1
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Swanson L, DeGuara S, Wang W, Yin F, Saini T, Weiss RJ, Selleck SB. Altering heparan sulfate suppresses cell abnormalities and neuron loss in Drosophila presenilin model of Alzheimer Disease. iScience 2024; 27:110256. [PMID: 39109174 PMCID: PMC11302002 DOI: 10.1016/j.isci.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
We examined the function of heparan-sulfate-modified proteoglycans (HSPGs) in pathways affecting Alzheimer disease (AD)-related cell pathology in human cell lines and mouse astrocytes. Mechanisms of HSPG influences on presenilin-dependent cell loss were evaluated in Drosophila using knockdown of the presenilin homolog, Psn, together with partial loss-of-function of sulfateless (sfl), a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in human cell lines, Drosophila, and mouse astrocytes. RNA interference (RNAi) of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3, and APOE4. Neuron-directed knockdown of Psn in Drosophila produced apoptosis and cell loss in the brain, phenotypes suppressed by reductions in sfl expression. Abnormalities in mitochondria, liposomes, and autophagosome-derived structures in animals with Psn knockdown were also rescued by reduction of sfl. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert J. Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Richard Mueller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie O'Donnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey Swanson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sophia DeGuara
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Wang
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Fei Yin
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Tripti Saini
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ryan J. Weiss
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Scott B. Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Wang W, Yin F, Weiss R, Selleck SB. Heparan sulfate modified proteins affect cellular processes central to neurodegeneration and modulate presenilin function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576895. [PMID: 38328107 PMCID: PMC10849577 DOI: 10.1101/2024.01.23.576895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mutations in presenilin-1 (PSEN1) are the most common cause of familial, early-onset Alzheimer's disease (AD), typically producing cognitive deficits in the fourth decade. A variant of APOE, APOE3 Christchurch (APOE3ch) , was found associated with protection from both cognitive decline and Tau accumulation in a 70-year-old bearing the disease-causing PSEN1-E280A mutation. The amino acid change in ApoE3ch is within the heparan sulfate (HS) binding domain of APOE, and purified APOEch showed dramatically reduced affinity for heparin, a highly sulfated form of HS. The physiological significance of ApoE3ch is supported by studies of a mouse bearing a knock-in of this human variant and its effects on microglia reactivity and Aβ-induced Tau deposition. The studies reported here examine the function of heparan sulfate-modified proteoglycans (HSPGs) in cellular and molecular pathways affecting AD-related cell pathology in human cell lines and mouse astrocytes. The mechanisms of HSPG influences on presenilin- dependent cell loss and pathology were evaluated in Drosophila using knockdown of the presenilin homolog, Psn , together with partial loss of function of sulfateless (sfl) , a homolog of NDST1 , a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in cultured human cell lines, Drosophila , and mouse astrocytes. RNAi of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3 , and APOE4 . RNA-sequence analysis of human cells deficient in HS synthesis demonstrated effects on the transcriptome governing lipid metabolism, autophagy, and mitochondrial biogenesis and showed significant enrichment in AD susceptibility genes identified by GWAS. Neuron-directed knockdown of Psn in Drosophila produced cell loss in the brain and behavioral phenotypes, both suppressed by simultaneous reductions in sfl mRNA levels. Abnormalities in mitochondria, liposome morphology, and autophagosome-derived structures in animals with Psn knockdown were also rescued by simultaneous reduction of sfl. sfl knockdown reversed Psn- dependent transcript changes in genes affecting lipid transport, metabolism, and monocarboxylate carriers. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
|
3
|
Yadav S, Singh P. Advancement and application of novel cell-penetrating peptide in cancer management. 3 Biotech 2023; 13:234. [PMID: 37323859 PMCID: PMC10264343 DOI: 10.1007/s13205-023-03649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are small amino acid sequences with the potential to enter cell membranes. Along with nucleic acids, large proteins, and other chemical compounds, they can deliver several bioactive cargos inside cells. Numerous CPPs have been extracted from natural or synthetic materials since the discovery of the first CPP. In the past few decades, a significant variety of studies have shown the potential of CPPs to cure different diseases. The low toxicity in peptide compared to other drug delivery carriers is a significant benefit of CPP-based therapy, in addition to the high efficacy brought about by swift and effective delivery. A significant tendency for intracellular DNA delivery may also be observed when nanoparticles and the cell penetration peptide are combined. CPPs are frequently used to increase intracellular absorption of nucleic acid, and other therapeutic agents inside the cell. Due to long-term side effects and possible toxicity, its implementation is restricted. The use of cell-permeating peptides is a commonly used technique to increase their intracellular absorption. Additionally, CPPs have lately been sought for application in vivo, following their success in cellular studies. This review will go through the numerous CPPs, the chemical modifications that improve their cellular uptake, the various means for getting them across cell membranes, and the biological activity they acquire after being conjugate with specific chemicals.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No. 2, Sector 17-A, Yamuna Expressway, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201310 India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh India
| |
Collapse
|
4
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA. Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins (Basel) 2023; 15:toxins15030181. [PMID: 36977072 PMCID: PMC10059012 DOI: 10.3390/toxins15030181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
Streptavidin-Saporin can be considered a type of ‘secondary’ targeted toxin. The scientific community has taken advantage of this conjugate in clever and fruitful ways using many kinds of biotinylated targeting agents to send saporin into a cell selected for elimination. Saporin is a ribosome-inactivating protein that causes inhibition of protein synthesis and cell death when delivered inside a cell. Streptavidin-Saporin, mixed with biotinylated molecules to cell surface markers, results in powerful conjugates that are used both in vitro and in vivo for behavior and disease research. Streptavidin-Saporin harnesses the ‘Molecular Surgery’ capability of saporin, creating a modular arsenal of targeted toxins used in applications ranging from the screening of potential therapeutics to behavioral studies and animal models. The reagent has become a well-published and validated resource in academia and industry. The ease of use and diverse functionality of Streptavidin-Saporin continues to have a significant impact on the life science industry.
Collapse
|
6
|
Huang S, Baskin JM. Adding a Chemical Biology Twist to CRISPR Screening. Isr J Chem 2023; 63:e202200056. [PMID: 37588264 PMCID: PMC10427134 DOI: 10.1002/ijch.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 11/09/2022]
Abstract
In less than a decade, CRISPR screening has revolutionized forward genetics and cell and molecular biology. Advances in screening technologies, including sgRNA libraries, Cas9-expressing cell lines, and streamlined sequencing pipelines, have democratized pooled CRISPR screens at genome-wide scale. Initially, many such screens were survival-based, identifying essential genes in physiological or perturbed processes. With the application of new chemical biology tools to CRISPR screening, the phenotypic space is no longer limited to live/dead selection or screening for levels of conventional fluorescent protein reporters. Further, the resolution has been increased from cell populations to single cells or even the subcellular level. We highlight advances in pooled CRISPR screening, powered by chemical biology, that have expanded phenotypic space, resolution, scope, and scalability as well as strengthened the CRISPR/Cas enzyme toolkit to enable biological hypothesis generation and discovery.
Collapse
Affiliation(s)
- Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
7
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Lizunova SA, Tsvetkov VB, Skvortsov DA, Kamzeeva PN, Ivanova OM, Vasilyeva LA, Chistov AA, Belyaev ES, Khrulev AA, Vedekhina TS, Bogomazova AN, Lagarkova MA, Varizhuk AM, Aralov AV. Anticancer activity of G4-targeting phenoxazine derivatives in vitro. Biochimie 2022; 201:43-54. [PMID: 35817132 DOI: 10.1016/j.biochi.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
G4-stabilizing ligands are now being considered as anticancer, antiviral and antibacterial agents. Phenoxazine is a promising scaffold for the development of G4 ligands. Here, we profiled two known phenoxazine-based nucleoside analogs and five new nucleoside and non-nucleoside derivatives against G4 targets from telomere repeats and the KIT promoter region. Leading new derivatives exhibited remarkably high G4-stabilizing effects (comparable or superior to the effects of the commonly used selective G4 ligands PDS and NMM) and selectivity toward G4s over duplex (superior to BRACO-19). All phenoxazine-based ligands inhibited cellular metabolic activity. The phenoxazine derivatives were particularly toxic for lung adenocarcinoma cells A549' and human liver cancer cells HepG2 (CC50 of the nucleoside analogues in the nanomolar range), but also affected breast cancer cells MCF7, as well as immortalized fibroblasts VA13 and embryonic kidney cells HEK293t (CC50 in the micromolar range). Importantly, the CC50 values varied mostly in accordance with G4-binding affinities and G4-stabilizing effects, and the phenoxazine derivatives localized in the cell nuclei, which corroborates G4-mediated mechanisms of action.
Collapse
Affiliation(s)
- Sofia A Lizunova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow, 119991, Russia; A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Prospect Str. 29, Moscow, 119991, Russia.
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Department of Chemistry and Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - Polina N Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - Olga M Ivanova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Lilja A Vasilyeva
- Lomonosov Moscow State University, Department of Chemistry and Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - Evgeny S Belyaev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Science, Moscow, 119071, Russia
| | - Alexei A Khrulev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - Tatiana S Vedekhina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141701, Russia; G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy.
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia.
| |
Collapse
|
9
|
The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022; 184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Cell membranes are key interfaces where materials engineering meets biology. Traditionally regarded as just the location of receptors regulating the uptake of molecules, we now know that all mammalian cell membranes are 'sugar coated'. These sugars, or glycans, form a matrix bound at the cell membrane via proteins and lipids, referred to as the glycocalyx, which modulate access to cell membrane receptors crucial for interactions with drug delivery systems (DDS). Focusing on the key blood-tissue barrier faced by most DDS to enable transport from the place of administration to target sites via the circulation, we critically assess the design of carriers for interactions at the endothelial cell surface. We also discuss the current challenges for this area and provide opportunities for future research efforts to more fully engineer DDS for controlled, efficient, and targeted interactions with the endothelium for therapeutic application.
Collapse
|
10
|
Morbioli I, Casnati A, Esko JD, Tor Y, Sansone F. Calixarene-decorated liposomes for intracellular cargo delivery. Org Biomol Chem 2021; 19:6598-6602. [PMID: 34268550 DOI: 10.1039/d1ob01055g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic calix[4]arenes, functionalized with guanidinium groups, are used to decorate the outer surface of liposomes and significantly improve the cellular uptake of a cargo compared to plain liposomes. The improved uptake is elicited and mediated by the interaction between the cationic polar heads of the macrocycle units embedded in the liposome bilayer and anionic heparan-sulfate proteoglycans surrounding the exterior of cells.
Collapse
Affiliation(s)
- Ilaria Morbioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
11
|
Hadidi K, Bellucci MC, Dall'Angelo S, Leeson-Payne A, Rochford JJ, Esko JD, Tor Y, Volonterio A. Guanidinoneomycin-maleimide molecular transporter: synthesis, chemistry and cellular uptake. Org Biomol Chem 2021; 19:6513-6520. [PMID: 34254106 DOI: 10.1039/d1ob01101d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guanidinoglycosides are a class of non-cytotoxic molecular transporters capable of delivering high molecular weight bioactive cargos into cells at low nanomolar concentrations. Efficient bioconjugation with guanidinoglycosides has been previously demonstrated by utilizing a guanidinoneomycin decorated with a reactive but also unstable N-hydroxysuccinimmide ester-containing linker. Herein we report the synthesis, chemistry, and application of a new, stable guanidinoneomycin derivative armed with a highly specific maleimide moiety which allows for thiol-maleimide click chemistry, a highly popular bioconjugation strategy, widening the field of application of these intriguing and useful delivery vehicles.
Collapse
Affiliation(s)
- Kaivin Hadidi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Maria Cristina Bellucci
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, UK
| | - Alasdair Leeson-Payne
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Justin J Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jeffery D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Alessandro Volonterio
- Department of Chemistry, Material and Chemical Engineer "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
12
|
Weiss RJ, Spahn PN, Chiang AW, Liu Q, Li J, Hamill KM, Rother S, Clausen TM, Hoeksema MA, Timm BM, Godula K, Glass CK, Tor Y, Gordts PL, Lewis NE, Esko JD. Genome-wide screens uncover KDM2B as a modifier of protein binding to heparan sulfate. Nat Chem Biol 2021; 17:684-692. [PMID: 33846619 PMCID: PMC8159865 DOI: 10.1038/s41589-021-00776-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023]
Abstract
Heparan sulfate (HS) proteoglycans bind extracellular proteins that participate in cell signaling, attachment and endocytosis. These interactions depend on the arrangement of sulfated sugars in the HS chains generated by well-characterized biosynthetic enzymes; however, the regulation of these enzymes is largely unknown. We conducted genome-wide CRISPR-Cas9 screens with a small-molecule ligand that binds to HS. Screening of A375 melanoma cells uncovered additional genes and pathways impacting HS formation. The top hit was the epigenetic factor KDM2B, a histone demethylase. KDM2B inactivation suppressed multiple HS sulfotransferases and upregulated the sulfatase SULF1. These changes differentially affected the interaction of HS-binding proteins. KDM2B-deficient cells displayed decreased growth rates, which was rescued by SULF1 inactivation. In addition, KDM2B deficiency altered the expression of many extracellular matrix genes. Thus, KDM2B controls proliferation of A375 cells through the regulation of HS structure and serves as a master regulator of the extracellular matrix.
Collapse
Affiliation(s)
- Ryan J. Weiss
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Philipp N. Spahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Austin W.T. Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Qing Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Jing Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Kristina M. Hamill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Sandra Rother
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Thomas M. Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Marten A. Hoeksema
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Bryce M. Timm
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Department of Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Philip L.S.M. Gordts
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Department of Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Co-corresponding authors
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Co-corresponding authors
| |
Collapse
|
13
|
Bellucci MC, Volonterio A. Aminoglycosides: From Antibiotics to Building Blocks for the Synthesis and Development of Gene Delivery Vehicles. Antibiotics (Basel) 2020; 9:E504. [PMID: 32796727 PMCID: PMC7459817 DOI: 10.3390/antibiotics9080504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Aminoglycosides are a class of naturally occurring and semi synthetic antibiotics that have been used for a long time in fighting bacterial infections. Due to acquired antibiotic resistance and inherent toxicity, aminoglycosides have experienced a decrease in interest over time. However, in the last decade, we are seeing a renaissance of aminoglycosides thanks to a better understanding of their chemistry and mode of action, which had led to new trends of application. The purpose of this comprehensive review is to highlight one of these new fields of application: the use of aminoglycosides as building blocks for the development of liposomal and polymeric vectors for gene delivery. The design, synthetic strategies, ability to condensate the genetic material, the efficiency in transfection, and cytotoxicity as well as when available, the antibacterial activity of aminoglycoside-based cationic lipids and polymers are covered and critically analyzed.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Material and Chemical Engineer “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
14
|
Aradi K, Di Giorgio A, Duca M. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry 2020; 26:12273-12309. [PMID: 32539167 DOI: 10.1002/chem.202002258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Indexed: 01/04/2023]
Abstract
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.
Collapse
Affiliation(s)
- Klara Aradi
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| |
Collapse
|
15
|
Bortot B, De Martino E, Tesser A, Ura B, Ruozi B, Aloisio M, Biffi S, Addobbati R, Tosi G, Dolcetta D, Severini GM. In vitro treatment of congenital disorder of glycosylation type Ia using PLGA nanoparticles loaded with GDP‑Man. Int J Mol Med 2019; 44:262-272. [PMID: 31115488 DOI: 10.3892/ijmm.2019.4199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/29/2019] [Indexed: 11/05/2022] Open
Abstract
Congenital disorder of glycosylation (CDG) type Ia is a multisystem disorder that occurs due to mutations in the phosphomannomutase 2 (PMM2) gene, which encodes for an enzyme involved in the N‑glycosylation pathway. Mutated PMM2 leads to the reduced conversion of mannose‑6‑P to mannose‑1‑P, which results in low concentration levels of guanosine 5'‑diphospho‑D‑mannose (GDP‑Man), a nucleotide‑activated sugar essential for the construction of protein oligosaccharide chains. In the present study, an in vitro therapeutic approach was used, based on GDP‑Man‑loaded poly (D,L‑lactide‑co‑glycolide) (PLGA) nanoparticles (NPs), which were used to treat CDG‑Ia fibroblast cultures, thus bypassing the glycosylation pathway reaction catalysed by PMM2. To assess the degree of hypoglycosylation in vitro, the present study examined the activities of α‑mannosidase, β‑glucoronidase and β‑galactosidase in defective and normal fibroblasts. GDP‑Man (30 µg/ml GDP‑Man PLGA NPs) was incubated for 48 h with the cells and the specific activities of α‑mannosidase and β‑galactosidase were estimated at 69 and 92% compared with healthy controls. The residual activity of β‑glucoronidase increased from 6.5 to 32.5% and was significantly higher compared with that noted in the untreated CDG‑Ia fibroblasts. The glycosylation process of fibroblasts was also analysed by two‑dimensional electrophoresis. The results demonstrated that treatment caused the reappearance of several glycosylated proteins. The data in vitro showed that GDP‑Man PLGA NPs have desirable efficacy and warrant further evaluation in a preclinical validation animal model.
Collapse
Affiliation(s)
- Barbara Bortot
- Institute for Maternal and Child Health‑IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Eleonora De Martino
- DSM, Department of Medical Sciences, University of Trieste, I‑34149 Trieste, Italy
| | - Alessandra Tesser
- Institute for Maternal and Child Health‑IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health‑IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, I‑41121 Modena, Italy
| | - Michelangelo Aloisio
- Institute for Maternal and Child Health‑IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health‑IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Riccardo Addobbati
- Institute for Maternal and Child Health‑IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, I‑41121 Modena, Italy
| | - Diego Dolcetta
- UOSD SAFU, RiDAIT Department, The Regina Elena National Cancer Institute, I‑00144 Rome, Italy
| | | |
Collapse
|
16
|
Dong X, Huang Y, Cho BG, Zhong J, Gautam S, Peng W, Williamson SD, Banazadeh A, Torres-Ulloa KY, Mechref Y. Advances in mass spectrometry-based glycomics. Electrophoresis 2018; 39:3063-3081. [PMID: 30199110 DOI: 10.1002/elps.201800273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
The diversification of the chemical properties and biological functions of proteins is attained through posttranslational modifications, such as glycosylation. Glycans, which are covalently attached to proteins, play a vital role in cell activities. The microheterogeneity and complexity of glycan structures associated with proteins make comprehensive glycomic analysis challenging. However, recent advancements in mass spectrometry (MS), separation techniques, and sample preparation methods have primarily facilitated structural elucidation and quantitation of glycans. This review focuses on describing recent advances in MS-based techniques used for glycomic analysis (2012-2018), including ionization, tandem MS, and separation techniques coupled with MS. Progress in glycomics workflow involving glycan release, purification, derivatization, and separation will also be highlighted here. Additionally, the recent development of quantitative glycomics through comparative and multiplex approaches will also be described.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Seth D Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Katya Y Torres-Ulloa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
17
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
18
|
Tong W, Dwyer CA, Thacker BE, Glass CA, Brown JR, Hamill K, Moremen KW, Sarrazin S, Gordts PLSM, Dozier LE, Patrick GN, Tor Y, Esko JD. Guanidinylated Neomycin Conjugation Enhances Intranasal Enzyme Replacement in the Brain. Mol Ther 2017; 25:2743-2752. [PMID: 28958576 PMCID: PMC5768556 DOI: 10.1016/j.ymthe.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain.
Collapse
Affiliation(s)
- Wenyong Tong
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Chrissa A Dwyer
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Bryan E Thacker
- TEGA Therapeutics, Inc., 9500 Gilman Drive, La Jolla, CA 92093-0713, USA
| | - Charles A Glass
- TEGA Therapeutics, Inc., 9500 Gilman Drive, La Jolla, CA 92093-0713, USA
| | - Jillian R Brown
- TEGA Therapeutics, Inc., 9500 Gilman Drive, La Jolla, CA 92093-0713, USA
| | - Kristina Hamill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Kelley W Moremen
- Department of Biochemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Stéphane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Lara E Dozier
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366 USA
| | - Gentry N Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
19
|
Hadidi K, Wexselblatt E, Esko JD, Tor Y. Cellular uptake of modified aminoglycosides. J Antibiot (Tokyo) 2017; 71:ja2017131. [PMID: 29089598 DOI: 10.1038/ja.2017.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/21/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
Abstract
The uptake of modified amino- and guanidino-glycosides derived from kanamycin, tobramycin and neomycin in native and mutant CHO cells is examined using confocal microscopy and flow cytometry, illustrating the significance of multivalency for mammalian cell internalization of carriers that specifically interact with cell surface heparan sulfate proteoglycans.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.131.
Collapse
Affiliation(s)
- Kaivin Hadidi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Marouseau E, Neckebroeck A, Larkin H, Le Roux A, Volkov L, Lavoie CL, Marsault É. Modular sub-monomeric cell-penetrating guanidine-rich peptoids – synthesis, assembly and biological evaluation. RSC Adv 2017. [DOI: 10.1039/c6ra27898a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of a guanidinium-rich transporters toolset to study GAG-mediated cell permeation.
Collapse
Affiliation(s)
- Etienne Marouseau
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Albane Neckebroeck
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Heidi Larkin
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Antoine Le Roux
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Leonid Volkov
- Biophotonics Core Facility
- Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke
- Sherbrooke
- Canada
| | - Christine L. Lavoie
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke
- Department of Pharmacology and Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
| |
Collapse
|
21
|
Sganappa A, Wexselblatt E, Bellucci MC, Esko JD, Tedeschi G, Tor Y, Volonterio A. Dendrimeric Guanidinoneomycin for Cellular Delivery of Bio-macromolecules. Chembiochem 2016; 18:119-125. [DOI: 10.1002/cbic.201600422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Aurora Sganappa
- Department of Chemistry; Material and Chemical Engineering “Giulio Natta”; Politecnico di Milano; via Mancinelli 7 20131 Milano Italy
| | - Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry; University of California; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Maria Cristina Bellucci
- Department of Food; Environmental and Nutritional Sciences; Università degli Studi di Milano; Via Celoria 2 20133 Milano Italy
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine; University of California; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Gabriella Tedeschi
- Department of Veterinary Science and Public Health; Università degli Studi di Milano; Via Celoria 2 20133 Milano Italy
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry; University of California; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Alessandro Volonterio
- Department of Chemistry; Material and Chemical Engineering “Giulio Natta”; Politecnico di Milano; via Mancinelli 7 20131 Milano Italy
| |
Collapse
|
22
|
Yadav S, Deka SR, Jha D, Gautam HK, Sharma AK. Amphiphilic azobenzene-neomycin conjugate self-assembles into nanostructures and transports plasmid DNA efficiently into the mammalian cells. Colloids Surf B Biointerfaces 2016; 148:481-486. [PMID: 27665381 DOI: 10.1016/j.colsurfb.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 11/08/2022]
|
23
|
Hamill KM, McCoy LS, Wexselblatt E, Esko JD, Tor Y. Polymyxins Facilitate Entry into Mammalian Cells. Chem Sci 2016; 7:5059-5068. [PMID: 28044098 PMCID: PMC5201209 DOI: 10.1039/c6sc00488a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polymyxin and guanidinylated polymyxin effectively deliver large biomolecules and liposomal assemblies into mammalian cells.
Polymyxin B is an antibiotic used against multi-resistant Gram negative infections, despite observed nephrotoxicity. Here we report the synthesis of functionalized derivatives of polymyxin B and its per-guanidinylated derivative in order to further explore the structural requirements necessary to facilitate uptake of the antibiotic into mammalian cells. We also investigate the possibility of using these novel scaffolds as molecular transporters. At nanomolar concentrations, both are capable of delivering large cargo (>300 kDa) into living cells. Their uptake depends exclusively on cell surface heparan sulfate. Mechanistic studies indicate these novel transporters are internalized through caveolae-mediated pathways and confocal microscopy show colocalization with lysosomes. The polymyxin-based transporters demonstrate cytosolic delivery through the delivery of a ribosome-inactivating protein. Furthermore, the natural polymyxin scaffold can be incorporated into liposomes and enhance their intracellular uptake. In addition to demonstrating the ability of the polymyxin scaffold to facilitate internalization into mammalian cells, these observations suggest the potential use of polymyxin and guanidinopolymyxin for intracellular delivery.
Collapse
Affiliation(s)
- Kristina M Hamill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Lisa S McCoy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Jeffrey D Esko
- Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093-0687, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
24
|
Etxebarria J, Reichardt NC. Methods for the absolute quantification of N-glycan biomarkers. Biochim Biophys Acta Gen Subj 2016; 1860:1676-87. [PMID: 26953846 DOI: 10.1016/j.bbagen.2016.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many treatment options especially for cancer show a low efficacy for the majority of patients demanding improved biomarker panels for patient stratification. Changes in glycosylation are a hallmark of many cancers and inflammatory diseases and show great potential as clinical disease markers. The large inter-subject variability in glycosylation due to hereditary and environmental factors can complicate rapid transfer of glycan markers into the clinical practice but also presents an opportunity for personalized medicine. SCOPE OF REVIEW This review discusses opportunities of glycan biomarkers in personalized medicine and reviews the methodology for N-glycan analysis with a specific focus on methods for absolute quantification. MAJOR CONCLUSIONS The entry into the clinical practice of glycan markers is delayed in large part due to a lack of adequate methodology for the precise and robust quantification of protein glycosylation. Only absolute glycan quantification can provide a complete picture of the disease related changes and will provide the method robustness required by clinical applications. GENERAL SIGNIFICANCE Glycan biomarkers have a huge potential as disease markers for personalized medicine. The use of stable isotope labeled glycans as internal standards and heavy-isotope labeling methods will provide the necessary method precision and robustness acceptable for clinical use. This article is part of a Special Issue entitled "Glycans in personalized medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Juan Etxebarria
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain; CIBER-BBN, Paseo Miramon 182, 20009 San Sebastian, Spain.
| |
Collapse
|
25
|
Bera S, Mondal D, Palit S, Schweizer F. Structural modifications of the neomycin class of aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00079g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review encompasses comprehensive literature on synthetic modification and biological activities of clinically used neomycin-class aminoglycoside antibiotics to alleviate dose-related toxicity and pathogenic resistance.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Dhananjoy Mondal
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology Campus
- Kolkata-700 032
- India
| | - Frank Schweizer
- Department of Chemistry and Medical Microbiology
- University of Manitoba
- Winnipeg
- Canada
| |
Collapse
|
26
|
Shaili E, Fernández-Giménez M, Rodríguez-Astor S, Gandioso A, Sandín L, García-Vélez C, Massaguer A, Clarkson GJ, Woods JA, Sadler PJ, Marchán V. A Photoactivatable Platinum(IV) Anticancer Complex Conjugated to the RNA Ligand Guanidinoneomycin. Chemistry 2015; 21:18474-86. [PMID: 26616265 DOI: 10.1002/chem.201502373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/07/2022]
Abstract
A photoactivatable platinum(IV) complex, trans,trans,trans-[Pt(N3 )2 (OH)(succ)(py)2 ] (succ=succinylate, py=pyridine), has been conjugated to guanidinoneomycin to study the effect of this guanidinum-rich compound on the photoactivation, intracellular accumulation and phototoxicity of the pro-drug. Surprisingly, trifluoroacetic acid treatment causes the replacement of an azido ligand and the axial hydroxide ligand by trifluoroacetate, as shown by NMR spectroscopy, MS and X-ray crystallography. Photoactivation of the platinum-guanidinoneomycin conjugate in the presence of 5'-guanosine monophosphate (5'-GMP) led to the formation of trans-[Pt(N3 )(py)2 (5'-GMP)](+) , as does the parent platinum(IV) complex. Binding of the platinum(II) photoproduct {PtN3 (py)2 }(+) to guanine nucleobases in a short single-stranded oligonucleotide was also observed. Finally, cellular uptake studies showed that guanidinoneomycin conjugation improved the intracellular accumulation of the platinum(IV) pro-drug in two cancer cell lines, particularly in SK-MEL-28 cells. Notably, the higher phototoxicity of the conjugate in SK-MEL-28 cells than in DU-145 cells suggests a degree of selectivity towards the malignant melanoma cell line.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK)
| | - Marta Fernández-Giménez
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Savina Rodríguez-Astor
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Albert Gandioso
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Lluís Sandín
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Carlos García-Vélez
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Campus Montilivi, 17071, Girona (Spain)
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK)
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology, Ninewells Hospital, Dundee, DD1 9SY (UK)
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK).
| | - Vicente Marchán
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain).
| |
Collapse
|
27
|
Nahar S, Ranjan N, Ray A, Arya DP, Maiti S. Potent inhibition of miR-27a by neomycin-bisbenzimidazole conjugates. Chem Sci 2015; 6:5837-5846. [PMID: 29861909 PMCID: PMC5947510 DOI: 10.1039/c5sc01969a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022] Open
Abstract
miRNAs are important components of regulatory networks that control gene expression and have implications in various diseases including cancer. Targeting oncogenic miRNAs with small molecules is currently being explored to develop cancer therapeutics. Here, we report the development of dual binding neomycin-bisbenzimidazole conjugates that target oncogenic miR-27a with high affinity (Ka = 1.2 to 7.4 × 108 M-1). These conjugates bring significant reduction (∼65% at 5 μM) in mature miRNA levels and penetrate easily in the cells where they localise both in the cytoplasm and the nucleus. Cell cycle analysis showed significant increase in the G0/G1 phase (∼15%) and decrease in the S phase (∼7%) upon treatment with neomycin-bisbenzimidazole conjugates, suggesting inhibition of cell proliferation. Using the conjugation approach, we show that moderately binding ligands can be covalently combined into high affinity binders. This study also highlights the role of linker optimization in designing high affinity ligands for miR-27a targeting.
Collapse
Affiliation(s)
- Smita Nahar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi-110001 , India
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , Delhi-110020 , India . ; ; Tel: +91-11-2766-6156
| | - Nihar Ranjan
- Department of Chemistry , Clemson University , Clemson , SC 29634 , USA
| | - Arjun Ray
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi-110001 , India
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , Delhi-110020 , India . ; ; Tel: +91-11-2766-6156
| | - Dev P Arya
- Department of Chemistry , Clemson University , Clemson , SC 29634 , USA
| | - Souvik Maiti
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi-110001 , India
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , Delhi-110020 , India . ; ; Tel: +91-11-2766-6156
- CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune , 411008 , India . ;
| |
Collapse
|
28
|
Wexselblatt E, Esko JD, Tor Y. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery. ACS NANO 2015; 9:3961-3968. [PMID: 25831231 DOI: 10.1021/nn507382n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
GNeosomes, lysosomotropic lipid vesicles decorated with guanidinoneomycin, can encapsulate and facilitate the cellular internalization and lysosomal delivery of cargo ranging from small molecules to high molecular weight proteins, in a process that is exclusively dependent on cell surface glycosaminoglycans. Their cellular uptake mechanism and co-localization with lysosomes, as well as the delivery, release, and activity of internalized cargo, are quantified. GNeosomes are proposed as a universal platform for lysosomal delivery with potential as a basic research tool and a therapeutic vehicle.
Collapse
Affiliation(s)
- Ezequiel Wexselblatt
- †Chemistry and Biochemistry and ‡Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jeffrey D Esko
- †Chemistry and Biochemistry and ‡Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yitzhak Tor
- †Chemistry and Biochemistry and ‡Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Traboulsi H, Larkin H, Bonin MA, Volkov L, Lavoie CL, Marsault É. Macrocyclic Cell Penetrating Peptides: A Study of Structure-Penetration Properties. Bioconjug Chem 2015; 26:405-11. [DOI: 10.1021/acs.bioconjchem.5b00023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hassan Traboulsi
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Heidi Larkin
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Marc-André Bonin
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Leonid Volkov
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Christine L. Lavoie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology
and Physiology, Faculty of Medicine and Health Sciences and ‡Biophotonics Core
Facility, Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec J1H
5N4, Canada
| |
Collapse
|
30
|
Inoue M, Wexselblatt E, Esko JD, Tor Y. Macromolecular uptake of alkyl-chain-modified guanidinoglycoside molecular transporters. Chembiochem 2014; 15:676-80. [PMID: 24677320 DOI: 10.1002/cbic.201300606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 11/06/2022]
Abstract
Guanidinoglycosides, a family of cellular transporters capable of delivering high Mw biopolymers, have previously been shown to display high selectivity for cell-surface heparan sulfate proteoglycans and promote their clustering. Herein, the internalization mechanism of amphiphilic guanidinoglycoside derivatives was investigated by cell-surface FRET analysis. Unexpectedly, although the heparan sulfate selectivity is maintained, the cellular uptake of these derivatives does not appear to involve clustering of the proteoglycans on the cell surface. This suggests a distinct uptake mechanism when compared to the parent guanidinoglycoside-based carriers.
Collapse
|
31
|
Abstract
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established.
Collapse
Affiliation(s)
- Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Jeffrey
D. Esko
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
32
|
Ghilardi A, Pezzoli D, Bellucci MC, Malloggi C, Negri A, Sganappa A, Tedeschi G, Candiani G, Volonterio A. Synthesis of Multifunctional PAMAM–Aminoglycoside Conjugates with Enhanced Transfection Efficiency. Bioconjug Chem 2013; 24:1928-36. [DOI: 10.1021/bc4003635] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessandra Ghilardi
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Daniele Pezzoli
- Politecnico
di Milano Research Unit, National Interuniversity Consortium of Materials Science and Technology - INSTM, via Mancinelli 7, 20131 Milano, Italy
| | - Maria Cristina Bellucci
- Department
of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Chiara Malloggi
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Armando Negri
- Department
of Veterinary Science and Public Health, Università degli Studi di Milano, via Celoria 10, 20133 Milano, Italy
| | - Aurora Sganappa
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Gabriella Tedeschi
- Department
of Veterinary Science and Public Health, Università degli Studi di Milano, via Celoria 10, 20133 Milano, Italy
| | - Gabriele Candiani
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
- Politecnico
di Milano Research Unit, National Interuniversity Consortium of Materials Science and Technology - INSTM, via Mancinelli 7, 20131 Milano, Italy
| | - Alessandro Volonterio
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
33
|
Parhiz H, Shier WT, Ramezani M. From rationally designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. Int J Pharm 2013; 457:237-59. [PMID: 24060371 DOI: 10.1016/j.ijpharm.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/21/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
Abstract
Lack of safe, efficient and controllable methods for delivering therapeutic genes appears to be the most important factor preventing human gene therapy. Safety issues encountered with viral vectors have prompted substantial attention to in vivo investigations with non-viral vectors throughout the past decade. However, developing non-viral vectors with effectiveness comparable to viral ones has been a challenge. The strategy of designing multifunctional synthetic carriers targeting several extracellular and intracellular barriers in the gene transfer pathway has emerged as a promising approach to improving the efficacy of gene delivery systems. This review will explain how sophisticated synthetic vectors can be created by combining conventional polycationic vectors such as polyethylenimine and basic amino acid peptides with additional polymers and peptides that are designed to overcome potential barriers to the gene delivery process.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Pharmaceutical Research Center, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | | | | |
Collapse
|
34
|
Gziut M, MacGregor HJ, Nevell TG, Mason T, Laight D, Shute JK. Anti-inflammatory effects of tobramycin and a copper-tobramycin complex with superoxide dismutase-like activity. Br J Pharmacol 2013; 168:1165-81. [PMID: 23072509 DOI: 10.1111/bph.12018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway inflammation in cystic fibrosis (CF) patients is characterized by accumulations of neutrophils in the airway and T cells in bronchial tissue, with activation of platelets in the circulation. CF patients are routinely treated with systemic or inhaled tobramycin for airway infection with Pseudomonas aeruginosa. Clinical trials have indicated an anti-inflammatory effect of tobramycin beyond its bactericidal activity. Here, we investigate the anti-inflammatory properties of tobramycin in vitro and consider if these relate to the ability of tobramycin to bind copper, which is elevated in blood and sputum in CF. EXPERIMENTAL APPROACH A copper-tobramycin complex was synthesized. The effect of tobramycin and copper-tobramycin on neutrophil activation and migration of T cells and neutrophils across human lung microvascular endothelial cells in response to thrombin-activated platelets were investigated in vitro. Tobramycin uptake was detected by immunocytochemistry. Intracellular reactive oxygen species were detected using the fluorescent indicator, 2',7'-dichlorofluorescein diacetate (DCFDA). Neutrophil superoxide, hydrogen peroxide and neutrophil elastase activity were measured using specific substrates. Copper was measured using atomic absorption spectroscopy. KEY RESULTS Tobramycin and copper-tobramycin were taken up by endothelial cells via a heparan sulphate-dependent mechanism and significantly inhibited T-cell and neutrophil transendothelial migration respectively. Copper-tobramycin has intracellular and extracellular superoxide dismutase-like activity. Neutrophil elastase inhibition by α1-antitrypsin is enhanced in the presence of copper-tobramycin. Tobramycin and copper-tobramycin are equally effective anti-pseudomonal antibiotics. CONCLUSIONS AND IMPLICATIONS Anti-inflammatory effects of tobramycin in vivo may relate to the spontaneous formation of a copper-tobramycin complex, implying that copper-tobramycin may be more effective therapy.
Collapse
Affiliation(s)
- M Gziut
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | | | | | | | | |
Collapse
|
35
|
Inoue M, Tong W, Esko JD, Tor Y. Aggregation-mediated macromolecular uptake by a molecular transporter. ACS Chem Biol 2013; 8:1383-8. [PMID: 23621420 DOI: 10.1021/cb400172h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endocytosis is a key process in cellular delivery of macromolecules by molecular transporters, although the mechanism of internalization remains unclear. Here, we probe the cellular uptake of streptavidin using biotinylated guanidinoneomycin (biotinGNeo), a low molecular weight guanidinium-rich molecular transporter. Two distinct modes were explored: (i) incubation of cells with a preformed tetravalent streptavidin-(biotinGNeo)4 conjugate and (ii) preincubation of cells with the biotinGNeo before exposure to streptavidin. A significant enhancement in uptake was observed after preincubation with biotinGNeo. FRET studies showed that the enhanced uptake was accompanied by extensive aggregation of streptavidin on the cell surface. Because guanidinylated neomycin was previously found to exclusively bind to heparan sulfate, our observations suggest that heparan sulfate proteoglycan aggregation is a pivotal step for endocytic entry into cells by guanidinoglycosides. These observations put forward a practical and general pathway for the cellular delivery of diverse macromolecules.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wenyong Tong
- Department of Cellular and Molecular
Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jeffrey D. Esko
- Department of Cellular and Molecular
Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Foley EM, Gordts PLSM, Stanford KI, Gonzales JC, Lawrence R, Stoddard N, Esko JD. Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arterioscler Thromb Vasc Biol 2013; 33:2065-74. [PMID: 23846497 DOI: 10.1161/atvbaha.113.301637] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Chylomicron and very low-density lipoprotein remnants are cleared from the circulation in the liver by heparan sulfate proteoglycan (HSPG) receptors (syndecan-1), the low-density lipoprotein receptor (LDLR), and LDLR-related protein-1 (LRP1), but the relative contribution of each class of receptors under different dietary conditions remains unclear. APPROACH AND RESULTS Triglyceride-rich lipoprotein clearance was measured in AlbCre(+)Ndst1(f/f), Ldlr(-/-), and AlbCre(+)Lrp1(f/f) mice and mice containing combinations of these mutations. Triglyceride measurements in single and double mutant mice showed that HSPGs and LDLR dominate clearance under fasting conditions and postprandial conditions, but LRP1 contributes significantly when LDLR is absent. Mice lacking hepatic expression of all 3 receptors (AlbCre(+)Ndst1(f/f) Lrp1(f/f) Ldlr(-/-)) displayed dramatic hyperlipidemia (870 ± 270 mg triglyceride/dL; 1300 ± 350 mg of total cholesterol/dL) and exhibited persistent elevated postprandial triglyceride levels because of reduced hepatic clearance. Analysis of the particles accumulating in mutants showed that HSPGs preferentially clear a subset of small triglyceride-rich lipoproteins (≈ 20-40 nm diameter), whereas LDLR and LRP1 clear larger particles (≈ 40-60 nm diameter). Finally, we show that HSPGs play a major role in clearance of triglyceride-rich lipoproteins in mice fed normal chow or under postprandial conditions but seem to play a less significant role on a high-fat diet. CONCLUSIONS These data show that HSPGs, LDLR, and LRP1 clear distinct subsets of particles, that HSPGs work independently of LDLR and LRP1, and that HSPGs, LDLR, and LRP1 are the 3 major hepatic triglyceride-rich lipoprotein clearance receptors in mice.
Collapse
Affiliation(s)
- Erin M Foley
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Philip L S M Gordts
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA
| | - Kristin I Stanford
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA
| | - Jon C Gonzales
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA
| | - Nicole Stoddard
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
37
|
Parhiz H, Hashemi M, Hatefi A, Shier WT, Amel Farzad S, Ramezani M. Arginine-rich hydrophobic polyethylenimine: potent agent with simple components for nucleic acid delivery. Int J Biol Macromol 2013; 60:18-27. [PMID: 23680600 DOI: 10.1016/j.ijbiomac.2013.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/08/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
Conjugation of various arginine-rich peptide sequences to vectors based on 10 kDa polyethylenimine (PEI) and its hydrophobic derivative (hexanoate-PEI) was investigated as a strategy for improving pDNA and siRNA transfection activities. Six different arginine-histidine (RH) sequences and two arginine-serine (RS) sequences with a range of R/H ratios were designed and coupled to PEI and hexanoate-PEI. All arginine-rich peptide derivatives of PEI significantly enhanced luciferase gene expression compared to PEI 10 kDa alone. Hexanoate-PEI derivatives exhibited higher transfection activity than underivatized PEI vectors. Improved transfection activity may have resulted at least in part from use of higher vector/DNA ratios made possible by reduced cytotoxicity of vectors, and to use of vectors with higher molecular weights. Vectors that were the most efficient in pDNA delivery and transfection were also the most effective in siRNA delivery and protein expression knock down.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
38
|
Verdurmen WPR, Wallbrecher R, Schmidt S, Eilander J, Bovee-Geurts P, Fanghänel S, Bürck J, Wadhwani P, Ulrich AS, Brock R. Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. J Control Release 2013; 170:83-91. [PMID: 23669260 DOI: 10.1016/j.jconrel.2013.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
For arginine-rich cell-penetrating peptides (CPPs), an association with heparan sulfate (HS) chains is considered the first step in the stimulation of uptake for many cells. Much less is known about the role of HS chains in the cell-association and internalization of arginine-free amphipathic CPP such as transportan-10 (TP10). Here, we report that various TP10 analogs differ in their capacity to accumulate on HS-rich plasma membranes in an HS-dependent manner. No accumulation was observed on HS-poor plasma membranes or when HS was removed by enzymatic cleavage. The TP10 analog that strongly clustered on the cell surface, also showed a pronounced capacity to form clusters with HS chains in solution. However, aggregation occurred in a thermodynamically different way compared to the interaction of arginine-rich CPP with HS. To monitor the impact of the peptide on the aggregation of the glycocalyx by time-lapse microscopy, sialic acids were visualized by metabolic labeling using copper-free click chemistry to attach fluorophores to metabolically incorporated azido sugars. Strikingly, a highly enhanced HS-mediated accumulation on the plasma membrane of a particular TP10 analog did not correlate with a better uptake. These findings illustrate that the mode of interaction between cell-penetrating peptides and HS chains has important functional consequences regarding peptide internalization and that there is no direct coupling of interaction, accumulation and uptake.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Post 286, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Grau-Campistany A, Massaguer A, Carrion-Salip D, Barragán F, Artigas G, López-Senín P, Moreno V, Marchán V. Conjugation of a Ru(II) Arene Complex to Neomycin or to Guanidinoneomycin Leads to Compounds with Differential Cytotoxicities and Accumulation between Cancer and Normal Cells. Mol Pharm 2013; 10:1964-76. [DOI: 10.1021/mp300723b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ariadna Grau-Campistany
- Departament de Química
Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Girona, E-17071, Spain
| | | | - Flavia Barragán
- Departament de Química
Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain
- Departament de Química
Inorgànica, Universitat de Barcelona, Barcelona, E-08028, Spain
| | - Gerard Artigas
- Departament de Química
Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain
| | - Paula López-Senín
- Departament de Química
Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain
| | - Virtudes Moreno
- Departament de Química
Inorgànica, Universitat de Barcelona, Barcelona, E-08028, Spain
| | - Vicente Marchán
- Departament de Química
Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain
| |
Collapse
|
40
|
Schmidt NW, Lis M, Zhao K, Lai GH, Alexandrova AN, Tew GN, Wong GCL. Molecular basis for nanoscopic membrane curvature generation from quantum mechanical models and synthetic transporter sequences. J Am Chem Soc 2012; 134:19207-16. [PMID: 23061419 DOI: 10.1021/ja308459j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We investigate the physical origin of peptide-induced membrane curvature by contrasting differences between H-bonding interactions of prototypical cationic amino acids, arginine (Arg) and lysine (Lys), with phosphate groups of phospholipid heads using quantum mechanical (QM) calculations of a minimum model and test the results via synthetic oxaorbornene-based transporter sequences without the geometric constraints of polypeptide backbones. QM calculations suggest that although individual Lys can in principle coordinate two phosphates, they are not able to do so at small inter-Lys distances without drastic energetic penalties. In contrast, Arg can coordinate two phosphates down to less than 5 Å, where guanidinium groups can stack "face to face". In agreement with these observations, poly-Lys cannot generate the nanoscale positive curvature necessary for inducing negative Gaussian membrane curvature, in contrast to poly-Arg. Also consistent with QM calculations, polyguanidine-oxanorbornene homopolymers (PGONs) showed that curvature generation is exquisitely sensitive to the guanidinium group spacing when the phosphate groups are near close packing. Addition of phenyl or butyl hydrophobic groups into guanidine-oxanorbornene polymers increased the amount of induced saddle-splay membrane curvature and broadened the range of lipid compositions where saddle-splay curvature was induced. The enhancement of saddle-splay curvature generation and relaxation of lipid composition requirements via addition of hydrophobicity is consistent with membrane activity profiles. While PGON polymers displayed selective antimicrobial activity against prototypical (Gram positive and negative) bacteria, polymers with phenyl and butyl groups were also active against red blood cells. Our results suggest that it is possible to achieve deterministic molecular design of pore-forming peptides.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Wu CH, Chen YP, Mou CY, Cheng RP. Altering the Tat-derived peptide bioactivity landscape by changing the arginine side chain length. Amino Acids 2012; 44:473-80. [DOI: 10.1007/s00726-012-1357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/28/2012] [Indexed: 12/31/2022]
|
42
|
Collins KD. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 2012; 167:43-59. [DOI: 10.1016/j.bpc.2012.04.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/13/2023]
|
43
|
Wender PA, Cooley CB, Geihe EI. Beyond Cell Penetrating Peptides: Designed Molecular Transporters. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e1-e70. [PMID: 22712022 DOI: 10.1016/j.ddtec.2011.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inspired originally by peptides that traverse biological barriers, research on molecular transporters has since identified the key structural requirements that govern cellular entry, leading to new, significantly more effective and more readily available agents. These new drug delivery systems enable or enhance cellular and tissue uptake, can be targeted, and provide numerous additional advantages of significance in imaging, diagnostics and therapy.
Collapse
Affiliation(s)
- Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA
| | | | | |
Collapse
|
44
|
Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci U S A 2011; 108:16883-8. [PMID: 21969533 DOI: 10.1073/pnas.1108795108] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell-penetrating peptides (CPPs), such as the HIV TAT peptide, are able to translocate across cellular membranes efficiently. A number of mechanisms, from direct entry to various endocytotic mechanisms (both receptor independent and receptor dependent), have been observed but how these specific amino acid sequences accomplish these effects is unknown. We show how CPP sequences can multiplex interactions with the membrane, the actin cytoskeleton, and cell-surface receptors to facilitate different translocation pathways under different conditions. Using "nunchuck" CPPs, we demonstrate that CPPs permeabilize membranes by generating topologically active saddle-splay ("negative Gaussian") membrane curvature through multidentate hydrogen bonding of lipid head groups. This requirement for negative Gaussian curvature constrains but underdetermines the amino acid content of CPPs. We observe that in most CPP sequences decreasing arginine content is offset by a simultaneous increase in lysine and hydrophobic content. Moreover, by densely organizing cationic residues while satisfying the above constraint, TAT peptide is able to combine cytoskeletal remodeling activity with membrane translocation activity. We show that the TAT peptide can induce structural changes reminiscent of macropinocytosis in actin-encapsulated giant vesicles without receptors.
Collapse
|
45
|
Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004952. [PMID: 21690215 DOI: 10.1101/cshperspect.a004952] [Citation(s) in RCA: 1091] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
46
|
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
47
|
Dix AV, Fischer L, Sarrazin S, Redgate CPH, Esko JD, Tor Y. Cooperative, heparan sulfate-dependent cellular uptake of dimeric guanidinoglycosides. Chembiochem 2011; 11:2302-10. [PMID: 20931643 DOI: 10.1002/cbic.201000399] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oligoarginine and guanidinium-rich molecular transporters have been shown to facilitate the intracellular delivery of a diverse range of biologically relevant cargos. Several such transporters have been suggested to interact with cell-surface heparan sulfate proteoglycans as part of their cell-entry pathway. Unlike for other guanidinium-rich transporters, the cellular uptake of guanidinoglycosides at nanomolar concentrations is exclusively heparan sulfate dependent. As distinct cells differ in their expression levels and/or the composition of cell-surface heparan sulfate proteoglycans, one might be able to exploit such differences to selectively target certain cell types. To systematically investigate the nature of their cell-surface interactions, monomeric and dimeric guanidinoglycosides were synthesized by using neomycin, paromomycin, and tobramycin as scaffolds. These transporters differ in the number and 3D arrangement of their guanidinium groups. Their cellular uptake was measured by flow cytometry in wild-type and mutant Chinese hamster ovary cells after the corresponding fluorescent streptavidin-phycoerythrin-Cy5 conjugates had been generated. All derivatives showed negligible uptake in mutant cells lacking heparan sulfate. Decreasing the number of guanidinium groups diminished uptake, but the three dimensional arrangement of these groups was less important for cellular delivery. Whereas conjugates prepared with the monomeric carriers showed significantly reduced uptake in mutant cells expressing heparan sulfate chains with altered patterns of sulfation, conjugates prepared with the dimeric guanidinoglycosides could overcome this deficiency and maintain high levels of uptake in such deficient cells. This finding suggests that cellular uptake depends on the valency of the transporter and both the content and arrangement of the sulfate groups on the cell-surface receptors. Competition studies with chemically desulfated or carboxy-reduced heparin derivatives corroborated these observations. Taken together, these findings show that increasing the valency of the transporters retains heparan sulfate specificity and provides reagents that could distinguish different cell types based on the specific composition of their cell-surface heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Andrew V Dix
- Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
48
|
Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes. Mol Ther 2010; 18:1268-74. [PMID: 20442709 DOI: 10.1038/mt.2010.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Guanidinylated neomycin (GNeo) can transport bioactive, high molecular weight cargo into the interior of cells in a process that depends on cell surface heparan sulfate proteoglycans. In this report, we show that GNeo-modified quantum dots bind to cell surface heparan sulfate, undergo endocytosis and eventually reach the lysosomal compartment. An N-hydroxysuccinimide activated ester of GNeo (GNeo-NHS) was prepared and conjugated to two lysosomal enzymes, beta-D-glucuronidase (GUS) and alpha-L-iduronidase. Conjugation did not interfere with enzyme activity and enabled binding of the enzymes to heparin-Sepharose and heparan sulfate on primary human fibroblasts. Cells lacking the corresponding lysosomal enzyme took up sufficient amounts of the conjugated enzymes to restore normal turnover of glycosaminoglycans. The high capacity of proteoglycan-mediated uptake suggests that this method of delivery might be used for enzyme replacement or introduction of foreign enzymes into cells.
Collapse
|
49
|
Hao G, Zhou J, Guo Y, Long MA, Anthony T, Stanfield J, Hsieh JT, Sun X. A cell permeable peptide analog as a potential-specific PET imaging probe for prostate cancer detection. Amino Acids 2010; 41:1093-101. [DOI: 10.1007/s00726-010-0515-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/04/2010] [Indexed: 12/11/2022]
|
50
|
Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:213-33. [PMID: 20807647 DOI: 10.1016/s1877-1173(10)93010-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertriglyceridemia, characterized by the accumulation of triglyceride-rich lipoproteins in the blood, affects 10-20% of the population in western countries and increases the risk of atherosclerosis, coronary artery disease, and pancreatitis. The etiology of hypertriglyceridemia is complex, and much interest exists in identifying and characterizing the biological and environmental factors that affect the synthesis and turnover of plasma triglycerides. Genetic studies in mice have recently identified that heparan sulfate proteoglycans are a class of receptors that mediate the clearance of triglyceride-rich lipoproteins in the liver. Heparan sulfate proteoglycans are expressed by endothelial cells that line the hepatic sinusoids and the underlying hepatocytes, and are present in the perisinusoidal space (space of Disse). This chapter discusses the dependence of lipoprotein binding on heparan sulfate structure and the identification of hepatocyte syndecan-1 as the primary proteoglycan that mediates triglyceride-rich lipoprotein clearance.
Collapse
Affiliation(s)
- Erin M Foley
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|