1
|
Xu P, Cheng S, Yang X, Xu K, Hou W, Liu L, Peng K, Wen Y, Zhang F. Integrative single-cell analysis reveals transcriptional and epigenetic regulatory features of human developmental dysplasia of the hip. Osteoarthritis Cartilage 2025:S1063-4584(25)00866-0. [PMID: 40154730 DOI: 10.1016/j.joca.2025.02.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE Developmental dysplasia of the hip (DDH) is a developmental disorder that has long-term chronic pain and limited hip joint mobility. The aim of the current study is to understand the specific chondrocyte composition involved in DDH development, identify effective biomarkers for DDH prediction, and elucidate the gene regulatory elements driving DDH progression. METHOD In this study, we performed an integrated analysis combining single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing to investigate the molecular programs and epigenetic changes governing human DDH pathogenesis. Validation of marker genes for distinct chondrocyte populations was performed via immunohistochemical assays, alongside characterization of regulatory elements specific to DDH. RESULTS Our analysis identified seven molecularly distinct chondrocyte populations in DDH cartilage, including a novel inflammatory chondrocyte population with unique molecular signatures. Furthermore, we reconstructed the differentiation trajectory of chondrocytes, shedding light on their roles in DDH pathogenesis. Integrative analyses of transcriptomic and chromatin accessibility profiles highlighted shared regulatory features and transcriptional programs among chondrocyte subtypes, with several regulatory elements linked to DDH progression. Immunohistochemical validation corroborated the presence of key marker genes in distinct chondrocyte subsets. CONCLUSION Our findings contribute to clarifying the cellular heterogeneity of DDH and offer insights into potential early diagnostic and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Weikun Hou
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Kan Peng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
2
|
Uchio Y, Ishijima M, Ikeuchi M, Ikegawa S, Ishibashi Y, Omori G, Shiba N, Takeuchi R, Tanaka S, Tsumura H, Deie M, Tohyama H, Yoshimura N, Nakashima Y. Japanese Orthopaedic Association (JOA) clinical practice guidelines on the management of Osteoarthritis of the knee - Secondary publication. J Orthop Sci 2025; 30:185-257. [PMID: 39127581 DOI: 10.1016/j.jos.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Yuji Uchio
- Department of Orthopaedic Surgery, Shimane University, Izumo, Japan.
| | | | - Masahiko Ikeuchi
- Department of Orthopaedic Surgery, Kochi University, Nankoku, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrated Medical Science (IMS), RIKEN, Tokyo, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Go Omori
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoto Shiba
- Department of Orthopaedics, Kurume University School of Medicine, Fukuoka, Japan
| | - Ryohei Takeuchi
- Department of Joint Surgery Center, Yokohama Sekishinkai Hospital, Yokohama, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, University of Tokyo, Tokyo, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Oita University, Oita, Japan
| | - Masataka Deie
- Department of Orthopaedic Surgery, Aichi Medical University, Nagakute, Japan
| | | | - Noriko Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
3
|
Wang W, Zhuang W, Zeng W, Feng Y, Zhang Z. Review of susceptibility genes in developmental dysplasia of the hip: A comprehensive examination of candidate genes and pathways. Clin Genet 2025; 107:3-12. [PMID: 39307874 DOI: 10.1111/cge.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 12/18/2024]
Abstract
Developmental dysplasia of the hip (DDH) is one of the most prevalent skeletal deformities, primarily due to the incompatibility between the acetabulum and femoral head. It includes complete dislocation, partial dislocation, instability with femoral head subluxation, and a range of imaging abnormalities that reflect inadequate acetabular formation. Known risk factors for DDH include positive family history, sex, premature birth, non-cephalic delivery, oligohydramnios, gestational diabetes mellitus, maternal hypertension, associated anomalies, swaddling clothes, intrauterine space restriction, and post-term pregnancy. Various research designs have been employed in DDH studies to identify relevant genes, including candidate gene association studies (CGAS), genome-wide association studies (GWAS), restriction fragment length polymorphism (RFLP), and whole exome sequencing (WES). To date, multiple DDH-associated genes have been identified in various populations. Despite extensive research into the epidemiology, risk factors, and genes associated with DDH, its pathogenesis remains unclear. This study provides a comprehensive summary of DDH research designs and evidence for relevant gene mutations through a PubMed search.
Collapse
Affiliation(s)
- Wenla Wang
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wei Zhuang
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenxiang Zeng
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yuqi Feng
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhaowei Zhang
- Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
4
|
Kumar R, Tripathi R, Sinha NR, Mohan RR. Transcriptomic landscape of quiescent and proliferating human corneal stromal fibroblasts. Exp Eye Res 2024; 248:110073. [PMID: 39243928 PMCID: PMC11532003 DOI: 10.1016/j.exer.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study analyzed the transcriptional changes in primary human corneal stromal fibroblasts (hCSFs) grown under quiescent (serum-free) and proliferating (serum-supplemented) culture conditions to identify genes, pathways, and protein‒protein interaction networks influencing corneal repair and regeneration. Primary hCSFs were isolated from donor human corneas and maintained in serum-free or serum-laden conditions. RNA was extracted from confluent cultures using Qiagen kit and subjected to RNA sequencing (RNAseq) analysis. Differential gene expression (DGE) and pathway enrichment analyses were conducted using DESeq2 and Gene Set Enrichment Analysis (GSEA), respectively. Protein‒protein interaction (PPI) networks were created exploiting the STRING database and analyzed with Cytoscape and the cytoHubba plugin. RNA-seq revealed 5,181 genes that were significantly differentially expressed/changed among the 18,812 annotated genes (p value ˂0.05). A cutoff value of a log2-fold change of ±1.5 or greater was used to identify 674 significantly upregulated and 771 downregulated genes between quiescent and proliferating hCSFs. Pathway enrichment analysis revealed significant changes in genes linked to cell cycle regulation, inflammatory, and oxidative stress response pathways, such as E2F Targets, G2M Checkpoint, and MYC Targets, TNFA signaling via NF-kB, and oxidative phosphorylation. Protein-protein interaction network analysis highlighted critical hub genes. The FGF22, CD34, ASPN, DPT, LUM, FGF10, PDGFRB, ECM2, DCN, VEGFD, OMD, OGN, ANGPT1, CDH5, and PRELP were upregulated, whereas genes linked to cell cycle regulation and mitotic progression, such as BUB1, TTK, KIF23, KIF11, BUB1B, DLGAP5, NUSAP1, CCNA2, CCNB1, BIRC5, CDK1, KIF20A, AURKB, KIF2C, and CDCA8, were downregulated. The RNA sequences and gene count files have been submitted to the Gene Expression Omnibus (accession # GSE260476). Our study provides a comprehensive information on the transcriptional and molecular changes in hCSFs under quiescent and proliferative conditions and highlights key pathways and hub genes.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Ran Z, Mu BR, Zhu T, Zhang Y, Luo JX, Yang X, Li B, Wang DM, Lu MH. Predicting biomarkers related to idiopathic pulmonary fibrosis: Robust ranking aggregation analysis and animal experiment verification. Int Immunopharmacol 2024; 139:112766. [PMID: 39067403 DOI: 10.1016/j.intimp.2024.112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable lung disease characterized by unknown etiology. This study employs robust ranking aggregation to identify consistent differential genes across multiple datasets, aiming to enhance prognostic evaluation and facilitate the development of more effective immunotherapy strategies for IPF. Using the GSE10667, GSE110147, and GSE24206 datasets, the analysis identifies 92 robust differentially expressed genes (DEGs), including SPP1, IGF1, ASPN, and KLHL13, highlighted as potential biomarkers through machine learning and experimental validation. Additionally, significant differences in immune cell types between IPF samples and controls, such as Plasma cells, Macrophages M0, Mast cells resting, T cells CD8, and NK cells resting, inform the construction of diagnostic and survival prediction models, demonstrating good applicability. These findings provide insights into IPF pathophysiology and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Department of Respiratory Medicine, Guangyuan Hospital of Traditional Chinese Medicine, No.133 Jianshe Road, Lizhou District, Guangyuan 628099, Sichuan, China
| | - Dong-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Hosen S, Ikeda-Yorifuji I, Yamashita T. Asporin and CD109, expressed in the injured neonatal spinal cord, attenuate axonal re-growth in vitro. Neurosci Lett 2024; 833:137832. [PMID: 38796094 DOI: 10.1016/j.neulet.2024.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.
Collapse
Affiliation(s)
- Sakura Hosen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
8
|
Liu S, Yan X, Guo J, An H, Li X, Yang L, Yu X, Li S. Periodontal ligament-associated protein-1 knockout mice regulate the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. J Cell Physiol 2024; 239:e31062. [PMID: 37357387 DOI: 10.1002/jcp.31062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-β1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-β1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-β1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xiao Yan
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
- Department of Stomatology, the Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hong An
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xingrui Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Liying Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xijiao Yu
- Department of Endodontics, Central Laboratory, Jinan Stamotological Hospital, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, Shandong, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
9
|
Zhang Y, Xie J, Wen S, Cao P, Xiao W, Zhu J, Li S, Wang Z, Cen H, Zhu Z, Ding C, Ruan G. Evaluating the causal effect of circulating proteome on the risk of osteoarthritis-related traits. Ann Rheum Dis 2023; 82:1606-1617. [PMID: 37595989 DOI: 10.1136/ard-2023-224459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVES This study aims to identify circulating proteins that are causally associated with osteoarthritis (OA)-related traits through Mendelian randomisation (MR)-based analytical framework. METHODS Large-scale two-sample MR was employed to estimate the effects of thousands of plasma proteins on 12 OA-related traits. Additional analyses including Bayesian colocalisation, Steiger filtering analysis, assessment of protein-altering variants and mapping expression quantitative trait loci to protein quantitative trait loci were performed to investigate the reliability of the MR findings; protein-protein interaction, pathway enrichment analysis and evaluation of drug targets were conducted to deepen the understanding and identify potential therapeutic targets of OA. RESULTS Dozens of circulating proteins were identified to have putatively causal effects on OA-related traits, and a majority of these proteins were either drug targets or considered druggable. CONCLUSIONS Through MR analysis, we have identified numerous plasma proteins associated with OA-related traits, shedding light on protein-mediated mechanisms and offering promising therapeutic targets for OA.
Collapse
Affiliation(s)
- Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyu Xie
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Simin Wen
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wende Xiao
- Department of orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianwei Zhu
- Department of orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengfa Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Han Cen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Kinoshita M, Yamada S, Sasaki J, Suzuki S, Kajikawa T, Iwayama T, Fujihara C, Imazato S, Murakami S. Mice Lacking PLAP-1/Asporin Show Alteration of Periodontal Ligament Structures and Acceleration of Bone Loss in Periodontitis. Int J Mol Sci 2023; 24:15989. [PMID: 37958972 PMCID: PMC10649079 DOI: 10.3390/ijms242115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Periodontal ligament-associated protein 1 (PLAP-1), also known as Asporin, is an extracellular matrix protein expressed in the periodontal ligament and plays a crucial role in periodontal tissue homeostasis. Our previous research demonstrated that PLAP-1 may inhibit TLR2/4-mediated inflammatory responses, thereby exerting a protective function against periodontitis. However, the precise roles of PLAP-1 in the periodontal ligament (PDL) and its relationship to periodontitis have not been fully explored. In this study, we employed PLAP-1 knockout mice to investigate its roles and contributions to PDL tissue and function in a ligature-induced periodontitis model. Mandibular bone samples were collected from 10-week-old male C57BL/6 (WT) and PLAP-1 knockout (KO) mice. These samples were analyzed through micro-computed tomography (μCT) scanning, hematoxylin and eosin (HE) staining, picrosirius red staining, and fluorescence immunostaining using antibodies targeting extracellular matrix proteins. Additionally, the structure of the PDL collagen fibrils was examined using transmission electron microscopy (TEM). We also conducted tooth extraction and ligature-induced periodontitis models using both wild-type and PLAP-1 KO mice. PLAP-1 KO mice did not exhibit any changes in alveolar bone resorption up to the age of 10 weeks, but they did display an enlarged PDL space, as confirmed by μCT and histological analyses. Fluorescence immunostaining revealed increased expression of extracellular matrix proteins, including Col3, BGN, and DCN, in the PDL tissues of PLAP-1 KO mice. TEM analysis demonstrated an increase in collagen diameter within the PDL of PLAP-1 KO mice. In line with these findings, the maximum stress required for tooth extraction was significantly lower in PLAP-1 KO mice in the tooth extraction model compared to WT mice (13.89 N ± 1.34 and 16.51 N ± 1.31, respectively). In the ligature-induced periodontitis model, PLAP-1 knockout resulted in highly severe alveolar bone resorption, with a higher number of collagen fiber bundle tears and significantly more osteoclasts in the periodontium. Our results demonstrate that mice lacking PLAP-1/Asporin show alteration of periodontal ligament structures and acceleration of bone loss in periodontitis. This underscores the significant role of PLAP-1 in maintaining collagen fibrils in the PDL and suggests the potential of PLAP-1 as a therapeutic target for periodontal diseases.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoru Yamada
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Junichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shigeki Suzuki
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tetsuhiro Kajikawa
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tomoaki Iwayama
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| |
Collapse
|
11
|
Wei F, Li T, Li J, Zhang Y, Liu T, Zhao Z, Zhu W, Guo H, Yang R. Prognostic and Immunological Role of Asporin across Cancers and Exploration in Bladder Cancer. Gene 2023:147573. [PMID: 37336272 DOI: 10.1016/j.gene.2023.147573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Asporin (ASPN) has been identified as a player in tumorigenesis, but its precise roles and modulatory function are largely unknown. METHODS In the present study, ASPN expression was first explored, followed by a prognostic evaluation of ASPN and a comprehensive investigation of the connections between ASPN and immunomodulation, immune cell infiltration and potential compounds on a pancancer level. Finally, ASPN expression was validated in bladder urothelial carcinoma (BLCA) tissues, and the potential function of ASPN, including its effects on migration and invasion capabilities, was investigated in tumor cells. RESULTS The expression of ASPN exhibited significant variation across cancers and was found to be associated with patient prognosis. In addition, the expression level of APSN was markedly correlated with the abundances of infiltrating immune cells and cancer-associated fibroblasts and the expression levels of immunomodulatory genes based on the results of pancancer analysis. Metastasis and immune-associated signaling pathways were identified in enrichment analysis based on ASPN expression. Finally, we confirmed that ASPN expression increased with the degree of malignancy in BLCA tissues and cell lines and that low expression of ASPN hindered the migration and invasion of cells. CONCLUSIONS ASPN has the potential to be a biomarker of cancer prognosis and a therapeutic target, and it also has predictive capability for the progression of BLCA.
Collapse
Affiliation(s)
- Fayun Wei
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianhang Li
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiazheng Li
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Zhang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Rong Yang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
12
|
Nakajima M, Koido M, Guo L, Terao C, Ikegawa S. A novel CCDC91 isoform associated with ossification of the posterior longitudinal ligament of the spine works as a non-coding RNA to regulate osteogenic genes. Am J Hum Genet 2023; 110:638-647. [PMID: 36990086 PMCID: PMC10119134 DOI: 10.1016/j.ajhg.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common intractable disease that causes spinal stenosis and myelopathy. We have previously conducted genome-wide association studies for OPLL and identified 14 significant loci, but their biological implications remain mostly unclear. Here, we examined the 12p11.22 locus and identified a variant in the 5' UTR of a novel isoform of CCDC91 that was associated with OPLL. Using machine learning prediction models, we determined that higher expression of the novel CCDC91 isoform was associated with the G allele of rs35098487. The risk allele of rs35098487 showed higher affinity in the binding of nuclear proteins and transcription activity. Knockdown and overexpression of the CCDC91 isoform in mesenchymal stem cells and MG-63 cells showed paralleled expression of osteogenic genes, including RUNX2, the master transcription factor of osteogenic differentiation. The CCDC91 isoform directly interacted with MIR890, which bound to RUNX2 and decreased RUNX2 expression. Our findings suggest that the CCDC91 isoform acts as a competitive endogenous RNA by sponging MIR890 to increase RUNX2 expression.
Collapse
Affiliation(s)
- Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan; Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan.
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo 108-8639, Japan.
| |
Collapse
|
13
|
Mori Y, Ueno K, Chiba D, Hashimoto K, Kawai Y, Baba K, Tanaka H, Aki T, Ogasawara M, Shibasaki N, Tokunaga K, Aizawa T, Nagasaki M. Genome-Wide Association Study and Transcriptome of Japanese Patients with Developmental Dysplasia of the Hip Demonstrates an Association with the Ferroptosis Signaling Pathway. Int J Mol Sci 2023; 24:ijms24055019. [PMID: 36902448 PMCID: PMC10003185 DOI: 10.3390/ijms24055019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
This study examined the association between developmental dysplasia of the hip (DDH) and disease-associated loci in a Japanese cohort. A genome-wide association study (GWAS) of 238 Japanese patients with DDH and 2044 healthy individuals was performed. As a replicate, GWAS was also conducted on the UK Biobank data with 3315 cases and matched 74,038 controls. Gene set enrichment analyses (GSEAs) of both the genetics and transcriptome of DDH were performed. Transcriptome analysis of cartilage specimens from DDH-associated osteoarthritis and femoral neck fractures was performed as a control. Most of the lead variants were very low-frequency ones in the UK, and variants in the Japanese GWAS could not be replicated with the UK GWAS. We assigned DDH-related candidate variants to 42 and 81 genes from the Japanese and UK GWASs, respectively, using functional mapping and annotation. GSEA of gene ontology, disease ontology, and canonical pathways identified the most enriched pathway to be the ferroptosis signaling pathway, both in the Japanese gene set as well as the Japanese and UK merged set. Transcriptome GSEA also identified significant downregulation of genes in the ferroptosis signaling pathway. Thus, the ferroptosis signaling pathway may be associated with the pathogenic mechanism of DDH.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Daisuke Chiba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Aki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanori Ogasawara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoto Shibasaki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8507, Japan
- Correspondence:
| |
Collapse
|
14
|
Chen J, Lin Y, Sun Z. Inhibition of miR-101-3p prevents human aortic valve interstitial cell calcification through regulation of CDH11/SOX9 expression. Mol Med 2023; 29:24. [PMID: 36809926 PMCID: PMC9945614 DOI: 10.1186/s10020-023-00619-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the second leading cause of adult heart diseases. The purpose of this study is to investigate whether miR-101-3p plays a role in the human aortic valve interstitial cells (HAVICs) calcification and the underlying mechanisms. METHODS Small RNA deep sequencing and qPCR analysis were used to determine changes in microRNA expression in calcified human aortic valves. RESULTS The data showed that miR-101-3p levels were increased in the calcified human aortic valves. Using cultured primary HAVICs, we demonstrated that the miR-101-3p mimic promoted calcification and upregulated the osteogenesis pathway, while anti-miR-101-3p inhibited osteogenic differentiation and prevented calcification in HAVICs treated with the osteogenic conditioned medium. Mechanistically, miR-101-3p directly targeted cadherin-11 (CDH11) and Sry-related high-mobility-group box 9 (SOX9), key factors in the regulation of chondrogenesis and osteogenesis. Both CDH11 and SOX9 expressions were downregulated in the calcified human HAVICs. Inhibition of miR-101-3p restored expression of CDH11, SOX9 and ASPN and prevented osteogenesis in HAVICs under the calcific condition. CONCLUSION miR-101-3p plays an important role in HAVIC calcification through regulation of CDH11/SOX9 expression. The finding is important as it reveals that miR-1013p may be a potential therapeutic target for calcific aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Physiology, College of Medicine, UT Cardiovascular Institute, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
15
|
Lim EXY, Webster JA, Rudd PA, Herrero LJ. Pathways Activated by Infected and Bystander Chondrocytes in Response to Ross River Virus Infection. Viruses 2022; 15:136. [PMID: 36680176 PMCID: PMC9864161 DOI: 10.3390/v15010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Old world alphaviruses, such as Ross River virus (RRV), cause debilitating arthralgia during acute and chronic stages of the disease. RRV-induced cartilage degradation has been implicated as a cause of joint pain felt by RRV patients. Chondrocytes are a major cell type of cartilage and are involved in the production and maintenance of the cartilage matrix. It is thought that these cells may play a vital role in RRV disease pathogenesis. In this study, we used RNA-sequencing (RNA-Seq) to examine the transcriptomes of RRV-infected and bystander chondrocytes in the same environment. RRV containing green fluorescent protein (GFP) allowed for the separation of RRV-infected (GFP+) and bystander uninfected cells (GFP-). We found that whereas GFP+ and GFP- populations commonly presented similar gene expression profiles during infection, there were also unique signatures. For example, RIMS2 and FOXJ1 were unique to GFP+ cells, whilst Aim2 and CCL8 were only found in bystander chondrocytes. This indicates that careful selection of potential therapeutic targets is important to minimise adverse effects to the neighbouring uninfected cell populations. Our study serves as a resource to provide more information about the pathways and responses elicited by RRV in cells which are both infected and stimulated because of neighbouring infected cells.
Collapse
|
16
|
Mesenchymal/stromal stem cells: necessary factors in tumour progression. Cell Death Discov 2022; 8:333. [PMID: 35869057 PMCID: PMC9307857 DOI: 10.1038/s41420-022-01107-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal/stromal stem cells (MSCs) are a crucial component of the tumour microenvironment (TME). They can be recruited from normal tissues into the TME and educated by tumour cells to transform into tumour-associated MSCs, which are oncogenic cells that promote tumour development and progression by impacting or transforming into various kinds of cells, such as immune cells and endothelial cells. Targeting MSCs in the TME is a novel strategy to prevent malignant processes. Exosomes, as communicators, carry various RNAs and proteins and thus link MSCs and the TME, which provides options for improving outcomes and developing targeted treatment.
Collapse
|
17
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
18
|
Özay Y, Özay AC, Özay ÖE, Edebal O. Does asporin have a role in polycystic ovary syndrome? A pilot study. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:653-657. [DOI: 10.1590/1806-9282.20220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
|
19
|
Huang C, Sharma A, Thakur R, Rai D, Katiki M, Germano JDF, Song Y, Singh S, Sin J, Sengstock D, Andres AM, Murali R, Mentzer RM, Gottlieb RA, Piplani H. Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling. Matrix Biol 2022; 110:40-59. [DOI: 10.1016/j.matbio.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 01/15/2023]
|
20
|
Huang S, Lai X, Yang L, Ye F, Huang C, Qiu Y, Lin S, Pu L, Wang Z, Huang W. Asporin Promotes TGF-β-induced Lung Myofibroblast Differentiation by Facilitating Rab11-dependent Recycling of TβRI. Am J Respir Cell Mol Biol 2021; 66:158-170. [PMID: 34705621 DOI: 10.1165/rcmb.2021-0257oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with high mortality and morbidity. Asporin (ASPN), a member of the small leucine-rich proteoglycan (SLRP) family, plays crucial roles in tissue injury and regeneration. However, the precise pathophysiological role of ASPN and its molecular mechanisms in IPF remain unknown. We sought to investigate the role of ASPN during the development of pulmonary fibrosis and the therapeutic potential of targeting ASPN-related signaling pathways. In our study, three microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened out by bioinformatic analysis. Hub genes were selected from the protein-protein interaction network. ASPN was examined in lung tissues from pulmonary fibrosis mouse models and the role of ASPN in TGF-β/Smad signaling was determined by transfection with ASPN shRNA vectors in vitro. Biotinylation assays were conducted to measure plasma membrane TβRI and TβRI recycling after ASPN knockdown. The results showed ASPN expression was increased in the lungs of pulmonary fibrosis mouse models, and ASPN was primarily localized in α-SMA+ myofibroblasts. In vitro experiments proved that ASPN knockdown inhibited TGF-β/Smad signaling and myofibroblast differentiation by regulating the stability of TβRI. Further molecular mechanisms revealed that ASPN knockdown inhibited TGF-β/Smad signaling by suppressing recycling of TβRI to the cell surface in a Rab11-dependent manner and facilitated lysosome-mediated degradation of TβRI. In conclusion, our findings provide important evidence for the use of ASPN as a novel pharmacological target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Shaojie Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Cardiac Surgery, Guangzhou, China
| | - Xiaofan Lai
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Lu Yang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Fang Ye
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Chanyan Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Yuan Qiu
- Sun Yat-Sen University, 26469, Center for stem cell biology and tissue engineering, Guangzhou, China
| | - Sijia Lin
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Lvya Pu
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Zhongxing Wang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Wenqi Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China;
| |
Collapse
|
21
|
Wan H, Huang X, Cong P, He M, Chen A, Wu T, Dai D, Li W, Gao X, Tian L, Liang H, Xiong L. Identification of Hub Genes and Pathways Associated With Idiopathic Pulmonary Fibrosis via Bioinformatics Analysis. Front Mol Biosci 2021; 8:711239. [PMID: 34476240 PMCID: PMC8406749 DOI: 10.3389/fmolb.2021.711239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease whose etiology remains unknown. The purpose of this study was to explore hub genes and pathways related to IPF development and prognosis. Multiple gene expression datasets were downloaded from the Gene Expression Omnibus database. Weighted correlation network analysis (WGCNA) was performed and differentially expressed genes (DEGs) identified to investigate Hub modules and genes correlated with IPF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were performed on selected key genes. In the PPI network and cytoHubba plugin, 11 hub genes were identified, including ASPN, CDH2, COL1A1, COL1A2, COL3A1, COL14A1, CTSK, MMP1, MMP7, POSTN, and SPP1. Correlation between hub genes was displayed and validated. Expression levels of hub genes were verified using quantitative real-time PCR (qRT-PCR). Dysregulated expression of these genes and their crosstalk might impact the development of IPF through modulating IPF-related biological processes and signaling pathways. Among these genes, expression levels of COL1A1, COL3A1, CTSK, MMP1, MMP7, POSTN, and SPP1 were positively correlated with IPF prognosis. The present study provides further insights into individualized treatment and prognosis for IPF.
Collapse
Affiliation(s)
- Hanxi Wan
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xinwei Huang
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Peilin Cong
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Mengfan He
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Tingmei Wu
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Danqing Dai
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Wanrong Li
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xiaofei Gao
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Li Tian
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Huazheng Liang
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, School of Medcine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Ege B, Erdogmus Z, Bozgeyik E, Koparal M, Kurt MY, Gulsun B. Asporin levels in patients with temporomandibular joint disorders. J Oral Rehabil 2021; 48:1109-1117. [PMID: 34309889 DOI: 10.1111/joor.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Understanding the pathogenesis of temporomandibular joint disorder (TMD) is important for diagnosis and treatment planning. Thus, biochemical analysis is usually used for the detection of tissue damage. OBJECTIVE In this study, we aimed to investigate the serum asporin levels in patients with TMD. METHODS Our study was planned to be performed on 43 healthy individuals (control group) without any joint problems and 43 patients with temporomandibular joint internal derangement (TMJ-ID; patients group) according to the Wilkes classification (stages 3, 4 and 5). Serum asporin levels were determined by the enzyme-linked immunosorbent assay (ELISA) method and compared between groups. Asporin levels were analysed according to the demographic and clinical characteristics of the patients, and the differences between them were demonstrated. RESULTS Asporin levels were found to be significantly increased in the patients group compared to control group (p = .0303). The age and gender distributions of the samples in the control and patients groups were homogeneous, and there was no statistically significant difference between the groups. In addition, while there was no significant change in asporin levels in females in the patients group compared with the control group, the asporin levels were significantly increased in males in the patients group (p = .0403). CONCLUSIONS Consequently, asporin seems to be an important biomarker in the pathobiology of TMJ-ID as it is significantly upregulated in these patients.
Collapse
Affiliation(s)
- Bilal Ege
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adıyaman University, Adıyaman, Turkey
| | - Zozan Erdogmus
- Oral and Maxillofacial Surgery Clinic, Diyarbakır Oral and Dental Health Center, Diyarbakır, Turkey
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Mahmut Koparal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adıyaman University, Adıyaman, Turkey
| | - Muhammed Yusuf Kurt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adıyaman University, Adıyaman, Turkey
| | - Belgin Gulsun
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
23
|
Yashiro M, Hasegawa T, Yamamoto Y, Tsujio G, Nishimura S, Sera T, Sugimoto A, Kushiyama S, Kasashima H, Fukuoka T, Sakurai K, Toyokawa T, Kubo N, Ohira M. Asporin Expression on Stromal Cells and/or Cancer Cells Might Be A Useful Prognostic Marker in Patients with Diffuse-Type Gastric Cancer. Eur Surg Res 2021; 62:53-60. [PMID: 33882483 DOI: 10.1159/000515458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asporin (ASPN), a member of the proteoglycan family, has been shown to have a close correlation with cancer progression. It is not known whether ASPN is an oncogenic driver or a tumor suppressor in human gastric cancer. We sought herein to determine the relationship between ASPN expression and clinicopathological features of gastric cancer. PATIENTS AND METHODS A total of 296 gastric cancer patients (diffuse type, n = 144; intestinal type, n = 152) were enrolled. The ASPN expression level in each case was analyzed by immunohistochemistry. RESULTS ASPN was mainly found on stromal cells, especially on fibroblasts in tumor stroma, i.e., cancer-associated fibroblasts. The ASPN expression on either cancer cells or stromal cells was significantly high in macroscopic scirrhous-type tumors (p < 0.001) and histologically abundant stroma-type tumors (p < 0.001). Interestingly, a Kaplan-Meier survival curve of the 144 cases of diffuse-type gastric cancer revealed a significantly poorer prognosis in patients with ASPN-positive expression (p = 0.043; log rank) compared to those with ASPN-negative expression, but the prognoses were not significantly different in these subgroups of the 152 cases of intestinal-type gastric cancer. A multivariate analysis with respect to overall survival showed that ASPN expression on stromal cells and/or cancer cells was significantly correlated with overall survival in patients with diffuse-type gastric cancer (p = 0.041). CONCLUSION In gastric cancer, ASPN was expressed mainly on stromal cells and partially on cancer cells. ASPN expression on stromal cells and/or cancer cells might be a useful prognostic marker in patients with diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tsuyoshi Hasegawa
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Hiroaki Kasashima
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tatsunari Fukuoka
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Katsunobu Sakurai
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Naoshi Kubo
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| |
Collapse
|
24
|
Matsushima N, Miyashita H, Kretsinger RH. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans. J Cell Commun Signal 2021; 15:519-531. [PMID: 33860400 DOI: 10.1007/s12079-021-00616-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan.
- Center for Medical Education, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Hiroki Miyashita
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan
- Hokubu Rinsho Co., Ltd, Sapporo, 060⎼0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
25
|
Badshah Y, Shabbir M, Hayat H, Fatima Z, Burki A, Khan S, Rehman SU. Genetic markers of osteoarthritis: early diagnosis in susceptible Pakistani population. J Orthop Surg Res 2021; 16:124. [PMID: 33563308 PMCID: PMC7871631 DOI: 10.1186/s13018-021-02230-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background and aim Osteoarthritis (OA) is a multiple factorial disease with unidentified specific markers. The alternate method such as biochemical and genetic markers for the diagnosis of osteoarthritis is an undeniable need of the current era. In the present study, we aimed to investigate the association of interleukin-6 (IL-6)(IL-6-174G/C), transforming growth factor-β1 (TGF-beta1-29C/T), and calmodulin 1 gene-16C/T (CALM1-16C/T) polymorphism in clinically definite Pakistani OA patients and matching controls. Methods The study design was based on biochemical analysis of OA via serum hyaluronic acid (HA) enzyme-linked immunosorbent assay (ELISA) test and genetic analysis based on amplification refractory mutation system (ARMS) PCR. Statistical evaluations of allele probabilities were carried through chi-squared test. This study includes 295 subjects including 100 OA patients, 105 OA susceptible, and 90 controls. Results HA levels obtained were distinct for all the populations: patients with a mean value of ± 5.15, susceptible with mean value of ± 2.27, and control with mean value of ± 0.50. The prevalent genotypes in OA were GG genotype for IL-6-174G/C, CT genotypes for TGF β1-29C/T, and TT genotype for CALM1-16C/T polymorphism. A significant P value of 0.0152 is obtained as a result of the comparison among the patients and controls on the number of individuals possessing the disease-associated genotypes. Conclusions The positive association of GG genotype for IL-6-174G/C, TT genotype for CALM1-16C/T polymorphism in OA while high prevalence of CT TGF β1-29 C/T genotypes in susceptible population in our study group implies these polymorphisms can serve as susceptible marker to OA and genetic factors for screening OA patients in Pakistan. There might be other factors that may influence disease susceptibility. However, further investigations on larger population are required to determine the consequences of genetic variations for prediagnosis of OA.
Collapse
Affiliation(s)
- Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Hunza Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Zoha Fatima
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Asad Burki
- Type D hospital, LORA, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Sidra Khan
- Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | |
Collapse
|
26
|
Sasaki Y, Takagane K, Konno T, Itoh G, Kuriyama S, Yanagihara K, Yashiro M, Yamada S, Murakami S, Tanaka M. Expression of asporin reprograms cancer cells to acquire resistance to oxidative stress. Cancer Sci 2021; 112:1251-1261. [PMID: 33393151 PMCID: PMC7935789 DOI: 10.1111/cas.14794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Asporin (ASPN), a small leucine‐rich proteoglycan expressed predominantly by cancer associated fibroblasts (CAFs), plays a pivotal role in tumor progression. ASPN is also expressed by some cancer cells, but its biological significance is unclear. Here, we investigated the effects of ASPN expression in gastric cancer cells. Overexpression of ASPN in 2 gastric cancer cell lines, HSC‐43 and 44As3, led to increased migration and invasion capacity, accompanied by induction of CD44 expression and activation of Rac1 and MMP9. ASPN expression increased resistance of HSC‐43 cells to oxidative stress by reducing the amount of mitochondrial reactive oxygen species. ASPN induced expression of the transcription factor HIF1α and upregulated lactate dehydrogenase A (LDHA) and PDH‐E1α, suggesting that ASPN reprograms HSC‐43 cells to undergo anaerobic glycolysis and suppresses ROS generation in mitochondria, which has been observed in another cell line HSC‐44PE. By contrast, 44As3 cells expressed high levels of HIF1α in response to oxidant stress and escaped apoptosis regardless of ASPN expression. Examination of xenografts in the gastric wall of ASPN–/– mice revealed that growth of HSC‐43 tumors with increased micro blood vessel density was significantly accelerated by ASPN; however, ASPN increased the invasion depth of both HSC‐43 and 44As3 tumors. These results suggest that ASPN has 2 distinct effects on cancer cells: HIF1α‐mediated resistance to oxidative stress via reprogramming of glucose metabolism, and activation of CD44‐Rac1 and MMP9 to promote cell migration and invasion. Therefore, ASPN may be a new therapeutic target in tumor fibroblasts and cancer cells in some gastric carcinomas.
Collapse
Affiliation(s)
- Yuto Sasaki
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Takumi Konno
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
27
|
Wang G, Chen S, Xie Z, Shen S, Xu W, Chen W, Li X, Wu Y, Li L, Liu B, Ding X, Qin A, Fan S. TGFβ attenuates cartilage extracellular matrix degradation via enhancing FBXO6-mediated MMP14 ubiquitination. Ann Rheum Dis 2020; 79:1111-1120. [PMID: 32409323 PMCID: PMC7392491 DOI: 10.1136/annrheumdis-2019-216911] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES FBXO6, a component of the ubiquitin E3 ligases, has been shown to bind high mannose N-linked glycoproteins and act as ubiquitin ligase subunits. Most proteins in the secretory pathway, such as matrix metalloproteinases, are modified with N-glycans and play important roles in the development of osteoarthritis (OA). However, whether FBXO6 exerts regulatory effects on the pathogenesis of OA remains undefined. METHODS The expression of FBXO6 was examined in the cartilage of human and multiple mouse OA models. The role of FBXO6 in cartilage degeneration was analysed with global FBXO6-/- mice, transgenic Col2a1-CreERT2;FBXO6f/f mice. The FBXO6 interacting partner MMP14 and its regulatory transcriptional factor SMAD2/3 were identified and validated in different pathological models as well as SMAD2-/- mice. RESULTS The expression of FBXO6 decreased in the cartilage from human OA samples, anterior cruciate ligament transaction (ACLT) -induced OA samples, spontaneous OA STR/ort samples and aged mice samples. Global knockout or conditional knockout of FBXO6 in cartilage promoted experimental OA process. The molecular mechanism study revealed that FBXO6 decreased MMP14 by ubiquitination and degradation, leading to inhibited proteolytic activation of MMP13. Interestingly, FBXO6 expression is regulated by transforming growth factor β (TGFβ)-SMAD2/3 signalling pathway. Therefore, the overexpression of FBXO6 protected mice from post-injury OA development. CONCLUSIONS TGFβ-SMAD2/3 signalling pathway suppressed MMP13 activation by upregulating of FBXO6 transcription and consequently promoting MMP14 proteasomal degradation. Inducement of FBXO6 expression in OA cartilage might provide a promising OA therapeutic strategy.
Collapse
Affiliation(s)
- Gangliang Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuai Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ziang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuying Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenbin Xu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenxiang Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yizheng Wu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liangping Li
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bin Liu
- Key Laboratory of Protein Modification and Tumor, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Xianjun Ding
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
de Sousa Neto IV, Tibana RA, da Silva LGDO, de Lira EM, do Prado GPG, de Almeida JA, Franco OL, Durigan JLQ, Adesida AB, de Sousa MV, Ricart CAO, Damascena HL, Castro MS, Fontes W, Prestes J, Marqueti RDC. Paternal Resistance Training Modulates Calcaneal Tendon Proteome in the Offspring Exposed to High-Fat Diet. Front Cell Dev Biol 2020; 8:380. [PMID: 32656202 PMCID: PMC7325979 DOI: 10.3389/fcell.2020.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
The increase in high-energy dietary intakes is a well-known risk factor for many diseases, and can also negatively impact the tendon. Ancestral lifestyle can mitigate the metabolic harmful effects of offspring exposed to high-fat diet (HF). However, the influence of paternal exercise on molecular pathways associated to offspring tendon remodeling remains to be determined. We investigated the effects of 8 weeks of paternal resistance training (RT) on offspring tendon proteome exposed to standard diet or HF diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, three times per week, with 8–12 dynamic movements per climb in a stair climbing apparatus). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (five animals per group): offspring from sedentary fathers were exposed either to control diet (SFO-C), or to high-fat diet (SFO-HF); offspring from trained fathers were exposed to control diet (TFO-C) or to a high-fat diet (TFO-HF). The Nano-LC-MS/MS analysis revealed 383 regulated proteins among offspring groups. HF diet induced a decrease of abundance in tendon proteins related to extracellular matrix organization, transport, immune response and translation. On the other hand, the changes in the offspring tendon proteome in response to paternal RT were more pronounced when the offspring were exposed to HF diet, resulting in positive regulation of proteins essential for the maintenance of tendon integrity. Most of the modulated proteins are associated to biological pathways related to tendon protection and damage recovery, such as extracellular matrix organization and transport. The present study demonstrated that the father’s lifestyle could be crucial for tendon homeostasis in the first generation. Our results provide important insights into the molecular mechanisms involved in paternal intergenerational effects and potential protective outcomes of paternal RT.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Ramires Alsamir Tibana
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil.,Graduate Program in Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | | | - Eliene Martins de Lira
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Gleyce Pires Gonçalves do Prado
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Jeeser Alves de Almeida
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil.,Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Octavio Luiz Franco
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Universidade Católicade Brasília, Distrito Federal, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Adetola B Adesida
- University of Alberta, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, AB, Canada
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Hylane Luiz Damascena
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|
29
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mass spectrometric analysis of the in vitro secretome from equine bone marrow-derived mesenchymal stromal cells to assess the effect of chondrogenic differentiation on response to interleukin-1β treatment. Stem Cell Res Ther 2020; 11:187. [PMID: 32434555 PMCID: PMC7238576 DOI: 10.1186/s13287-020-01706-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Similar to humans, the horse is a long-lived, athletic species. The use of mesenchymal stromal cells (MSCs) is a relatively new frontier, but has been used with promising results in treating joint diseases, e.g., osteoarthritis. It is believed that MSCs exert their main therapeutic effects through secreted trophic biomolecules. Therefore, it has been increasingly important to characterize the MSC secretome. It has been shown that the effect of the MSCs is strongly influenced by the environment in the host compartment, and it is a crucial issue when considering MSC therapy. The aim of this study was to investigate differences in the in vitro secreted protein profile between naïve and chondrogenic differentiating bone marrow-derived (BM)-MSCs when exposed to an inflammatory environment. Methods Equine BM-MSCs were divided into a naïve group and a chondrogenic group. Cells were treated with normal expansion media or chondrogenic media. Cells were treated with IL-1β for a period of 5 days (stimulation), followed by 5 days without IL-1β (recovery). Media were collected after 48 h and 10 days. The secretomes were digested and analyzed by nanoLC-MS/MS to unravel the orchestration of proteins. Results The inflammatory proteins IL6, CXCL1, CXCL6, CCL7, SEMA7A, SAA, and haptoglobin were identified in the secretome after 48 h from all cells stimulated with IL-1β. CXCL8, OSM, TGF-β1, the angiogenic proteins VCAM1, ICAM1, VEGFA, and VEGFC, the proteases MMP1 and MMP3, and the protease inhibitor TIMP3 were among the proteins only identified in the secretome after 48 h from cells cultured in normal expansion media. After 10-day incubation, the proteins CXCL1, CXCL6, and CCL7 were still identified in the secretome from BM-MSCs stimulated with IL-1β, but the essential inducer of inflammation, IL6, was only identified in the secretome from cells cultured in normal expansion media. Conclusion The findings in this study indicate that naïve BM-MSCs have a more extensive inflammatory response at 48 h to stimulation with IL-1β compared to BM-MSCs undergoing chondrogenic differentiation. This extensive inflammatory response decreased after 5 days without IL-1β (day 10), but a difference in composition of the secretome between naïve and chondrogenic BM-MSCs was still evident.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark
| |
Collapse
|
30
|
Zhang P, Zhang Y, Liu Q, Zhang Y, Ji Y, Xu X. 1,25(OH) 2D 3 supports the osteogenic differentiation of hPDLSCs under inflammatory conditions through inhibiting PLAP-1 expression transcriptionally. Int Immunopharmacol 2019; 78:105998. [PMID: 31837573 DOI: 10.1016/j.intimp.2019.105998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Periodontal ligament-associated protein-1 (PLAP-1) is a newly identified negative regulator which is the mineralization of human periodontal ligament stem cells (hPDLSCs). The aim of the present study is to determine whether 1α, 25-dihydroxyvitamin D3 (1,25(OH)2D3) could enhances the osteoblastic differentiation of hPDLSCs under inflammatory condition, and if PLAP-1 is involved in this process. MATERIALS AND METHODS hPDLSCs were in combination or alone cultured with lipopolysaccharide (LPS) and 1,25(OH)2D3, in osteo-inductive medium. The expression levels of osteoblastic markers and PLAP-1 of hPDLCs during osteo-inductive culture were assessed by western blot and real-time quantitative PCR(qRT-PCR). The potential vitamin D receptor elements (VDREs) which were located in PLAP-1 promoter region were identified and confirmed. RESULTS The data showed that LPS inhibited osteoblastic differentiation and induced the expression of PLAP-1 in hPDLSCs. The increasing addition of 1,25(OH)2D3 reversed the LPS-induced inhibition of osteoblastic differentiation of hPDLSCs through the suppression of PLAP-1 expression. Moreover, a potential VDRE within the PLAP-1 promoter region was identified and shown to bind with VDR by chromatin immunoprecipitation (ChIP) assays. This negative region was also found to mediate suppressor reporter gene activity. CONCLUSIONS 1,25(OH)2D3 could enhances the osteogenic differentiation of hPDLSCs under inflammatory condition through inhibiting PLAP-1 expression transcriptionally.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; The Center of Esthetic Dentistry, Jinan Stomatological Hospital, Jinan 250001, China
| | | | - Qing Liu
- Taian Maternity and Child Care Hospital, Taian 271000, China
| | - Yunpeng Zhang
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yawen Ji
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China.
| |
Collapse
|
31
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
32
|
Zhan S, Li J, Ge W. Multifaceted Roles of Asporin in Cancer: Current Understanding. Front Oncol 2019; 9:948. [PMID: 31608236 PMCID: PMC6771297 DOI: 10.3389/fonc.2019.00948] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family consists of 18 members categorized into five distinct classes, the traditional classes I–III, and the non-canonical classes IV–V. Unlike the other class I SLRPs (decorin and biglycan), asporin contains a unique and conserved stretch of aspartate (D) residues in its N terminus, and germline polymorphisms in the D-repeat-length are associated with osteoarthritis and prostate cancer progression. Since the first discovery of asporin in 2001, previous studies have focused mainly on its roles in bone and joint diseases, including osteoarthritis, intervertebral disc degeneration and periodontal ligament mineralization. Recently, asporin gene expression was also reported to be dysregulated in tumor tissues of different types of cancer, and to act as oncogene in pancreatic, colorectal, gastric, and prostate cancers, and some types of breast cancer, though it is also reported to function as a tumor suppressor gene in triple-negative breast cancer. Furthermore, asporin is also positively or negatively correlated with tumor proliferation, migration, invasion, and patient prognosis through its regulation of different signaling pathways, including the TGF-β, EGFR, and CD44 pathways. In this review, we seek to elucidate the signaling pathways and functions regulated by asporin in different types of cancer and to highlight some important issues that require investigation in future research.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
33
|
Aoyama M, Shiraishi A, Matsubara S, Horie K, Osugi T, Kawada T, Yasuda K, Satake H. Identification of a New Theca/Interstitial Cell-Specific Gene and Its Biological Role in Growth of Mouse Ovarian Follicles at the Gonadotropin-Independent Stage. Front Endocrinol (Lausanne) 2019; 10:553. [PMID: 31474939 PMCID: PMC6702446 DOI: 10.3389/fendo.2019.00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 12/02/2022] Open
Abstract
Theca/interstitial cells are responsible for the growth and maturation of ovarian follicles. However, little is known about the theca/interstitial cell-specific genes and their functions. In this study, we explored transcriptomes of theca/interstitial cells by RNA-seq, and the novel biological roles of a theca cell marker, asporin (Aspn)/periodontal ligament-associated protein 1 (PLAP-1). RNA-seq detected 432 and 62 genes expressed specifically in theca/interstitial cells and granulosa cells isolated from 3-weeks old mouse ovaries. Gene ontology analysis demonstrated that these genes were largely categorized into four major groups: extracellular matrix organization-related terms, chemotaxis-related terms, the angiogenesis-related terms, and morphogenesis-related terms. In situ hybridization demonstrated that the newly detected representative gene, Aspn/PLAP-1, was detected specifically in the outer layer of theca cells in contrast with the expression of the basal lamina-specific gene, Nidgen-1. Intriguingly, an Aspn/PLAP-1 antibody completely arrested the growth of secondary follicles that is the gonadotropin-independent follicle developmental stage. Furthermore, transforming growth factor-β (TGF-β)-triggered signaling was induced by the Aspn/PLAP-1 antibody treatment, which is consistent with the inhibitory effect of Aspn/PLAP-1 on TGF-β. Altogether, these results suggest that theca cells are classified into subpopulations on the basis of new marker genes and their biological functions, and provide evidence that Aspn/PLAP-1 is expressed exclusively in the outer layer of theca cells and plays a pivotal role in the growth of secondary follicles via downregulation of the canonical TGF-β signaling cascade.
Collapse
Affiliation(s)
- Masato Aoyama
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Nara, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kaoru Horie
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Nara, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Keiko Yasuda
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Nara, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
34
|
Hughes RM, Simons BW, Khan H, Miller R, Kugler V, Torquato S, Theodros D, Haffner MC, Lotan T, Huang J, Davicioni E, An SS, Riddle RC, Thorek DLJ, Garraway IP, Fertig EJ, Isaacs JT, Brennen WN, Park BH, Hurley PJ. Asporin Restricts Mesenchymal Stromal Cell Differentiation, Alters the Tumor Microenvironment, and Drives Metastatic Progression. Cancer Res 2019; 79:3636-3650. [PMID: 31123087 PMCID: PMC6734938 DOI: 10.1158/0008-5472.can-18-2931] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Tumor progression to metastasis is not cancer cell autonomous, but rather involves the interplay of multiple cell types within the tumor microenvironment. Here we identify asporin (ASPN) as a novel, secreted mesenchymal stromal cell (MSC) factor in the tumor microenvironment that regulates metastatic development. MSCs expressed high levels of ASPN, which decreased following lineage differentiation. ASPN loss impaired MSC self-renewal and promoted terminal cell differentiation. Mechanistically, secreted ASPN bound to BMP-4 and restricted BMP-4-induced MSC differentiation prior to lineage commitment. ASPN expression was distinctly conserved between MSC and cancer-associated fibroblasts (CAF). ASPN expression in the tumor microenvironment broadly impacted multiple cell types. Prostate tumor allografts in ASPN-null mice had a reduced number of tumor-associated MSCs, fewer cancer stem cells, decreased tumor vasculature, and an increased percentage of infiltrating CD8+ T cells. ASPN-null mice also demonstrated a significant reduction in lung metastases compared with wild-type mice. These data establish a role for ASPN as a critical MSC factor that extensively affects the tumor microenvironment and induces metastatic progression. SIGNIFICANCE: These findings show that asporin regulates key properties of mesenchymal stromal cells, including self-renewal and multipotency, and asporin expression by reactive stromal cells alters the tumor microenvironment and promotes metastatic progression.
Collapse
Affiliation(s)
- Robert M Hughes
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Brian W Simons
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hamda Khan
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rebecca Miller
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Valentina Kugler
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Samantha Torquato
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael C Haffner
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tamara Lotan
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jessie Huang
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elai Davicioni
- Genome Dx Biosciences, Inc., Vancouver, British Columbia, Canada
| | - Steven S An
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan C Riddle
- The Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel L J Thorek
- The Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Isla P Garraway
- The Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elana J Fertig
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - W Nathaniel Brennen
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ben H Park
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Paula J Hurley
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Haydont V, Neiveyans V, Fortunel NO, Asselineau D. Transcriptome profiling of human papillary and reticular fibroblasts from adult interfollicular dermis pinpoints the ‘tissue skeleton’ gene network as a component of skin chrono-ageing. Mech Ageing Dev 2019; 179:60-77. [DOI: 10.1016/j.mad.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
36
|
Hosseininia S, Önnerfjord P, Dahlberg LE. Targeted proteomics of hip articular cartilage in OA and fracture patients. J Orthop Res 2019; 37:131-135. [PMID: 30307059 DOI: 10.1002/jor.24158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a common chronic disease, causing joint pain and reduced physical function. OA progresses slowly over a period of several years; to avoid an exacerbation of symptoms, it is critical to able to diagnose the disease as early as possible. The identification of disease-specific biomarkers may enable such an early diagnosis. The aim of this study was to investigate potential biomarkers of cartilage metabolism in OA using a targeted multiplex approach by single reaction monitoring. Intact looking cartilage of femoral heads from patients with OA (n = 9) or femoral neck fractures (n = 12) was examined. Variations and relative quantifications of 35 selected extracellular matrix (ECM) proteins were analyzed using nano-LC coupled to tandem mass spectrometry. Our study showed statistically significantly increased levels of asporin (ASPN), mimecan (MIME), matrilin-3 (MATN3), cartilage intermediate layer protein 2 (CILP-2), collagen VI, collagen II, and collagen III N-propeptide in OA cartilage compared with non-OA cartilage. The other proteins in the protein panel did not appear to be different between the two groups. In conclusion, we identified a number of cartilage matrix proteins which may represent early molecular changes in the OA process and may have potential to predict the development of OA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Shahrzad Hosseininia
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden
| | - Patrik Önnerfjord
- Faculty of Medicine, Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology, Centre of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
| | - Leif E Dahlberg
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden
| |
Collapse
|
37
|
Differential protein expression in human knee articular cartilage and medial meniscus using two different proteomic methods: a pilot analysis. BMC Musculoskelet Disord 2018; 19:416. [PMID: 30497455 PMCID: PMC6267052 DOI: 10.1186/s12891-018-2346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/16/2018] [Indexed: 01/26/2023] Open
Abstract
Background Proteomics is an emerging field in the study of joint disease. Our two aims with this pilot analysis were to compare healthy human knee articular cartilage with meniscus, two tissues both known to become affected in the osteoarthritic disease process, and to compare two mass spectrometry (MS)-based methods: data-dependent acquisition (DDA) and data-independent acquisition (DIA). Methods Healthy knee articular cartilage taken from the medial tibial condyle and medial meniscus samples taken from the body region were obtained from three adult forensic medicine cases. Proteins were extracted from tissue pieces and prepared for MS analysis. Each sample was subjected to liquid chromatography (LC)-MS/MS analysis using an Orbitrap mass spectrometer, and run in both DDA and DIA mode. Linear mixed effects models were used for statistical analysis. Results A total of 653 proteins were identified in the DDA analysis, of which the majority was present in both tissue types. Only proteins with quantitation information in both tissues (n = 90) were selected for more detailed analysis, of which the majority did not statistically significantly differ in abundance between the two tissue types, in either of the MS analyses. However, 21 proteins were statistically significantly different (p < 0.05) between meniscus and cartilage in the DIA analysis. Out of these, 11 proteins were also significantly different in the DDA analysis. Aggrecan core protein was the most abundant protein in articular cartilage and significantly differed between the two tissues in both methods. The corresponding protein in meniscus was serum albumin. Dermatopontin exhibited the highest meniscus vs articular cartilage ratio among the statistically significant proteins. The DIA method led to narrower confidence intervals for the abundance differences between the two tissue types than DDA. Conclusions Although articular cartilage and meniscus had similar proteomic composition, we detected several differences by MS. Between the two analyses, DIA yielded more precise estimates and more statistically significant different proteins than DDA, and had no missing values, which makes it preferable for future LC-MS/MS analyses. Electronic supplementary material The online version of this article (10.1186/s12891-018-2346-6) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Simão D, Silva MM, Terrasso AP, Arez F, Sousa MFQ, Mehrjardi NZ, Šarić T, Gomes-Alves P, Raimundo N, Alves PM, Brito C. Recapitulation of Human Neural Microenvironment Signatures in iPSC-Derived NPC 3D Differentiation. Stem Cell Reports 2018; 11:552-564. [PMID: 30057262 PMCID: PMC6094163 DOI: 10.1016/j.stemcr.2018.06.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Brain microenvironment plays an important role in neurodevelopment and pathology, where the extracellular matrix (ECM) and soluble factors modulate multiple cellular processes. Neural cell culture typically relies on heterologous matrices poorly resembling brain ECM. Here, we employed neurospheroids to address microenvironment remodeling during neural differentiation of human stem cells, without the confounding effects of exogenous matrices. Proteome and transcriptome dynamics revealed significant changes at cell membrane and ECM during 3D differentiation, diverging significantly from the 2D differentiation. Structural proteoglycans typical of brain ECM were enriched during 3D differentiation, in contrast to basement membrane constituents in 2D. Moreover, higher expression of synaptic and ion transport machinery was observed in 3D cultures, suggesting higher neuronal maturation in neurospheroids. This work demonstrates that 3D neural differentiation as neurospheroids promotes the expression of cellular and extracellular features found in neural tissue, highlighting its value to address molecular defects in cell-ECM interactions associated with neurological disorders.
Collapse
Affiliation(s)
- Daniel Simão
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta M Silva
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Terrasso
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Francisca Arez
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F Q Sousa
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Narges Z Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nuno Raimundo
- Universitätsmedizin Göttingen, Institut für Zellbiochemie, Göttingen, Germany
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
39
|
Onset and Progression of Human Osteoarthritis-Can Growth Factors, Inflammatory Cytokines, or Differential miRNA Expression Concomitantly Induce Proliferation, ECM Degradation, and Inflammation in Articular Cartilage? Int J Mol Sci 2018; 19:ijms19082282. [PMID: 30081513 PMCID: PMC6121276 DOI: 10.3390/ijms19082282] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative whole joint disease, for which no preventative or therapeutic biological interventions are available. This is likely due to the fact that OA pathogenesis includes several signaling pathways, whose interactions remain unclear, especially at disease onset. Early OA is characterized by three key events: a rarely considered early phase of proliferation of cartilage-resident cells, in contrast to well-established increased synthesis, and degradation of extracellular matrix components and inflammation, associated with OA progression. We focused on the question, which of these key events are regulated by growth factors, inflammatory cytokines, and/or miRNA abundance. Collectively, we elucidated a specific sequence of the OA key events that are described best as a very early phase of proliferation of human articular cartilage (AC) cells and concomitant anabolic/catabolic effects that are accompanied by incipient pro-inflammatory effects. Many of the reviewed factors appeared able to induce one or two key events. Only one factor, fibroblast growth factor 2 (FGF2), is capable of concomitantly inducing all key events. Moreover, AC cell proliferation cannot be induced and, in fact, is suppressed by inflammatory signaling, suggesting that inflammatory signaling cannot be the sole inductor of all early OA key events, especially at disease onset.
Collapse
|
40
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Zhu X, Jiang L, Lu Y, Wang C, Zhou S, Wang H, Tian T. Association of aspartic acid repeat polymorphism in the asporin gene with osteoarthritis of knee, hip, and hand: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e0200. [PMID: 29561445 PMCID: PMC5895348 DOI: 10.1097/md.0000000000010200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Several human studies have been conducted to explore the association between aspirin (ASPN) D-repeat polymorphisms and OA susceptibility, but these provide inconsistent results. Our primary aim is to examine whether D-repeat polymorphisms are related to OA risk. METHODS We conducted a meta-analysis to investigate the association between ASPN D-repeat polymorphisms and OA. Electronic database was searched, including PubMed, Embase, CNKI, Ovid, and the reference lists of relevant articles published from the inception to January 24, 2018. The included studies were assessed in the following allele model: D14 allele versus others combined, D13 allele versus others combined, D15 allele versus others combined, and D14 allele versus D13 allele. Female population was also analyzed separately. RESULTS Eleven articles (12 comparisons) with 4975 patients of knee, hip, and/or hand OA and 3754 controls were considered in this meta-analysis. For the D13 allele, OR and 95% CI in combined population indicated an borderline association (odds ratio [OR] = 0.94, confidence interval [CI]: 0.89-0.99, P = .027). No significant association between OA and the D14 allele and D15 allele in all pooled studies were observed. CONCLUSION Our result based on previously published studies demonstrated that the ASPN D13 allele was a protective factor for OA of knee, hip, and hand. For D14 and D15 allele, our present meta-analysis did not demonstrate statistically significant association. Further studies with larger sample size would be required.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province
| | - Liying Jiang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai
| | - Yihua Lu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province
| | - Chunli Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu Province, P.R. China
| | - Shuai Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province
| | - He Wang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province
| |
Collapse
|
42
|
Zhu LQ, Su GH, Dai J, Zhang WY, Yin CH, Zhang FY, Zhu ZH, Guo ZX, Fang JF, Zou CD, Chen XG, Zhang Y, Xu CY, Zhen YF, Wang XD. Whole genome sequencing of pairwise human subjects reveals DNA mutations specific to developmental dysplasia of the hip. Genomics 2018; 111:320-326. [PMID: 29486210 DOI: 10.1016/j.ygeno.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023]
Abstract
Developmental dysplasia of the hip (DDH) is a common congenital malformation characterized by mismatch in shape between the femoral head and acetabulum, and leads to hip dysplasia. To date, the pathogenesis of DDH is poorly understood and may involve multiple factors, including genetic predisposition. However, comprehensive genetic analysis has not been applied to investigate a genetic component of DDH. In the present study, 10 pairs of healthy fathers and DDH daughters were enrolled to identify genetic hallmarks of DDH using high throughput whole genome sequencing. The DDH-specific DNA mutations were found in each patient. Overall 1344 genes contained DDH-specific mutations. Functional enrichment analysis showed that these genes played important roles in the cytoskeleton, microtubule cytoskeleton, sarcoplasm and microtubule associated complex. These functions affected osteoblast and osteoclast development. Therefore, we proposed that the DDH-specific mutations might affect bone development, and caused DDH. Our pairwise high throughput sequencing results comprehensively delineated genetic hallmarks of DDH. Further research into the biological impact of these mutations may inform the development of DDH diagnostic tools and allow neonatal gene screening.
Collapse
Affiliation(s)
- Lun-Qing Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Guang-Hao Su
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jin Dai
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Wen-Yan Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Chun-Hua Yin
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Fu-Yong Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhen-Hua Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhi-Xiong Guo
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jian-Feng Fang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cheng-da Zou
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xing-Guang Chen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Ya Zhang
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cai-Ying Xu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yun-Fang Zhen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Xiao-Dong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
43
|
Yu X, Liu S, Wang W, Li S. Periodontal ligament‑associated protein‑1 delays rat periodontal bone defect repair by regulating osteogenic differentiation of bone marrow stromal cells and osteoclast activation. Int J Mol Med 2017; 41:1110-1118. [PMID: 29251314 DOI: 10.3892/ijmm.2017.3312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess the roles of periodontal ligament‑associated protein‑1 (PLAP‑1) in the osteogenic differentiation of rat bone marrow stromal cells (rBMSCs) and in osteoclast activation during the repair of rat periodontal bone defects. Male, 6‑week‑old, Wistar rats treated with periodontal bone defects were randomly assigned to 3 groups: The PLAP‑1‑transfected rBMSC group (PLAP‑1 group), the empty vector‑transfected rBMSC group (vector group) and the normal rBMSC group (control group). Specimens were obtained at 2, 4 and 6 weeks post‑surgery. Histological observation and micro‑computed tomography were applied to evaluate the repair effect. The bone defect areas of the mandible were dissected for western blotting and reverse transcription-quantitative polymerase chain reaction (RT‑qPCR). Osteogenesis‑associated proteins, including alkaline phosphatase (ALP), bone sialoprotein (BSP), runt-related transcription factor 2 (Runx2), Osterix (Osx) and osteocalcin (OC), as indicators of rBMSC‑induced osteogenesis, were examined by RT-qPCR and western blotting. Osteoclasts were identified and quantified using tartrate‑resistant acid phosphatase staining. Meanwhile, the receptor activator of nuclear factor κΒ ligand (RANKL)/οsteoprotegerin (OPG) ratio was quantified to assess osteoclast activation by western blotting. Τhe repair effect of the PLAP‑1 group was significantly worse than that of the vector and control groups. In the PLAP‑1 group, newly formed and mineralized bones were significantly less in quantity than that in the other two groups (P<0.05), and the expression of osteogenic proteins (ALP, BSP, Runx2, Osx and OC) was also reduced (P<0.01). However, there was no significant difference between the vector and control groups. The RANKL/OPG ratio was upregulated in the PLAP‑1 group due to decreased OPG protein expression and a simultaneous increase in RANKL protein expression (P<0.01), and more osteoclasts were activated in the PLAP‑1 group (P<0.01). In conclusion, the present study found that PLAP‑1 delays rat periodontal bone defect repair by inhibiting osteogenic differentiation and promoting osteoclast activation, mainly dependent on the upregulation of the RANKL/OPG ratio.
Collapse
Affiliation(s)
- Xijiao Yu
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Shu Li
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
44
|
Liu R, Yuan X, Yu J, Quan Q, Meng H, Wang C, Wang A, Guo Q, Peng J, Lu S. An updated meta-analysis of the asporin gene D-repeat in knee osteoarthritis: effects of gender and ethnicity. J Orthop Surg Res 2017; 12:148. [PMID: 29020967 PMCID: PMC5637337 DOI: 10.1186/s13018-017-0647-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background Knee osteoarthritis (KOA) is the most prevalent form of knee joint disease and characterized by the progressive degeneration of articular cartilage. Although pathology of KOA remains unknown, genetic factors are considered to be the major cause. Asporin is a group of biologically active components of extracellular matrix (ECM) in articular cartilage, and asporin gene (ASPN) D-repeat polymorphism was reported to be associated with KOA. Thus, our meta-analysis is aimed at investigation of the association between asporin D-repeat polymorphism and susceptibility of KOA. Methods We gathered data from MEDLINE, Embase, OVID, and ScienceDirect to search relevant published epidemiological studies through April 2017. Compared with previous studies, our meta-analysis is the first study to investigate the association of ASPN D15, D16, and D17 alleles and KOA susceptibility by ethnic- and sex-stratified subgroup analysis. Results We found no significant association between D15 allele and susceptibility to KOA (OR = 1.05, 95% CI 0.95–1.17) in overall population. The same results were observed in the analysis of D16 (OR = 1.01, 95% CI 0.80–1.28) and D17 alleles (OR = 1.28, 95% CI 0.91–1.80). The ethnic- and sex-subgroup analyses did not alter the ORs. However, significant association was detected in the sensitivity analysis of D17 in overall population (OR = 1.05, 95% CI 0.95–1.17) and Asian population (OR = 1.78, 95% CI 1.02–3.11, P < 0.05). Conclusion Our results indicated that D-repeat polymorphism of ASPN may not play a major role in susceptibility of KOA in ethnic- and sex-specific analysis. Because of the limitations of the present meta-analysis, firm conclusions could not be drawn based on the current evidence, and further studies are required to detect genuine role of ASPN.
Collapse
Affiliation(s)
- Ruoxi Liu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Xueling Yuan
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Jing Yu
- Department of Kampo Medicine, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa-ken, 245-0066, Japan
| | - Qi Quan
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Cheng Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China.
| | - Shibi Lu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China.
| |
Collapse
|
45
|
Sun F, Feng M, Guan W. Mechanisms of peritoneal dissemination in gastric cancer. Oncol Lett 2017; 14:6991-6998. [PMID: 29344127 DOI: 10.3892/ol.2017.7149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of gastric cancer, but the mechanisms underlying peritoneal dissemination are yet to be elucidated. Paget's 'seed and soil' hypothesis is recognized as the fundamental theory of metastasis. The 'seeding' theory proposes that the formation of peritoneal dissemination is a multistep process, including detachment from the primary tumour, transmigration and attachment to the distant peritoneum, invasion into subperitoneal tissue and proliferation with blood vascular neogenesis. In the present review, the progress of each step is discussed. Milky spots, as a lymphatic apparatus, are indicative of lymphatic orifices on the surface of the peritoneum. These stomata are open gates for peritoneal-free cancer cells to migrate into the submesothelial space. Therefore, milky spots provide suitable 'soil' for cancer cells to implant. Other theories have also been proposed to clarify the peritoneal dissemination process, including the transvessel metastasis theory, which suggests that the peritoneal metastasis of gastric cancer develops via a vascular network mediated by hypoxia inducible factor-1α.
Collapse
Affiliation(s)
- Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
46
|
Lolli A, Penolazzi L, Narcisi R, van Osch GJVM, Piva R. Emerging potential of gene silencing approaches targeting anti-chondrogenic factors for cell-based cartilage repair. Cell Mol Life Sci 2017; 74:3451-3465. [PMID: 28434038 PMCID: PMC11107620 DOI: 10.1007/s00018-017-2531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
The field of cartilage repair has exponentially been growing over the past decade. Here, we discuss the possibility to achieve satisfactory regeneration of articular cartilage by means of human mesenchymal stem cells (hMSCs) depleted of anti-chondrogenic factors and implanted in the site of injury. Different types of molecules including transcription factors, transcriptional co-regulators, secreted proteins, and microRNAs have recently been identified as negative modulators of chondroprogenitor differentiation and chondrocyte function. We review the current knowledge about these molecules as potential targets for gene knockdown strategies using RNA interference (RNAi) tools that allow the specific suppression of gene function. The critical issues regarding the optimization of the gene silencing approach as well as the delivery strategies are discussed. We anticipate that further development of these techniques will lead to the generation of implantable hMSCs with enhanced potential to regenerate articular cartilage damaged by injury, disease, or aging.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
47
|
Maccarana M, Svensson RB, Knutsson A, Giannopoulos A, Pelkonen M, Weis M, Eyre D, Warman M, Kalamajski S. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure. PLoS One 2017; 12:e0184028. [PMID: 28859141 PMCID: PMC5578652 DOI: 10.1371/journal.pone.0184028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs’ effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry. Electron microscopy analyses showed 7% thinner collagen fibrils in Aspn-/- mice (not statistically significant). Several matrix genes were upregulated, including collagens (Col1a1, Col1a2, Col3a1), matrix metalloproteinases (Mmp2, Mmp3) and lysyl oxidases (Lox, Loxl2), while lysyl hydroxylase (Plod2) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered composition, while heparan sulfate was halved and had a decreased sulfation. Also, decorin and biglycan were doubled in Aspn-/- skin. Overall, asporin deficiency changes skin glycosaminoglycan composition, and decorin and biglycan content, which may explain the changes in skin mechanical properties.
Collapse
Affiliation(s)
- Marco Maccarana
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - René B. Svensson
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Anki Knutsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Antonis Giannopoulos
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Mea Pelkonen
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Matthew Warman
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Kalamajski
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
48
|
Miyamoto Y, Kanzaki H, Wada S, Tsuruoka S, Itohiya K, Kumagai K, Hamada Y, Nakamura Y. Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age. Bone Rep 2017; 7:41-50. [PMID: 28875156 PMCID: PMC5574816 DOI: 10.1016/j.bonr.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
Mandibular condylar cartilage (MCC) exhibits dual roles both articular cartilage and growth center. Of many growth factors, TGF-β has been implicated in the growth of articular cartilage including MCC. Recently, Asporin, decoy to TGF-β, was discovered and it blocks TGF-β signaling. Asporin is expressed in a variety of tissues including osteoarthritic articular cartilage, though there was no report of Asporin expression in MCC. In the present study, we investigated the temporal and spatial expression of Asporin in MCC. Gene expression profile of MCC and epiphyseal cartilage in tibia of 5 weeks old ICR mice were firstly compared with microarray analysis using the laser capture microdissected samples. Variance of gene expression was further confirmed by real-time RT-PCR and immunohistochemical staining at 1,3,10, and 20 weeks old. TGF-β and its signaling molecule, phosphorylated Smad-2/3 (p-Smad2/3), were also examined by immunohistochemical staining. Microarray analysis revealed that Asporin was highly expressed in MCC. Real-time RT-PCR analysis confirmed that the fibrous layer of MCC exhibited stable higher Asporin expression at any time points as compared to epiphyseal cartilage. This was also observed in immunohistochemical staining. Deeper layer in MCC augmented Asporin expression with age. Whereas, TGF-β was stably highly observed in the layer. The fibrous layer of MCC exhibited weak staining of p-Smad2/3, though the proliferating layer of MCC was strongly stained as compared to epiphyseal cartilage of tibia at early time point. Consistent with the increase of Asporin expression in the deeper layer of MCC, the intensity of p-Smad-2/3 staining was decreased with age. In conclusion, we discovered that Asporin was stably expressed at the fibrous layer of MCC, which makes it possible to manage both articular cartilage and growth center at the same time. Asporin gene and protein were highly expressed in mandibular condylar cartilage as compared to tibial epiphyseal cartilage. Asporin in mandibular condylar cartilage was augmented with age. TGF-β signaling is suppressed by augmented Asporin and decreased TGF-β production in mandibular condylar cartilage.
Collapse
Affiliation(s)
- Yutaka Miyamoto
- Department of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| | - Hiroyuki Kanzaki
- Department of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| | - Satoshi Wada
- Department of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| | - Sari Tsuruoka
- Department of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| | - Kanako Itohiya
- Department of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| | - Kenichi Kumagai
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| | - Yoshiki Nakamura
- Department of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., Japan
| |
Collapse
|
49
|
Hao Z, Li X, Dai J, Zhao B, Jiang Q. Genetic effects of rs3740199 polymorphism in ADAM12 gene on knee osteoarthritis: a meta-analysis. J Orthop Surg Res 2017. [PMID: 28637509 PMCID: PMC5480204 DOI: 10.1186/s13018-017-0594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a complex arthritic condition in which genetic factors play an important role. ADAM12 gene is one of the recognized candidate genes although the results are conflicting. To derive a more precise estimation of the association between rs3740199 polymorphism in ADAM12 gene and risk of knee OA, we performed a meta-analysis based on six related studies, including a total of 2185 cases and 3716 controls. METHODS A comprehensive search was performed to identify related studies up to April 14, 2017. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Different genetic models were used to assess the pooled and stratified data. RESULTS Overall, no significant association was found in all genetic models (C vs. G, OR = 0.983, 95% CI = 0.910-1.061; CC vs. GG, OR = 1.033, 95% CI = 0.851-1.255; CG vs. GG, OR = 1.030, 95% CI = 0.877-1.209; CC/CG vs. GG, OR = 1.031, 95% CI = 0.886-1.201; CC vs. CG/GG, OR = 1.017, 95% CI = 0.868-1.190). When stratified by ethnicity, no significant association was found. CONCLUSIONS This meta-analysis suggested that the rs3740199 polymorphism does not contribute to the development of knee OA. Additional well-designed large studies are required to confirm these findings in different populations.
Collapse
Affiliation(s)
- Zheng Hao
- Center of Diagnosis and Treatment for Developmental Dysplasia of the Hip, Nanjing Zhongyangmen Community Health Service Center, Kang'ai Hospital, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Xin Li
- Department of HIV/AIDS/STI Prevention and Control, Nanjing Municipal Center for Diseases Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jin Dai
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Baocheng Zhao
- Center of Diagnosis and Treatment for Developmental Dysplasia of the Hip, Nanjing Zhongyangmen Community Health Service Center, Kang'ai Hospital, Nanjing, 210037, Jiangsu, People's Republic of China.
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China. .,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
50
|
Wang L, Wu H, Wang L, Zhang H, Lu J, Liang Z, Liu T. Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Lett 2017; 398:24-36. [PMID: 28400334 DOI: 10.1016/j.canlet.2017.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is histopathologically characterized by excessive desmoplasia induced by pancreatic stellate cells (PSCs). Asporin, an extracellular matrix (ECM) protein, is highly expressed in cancer-associated fibroblasts (CAFs). Asporin expression in PSCs and its roles in PSC-pancreatic cancer cell (PCC) interaction remain unclear. The present study firstly showed that Asporin is highly expressed in activated PSCs and is involved in PSC-mediated invasion and migration of PCCs. Exogenous Asporin interacted with the transmembrane receptor CD44 on PCCs to activate NF-κB/p65 and promoted the epithelial-mesenchymal transition (EMT) in PCCs. Furthermore, AKT and ERK pathways participated in Asporin/CD44-induced NF-κB/p65 activation in pancreatic cancer. Asporin had similar effects on PCCs via an autocrine mechanism. Consistent with our in vitro experiments, we showed that Asporin in peritumoral stroma of pancreatic cancer tissues was associated with poor clinical outcome. In conclusion, this is the first study to show that Asporin promotes EMT, invasion, and migration of PCCs by activating CD44-AKT/ERK-NF-κB pathway in paracrine and autocrine manners. Moreover, our results indicate that Asporin may be a prognostic marker and suggest that targeting the tumor microenvironment represents a promising therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Lili Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Zhang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junliang Lu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Tonghua Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|