1
|
Lalmanach G, Rigoux B, David A, Tahri-Joutey M, Lecaille F, Marchand-Adam S, Saidi A. Human cystatin C in fibrotic diseases. Clin Chim Acta 2025; 565:120016. [PMID: 39461496 DOI: 10.1016/j.cca.2024.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Human cystatin C (hCC), which has a pervasive distribution within body fluids and is ubiquitously expressed by numerous cells and tissues, is a highly potent extracellular inhibitor of cysteine proteases. Besides measurement of serum creatinine, which is the most widely used technique for appraising glomerular filtration rate (GFR), hCC has emerged as a relevant GFR biomarker, because its quantification in serum is less sensitive to interferences with factors such as age, muscle mass or diet. Moreover, there are growing body of evidence that hCC overexpression and/or oversecretion, which is primarily driven by TGF-β1, occur during fibrogenesis (cardiac, liver, oral, and lung fibrosis). Even though molecular mechanisms and signaling pathways governing the regulation of hCC remain to be deciphered more acutely, current data sustain that hCC expression relates to myofibrogenesis and that hCC could be a specific and valuable biomarker of fibrotic disease.
Collapse
Affiliation(s)
- Gilles Lalmanach
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France.
| | - Baptiste Rigoux
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Alexis David
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Mounia Tahri-Joutey
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Fabien Lecaille
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Sylvain Marchand-Adam
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France; The University Hospital Center of Tours (CHRU Tours), Pulmonology Department, Tours, France
| | - Ahlame Saidi
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| |
Collapse
|
2
|
Orlikowska M, Wyciszkiewicz A, Węgrzyn K, Mehringer J, de Souza Paiva D, Jurczak P. Methods for monitoring protein-membrane binding. Comparison based on the interactions between amyloidogenic protein human cystatin C and phospholipid liposomes. Int J Biol Macromol 2024; 278:134889. [PMID: 39168225 DOI: 10.1016/j.ijbiomac.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
A cell membrane is an essential cellular component providing protection against the outer environment. It is also a host for proteins and carbohydrates responsible for, e.g. transporter, receptor, or enzymatic functions. In parallel, the membrane may also be implicated in pathological processes leading, e.g. to the oligomerization of amyloid-forming proteins, a hallmark of i.a. Alzheimer's disease. The increasing need for detailed information on mechanisms driving the amyloid formation and the potential role of cell membranes in the process proves the research on protein-membrane interactions biologically relevant. Considering the potential and limitations of the relatively well established and newly developed methods, this study focused on selecting methods that allow a broad and comprehensive description of interactions between amyloidogenic protein human cystatin C and lipid bilayers. In the first step, dot-blot and ELISA tests were selected as techniques allowing fast screening for protein-ligand interactions. Next, surface plasmon resonance, spectral shift, biolayer interferometry, and switchSENSE® technology were used to determine kinetic parameters and binding constants for interactions between human cystatin C and the selected lipid bilayers. Based on the obtained results we have proposed the most promising candidates for monitoring of interactions and determining affinity between amyloidogenic proteins and membrane mimetics.
Collapse
Affiliation(s)
- Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | | | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | | | | | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Jurczak P, Fayad N, Benard M, Czaplewska P, Hildebrandt N. Monomer-Dimer Equilibrium of Human Cystatin C During Internalization Into Cancer Cells. Chembiochem 2024; 25:e202400226. [PMID: 38761032 DOI: 10.1002/cbic.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
Human cystatin C (hCC) is a physiologically important protein that serves as intra- and extracellular cysteine proteinase inhibitor in homeostasis. However, in pathological states it dimerizes and further oligomerizes accumulating into a toxic amyloid. HCC forms an active monomer in the extracellular space and becomes an inactive dimer when internalized in cellular organelles. However, hCC cell penetration and its oligomeric state during this process are not well understood. To determine if and how the oligomeric state influences hCC transmembrane migration, we investigated the internalization of the hCC wild type protein as well as three different mutants, which exclusively exist in the monomeric or multimeric state into HeLa cells via confocal fluorescence microscopy. Our results showed that the preferred pathway was endocytosis and that the oligomeric state did not significantly influence the internalization because both monomeric and dimeric hCC migrated into HeLa cells. Considering the differences of the active monomeric and the passive dimeric states of hCC, our findings contribute to a better understanding of the intra and extra cellular functions of hCC and their interaction with cysteine proteases.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdańsk, 80-307, Poland
- Laboratoire COBRA (UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, Rouen, 76000, France
| | - Nour Fayad
- Laboratoire COBRA (UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, Rouen, 76000, France
| | - Magalie Benard
- PRIMACEN, Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, Rouen, 76000, France
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdańsk, 80-307, Poland
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, L8S4 L7, Canada
| |
Collapse
|
4
|
Zhukov I, Sikorska E, Orlikowska M, Górniewicz-Lorens M, Kepczynski M, Jurczak P. DPPA as a Potential Cell Membrane Component Responsible for Binding Amyloidogenic Protein Human Cystatin C. Molecules 2024; 29:3446. [PMID: 39124852 PMCID: PMC11313537 DOI: 10.3390/molecules29153446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
A phospholipid bilayer is a typical structure that serves crucial functions in various cells and organelles. However, it is not unusual for it to take part in pathological processes. The cell membrane may be a binding target for amyloid-forming proteins, becoming a factor modulating the oligomerization process leading to amyloid deposition-a hallmark of amyloidogenic diseases-e.g., Alzheimer's disease. The information on the mechanisms governing the oligomerization influenced by the protein-membrane interactions is scarce. Therefore, our study aims to describe the interactions between DPPA, a cell membrane mimetic, and amyloidogenic protein human cystatin C. Circular dichroism spectroscopy and differential scanning calorimetry were used to monitor (i) the secondary structure of the human cystatin C and (ii) the phase transition temperature of the DPPA, during the protein-membrane interactions. NMR techniques were used to determine the protein fragments responsible for the interactions, and molecular dynamics simulations were applied to provide a molecular structure representing the interaction. The obtained data indicate that the protein interacts with DPPA, submerging itself into the bilayer via the AS region. Additionally, the interaction increases the content of α-helix within the protein's secondary structure and stabilizes the whole molecule against denaturation.
Collapse
Affiliation(s)
- Igor Zhukov
- Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Magdalena Górniewicz-Lorens
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Profesora Stanisława Łojasiewicza 11, 30-348 Krakow, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
| | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, 80-307 Gdansk, Poland
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi 351-0198, Saitama, Japan
| |
Collapse
|
5
|
Żygowska J, Orlikowska M, Zhukov I, Bal W, Szymańska A. Copper interaction with cystatin C: effects on protein structure and oligomerization. FEBS J 2024; 291:1974-1991. [PMID: 38349797 DOI: 10.1111/febs.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human cystatin C (hCC), a small secretory protein, has gained attention beyond its classical role as a cysteine protease inhibitor owing to its potential involvement in neurodegenerative disorders. This study investigates the interaction between copper(II) ions [Cu(II)] and hCC, specifically targeting histidine residues known to participate in metal binding. Through various analytical techniques, including mutagenesis, circular dichroism, fluorescence assays, gel filtration chromatography, and electron microscopy, we evaluated the impact of Cu(II) ions on the structure and oligomerization of hCC. The results show that Cu(II) does not influence the secondary and tertiary structure of the studied hCC variants but affects their stability. To explore the Cu(II)-binding site, nuclear magnetic resonance (NMR) and X-ray studies were conducted. NMR experiments revealed notable changes in signal intensities and linewidths within the region 86His-Asp-Gln-Pro-His90, suggesting its involvement in Cu(II) coordination. Both histidine residues from this fragment were found to serve as a primary anchor of Cu(II) in solution, depending on the structural context and the presence of other Cu(II)-binding agents. The presence of Cu(II) led to significant destabilization and altered thermal stability of the wild-type and H90A variant, confirming differentiation between His residues in Cu(II) binding. In conclusion, this study provides valuable insights into the interaction between Cu(II) and hCC, elucidating the impact of copper ions on protein stability and identifying potential Cu(II)-binding residues. Understanding these interactions enhances our knowledge of the role of copper in neurodegenerative disorders and may facilitate the development of therapeutic strategies targeting copper-mediated processes in protein aggregation and associated pathologies.
Collapse
Affiliation(s)
- Justyna Żygowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| |
Collapse
|
6
|
Jurczak P, Zhukov I, Orlikowska M, Czaplewska P, Sikorska E. Monitoring the interactions between POPG phospholipid bilayer and amyloid-forming protein human cystatin C. Does the bilayer influence the oligomeric state and structure of the protein? BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184285. [PMID: 38237885 DOI: 10.1016/j.bbamem.2024.184285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A biological membrane is a structure characteristic for various cells and organelles present in almost all living organisms. Even though, it is one of the most common structures in organisms, where it serves crucial functions, a phospholipid bilayer may also take part in pathological processes leading to severe diseases. Research indicates that biological membranes have a profound impact on the pathological processes of oligomerization of amyloid-forming proteins. These processes are a hallmark of amyloid diseases, a group of pathological states involving, e.g., Parkinson's or Alzheimer's disease. Even though amyloidogenic diseases reap the harvest in modern societies, especially in elderly patients, the mechanisms governing the amyloid deposition are not clearly described. Therefore, the presented study focuses on the description of interactions between a model biological membrane (POPG) and one of amyloid forming proteins - human cystatin C. For the purpose of the study molecular dynamics simulations were applied to confirm interactions between the protein and POPG membrane. Next the NMR techniques were used to verify how the data obtained in solution compared to MD simulations and determine fragments of the protein responsible for interactions with POPG. Finally, circular dichroism was used to monitor the changes in secondary structure of the protein and size exclusion chromatography was used to monitor its oligomerization process. Obtained data indicates that the protein interacts with POPG submerging itself into the bilayer with the AS region. However, the presence of POPG bilayer does not significantly affect the structure or oligomerization process of human cystatin C.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk, Poland; Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Igor Zhukov
- Biological NMR Facility, Institute of Biochemistry and Bioscience, Polish Academy of Science, Warsaw, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Gdansk, Poland.
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
7
|
Niedziałkowski P, Jurczak P, Orlikowska M, Wcisło A, Ryl J, Ossowski T, Czaplewska P. Phospholipid-functionalized gold electrode for cellular membrane interface studies - interactions between DMPC bilayer and human cystatin C. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184266. [PMID: 38151198 DOI: 10.1016/j.bbamem.2023.184266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.
Collapse
Affiliation(s)
- Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland.
| | - Przemysław Jurczak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland; Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland.
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland
| |
Collapse
|
8
|
Sakai T, Mashima T, Kobayashi N, Ogata H, Duan L, Fujiki R, Hengphasatporn K, Uda T, Shigeta Y, Hifumi E, Hirota S. Structural and thermodynamic insights into antibody light chain tetramer formation through 3D domain swapping. Nat Commun 2023; 14:7807. [PMID: 38065949 PMCID: PMC10709643 DOI: 10.1038/s41467-023-43443-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of antibody light chains in small plasma cell clones can lead to misfolding and aggregation. On the other hand, the formation of amyloid fibrils from antibody light chains is related to amyloidosis. Although aggregation of antibody light chain is an important issue, atomic-level structural examinations of antibody light chain aggregates are sparse. In this study, we present an antibody light chain that maintains an equilibrium between its monomeric and tetrameric states. According to data from X-ray crystallography, thermodynamic and kinetic measurements, as well as theoretical studies, this antibody light chain engages in 3D domain swapping within its variable region. Here, a pair of domain-swapped dimers creates a tetramer through hydrophobic interactions, facilitating the revelation of the domain-swapped structure. The negative cotton effect linked to the β-sheet structure, observed around 215 nm in the circular dichroism (CD) spectrum of the tetrameric variable region, is more pronounced than that of the monomer. This suggests that the monomer contains less β-sheet structures and exhibits greater flexibility than the tetramer in solution. These findings not only clarify the domain-swapped structure of the antibody light chain but also contribute to controlling antibody quality and advancing the development of future molecular recognition agents and drugs.
Collapse
Affiliation(s)
- Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4‑1 Kyudai‑Shinmachi, Fukuoka, 879‑5593, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870‑1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
9
|
Zhang Z, Zhan F. Type 2 Cystatins and Their Roles in the Regulation of Human Immune Response and Cancer Progression. Cancers (Basel) 2023; 15:5363. [PMID: 38001623 PMCID: PMC10670837 DOI: 10.3390/cancers15225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cystatins are a family of intracellular and extracellular protease inhibitors that inhibit cysteine cathepsins-a group of lysosomal cysteine proteases that participate in multiple biological processes, including protein degradation and post-translational cleavage. Cysteine cathepsins are associated with the development of autoimmune diseases, tumor progression, and metastasis. Cystatins are categorized into three subfamilies: type 1, type 2, and type 3. The type 2 cystatin subfamily is the largest, containing 10 members, and consists entirely of small secreted proteins. Although type 2 cystatins have many shared biological roles, each member differs in structure, post-translational modifications (e.g., glycosylation), and expression in different cell types. These distinctions allow the type 2 cystatins to have unique biological functions and properties. This review provides an overview of type 2 cystatins, including their biological similarities and differences, their regulatory effect on human immune responses, and their roles in tumor progression, immune evasion, and metastasis.
Collapse
Affiliation(s)
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
10
|
Wojciechowska D, Taube M, Rucińska K, Maksim J, Kozak M. Oligomerization of Human Cystatin C—An Amyloidogenic Protein: An Analysis of Small Oligomeric Subspecies. Int J Mol Sci 2022; 23:ijms232113441. [PMID: 36362228 PMCID: PMC9656228 DOI: 10.3390/ijms232113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Human cystatin C (HCC), an amyloidogenic protein, forms dimers and higher oligomers (trimers, tetramers and donut like large oligomers) via a domain-swapping mechanism. The aim of this study was the characterization of the HCC oligomeric states observed within the pH range from 2.2 to 10.0 and also in conditions promoting oligomerization. The HCC oligomeric forms obtained in different conditions were characterized using size exclusion chromatography, dynamic light scattering and small-angle X-ray scattering. The marked ability of HCC to form tetramers at low pH (2.3 or 3.0) and dimers at pH 4.0–5.0 was observed. HCC remains monomeric at pH levels above 6.0. Based on the SAXS data, the structure of the HCC tetramer was proposed. Changes in the environment (from acid to neutral) induced a breakdown of the HCC tetramers to dimers. The tetrameric forms of human cystatin C are formed by the association of the dimers without a domain-swapping mechanism. These observations were confirmed by their dissociation to dimers at pH 7.4.
Collapse
Affiliation(s)
- Daria Wojciechowska
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Michał Taube
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Karolina Rucińska
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Maksim
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392 Kraków, Poland
- Correspondence:
| |
Collapse
|
11
|
Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Int J Mol Sci 2022; 23:ijms231911192. [PMID: 36232496 PMCID: PMC9569824 DOI: 10.3390/ijms231911192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natively monomeric RNase A can oligomerize upon lyophilization from 40% acetic acid solutions or when it is heated at high concentrations in various solvents. In this way, it produces many dimeric or oligomeric conformers through the three-dimensional domain swapping (3D-DS) mechanism involving both RNase A N- or/and C-termini. Here, we found many of these oligomers evolving toward not negligible amounts of large derivatives after being stored for up to 15 months at 4 °C in phosphate buffer. We call these species super-aggregates (SAs). Notably, SAs do not originate from native RNase A monomer or from oligomers characterized by the exclusive presence of the C-terminus swapping of the enzyme subunits as well. Instead, the swapping of at least two subunits’ N-termini is mandatory to produce them. Through immunoblotting, SAs are confirmed to derive from RNase A even if they retain only low ribonucleolytic activity. Then, their interaction registered with Thioflavin-T (ThT), in addition to TEM analyses, indicate SAs are large and circular but not “amyloid-like” derivatives. This confirms that RNase A acts as an “auto-chaperone”, although it displays many amyloid-prone short segments, including the 16–22 loop included in its N-terminus. Therefore, we hypothesize the opening of RNase A N-terminus, and hence its oligomerization through 3D-DS, may represent a preliminary step favoring massive RNase A aggregation. Interestingly, this process is slow and requires low temperatures to limit the concomitant oligomers’ dissociation to the native monomer. These data and the hypothesis proposed are discussed in the light of protein aggregation in general, and of possible future applications to contrast amyloidosis.
Collapse
|
12
|
Identification of a Steric Zipper Motif in the Amyloidogenic Core of Human Cystatin C and Its Use for the Design of Self-Assembling Peptides. Int J Mol Sci 2022; 23:ijms23105800. [PMID: 35628610 PMCID: PMC9147961 DOI: 10.3390/ijms23105800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Amyloid fibrils have been known for many years. Unfortunately, their fame stems from negative aspects related to amyloid diseases. Nevertheless, due to their properties, they can be used as interesting nanomaterials. Apart from their remarkable stability, amyloid fibrils may be regarded as a kind of a storage medium and as a source of active peptides. In many cases, their structure may guarantee a controlled and slow release of peptides in their active form; therefore, they can be used as a potential nanomaterial in drug delivery systems. In addition, amyloid fibrils display controllable stiffness, flexibility, and satisfactory mechanical strength. In addition, they can be modified and functionalized very easily. Understanding the structure and genesis of amyloid assemblies derived from a broad range of amyloidogenic proteins could help to better understand and use this unique material. One of the factors responsible for amyloid aggregation is the steric zipper. Here, we report the discovery of steric zipper-forming peptides in the sequence of the amyloidogenic protein, human cystatin C (HCC). The ability of short peptides derived from this fragment of HCC to form fibrillar structures with defined self-association characteristics and the factors influencing this aggregation are also presented in this paper.
Collapse
|
13
|
Yuan Z, Qu Z, Duan B, Wang T, Xu J, Xia B. Is amyloid fibrillation related to 3D domain swapping for the C-terminal domain of SARS-CoV main protease? Int J Biol Macromol 2021; 197:68-76. [PMID: 34953805 PMCID: PMC8694786 DOI: 10.1016/j.ijbiomac.2021.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022]
Abstract
The C-terminal domain of SARS-CoV main protease (Mpro-C) can form 3D domain-swapped dimer by exchanging the α1-helices fully buried inside the protein hydrophobic core, under non-denaturing conditions. Here, we report that Mpro-C can also form amyloid fibrils under the 3D domain-swappable conditions in vitro, and the fibrils are not formed through runaway/propagated domain swapping. It is found that there are positive correlations between the rates of domain swapping dimerization and amyloid fibrillation at different temperatures, and for different mutants. However, some Mpro-C mutants incapable of 3D domain swapping can still form amyloid fibrils, indicating that 3D domain swapping is not essential for amyloid fibrillation. Furthermore, NMR H/D exchange data and molecular dynamics simulation results suggest that the protofibril core region tends to unpack at the early stage of 3D domain swapping, so that the amyloid fibrillation can proceed during the 3D domain swapping process. We propose that 3D domain swapping makes it possible for the unpacking of the amyloidogenic fragment of the protein and thus accelerates the amyloid fibrillation process kinetically, which explains the well-documented correlations between amyloid fibrillation and 3D domain swapping observed in many proteins.
Collapse
Affiliation(s)
- Zhiliang Yuan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Qu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Xu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Ranjan R, Tiwari N, Kayastha AM, Sinha N. Biophysical Investigation of the Interplay between the Conformational Species of Domain-Swapped GB1 Amyloid Mutant through Real-Time Monitoring of Amyloid Fibrillation. ACS OMEGA 2021; 6:34359-34366. [PMID: 34963921 PMCID: PMC8697013 DOI: 10.1021/acsomega.1c04223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Mutant polypeptide GB1HS#124F26A, which is known to aggregate into amyloid-like fibrils, has been utilized as a model in this study for gaining insights into the mechanism of domain-swapped aggregation through real-time monitoring. Size exclusion with UV monitoring at 280 nm and dynamic light scattering (DLS) profiles through different time points of fibrillation reveal that the dimer transitions into monomeric intermediates during the aggregation, which could further facilitate domain swapping to form amyloid fibrils. The 1D 1H and 2D 1H-13C HSQC nuclear magnetic resonance (NMR) spectra profiling through different time points of fibrillation reveal that there may be some other species present along with the dimer during aggregation which contribute to different trends for the intensity of protons in the spectral peaks. Diffusion NMR reveals changes in the mobility of the dimeric species during the process of aggregation, indicating that the dimer gives rise to other lower molecular weight species midway during aggregation, which further add up to form the oligomers and amyloid fibrils successively. The present work is a preliminary study which explores the possibility of utilizing biophysical methods to gain atomistic level insights into the different stages of aggregation.
Collapse
Affiliation(s)
- Renuka Ranjan
- Centre
of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar
Pradesh
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh
| | - Nidhi Tiwari
- Centre
of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar
Pradesh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh
| | - Arvind M. Kayastha
- School
of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh
| | - Neeraj Sinha
- Centre
of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar
Pradesh
| |
Collapse
|
15
|
Hirota S, Mashima T, Kobayashi N. Use of 3D domain swapping in constructing supramolecular metalloproteins. Chem Commun (Camb) 2021; 57:12074-12086. [PMID: 34714300 DOI: 10.1039/d1cc04608j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecules, which are formed by assembling multiple molecules by noncovalent intermolecular interactions instead of covalent bonds, often show additional properties that cannot be exhibited by a single molecule. Supramolecules have evolved into molecular machines in the field of chemistry, and various supramolecular proteins are responsible for life activities in the field of biology. The design and creation of supramolecular proteins will lead to development of new enzymes, functional biomaterials, drug delivery systems, etc.; thus, the number of studies on the regulation of supramolecular proteins is increasing year by year. Several methods, including disulfide bond, metal coordination, and surface-surface interaction, have been utilized to construct supramolecular proteins. In nature, proteins have been shown to form oligomers by 3D domain swapping (3D-DS), a phenomenon in which a structural region is exchanged between molecules of the same protein. We have been studying the mechanism of 3D-DS and utilizing 3D-DS to construct supramolecular metalloproteins. Cytochrome c forms cyclic oligomers and polymers by 3D-DS, whereas other metalloproteins, such as various c-type cytochromes and azurin form small oligomers and myoglobin forms a compact dimer. We have also utilized 3D-DS to construct heterodimers with different active sites, a protein nanocage encapsulating a Zn-SO4 cluster in the internal cavity, and a tetrahedron with a designed building block protein. Protein oligomer formation was controlled for the 3D-DS dimer of a dimer-monomer transition protein. This article reviews our research on supramolecular metalloproteins.
Collapse
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
16
|
NAC blocks Cystatin C amyloid complex aggregation in a cell system and in skin of HCCAA patients. Nat Commun 2021; 12:1827. [PMID: 33758187 PMCID: PMC7988011 DOI: 10.1038/s41467-021-22120-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Hereditary cystatin C amyloid angiopathy is a dominantly inherited disease caused by a leucine to glutamine variant of human cystatin C (hCC). L68Q-hCC forms amyloid deposits in brain arteries associated with micro-infarcts, leading ultimately to paralysis, dementia and death in young adults. To evaluate the ability of molecules to interfere with aggregation of hCC while informing about cellular toxicity, we generated cells that produce and secrete WT and L68Q-hCC and have detected high-molecular weight complexes formed from the mutant protein. Incubations of either lysate or supernatant containing L68Q-hCC with reducing agents glutathione or N-acetyl-cysteine (NAC) breaks oligomers into monomers. Six L68Q-hCC carriers taking NAC had skin biopsies obtained to determine if hCC deposits were reduced following NAC treatment. Remarkably, ~50–90% reduction of L68Q-hCC staining was observed in five of the treated carriers suggesting that L68Q-hCC is a clinical target for reducing agents. HCCAA is a dominantly inherited disease which causes brain hemorrhages as a result of mutant cystatin C aggregation in carriers. Here, the authors show that n- acetyl cysteine can prevent aggregation of mutant protein in a cell model system and reverse protein deposition in the skin of mutation-carrying subjects.
Collapse
|
17
|
Hirota S, Nagao S. New Aspects of Cytochromec: 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
18
|
Jurczak P, Sikorska E, Czaplewska P, Rodziewicz-Motowidlo S, Zhukov I, Szymanska A. The Influence of the Mixed DPC:SDS Micelle on the Structure and Oligomerization Process of the Human Cystatin C. MEMBRANES 2020; 11:17. [PMID: 33374409 PMCID: PMC7824358 DOI: 10.3390/membranes11010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022]
Abstract
Human cystatin C (hCC), a member of the superfamily of papain-like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. Physiologically active hCC is a monomer, which dimerization and oligomerization lead to the formation of the inactive, insoluble amyloid form of the protein, strictly associated with cerebral amyloid angiopathy, a severe state causing death among young patients. It is known, that biological membranes may accelerate the oligomerization processes of amyloidogenic proteins. Therefore, in this study, we describe an influence of membrane mimetic environment-mixed dodecylphosphocholine:sodium dodecyl sulfate (DPC:SDS) micelle (molar ratio 5:1)-on the effect of the hCC oligomerization. The hCC-micelle interactions were analyzed with size exclusion chromatography, circular dichroism, and nuclear magnetic resonance spectroscopy. The experiments were performed on the wild-type (WT) cystatin C, and two hCC variants-V57P and V57G. Collected experimental data were supplemented with molecular dynamic simulations, making it possible to highlight the binding interface and select the residues involved in interactions with the micelle. Obtained data shows that the mixed DPC:SDS micelle does not accelerate the oligomerization of protein and even reverses the hCC dimerization process.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG & MUG, University of Gdańsk, Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | | | - Igor Zhukov
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| |
Collapse
|
19
|
Jurczak P, Szutkowski K, Lach S, Jurga S, Czaplewska P, Szymanska A, Zhukov I. DMPC Phospholipid Bilayer as a Potential Interface for Human Cystatin C Oligomerization: Analysis of Protein-Liposome Interactions Using NMR Spectroscopy. MEMBRANES 2020; 11:membranes11010013. [PMID: 33374166 PMCID: PMC7824490 DOI: 10.3390/membranes11010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Studies revolving around mechanisms responsible for the development of amyloid-based diseases lay the foundations for the recognition of molecular targets of future to-be-developed treatments. However, the vast number of peptides and proteins known to be responsible for fibril formation, combined with their complexity and complexity of their interactions with various cellular components, renders this task extremely difficult and time-consuming. One of these proteins, human cystatin C (hCC), is a well-known and studied cysteine-protease inhibitor. While being a monomer in physiological conditions, under the necessary stimulus—usually a mutation, it tends to form fibrils, which later participate in the disease development. This process can potentially be regulated (in several ways) by many cellular components and it is being hypothesized that the cell membrane might play a key role in the oligomerization pathway. Studies involving cell membranes pose several difficulties; therefore, an alternative in the form of membrane mimetics is a very attractive solution. Here, we would like to present the first study on hCC oligomerization under the influence of phospholipid liposomes, acting as a membrane mimetic. The protein–mimetic interactions are studied utilizing circular dichroism, nuclear magnetic resonance, and size exclusion chromatography.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (S.L.); (A.S.)
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (K.S.); (S.J.)
| | - Slawomir Lach
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (S.L.); (A.S.)
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (K.S.); (S.J.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG & MUG, University of Gdańsk, Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (S.L.); (A.S.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warszawa, Poland
- Correspondence: ; Tel.: +48-22-592-2038
| |
Collapse
|
20
|
Balczon R, Morrow KA, Leavesley S, Francis CM, Stevens TC, Agwaramgbo E, Williams C, Stevens RP, Langham G, Voth S, Cioffi EA, Weintraub SE, Stevens T. Cystatin C regulates the cytotoxicity of infection-induced endothelial-derived β-amyloid. FEBS Open Bio 2020; 10:2464-2477. [PMID: 33030263 PMCID: PMC7609779 DOI: 10.1002/2211-5463.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Infection of rat pulmonary microvascular endothelial cells with the bacterium Pseudomonas aeruginosa induces the production and release of cytotoxic oligomeric tau and beta amyloid (Aβ). Here, we characterized these cytotoxic amyloids. Cytotoxic behavior and oligomeric tau were partially resistant to digestion with proteinase K, but cytotoxicity was abolished by various denaturants including phenol, diethylpyrocarbonate (DEPC), and 1,1,1,3,3,3-hexafluoro-2-isopropanol (HFIP). Ultracentrifugation for 8 h at 150 000 g was required to remove cytotoxic activity from the supernatant. Ultracentrifugation, DEPC treatment, and immunodepletion using antibodies against Aβ also demonstrated that cytoprotective protein(s) are released from endothelial cells during P. aeruginosa infection. Mass spectrometry of endothelial cell culture media following P. aeruginosa infection allowed identification of multiple potential secreted modulators of Aβ, including cystatin C, gelsolin, and ApoJ/clusterin. Immunodepletion, co-immunoprecipitation, and ultracentrifugation determined that the cytoprotective factor released during infection of endothelial cells by P. aeruginosa is cystatin C, which appears to be in a complex with Aβ. Cytoprotective cystatin C may provide a novel therapeutic avenue for protection against the long-term consequences of infection with P. aeruginosa.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileALUSA
- Center for Lung BiologyUniversity of South AlabamaMobileALUSA
| | - Kyle A. Morrow
- Department of Cell Biology and PhysiologyEdward Via College of Osteopathic MedicineMonroeLAUSA
| | - Silas Leavesley
- Center for Lung BiologyUniversity of South AlabamaMobileALUSA
- Department of Chemical and Biomedical EngineeringUniversity of South AlabamaMobileALUSA
| | - Christopher M. Francis
- Center for Lung BiologyUniversity of South AlabamaMobileALUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileALUSA
| | - Trevor C. Stevens
- Center for Lung BiologyUniversity of South AlabamaMobileALUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileALUSA
| | - Ezinne Agwaramgbo
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileALUSA
| | | | - Reece P. Stevens
- Center for Lung BiologyUniversity of South AlabamaMobileALUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileALUSA
| | - Geri Langham
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileALUSA
| | - Sarah Voth
- Center for Lung BiologyUniversity of South AlabamaMobileALUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileALUSA
| | - Eugene A. Cioffi
- Department of PharmacologyUniversity of South AlabamaMobileALUSA
| | - Susan E. Weintraub
- Department of Biochemistry and Structural Biology and Mass Spectrometry LaboratoryUniversity of Texas at San Antonio Health Sciences CenterTXUSA
| | - Troy Stevens
- Center for Lung BiologyUniversity of South AlabamaMobileALUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileALUSA
| |
Collapse
|
21
|
The effect of three polyphenols and some other antioxidant substances on amyloid fibril formation by Human cystatin C. Neurochem Int 2020; 140:104806. [DOI: 10.1016/j.neuint.2020.104806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
|
22
|
Chrabąszczewska M, Sieradzan AK, Rodziewicz-Motowidło S, Grubb A, Dobson CM, Kumita JR, Kozak M. Structural Characterization of Covalently Stabilized Human Cystatin C Oligomers. Int J Mol Sci 2020; 21:ijms21165860. [PMID: 32824145 PMCID: PMC7461555 DOI: 10.3390/ijms21165860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Human cystatin C (HCC), a cysteine-protease inhibitor, exists as a folded monomer under physiological conditions but has the ability to self-assemble via domain swapping into multimeric states, including oligomers with a doughnut-like structure. The structure of the monomeric HCC has been solved by X-ray crystallography, and a covalently linked version of HCC (stab-1 HCC) is able to form stable oligomeric species containing 10-12 monomeric subunits. We have performed molecular modeling, and in conjunction with experimental parameters obtained from atomic force microscopy (AFM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements, we observe that the structures are essentially flat, with a height of about 2 nm, and the distance between the outer edge of the ring and the edge of the central cavity is ~5.1 nm. These dimensions correspond to the height and diameter of one stab-1 HCC subunit and we present a dodecamer model for stabilized cystatin C oligomers using molecular dynamics simulations and experimentally measured parameters. Given that oligomeric species in protein aggregation reactions are often transient and very highly heterogeneous, the structural information presented here on these isolated stab-1 HCC oligomers may be useful to further explore the physiological relevance of different structural species of cystatin C in relation to protein misfolding disease.
Collapse
Affiliation(s)
- Magdalena Chrabąszczewska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland;
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (A.K.S.); (S.R.-M.)
| | | | - Anders Grubb
- Department of Clinical Chemistry, Lund University Hospital, S-22185 Lund, Sweden;
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Janet R. Kumita
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
- Correspondence: (J.R.K.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland;
- Correspondence: (J.R.K.); (M.K.)
| |
Collapse
|
23
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
24
|
Cahyono RN, Yamanaka M, Nagao S, Shibata N, Higuchi Y, Hirota S. 3D domain swapping of azurin from Alcaligenes xylosoxidans. Metallomics 2020; 12:337-345. [PMID: 31956880 DOI: 10.1039/c9mt00255c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein oligomers have gained interest, owing to their increased knowledge in cells and promising utilization for future materials. Various proteins have been shown to 3D domain swap, but there has been no domain swapping report on a blue copper protein. Here, we found that azurin from Alcaligenes xylosoxidans oligomerizes by the procedure of 2,2,2-trifluoroethanol addition to Cu(i)-azurin at pH 5.0, lyophilization, and dissolution at pH 7.0, whereas it slightly oligomerizes when using Cu(ii)-azurin. The amount of high order oligomers increased with the addition of Cu(ii) ions to the dissolution process of a similar procedure for apoazurin, indicating that Cu(ii) ions enhance azurin oligomerization. The ratio of the absorbance at 460 nm to that at ∼620 nm of the azurin dimer (Abs460/Abs618 = 0.113) was higher than that of the monomer (Abs460/Abs622 = 0.067) and the EPR A‖ value of the dimer (5.85 mT) was slightly smaller than that of the monomer (5.95 mT), indicating a slightly more rhombic copper coordination for the dimer. The redox potential of the azurin dimer was 342 ± 5 mV vs. NHE, which was 50 mV higher than that of the monomer. According to X-ray crystal analysis, the azurin dimer exhibited a domain-swapped structure, where the N-terminal region containing three β-strands was exchanged between protomers. The copper coordination structure was tetrahedrally distorted in the azurin dimer, similar to that in the monomer; however, the Cu-O(Gly45) bond length was longer for the dimer (monomer, 2.46-2.59 Å; dimer, 2.98-3.25 Å). These results open the door for designing oligomers of blue copper proteins by domain swapping.
Collapse
Affiliation(s)
- Robby Noor Cahyono
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan. and Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
25
|
Michalska K, Kowiel M, Bigelow L, Endres M, Gilski M, Jaskolski M, Joachimiak A. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. Acta Crystallogr D Struct Biol 2020; 76:166-175. [PMID: 32038047 PMCID: PMC7008512 DOI: 10.1107/s2059798320000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/08/2020] [Indexed: 02/10/2023] Open
Abstract
Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0-S1-H1-S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α-β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lance Bigelow
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Endres
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
27
|
Kumari N, Yadav S. Modulation of protein oligomerization: An overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:99-113. [DOI: 10.1016/j.pbiomolbio.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
|
28
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
29
|
Maszota-Zieleniak M, Jurczak P, Orlikowska M, Zhukov I, Borek D, Otwinowski Z, Skowron P, Pietralik Z, Kozak M, Szymańska A, Rodziewicz-Motowidło S. NMR and crystallographic structural studies of the extremely stable monomeric variant of human cystatin C with single amino acid substitution. FEBS J 2019; 287:361-376. [PMID: 31330077 DOI: 10.1111/febs.15010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 02/02/2023]
Abstract
Human cystatin C (hCC), a member of the superfamily of papain-like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. This small protein, in addition to its physiological function, is involved in various diseases, including cerebral amyloid angiopathy, cerebral hemorrhage, stroke, and dementia. Physiologically active hCC is a monomer. However, all structural studies based on crystallization led to the dimeric structure formed as a result of a three-dimensional exchange of the protein domains (3D domain swapping). The monomeric structure was obtained only for hCC variant V57N and for the protein stabilized by an additional disulfide bridge. With this study, we extend the number of models of monomeric hCC by an additional hCC variant with a single amino acid substitution in the flexible loop L1. The V57G variant was chosen for the X-ray and NMR structural analysis due to its exceptional conformational stability in solution. In this work, we show for the first time the structural and dynamics studies of human cystatin C variant in solution. We were also able to compare these data with the crystal structure of the hCC V57G and with other cystatins. The overall cystatin fold is retained in the solute form. Additionally, structural information concerning the N terminus was obtained during our studies and presented for the first time. DATABASE: Crystallographic structure: structural data are available in PDB databases under the accession number 6ROA. NMR structure: structural data are available in PDB and BMRB databases under the accession numbers 6RPV and 34399, respectively.
Collapse
Affiliation(s)
| | | | | | - Igor Zhukov
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dominika Borek
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Piotr Skowron
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
| | | | | |
Collapse
|
30
|
Gielnik M, Pietralik Z, Zhukov I, Szymańska A, Kwiatek WM, Kozak M. PrP (58-93) peptide from unstructured N-terminal domain of human prion protein forms amyloid-like fibrillar structures in the presence of Zn 2+ ions. RSC Adv 2019; 9:22211-22219. [PMID: 35519468 PMCID: PMC9066832 DOI: 10.1039/c9ra01510h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Many transition metal ions modulate the aggregation of different amyloid peptides. Substoichiometric zinc concentrations can inhibit aggregation, while an excess of zinc can accelerate the formation of cytotoxic fibrils. In this study, we report the fibrillization of the octarepeat domain to amyloid-like structures. Interestingly, this self-assembling process occurred only in the presence of Zn(ii) ions. The formed peptide aggregates are able to bind amyloid specific dyes thioflavin T and Congo red. Atomic force microscopy and transmission electron microscopy revealed the formation of long, fibrillar structures. X-ray diffraction and Fourier transform infrared spectroscopy studies of the formed assemblies confirmed the presence of cross-β structure. Two-component analysis of synchrotron radiation SAXS data provided the evidence for a direct decrease in monomeric peptide species content and an increase in the fraction of aggregates as a function of Zn(ii) concentration. These results could shed light on Zn(ii) as a toxic agent and on the metal ion induced protein misfolding in prion diseases.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences PL 02-106 Warszawa Poland
- NanoBioMedical Centre, Adam Mickiewicz University PL 61-614 Poznań Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, Gdańsk University PL 80-308 Gdańsk Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences PL 31-342 Krakow Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
- Joint Laboratory for SAXS Studies, Faculty of Physics, Adam Mickiewicz University PL 61-614 Poznań Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University PL 30-392 Kraków Poland
| |
Collapse
|
31
|
The Functional Mammalian CRES (Cystatin-Related Epididymal Spermatogenic) Amyloid is Antiparallel β-Sheet Rich and Forms a Metastable Oligomer During Assembly. Sci Rep 2019; 9:9210. [PMID: 31239483 PMCID: PMC6593142 DOI: 10.1038/s41598-019-45545-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
An amyloid matrix composed of several family 2 cystatins, including the reproductive cystatin CRES, is an integral structure in the mouse epididymal lumen and has proposed functions in sperm maturation and protection. Understanding how CRES amyloid assembles in vitro may provide clues on how the epididymal amyloid matrix forms in vivo. We therefore purified full-length CRES under nondenaturing conditions and followed its aggregation from monomer to amyloid under conditions that may approximate those in the epididymal lumen. CRES transitioned into a metastable oligomer that was resistant to aggregation and only over extended time formed higher-ordered amyloids. High protein concentrations facilitated oligomer assembly and also were required to maintain the metastable state since following dilution the oligomer was no longer detected. Similar to other amyloid precursors, the formation of CRES amyloids correlated with a loss of α-helix and a gain of β-sheet content. However, CRES is unique in that its amyloids are rich in antiparallel β-sheets instead of the more common parallel β-sheets. Taken together, our studies suggest that early metastable oligomers may serve as building blocks for functional amyloid assembly and further reveal that antiparallel β-sheet-rich amyloids can be functional forms.
Collapse
|
32
|
Taube M, Pietralik Z, Szymanska A, Szutkowski K, Clemens D, Grubb A, Kozak M. The domain swapping of human cystatin C induced by synchrotron radiation. Sci Rep 2019; 9:8548. [PMID: 31189973 PMCID: PMC6561922 DOI: 10.1038/s41598-019-44811-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 02/04/2023] Open
Abstract
Domain swapping is observed for many proteins with flexible conformations. This phenomenon is often associated with the development of conformational diseases. Importantly, domain swapping has been observed for human cystatin C (HCC), a protein capable of forming amyloid deposits in brain arteries. In this study, the ability of short exposure to high-intensity X-ray radiation to induce domain swapping in solutions of several HCC variants (wild-type HCC and V57G, V57D, V57N, V57P, and L68V mutants) was determined. The study was conducted using time-resolved small-angle X-ray scattering (TR-SAXS) synchrotron radiation. The protein samples were also analysed using small-angle neutron scattering and NMR diffusometry. Exposing HCC to synchrotron radiation (over 50 ms) led to a gradual increase in the dimeric fraction, and for exposures longer than 150 ms, the oligomer fraction was dominant. In contrast, the non-irradiated protein solutions, apart from the V57P variant, were predominantly monomeric (e.g., V57G) or in monomer/dimer equilibrium. This work might represent the first observation of domain swapping induced by high-intensity X-rays.
Collapse
Affiliation(s)
- Michal Taube
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Kosma Szutkowski
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- NanoBioMedical Centre at Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland
| | - Daniel Clemens
- Helmholtz-Zentrum Berlin für Materialien und Energie Lise-Meitner-Campus Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Anders Grubb
- Department of Clinical Chemistry, Lund University Hospital, S-22185, Lund, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
33
|
Amin F, Khan MS, Bano B. Mammalian cystatin and protagonists in brain diseases. J Biomol Struct Dyn 2019; 38:2171-2196. [DOI: 10.1080/07391102.2019.1620636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh MuslimUniversity, Aligarh, India
| |
Collapse
|
34
|
Tovar-Anaya DO, Vera-Robles LI, Vieyra-Eusebio MT, García-Gutiérrez P, Reyes-Espinosa F, Hernández-Arana A, Arroyo-Reyna JA, Zubillaga RA. Stabilized Human Cystatin C Variant L47C/G69C Is a Better Reporter Than the Wild-Type Inhibitor for Characterizing the Thermodynamics of Binding to Cysteine Proteases. Protein J 2019; 38:598-607. [PMID: 31119598 DOI: 10.1007/s10930-019-09839-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human cystatin C (HCC) binds and inhibits all types of cysteine proteases from the papain family, including cathepsins (a group of enzymes that participate in a variety of physiological processes), which are some of its natural targets. The affinities of diverse proteases for HCC, expressed as equilibrium binding constants (Kb), range from 106 to 1014 M-1. Isothermal titration calorimetry (ITC) is one of the most useful techniques to characterize the thermodynamics of molecular associations, making it possible to dissect the binding free energy into its enthalpic and entropic components. This information, together with the structural changes that occur during the different associations, could enable better understanding of the molecular basis of affinity. Notwithstanding the high sensitivity of modern calorimeters, ITC requires protein concentrations in at least the 10-100 μM range to obtain reliable data, and it is known that HCC forms oligomers in this concentration range. We present herein a comparative study of the structural, thermal stability, and oligomerization properties of HCC and its stabilized variant (sHCC) L47C/G69C (which possesses an additional disulfide bridge) as well as their binding thermodynamics to the protease chymopapain, analyzed by ITC. The results show that, because sHCC remains monomeric, it is a better reporter than wild-type HCC to characterize the thermodynamics of binding to cysteine proteases.
Collapse
Affiliation(s)
- David O Tovar-Anaya
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - L Irais Vera-Robles
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - M Teresa Vieyra-Eusebio
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Francisco Reyes-Espinosa
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Andrés Hernández-Arana
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - J Alfonso Arroyo-Reyna
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico
| | - Rafael A Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad De México, 09340, Mexico.
| |
Collapse
|
35
|
Hirota S. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J Inorg Biochem 2019; 194:170-179. [DOI: 10.1016/j.jinorgbio.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
36
|
Cornwall GA, Do HQ, Hewetson A, Muthusubramanian A, Myers C. The epididymal amyloid matrix: structure and putative functions. Andrology 2019; 7:603-609. [PMID: 30663236 DOI: 10.1111/andr.12586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND We previously demonstrated the normal mouse epididymal lumen contains a non-pathological amyloid matrix that surrounds spermatozoa and plays important roles in sperm maturation and protection. OBJECTIVE The objective herein was to present a review of this work, including studies showing the amyloid structures of four members of the CRES (cystatin-related epididymal spermatogenic) subgroup are integral and essential components of the amyloid matrix. METHODS We used conformation-dependent reagents that recognize the cross-β-sheet structure characteristic of amyloid, including thioflavin S (ThS), thioflavin T (ThT), anti-amyloid antibodies, and X-ray diffraction, as well as negative-stain transmission electron microscopy (TEM) to visualize amyloid structures in the epididymal lumen. Antibodies that specifically detect each CRES subgroup family member were also used in indirect immunofluorescence analysis. RESULTS AND DISCUSSION The epididymal lumen contains an amyloid matrix that surrounds maturing spermatozoa and represents a functional amyloid. Alterations in the structure of the amyloid matrix by the loss of the CRES subgroup members or the overexpression of cystatin C result in epididymal pathologies, including infertility. Preliminary data suggest the epididymal amyloid matrix is structurally and functionally similar to bacterial biofilms. CONCLUSION Together, these results suggest the amyloid matrix serves important roles in epididymal function including sperm maturation and protection.
Collapse
Affiliation(s)
- G A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - H Q Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - A Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - A Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
37
|
Rafalik M, Spodzieja M, Kołodziejczyk A, Rodziewicz-Motowidło S, Szymańska A, Grubb A, Czaplewska P. The identification of discontinuous epitope in the human cystatin C – Monoclonal antibody HCC3 complex. J Proteomics 2019; 191:58-67. [DOI: 10.1016/j.jprot.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/26/2018] [Accepted: 04/14/2018] [Indexed: 11/15/2022]
|
38
|
Atomic insights into the genesis of cellular filaments by globular proteins. Nat Struct Mol Biol 2018; 25:705-714. [PMID: 30076408 PMCID: PMC6185745 DOI: 10.1038/s41594-018-0096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/21/2018] [Indexed: 02/04/2023]
Abstract
Self-assembly of proteins into filaments, such as actin and tubulin filaments, underlies essential cellular processes in all three domains of life. The early emergence of filaments in evolutionary history suggests that filament genesis might be a robust process. Here we describe the fortuitous construction of GFP fusion proteins that self-assemble as fluorescent polar filaments in Escherichia coli. Filament formation is achieved by appending as few as 12 residues. Crystal structures reveal that the protomers each donate an appendage to fill a groove between two following protomers along the filament. This exchange of appendages resembles runaway domain swapping but is distinguished by higher efficiency because monomers cannot competitively bind their own appendages. Ample evidence of this “runaway domain coupling” mechanism in nature suggests it could facilitate the evolutionary pathway from globular protein to polar filament, requiring a minimal extension of protein sequence and no significant refolding.
Collapse
|
39
|
Iłowska E, Sawicka J, Szymańska A. Synthesis and physicochemical studies of amyloidogenic hexapeptides derived from human cystatin C. J Pept Sci 2018; 24:e3073. [PMID: 29573035 DOI: 10.1002/psc.3073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 01/20/2023]
Abstract
Human cystatin C (hCC) is a low molecular mass protein that belongs to the cystatin superfamily. It is an inhibitor of extracellular cysteine proteinases, present in all human body fluids. At physiological conditions, hCC is a monomer, but it has a tendency to dimerization. Naturally occurring hCC mutant, with leucine in position 68 substituted by glutamine (L68Q), is directly involved in the formation of amyloid deposits, independently of other proteins. This process is the primary cause of hereditary cerebral amyloid angiopathy, observed mainly in the Icelandic population. Oligomerization and fibrillization processes of hCC are not explained equally well, but it is proposed that domain swapping is involved in both of them. Research carried out on the fibrillization process led to new hypothesis about the existence of a steric zipper motif in amyloidogenic proteins. In the hCC sequence, there are 2 fragments which may play the role of a steric zipper: the loop L1 region and the C-terminal fragment. In this work, we focused on the first of these. Nine hexapeptides covering studied hCC fragment were synthesized, and their fibrillogenic potential was assessed using an array of biophysical methods. The obtained results showed that the studied hCC fragment has strong profibrillogenic propensities because it contains 2 fragments fulfilling the requirements for an effective steric zipper located next to each other, forming 1 super-steric zipper motif. This hCC fragment might therefore be responsible for the enhanced amyloidogenic properties of dimeric or partially unfolded hCC.
Collapse
Affiliation(s)
- Emilia Iłowska
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Justyna Sawicka
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Aneta Szymańska
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
40
|
Basu A, Bhayye S, Kundu S, Das A, Mukherjee A. Andrographolide inhibits human serum albumin fibril formations through site-specific molecular interactions. RSC Adv 2018; 8:30717-30724. [PMID: 35548768 PMCID: PMC9085492 DOI: 10.1039/c8ra04637a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 01/13/2023] Open
Abstract
Protein misfolding and fibrillation are the fundamental traits in degenerative diseases like Alzheimer's, Parkinsonism, and diabetes mellitus. Bioactives such as flavonoids and terpenoids from plant sources are known to express protective effects against an array of diseases including diabetes, Alzheimer's and obesity. Andrographolide (AG), a labdane diterpenoid is prescribed widely in the Indian and Chinese health care systems for classical efficacy against a number of degenerative diseases. This work presents an in depth study on the effects of AG on protein fibrillating pathophysiology. Thioflavin T fluorescence spectroscopy and DLS results indicated concentration dependent inhibition of human serum albumin (HSA) fibrillation. The results were confirmed by electron microscopy studies. HSA fibril formations were markedly reduced in the presence of AG. Fluorescence studies and UV-Vis experiments confirmed further that AG molecularly interacts with HSA at site. In silico molecular docking studies revealed hydrogen bonding and hydrophobic interactions with HSA in the native state. Thus AG interacts with HSA, stabilizes the native protein structure and inhibits fibrillation. The results demonstrated that the compound possesses anti-amyloidogenic properties and can be promising against some human degenerative diseases. Andrographolide inhibited HSA protein fibrillation through site specific interactions.![]()
Collapse
Affiliation(s)
- Aalok Basu
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Sagar Bhayye
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Sonia Kundu
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Aatryee Das
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Arup Mukherjee
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
41
|
Behrendt I, Prądzińska M, Spodzieja M, Czaplewska P, Kołodziejczyk AS, Szymańska A, Kasprzykowski F, Lundström SL, Zubarev RA, Rodziewicz-Motowidło S. Identification and characterization of antibodies elicited by human cystatin C fragment. J Mol Recognit 2017; 31. [PMID: 29205549 DOI: 10.1002/jmr.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 11/11/2022]
Abstract
Amyloid formation is associated with a number of neurodegenerative diseases that affect the independence and quality of life of aging populations. One of rather atypical, occurring at a young age amyloidosis is hereditary cystatin C amyloid angiopathy (HCCAA) related to aggregation of L68Q variant of human cystatin C (hCC). Human cystatin C plays a very important role in many aspects of human health; however, its amyloidogenic properties manifested in HCCAA present a real, lethal threat to some populations and any work on factors that can affect possible influencing hCC aggregation is not to overestimate. It was proved that interaction of hCC with monoclonal antibodies suppresses significantly hCC dimerization process. Therefore, immunotherapy seems to be the right approach toward possible HCCAA treatment. In this work, the hCC fragment encompassing residue 60-70 (in 2 variants: linear peptide and multiple antigenic peptide) was used as an immunogen in rabbit immunization. As a result, specific anti-hCC antibodies were found in both rabbit sera. Surprisingly, rabbit antibodies were obtained after immunization with only a short peptide. The obtained antibodies were characterized, and their influence on the aggregation propensity of the hCC molecules was evaluated. The antibodies turned out not to have any significant influence on the cystatin C dimerization process. Nevertheless, we hope that antibodies elicited in rabbits by other hCC fragments could lead to elaboration of effective treatment against HCCAA.
Collapse
Affiliation(s)
| | | | | | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | - Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
42
|
Perlenfein TJ, Murphy RM. A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation. J Biol Chem 2017; 292:21071-21082. [PMID: 29046353 DOI: 10.1074/jbc.m117.811448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
β-Amyloid (Aβ) aggregation is thought to initiate a cascade of neurodegenerative events in Alzheimer's disease (AD). Much effort is underway to develop strategies to reduce Aβ concentration or inhibit aggregation. Cathepsin B (CatB) proteolytically degrades Aβ into non-aggregating fragments but is potently inhibited by cystatin C (CysC). It has been suggested that decreasing CysC would facilitate Aβ clearance by relieving CatB inhibition. However, CysC binds Aβ and inhibits Aβ aggregation, suggesting that an intervention that increases CysC would prevent Aβ aggregation. Both approaches have been tested in animal models, yielding contradictory results, possibly because of the opposing influences of CysC on Aβ degradation versus aggregation. Here, we sought to develop a model that quantitatively predicts the effects of CysC and CatB on Aβ aggregation. Aβ aggregation kinetics in the absence of CatB or CysC was measured. The rate constant for Aβ degradation by CatB and the equilibrium constant for binding of CysC to Aβ were determined. We derived a mathematical model that combines material balances and kinetic rate equations. The model accurately predicted Aβ aggregation kinetics at various CatB and CysC concentrations. We derived approximate expressions for the half-times of degradation and aggregation and show that their ratio can be used to estimate, at any given Aβ, CatB, or CysC concentration, whether Aβ aggregation or degradation will result. Our results may be useful for designing experiments and interpreting results from investigations of manipulation of CysC concentration as an AD therapy.
Collapse
Affiliation(s)
- Tyler J Perlenfein
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
43
|
Three-Dimensional Domain Swapping Changes the Folding Mechanism of the Forkhead Domain of FoxP1. Biophys J 2017; 110:2349-2360. [PMID: 27276253 DOI: 10.1016/j.bpj.2016.04.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/04/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
The forkhead family of transcription factors (Fox) controls gene transcription during key processes such as regulation of metabolism, embryogenesis, and immunity. Structurally, Fox proteins feature a conserved DNA-binding domain known as forkhead. Interestingly, solved forkhead structures of members from the P subfamily (FoxP) show that they can oligomerize by three-dimensional domain swapping, whereby structural elements are exchanged between adjacent subunits, leading to an intertwined dimer. Recent evidence has largely stressed the biological relevance of domain swapping in FoxP, as several disease-causing mutations have been related to impairment of this process. Here, we explore the equilibrium folding and binding mechanism of the forkhead domain of wild-type FoxP1, and of two mutants that hinder DNA-binding (R53H) and domain swapping (A39P), using size-exclusion chromatography, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. Our results show that domain swapping of FoxP1 occurs at micromolar protein concentrations within hours of incubation and is energetically favored, in contrast to classical domain-swapping proteins. Also, DNA-binding mutations do not significantly affect domain swapping. Remarkably, equilibrium unfolding of dimeric FoxP1 follows a three-state N2 ↔ 2I ↔ 2U folding mechanism in which dimer dissociation into a monomeric intermediate precedes protein unfolding, in contrast to the typical two-state model described for most domain-swapping proteins, whereas the A39P mutant follows a two-state N ↔ U folding mechanism consistent with the second transition observed for dimeric FoxP1. Also, the free-energy change of the N ↔ U in A39P FoxP1 is ∼2 kcal⋅mol(-1) larger than the I ↔ U transition of both wild-type and R53H FoxP1. Finally, hydrogen-deuterium exchange mass spectrometry reveals that the intermediate strongly resembles the native state. Our results suggest that domain swapping in FoxP1 is at least partially linked to monomer folding stability and follows an unusual three-state folding mechanism, which might proceed via transient structural changes rather than requiring complete protein unfolding as do most domain-swapping proteins.
Collapse
|
44
|
Hewetson A, Do HQ, Myers C, Muthusubramanian A, Sutton RB, Wylie BJ, Cornwall GA. Functional Amyloids in Reproduction. Biomolecules 2017; 7:biom7030046. [PMID: 28661450 PMCID: PMC5618227 DOI: 10.3390/biom7030046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022] Open
Abstract
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Hoa Quynh Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Benjamin J Wylie
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
45
|
Yuyama KI, Ueda M, Nagao S, Hirota S, Sugiyama T, Masuhara H. A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angew Chem Int Ed Engl 2017; 56:6739-6743. [DOI: 10.1002/anie.201702352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ken-ichi Yuyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Present address: Research Institute for Electronic Science; Hokkaido University; N20W10, Kita-Ward Sapporo 001-0020 Japan
| | - Mariko Ueda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
| |
Collapse
|
46
|
Yuyama KI, Ueda M, Nagao S, Hirota S, Sugiyama T, Masuhara H. A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ken-ichi Yuyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Present address: Research Institute for Electronic Science; Hokkaido University; N20W10, Kita-Ward Sapporo 001-0020 Japan
| | - Mariko Ueda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
| |
Collapse
|
47
|
Perlenfein TJ, Mehlhoff JD, Murphy RM. Insights into the mechanism of cystatin C oligomer and amyloid formation and its interaction with β-amyloid. J Biol Chem 2017; 292:11485-11498. [PMID: 28487367 DOI: 10.1074/jbc.m117.786558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
Cystatin C (CysC) is a versatile and ubiquitously-expressed member of the cysteine protease inhibitor family that is present at notably high concentrations in cerebrospinal fluid. Under mildly denaturing conditions, CysC forms inactive domain-swapped dimers. A destabilizing mutation, L68Q, increases the rate of domain-swapping and causes a fatal amyloid disease, hereditary cystatin C amyloid angiopathy. Wild-type (wt) CysC will also aggregate into amyloid fibrils under some conditions. Propagated domain-swapping has been proposed as the mechanism by which CysC fibrils grow. We present evidence that a CysC mutant, V57N, stabilized against domain-swapping, readily forms fibrils, contradicting the propagated domain-swapping hypothesis. Furthermore, in physiological buffer, wt CysC can form oligomers without undergoing domain-swapping. These non-swapped oligomers are identical in secondary structure to CysC monomers and completely retain protease inhibitory activity. However, unlike monomers or dimers, the oligomers bind fluorescent dyes that indicate they have characteristics of pre-amyloid aggregates. Although these oligomers appear to be a pre-amyloid assembly, they are slower than CysC monomers to form fibrils. Fibrillation of CysC therefore likely initiates from the monomer and does not require domain-swapping. The non-swapped oligomers likely represent a dead-end offshoot of the amyloid pathway and must dissociate to monomers prior to rearranging to amyloid fibrils. These prefibrillar CysC oligomers were potent inhibitors of aggregation of the Alzheimer's-related peptide, β-amyloid. This result illustrates an example where heterotypic interactions between pre-amyloid oligomers prevent the homotypic interactions that would lead to mature amyloid fibrils.
Collapse
Affiliation(s)
- Tyler J Perlenfein
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Jacob D Mehlhoff
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
48
|
Cottee MA, Johnson S, Raff JW, Lea SM. A key centriole assembly interaction interface between human PLK4 and STIL appears to not be conserved in flies. Biol Open 2017; 6:381-389. [PMID: 28202467 PMCID: PMC5374404 DOI: 10.1242/bio.024661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A small number of proteins form a conserved pathway of centriole duplication. In
humans and flies, the binding of PLK4/Sak to STIL/Ana2 initiates
daughter centriole assembly. In humans, this interaction is mediated by an
interaction between the Polo-Box-3 (PB3) domain of PLK4 and the coiled-coil
domain of STIL (HsCCD). We showed previously that the
Drosophila Ana2 coiled-coil domain (DmCCD) is essential for
centriole assembly, but it forms a tight parallel tetramer in
vitro that likely precludes an interaction with PB3. Here, we show
that the isolated HsCCD and HsPB3 domains form a mixture of homo-multimers
in vitro, but these readily dissociate when mixed to form
the previously described 1:1 HsCCD:HsPB3 complex. In contrast, although
Drosophila PB3 (DmPB3) adopts a canonical polo-box fold, it
does not detectably interact with DmCCD in vitro. Thus,
surprisingly, a key centriole assembly interaction interface appears to differ
between humans and flies. Summary: PLK4 and STIL/Ana2 proteins interact to promote centriole
duplication. We show that these proteins may homo-multimerise in multiple ways,
and that their interaction is likely complex and may differ between species.
Collapse
Affiliation(s)
- Matthew A Cottee
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
49
|
Prądzińska M, Behrendt I, Astorga-Wells J, Manoilov A, Zubarev RA, Kołodziejczyk AS, Rodziewicz-Motowidło S, Czaplewska P. Application of amide hydrogen/deuterium exchange mass spectrometry for epitope mapping in human cystatin C. Amino Acids 2016; 48:2809-2820. [PMID: 27573935 PMCID: PMC5107209 DOI: 10.1007/s00726-016-2316-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/16/2016] [Indexed: 12/01/2022]
Abstract
Human cystatin C (hCC) is a small cysteine protease inhibitor whose oligomerization by propagated domain swapping is linked to certain neurological disorders. One of the ways to prevent hCC dimerization and fibrillogenesis is to enable its interaction with a proper antibody. Herein, the sites of interaction of hCC with dimer-preventing mouse monoclonal anti-hCC antibodies Cyst28 are studied and compared with the binding sites found for mAb Cyst10 that has almost no effect on hCC dimerization. In addition, hCC epitopes in complexes with native polyclonal antibodies extracted from human serum were studied. The results obtained with hydrogen-deuterium exchange mass spectrometry (HDX MS) were compared with the previous findings made using the excision/extraction MS approach. The main results from the two complementary MS-based approaches are found to be in agreement with each other, with some differences being attributed to the specificity of each method. The findings of the current studies may be important for future design of hCC dimerization inhibitors.
Collapse
Affiliation(s)
- Martyna Prądzińska
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Izabela Behrendt
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Juan Astorga-Wells
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, S-171 77, Stockholm, Sweden
- Biomotif AB, 18212, Stockholm, Sweden
| | - Aleksandr Manoilov
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, S-171 77, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, S-171 77, Stockholm, Sweden.
| | - Aleksandra S Kołodziejczyk
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk-Medical University of Gdańsk, Kładki 24, 80-822, Gdańsk, Poland.
| |
Collapse
|
50
|
Fagagnini A, Montioli R, Caloiu A, Ribó M, Laurents DV, Gotte G. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:76-87. [PMID: 27783927 DOI: 10.1016/j.bbapap.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022]
Abstract
Bovine pancreatic ribonuclease A (RNase A) is the monomeric prototype of the so-called secretory 'pancreatic-type' RNase super-family. Like the naturally domain-swapped dimeric bovine seminal variant, BS-RNase, and its glycosylated RNase B isoform, RNase A forms N- and C-terminal 3D domain-swapped oligomers after lyophilization from acid solutions, or if subjected to thermal denaturation at high protein concentration. All mentioned RNases can undergo deamidation at Asn67, forming Asp or isoAsp derivatives that modify the protein net charge and consequently its enzymatic activity. In addition, deamidation slightly affects RNase B self-association through the 3D domain swapping (3D-DS) mechanism. We report here the influence of extensive deamidation on RNase A tendency to oligomerize through 3D-DS. In particular, deamidation of Asn67 alone slightly decreases the propensity of the protein to oligomerize, with the Asp derivative being less affected than the isoAsp one. Contrarily, the additional Asp and/or isoAsp conversion of residues other than N67 almost nullifies RNase A oligomerization capability. In addition, Gln deamidation, although less kinetically favorable, may affect RNase A self-association. Using 2D and 3D NMR we identified the Asn/Gln residues most prone to undergo deamidation. Together with CD spectroscopy, NMR also indicates that poly-deamidated RNase A generally maintains its native tertiary structure. Again, we investigated in silico the effect of the residues undergoing deamidation on RNase A dimers structures. Finally, the effect of deamidation on RNase A oligomerization is discussed in comparison with studies on deamidation-prone proteins involved in amyloid formation.
Collapse
Affiliation(s)
- Andrea Fagagnini
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Andra Caloiu
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, 17071, y Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Douglas V Laurents
- Instituto de Quimica Fisica "Rocasolano" (C.S.I.C.), Serrano 119, E-28006 Madrid, Spain
| | - Giovanni Gotte
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|