y, Shao M, Hou J, Zhu Y, Wei R, Zhu Y, Qian J, Li F, Yang Y, Gu C. Targeting MK2 Is a Novel Approach to Interfere in Multiple Myeloma. Front Oncol 2019; 9:722. [PMID: 31440466 PMCID: PMC6694709 DOI: 10.3389/fonc.2019.00722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
MAPKAPK2 (MK2), the direct substrate of p38 MAPK, has been well-acknowledged as an attractive drug target for cancer therapy. However, few studies have assessed the functions of it in multiple myeloma (MM). In the present study, MK2 expression of MM patients was analyzed by gene expression profiling (GEP) and array-based comparative genomic hybridization (aCGH). Several experiments in vitro including MTT assay, Western blot and flow cytometry analysis were performed to identify the function of MK2 in MM. In addition, we conducted mouse survival experiments to explain the effects of MK2 on MM in vivo. mRNA level of MK2 and chromosomal gain of MK2 locus in MM cells significantly increased compared to normal samples. Furthermore, MM patients with high expression of MK2 were associated with a poor outcome. Follow-up studies showed that MK2 exerted a remarkably positive effect on MM cell proliferation and drug-resistance. Further exploration focusing on MK2 inhibitor IV revealed its inhibitory action on MM growth and drug-resistance, as well as improving survival in mouse models. In addition, a combination of MK2 inhibitor IV and the key MM therapeutic agents including bortezomib, doxorubicin, or dexamethasone facilitated curative effects on inhibiting MM cell proliferation. Taken together, our study reveals the clinical relevance of MK2 inhibition in MM and demonstrates that targeting MK2 may afford a new therapeutic approach to MM.
Collapse
Affiliation(s)
- Mengjie Guo
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongdong Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhimin Fan
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxia Yuan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miaomiao Shao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhao Hou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Zhu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongfang Wei
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Zhu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ye Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
26
|
Soni S, Anand P, Padwad YS. MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression. J Exp Clin Cancer Res 2019; 38:121. [PMID: 30850014 PMCID: PMC6408796 DOI: 10.1186/s13046-019-1115-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 01/09/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK) pathway has been implicated in a variety of pathological conditions including inflammation and metastasis. Post-transcriptional regulation of genes harboring adenine/uridine-rich elements (AREs) in their 3'-untranslated region (3'-UTR) is controlled by MAPK-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of the p38MAPK. In response to diverse extracellular stimuli, MK2 influences crucial signaling events, regulates inflammatory cytokines, transcript stability and critical cellular processes. Expression of genes involved in these vital cellular cascades is controlled by subtle interactions in underlying molecular networks and post-transcriptional gene regulation that determines transcript fate in association with RNA-binding proteins (RBPs). Several RBPs associate with the 3'-UTRs of the target transcripts and regulate their expression via modulation of transcript stability. Although MK2 regulates important cellular phenomenon, yet its biological significance in tumor progression has not been well elucidated till date. In this review, we have highlighted in detail the importance of MK2 as the master regulator of RBPs and its role in the regulation of transcript stability, tumor progression, as well as the possibility of use of MK2 as a therapeutic target in tumor management.
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh India
- Academy of Scientific and Innovative Research, Chennai, Tamil Nadu India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh India
- Academy of Scientific and Innovative Research, Chennai, Tamil Nadu India
| | - Yogendra S. Padwad
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh India
- Academy of Scientific and Innovative Research, Chennai, Tamil Nadu India
| |
Collapse
|
27
|
Heat Shock Proteins as Immunomodulants. Molecules 2018; 23:molecules23112846. [PMID: 30388847 PMCID: PMC6278532 DOI: 10.3390/molecules23112846] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins. Most Hsps are generally stress-inducible as they play a particularly important cytoprotective role in cells exposed to stressful conditions. Initially, Hsps were generally thought to occur intracellulary. However, recent work has shown that some Hsps are secreted to the cell exterior particularly in response to stress. For this reason, they are generally regarded as danger signaling biomarkers. In this way, they prompt the immune system to react to prevailing adverse cellular conditions. For example, their enhanced secretion by cancer cells facilitate targeting of these cells by natural killer cells. Notably, Hsps are implicated in both pro-inflammatory and anti-inflammatory responses. Their effects on immune cells depends on a number of aspects such as concentration of the respective Hsp species. In addition, various Hsp species exert unique effects on immune cells. Because of their conservation, Hsps are implicated in auto-immune diseases. Here we discuss the various metabolic pathways in which various Hsps manifest immune modulation. In addition, we discuss possible experimental variations that may account for contradictory reports on the immunomodulatory function of some Hsps.
Collapse
|
28
|
Li Y, Yang Q, Guan H, Shi B, Ji M, Hou P. ZNF677 Suppresses Akt Phosphorylation and Tumorigenesis in Thyroid Cancer. Cancer Res 2018; 78:5216-5228. [PMID: 29997231 DOI: 10.1158/0008-5472.can-18-0003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
The zinc finger protein 677 (ZNF677) belongs to the zinc finger protein family, which possesses transcription factor activity by binding sequence-specific DNA. Previous studies have reported its downregulated by promoter methylation in non-small cell lung cancer. However, its biological role and exact mechanism in human cancers, including thyroid cancer, remain unknown. In this study, we demonstrate that ZNF677 is frequently downregulated by promoter methylation in primary papillary thyroid cancers (PTC) and show that decreased expression of ZNF677 is significantly associated with poor patient survival. Ectopic expression of ZNF677 in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice and induced cell-cycle arrest and apoptosis. Conversely, knockdown of ZNF677 promoted thyroid cancer cell proliferation and colony formation. ZNF677 exerted its tumor suppressor functions in thyroid cancer cells through transcriptional repression of two targets CDKN3 and HSPB1 (or HSP27), thereby inhibiting phosphorylation and activation of Akt via distinct mechanisms. Taken together, our data show that ZNF677 functions as a tumor suppressor and is frequently silenced via promoter methylation in thyroid cancer.Significance: These findings report a tumor suppressive role of the zinc-finger protein ZNF677 in primary papillary thyroid cancer through inhibition of Akt phosphorylation. Cancer Res; 78(18); 5216-28. ©2018 AACR.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
29
|
P2RX7-MAPK1/2-SP1 axis inhibits MTOR independent HSPB1-mediated astroglial autophagy. Cell Death Dis 2018; 9:546. [PMID: 29749377 PMCID: PMC5945848 DOI: 10.1038/s41419-018-0586-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Recently, we have reported that heat shock protein B1 (HSPB1) and purinergic receptor P2X7 (P2RX7) are involved in astroglial autophagy (clasmatodendrosis), following status epilepticus (SE). However, the underlying mechanisms of astroglial autophagy have not been completely established. In the present study, we found that the lacking of P2rx7 led to prolonged astroglial HSPB1 induction due to impaired mitogen-activated protein kinase 1/2 (MAPK1/2)-mediated specificity protein 1 (SP1) phosphorylation, following kainic acid-induced SE. Subsequently, the upregulated HSPB1 itself evoked ER stress and exerted protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1, AMPK1)/unc-51 such as autophagy activating kinase 1 (ULK1)- and AKT serine/threonine kinase 1 (AKT1)/glycogen synthase kinase 3 beta (GSK3B)/SH3-domain GRB2-like B1 (SH3GLB1)-mediated autophagic pathways, independent of mechanistic target of rapamycin (MTOR) activity in astrocytes. These findings provide a novel purinergic suppression mechanism to link chaperone expression to autophagy in astrocytes. Therefore, we suggest that P2RX7 may play an important role in the regulation of autophagy by the fine-tuning of HSPB1 expression.
Collapse
|
30
|
HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun 2018; 9:1431. [PMID: 29650953 PMCID: PMC5897330 DOI: 10.1038/s41467-018-03627-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 27 (HSP27/HSPB1) is a stress-inducible chaperone that facilitates cancer development by its proliferative and anti-apoptotic functions. The OGX-427 antisense oligonucleotide against HSP27 has been reported to be beneficial against idiopathic pulmonary fibrosis. Here we show that OGX-427 is effective in two murine models of thrombopoietin- and JAKV617F-induced myelofibrosis. OGX-427 limits disease progression and is associated with a reduction in spleen weight, in megakaryocyte expansion and, for the JAKV617F model, in fibrosis. HSP27 regulates the proliferation of JAK2V617F-positive cells and interacts directly with JAK2/STAT5. We also show that its expression is increased in both CD34+ circulating progenitors and in the serum of patients with JAK2-dependent myeloproliferative neoplasms with fibrosis. Our data suggest that HSP27 plays a key role in the pathophysiology of myelofibrosis and represents a new potential therapeutic target for patients with myeloproliferative neoplasms. Myelofibrosis is a chronic degenerative disorder characterized by progressive bone marrow fibrosis. Here, the authors show that the chaperone HSP27 contributes to myelofibrosis via regulation of the JAK2/STAT5 pathway, and that antisense oligonucleotides targeting HSP27 are effective in two mouse models of the disease
Collapse
|
31
|
Brunen D, García-Barchino MJ, Malani D, Jagalur Basheer N, Lieftink C, Beijersbergen RL, Murumägi A, Porkka K, Wolf M, Zwaan CM, Fornerod M, Kallioniemi O, Martínez-Climent JÁ, Bernards R. Intrinsic resistance to PIM kinase inhibition in AML through p38α-mediated feedback activation of mTOR signaling. Oncotarget 2018; 7:37407-37419. [PMID: 27270648 PMCID: PMC5122321 DOI: 10.18632/oncotarget.9822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Although conventional therapies for acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) are effective in inducing remission, many patients relapse upon treatment. Hence, there is an urgent need for novel therapies. PIM kinases are often overexpressed in AML and DLBCL and are therefore an attractive therapeutic target. However, in vitro experiments have demonstrated that intrinsic resistance to PIM inhibition is common. It is therefore likely that only a minority of patients will benefit from single agent PIM inhibitor treatment. In this study, we performed an shRNA-based genetic screen to identify kinases whose suppression is synergistic with PIM inhibition. Here, we report that suppression of p38α (MAPK14) is synthetic lethal with the PIM kinase inhibitor AZD1208. PIM inhibition elevates reactive oxygen species (ROS) levels, which subsequently activates p38α and downstream AKT/mTOR signaling. We found that p38α inhibitors sensitize hematological tumor cell lines to AZD1208 treatment in vitro and in vivo. These results were validated in ex vivo patient-derived AML cells. Our findings provide mechanistic and translational evidence supporting the rationale to test a combination of p38α and PIM inhibitors in clinical trials for AML and DLBCL.
Collapse
Affiliation(s)
- Diede Brunen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Noorjahan Jagalur Basheer
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maarten Fornerod
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Kim JH, Jung YJ, Choi B, Lee NL, Lee HJ, Kwak SY, Kwon Y, Na Y, Lee YS. Overcoming HSP27-mediated resistance by altered dimerization of HSP27 using small molecules. Oncotarget 2018; 7:53178-53190. [PMID: 27449291 PMCID: PMC5288177 DOI: 10.18632/oncotarget.10629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein 27 (HSP27, HSPB1) is an anti-apoptotic protein characterized for its tumorigenic and metastatic properties, and now referenced as a major therapeutic target in many types of cancer. The biochemical properties of HSP27 rely on a structural oligomeric and dynamic organization that is important for its chaperone activity. Down-regulation by small interfering RNA or inhibition with a dominant-negative mutant efficiently counteracts the anti-apoptotic and protective properties of HSP27. However, unlike other HSPs such as HSP90 and HSP70, small molecule approaches for neutralization of HSP27 are not well established because of the absence of an ATP binding domain. Previously, we found that a small molecule, zerumbone (ZER), induced altered dimerization of HSP27 by cross linking the cysteine residues required to build a large oligomer, led to sensitization in combination with radiation. In this study, we identified another small molecule, a xanthone compound, more capable of altering dimeric HSP27 than ZER and yielding sensitization in human lung cancer cells when combined with HSP90 inhibitors or standard anticancer modalities such as irradiation and cytotoxic anticancer drugs. Therefore, altered dimerization of HSP27 represents a good strategy for anticancer therapy in HSP27-overexpressing cancer cells.
Collapse
Affiliation(s)
- Jee Hye Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Ye Jin Jung
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Byeol Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Na Lim Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Hae Jun Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Korea
| | - Soo Yeon Kwak
- College of Pharmacy, CHA University, Pocheon, 487-010, Korea
| | - Youngjoo Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 487-010, Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| |
Collapse
|
33
|
Kasai S, Richardson MJE, Torii S, Yasumoto KI, Shima H, Igarashi K, Itoh K, Sogawa K, Murayama K. Increase in proapoptotic activity of inhibitory PAS domain protein via phosphorylation by MK2. FEBS J 2017; 284:4115-4127. [PMID: 29054108 DOI: 10.1111/febs.14300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/29/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022]
Abstract
Inhibitory PAS domain protein (IPAS) is a bifunctional protein that downregulates hypoxic gene expression and exerts proapoptotic activity by preventing prosurvival activity of Bcl-xL and its related factors. Proapoptotic activity of IPAS is attenuated by the activation of the PINK1-Parkin pathway, and involved in neuronal degeneration in an experimental mouse model of Parkinson's disease. The current study shows that phosphorylation of IPAS at Ser184 by MAPK-activated protein kinase 2 (MK2 or MAPKAPK2) enhances the proapoptotic function of IPAS. Perinuclear clustering of mitochondria and activation of caspase-3 caused by the transient expression of EGFP-IPAS were increased by UVB irradiation. The C-terminal region of IPAS mediated the UVB susceptibility of IPAS. Increase in IPAS-induced mitochondrial clustering by UVB was completly inhibited by the p38 MAPK inhibitor SB203580. Mass spectrometry analysis of UVB-activated IPAS identified several phosphorylation sites in the C-terminal region containing p38 MAPK consensus phosphorylation sites at Ser219 and Ser223, and an MK2 consensus site at Ser184. Although mutations of Ser219 and Ser223 to Ala did not suppress the UVB-induced mitochondrial clustering, replacement of Ser184 with Ala blocked it. A phosphomimetic substitution at Ser184 enhanced mitochondrial clustering and activation of caspase-3 without UVB exposure. Furthermore, binding affinity to Bcl-xL was increased by the mutation. Treatment of PC12 cells with CoCl2 caused activation of MK2 and mitochondrial clustering. IPAS-dependent cell death induced by CoCl2 in PC12 cells was decreased by the treatment with the MK2 inhibitor MK2 inhibitor III and by siRNA-directed silencing of MK2.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Mary J E Richardson
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoru Torii
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Ken-Ichi Yasumoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Kazuhiro Sogawa
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
34
|
Arrigo AP. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones 2017; 22:517-529. [PMID: 28144778 PMCID: PMC5465029 DOI: 10.1007/s12192-017-0765-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 12/11/2022] Open
Abstract
Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, 28 rue Laennec, Lyon, 69008, France.
| |
Collapse
|
35
|
Penicillinase-resistant antibiotics induce non-immune-mediated cholestasis through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways. Sci Rep 2017; 7:1815. [PMID: 28500348 PMCID: PMC5431934 DOI: 10.1038/s41598-017-01171-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
Abstract
The penicillinase-resistant antibiotics (PRAs), especially the highly prescribed flucloxacillin, caused frequent liver injury via mechanisms that remain largely non-elucidated. We first showed that flucloxacillin, independently of cytotoxicity, could exhibit cholestatic effects in human hepatocytes in the absence of an immune reaction, that were typified by dilatation of bile canaliculi associated with impairment of the Rho-kinase signaling pathway and reduced bile acid efflux. Then, we analyzed the sequential molecular events involved in flucloxacillin-induced cholestasis. A crucial role of HSP27 by inhibiting Rho-kinase activity was demonstrated using siRNA and the specific inhibitor KRIBB3. HSP27 activation was dependent on the PKC/P38 pathway, and led downstream to activation of the PI3K/AKT pathway. Other PRAs induced similar cholestatic effects while non PRAs were ineffective. Our results demonstrate that PRAs can induce cholestatic features in human hepatocytes through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways and consequently support the conclusion that in clinic they can cause a non-immune-mediated cholestasis that is not restricted to patients possessing certain genetic determinants.
Collapse
|
36
|
Qian F, Deng J, Wang G, Ye RD, Christman JW. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases. Curr Protein Pept Sci 2016; 17:332-42. [PMID: 26119506 DOI: 10.2174/1389203716666150629121324] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) is exclusively regulated by p38 MAPK in vivo. Upon activation of p38 MAPK, MK2 binds with p38 MAPK, leading to phosphorylation of TTP, Hsp27, Akt, and Cdc25 that are involved in regulation of various essential cellular functions. In this review, we discuss current knowledge about molecular mechanisms of MK2 in regulation of TNF-α production, NADPH oxidase activation, neutrophil migration, and DNA-damage-induced cell cycle arrest which are involved in the molecular pathogenesis of acute lung injury, pulmonary fibrosis, and non-small-cell lung cancer. Collectively current and emerging new information indicate that developing MK2 inhibitors and blocking MK2-mediated signal pathways are potential therapeutic strategies for treatment of inflammatory and fibrotic lung diseases and lung cancer.
Collapse
Affiliation(s)
- Feng Qian
- Department of Internal Medicine, The Ohio State University, 201 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | - John W Christman
- Department of Internal Medicine, The Ohio State University, 201 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Villafuerte BC, Barati MT, Rane MJ, Isaacs S, Li M, Wilkey DW, Merchant ML. Over-expression of insulin-response element binding protein-1 (IRE-BP1) in mouse pancreatic islets increases expression of RACK1 and TCTP: Beta cell markers of high glucose sensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:186-194. [PMID: 27816562 DOI: 10.1016/j.bbapap.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND A targeted analysis of the 50kDa C-terminal fragment of insulin-response element binding protein-1 (IRE-BP1) activation of target genes through the insulin receptor substrate receptor/PI-3 kinase/Akt pathway has been demonstrated for the insulin growth factor-1 receptor. The broader effects of 50kDa C-terminal IRE-BP1 fragment over-expression on protein abundance in pancreatic islet beta cells have not been determined. RESULTS Liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses of replicate lysates of pancreatic islets isolated from background strain animals and transgenic animals, overexpressing IRE-BP1 in pancreatic islet beta cells, demonstrated statistically significant increases in the expression of proteins involved in protein synthesis, endoplasmic reticulum (ER) stress and scaffolding proteins important for protein kinase C signaling; some of which were confirmed by immunoblot analyses. Bioinformatic analysis of protein expression network patterns suggested IRE-BP1 over-expression leads to protein expression patterns indicative of activation of functional protein networks utilized for protein post-translational modification, protein folding, and protein synthesis. Co-immunoprecipitation experiments demonstrate a novel interaction between two differentially regulated proteins receptor for activated protein kinase C (RACK1) and translationally controlled tumor protein (TCTP). CONCLUSIONS Proteomic analysis of IRE-BP1 over-expression in pancreatic islet beta cells suggest IRE-BP1 (a) directly or indirectly through establishing hyperglycemia results in increased expression of ribosomal proteins and markers of ER stress and (b) leads to the enhanced and previously un-described interaction of RACK1 and TCTP. SIGNIFICANCE This study identified C-terminal 50kDa domain of IRE-BP1 over-expression results in increased markers of ER-stress and a novel interaction between the scaffolding proteins RACK1 and TCTP.
Collapse
Affiliation(s)
- Betty C Villafuerte
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Michelle T Barati
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Madhavi J Rane
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Susan Isaacs
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Ming Li
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Michael L Merchant
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
38
|
Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel) 2016; 8:toxins8050127. [PMID: 27136586 PMCID: PMC4885042 DOI: 10.3390/toxins8050127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer stem/progenitor cells (CSCs) are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova) is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L.) Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474) to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs) which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4) and Nanog, as well as heat shock protein 27 (Hsp27), but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2) in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer.
Collapse
|
39
|
Nguyen Ho-Bouldoires TH, Clapéron A, Mergey M, Wendum D, Desbois-Mouthon C, Tahraoui S, Fartoux L, Chettouh H, Merabtene F, Scatton O, Gaestel M, Praz F, Housset C, Fouassier L. Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells. Free Radic Biol Med 2015; 89:34-46. [PMID: 26169728 DOI: 10.1016/j.freeradbiomed.2015.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 12/21/2022]
Abstract
The development and progression of liver cancer are characterized by increased levels of reactive oxygen species (ROS). ROS-induced oxidative stress impairs cell proliferation and ultimately leads to cell death. Although liver cancer cells are especially resistant to oxidative stress, mechanisms of such resistance remain understudied. We identified the MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) signaling pathway mediating defenses against oxidative stress. In addition to MK2 and Hsp27 overexpression in primary liver tumors compared to adjacent nontumorous tissues, the MK2/Hsp27 pathway is activated by hydrogen peroxide-induced oxidative stress in hepatobiliary cancer cells. MK2 inactivation or inhibition of MK2 or Hsp27 expression increases caspase-3 and PARP cleavage and DNA breaks and therefore cell death. Interestingly, MK2/Hsp27 inhibition decreases antioxidant defenses such as heme oxygenase 1 through downregulation of the transcription factor nuclear factor erythroid-derived 2-like 2. Moreover, MK2/Hsp27 inhibition decreases both phosphorylation of epidermal growth factor receptor (EGFR) and expression of its ligand, heparin-binding EGF-like growth factor. A new identified partner of MK2, the scaffold PDZ protein EBP50, could facilitate these effects through MK2/Hsp27 pathway regulation. These findings demonstrate that the MK2/Hsp27 pathway actively participates in resistance to oxidative stress and may contribute to liver cancer progression.
Collapse
Affiliation(s)
- Thanh Huong Nguyen Ho-Bouldoires
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Audrey Clapéron
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Martine Mergey
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Dominique Wendum
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service d'Anatomie et Cytologie Pathologiques, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Christèle Desbois-Mouthon
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Sylvana Tahraoui
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Laetitia Fartoux
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service d'Hépatologie, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Hamza Chettouh
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Fatiha Merabtene
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Olivier Scatton
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service de Chirurgie Hépato-Biliaire et Transplantation Hépatique, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Françoise Praz
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Chantal Housset
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service d'Hépatologie, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Laura Fouassier
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France.
| |
Collapse
|
40
|
Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascul Pharmacol 2015; 74:38-48. [PMID: 26025205 PMCID: PMC4659756 DOI: 10.1016/j.vph.2015.05.008] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/07/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022]
Abstract
Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.
Collapse
Affiliation(s)
- Prasanna Abeyrathna
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
Abstract
OBJECTIVES To evaluate the regulation mechanism of heat shock protein 27 (HSP27) on gemcitabine (GEM) resistance of pancreatic cancer cell. METHODS The expression vectors pEGFP-C1-HSP27 and the vectors of MicroRNA targeting Snail were introduced into GEM-sensitive pancreatic cancer SW1990 cells, and the vectors of small hairpin RNA targeting HSP27 were transfected into SW1990 and GEM-resistant SW1990/GEM cells. The expressions of HSP27, p-HSP27 (Ser82), Snail, ERCC1, and E-cadherin were evaluated by Western blotting. The sensitivity of transfected cells to GEM was detected by CCK-8 assay and Annexin V-FITC apoptosis assay. RESULTS As compared to SW1990, SW1990/GEM showed significantly increased expressions of HSP27, p-HSP27, Snail and ERCC1 with decreased expression of E-cadherin. By increasing HSP27 expression, we found increase of Snail and ERCC1 with reduction of E-cadherin expressions, while reduction of HSP27 expression caused reduction of Snail and ERCC1 but increase of E-cadherin expressions. Downregulation of Snail resulted in the reduction of ERCC1 expression and increase of E-cadherin. Furthermore, downregulation of HSP27 or snail caused increased GEM sensitivity of pancreatic cancer cells, and upregulation of HSP27 showed the opposite results. CONCLUSIONS There is an inverse correlation between HSP27 expression and GEM sensitivity of SW1990 cells, which might be realized by regulating E-cadherin and ERCC1 expressions through Snail.
Collapse
|
42
|
Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada-Ode K, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Taguchi T, Horino T, Fujimoto S, Terada Y. Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury. PLoS One 2015; 10:e0126229. [PMID: 25962073 PMCID: PMC4427334 DOI: 10.1371/journal.pone.0126229] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
Background Heat shock protein beta-1 (HSPB1, also known as HSP27) is a small heat shock protein involved in many cellular processes and reportedly protects cells against oxidative stress. Autophagy protects cells from many types of stress and is thought to play a key role in preventing stress in acute kidney injury (AKI). However, little is known about the role of HSPB1 in autophagy and apoptosis in the pathogenesis of AKI. Methods We used a rat ischemia/reperfusion AKI model and cultured renal tubular cells as an in vitro model. To elucidate the regulation of HSPB1, we evaluated the promoter activity and expression of HSPB1 in normal rat kidney (NRK)-52E cells in the presence of H2O2. To examine the regulation of autophagy by HSPB1, we established NRK-light chain 3 (NRK-LC3) cells that were stably transfected with a fusion protein of green fluorescent protein and LC3. Results The results of immunohistological examination showed that HSPB1 was expressed in proximal tubule cells after AKI. Real-time quantitative reverse transcription-polymerase chain reaction and western blot analysis showed that HSPB1 messenger RNA and protein expression were upregulated 6–72 h and 12–72 h, respectively, after ischemia/reperfusion injury. HSPB1 promoter activity as well as messenger RNA and protein expression indicated dose-dependent induction by H2O2. HSPB1 overexpression-induced autophagy in NRK-LC3 cells under normoxic conditions was confirmed with confocal microscopy, which revealed the presence of LC3-positive granules. Furthermore, H2O2-induced autophagy was inhibited by the transfection of small interfering RNAs for HSPB1. Overexpression of HSPB1 reduced BAX activation and H2O2-induced apoptosis, as measured by caspase 3 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Conclusions We showed that HSPB1 expression increased during oxidative stress in AKI. Incremental HSPB1 expression increased autophagic flux and inhibited apoptosis in renal tubular cells. These results indicate that HSPB1 upregulation plays a role in the pathophysiology of AKI.
Collapse
Affiliation(s)
- Tatsuki Matsumoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Madoka Urushido
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Haruna Ide
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Masayuki Ishihara
- Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Kazu Hamada-Ode
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshiko Shimamura
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Koji Ogata
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Kosuke Inoue
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshinori Taniguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Takafumi Taguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
- * E-mail:
| |
Collapse
|
43
|
Wu DM, Zhang P, Xu GC, Tong AP, Zhou C, Lang JY, Wang CT. Pemetrexed induces G1 phase arrest and apoptosis through inhibiting Akt activation in human non small lung cancer cell line A549. Asian Pac J Cancer Prev 2015; 16:1507-13. [PMID: 25743822 DOI: 10.7314/apjcp.2015.16.4.1507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pemetrexed is an antifolate agent which has been used for treating malignant pleural mesothelioma and non small lung cancer in the clinic as a chemotherapeutic agent. In this study, pemetrexed inhibited cell growth and induced G1 phase arrest in the A549 cell line. To explore the molecular mechanisms of pemetrexed involved in cell growth, we used a two-dimensional polyacrylamide gel electrophoresis (2-DE) proteomics approach to analyze proteins changed in A549 cells treated with pemetrexed. As a result, twenty differentially expressed proteins were identified by ESI-Q-TOF MS/MS analysis in A549 cells incubated with pemetrexed compared with non-treated A549 cells. Three key proteins (GAPDH, HSPB1 and EIF4E) changed in pemetrexed treated A549 cells were validated by Western blotting. Accumulation of GAPDH and decrease of HSPB1 and EIF4E which induce apoptosis through inhibiting phosphorylation of Akt were noted. Expression of p-Akt in A549 cells treated with pemetrexed was reduced. Thus, pemetrexed induced apoptosis in A549 cells through inhibiting the Akt pathway.
Collapse
Affiliation(s)
- Dong-Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
44
|
Arrigo AP, Ducarouge B, Lavial F, Gibert B. Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway. MOLECULAR BIOSYSTEMS 2015; 11:1946-54. [DOI: 10.1039/c5mb00101c] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signalling pathway is hyperactivated or altered in many cancer types and regulates a broad range of cellular processes including survival, proliferation, growth, metabolism, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Tulin Ersahin
- Cancer Systems Biology Laboratory
- Graduate School of Informatics
- ODTU
- 06800 Ankara
- Turkey
| | - Nurcan Tuncbag
- Cancer Systems Biology Laboratory
- Graduate School of Informatics
- ODTU
- 06800 Ankara
- Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory
- Graduate School of Informatics
- ODTU
- 06800 Ankara
- Turkey
| |
Collapse
|
46
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
47
|
Jiménez-Garcia L, Herránz S, Luque A, Hortelano S. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages. Eur J Immunol 2014; 45:273-86. [DOI: 10.1002/eji.201444806] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/28/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lidia Jiménez-Garcia
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Sandra Herránz
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Alfonso Luque
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
48
|
Li R, Li J, Sang D, Lan Q. Phosphorylation of AKT induced by phosphorylated Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells in vitro. J Neurooncol 2014; 121:83-9. [PMID: 25200832 DOI: 10.1007/s11060-014-1610-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/30/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study is to determine whether phosphorylation of AKT could be effected by t-AUCB-induced p-Hsp27 and whether p-AKT inhibition sensitizes glioblastoma cells to t-AUCB, and to evaluate the effects of simultaneous inhibition of p-Hsp27 and p-AKT on t-AUCB treated glioblastoma cells. Cell growth was detected using CCK-8 assay; Caspase-3 activity assay kits and flow cytometry were used in apoptosis analysis; Western blot analysis was used to detect p-Hsp27 and p-AKT levels; RNA interference using the siRNA oligos of Hsp27 was performed to knockdown gene expression of Hsp27. All data were analyzed by the Student-Newman-Keul's test. We demonstrated that t-AUCB treatment induces AKT phosphorylation by activating Hsp27 in U251 and LN443 cell lines. Inhibition of AKT phosphorylation by AKT inhibitor IV sensitizes glioblastoma cells to t-AUCB, strengthens t-AUCB suppressing cell growth and inducing cell apoptosis. We also found inhibiting both p-Hsp27 and p-AKT synergistically strengthen t-AUCB suppressing cell growth. Thus, p-AKT induced by p-Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells. Targeting p-Hsp27 and/or p-AKT may be a potential effective strategy for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rujun Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | | | | | | |
Collapse
|
49
|
Kennedy D, Jäger R, Mosser DD, Samali A. Regulation of apoptosis by heat shock proteins. IUBMB Life 2014; 66:327-38. [PMID: 24861574 DOI: 10.1002/iub.1274] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/01/2014] [Indexed: 01/22/2023]
Abstract
Thermotolerance, the acquired resistance of cells to stress, is a well-established phenomenon. Studies of the key mediators of this response, the heat shock proteins (HSPs), have led to the discovery of the important roles played by these proteins in the regulation of apoptotic cell death. Apoptosis is critical for normal tissue homeostasis and is involved in diverse processes including development and immune clearance. Apoptosis is tightly regulated by both proapoptotic and antiapoptotic factors, and dysregulation of apoptosis plays a significant role in the pathophysiology of many diseases. In the recent years, HSPs have been identified as key determinants of cell survival, which can modulate apoptosis by directly interacting with components of the apoptotic machinery. Therefore, manipulation of the HSPs could represent a viable strategy for the treatment of diseases. Here, we review the current knowledge with regard to the mechanisms of HSP-mediated regulation of apoptosis.
Collapse
Affiliation(s)
- Donna Kennedy
- Department of Biochemistry, Apoptosis Research Centre, Biosciences Research Building, Corrib Village, NUI Galway, Dangan, Galway, Ireland
| | | | | | | |
Collapse
|
50
|
Arrigo AP, Gibert B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins. Cancers (Basel) 2014; 6:333-65. [PMID: 24514166 PMCID: PMC3980596 DOI: 10.3390/cancers6010333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal unstressed cells as well as in many cancer cells where they are over-expressed. These proteins are characterized by cell physiology dependent changes in their oligomerization and phosphorylation status. These structural changes allow them to interact with many different client proteins that subsequently display modified activity and/or half-life. Nowdays, the protein interactomes of small Hsps are under intense investigations and will represent, when completed, key parameters to elaborate therapeutic strategies aimed at modulating the functions of these chaperones. Here, we have analyzed the potential pro-cancerous roles of several client proteins that have been described so far to interact with HspB1 (Hsp27) and its close members HspB5 (αB-crystallin) and HspB4 (αA-crystallin).
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| |
Collapse
|