1
|
Hirakawa T, Taniuchi M, Iguchi Y, Bogahawaththa S, Yoshitake K, Werellagama S, Uemura T, Tsujita T. NF-E2-related factor 1 suppresses the expression of a spermine oxidase and the production of highly reactive acrolein. Sci Rep 2025; 15:12405. [PMID: 40258928 PMCID: PMC12012012 DOI: 10.1038/s41598-025-96388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are among the most abundant intracellular small molecular metabolites, with concentrations at the mM level. The ratios of these three molecules remain constant under physiological conditions. Stress (i.e. polyamine overload, oxidative stress, aging, infection, etc.) triggers the catabolic conversion of spermine to spermidine, ultimately yielding acrolein and hydrogen peroxide. The potential of acrolein to induce DNA damage and protein denaturation is 1,000 times greater than that of reactive oxygen species. We have shown that these polyamine metabolic pathways also involve the nuclear factor erythroid-2-related factor 1 (NRF1) transcription factor. In our chemically-inducible, liver-specific Nrf1-knockout mice, the polyamine catabolic pathway dominated the anabolic pathway, producing free acrolein and accumulating acrolein-conjugated proteins in vivo. This metabolic feature implicates SMOX as an important causative enzyme. Chromatin immunoprecipitation and reporter assays confirmed that NRF1 directly suppressed Smox expression. This effect was also observed in vitro. Ectopic overexpression of SMOX increased the accumulation of free acrolein and acrolein-conjugated proteins. SMOX knockdown reversed the accumulation of free acrolein and acrolein-conjugated proteins. Our results show that NRF1 typically suppresses Smox expression when NRF1 is downregulated, SMOX is upregulated, and polyamine metabolic pathways are altered, producing low molecular weight polyamines and acrolein.
Collapse
Affiliation(s)
- Tomoaki Hirakawa
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Megumi Taniuchi
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yoko Iguchi
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Sudarma Bogahawaththa
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiko Yoshitake
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Shanika Werellagama
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
| | - Takeshi Uemura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Baryshev M, Maksimova I, Sasoveca I. Epigenetic Reprogramming and Inheritance of the Cellular Differentiation Status Following Transient Expression of a Nonfunctional Dominant-Negative Retinoblastoma Mutant in Murine Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:10678. [PMID: 39409007 PMCID: PMC11476944 DOI: 10.3390/ijms251910678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The retinoblastoma gene product (Rb1), a master regulator of the cell cycle, plays a prominent role in cell differentiation. Previously, by analyzing the differentiation of cells transiently overexpressing the ΔS/N DN Rb1 mutant, we demonstrated that these cells fail to differentiate into mature adipocytes and that they constitutively silence Pparγ2 through CpG methylation. Here, we demonstrate that the consequences of the transient expression of ΔS/N DN Rb1 are accompanied by the retention of Cebpa promoter methylation near the TSS under adipogenic differentiation, thereby preventing its expression. The CGIs of the promoters of the Rb1, Ezh2, Mll4, Utx, and Tet2 genes, which are essential for adipogenic differentiation, have an unmethylated status regardless of the cell differentiation state. Moreover, Dnmt3a, a de novo DNA methyltransferase, is overexpressed in undifferentiated ΔS/N cells compared with wild-type cells and, in addition to Dnmt1, Dnmt3a is significantly upregulated by adipogenic stimuli in both wild-type and ΔS/N cells. Notably, the chromatin modifier Ezh2, which is also involved in epigenetic reprogramming, is highly induced in ΔS/N cells. Overall, we demonstrate that two major genes, Pparγ2 and Cebpa, which are responsible for terminal adipocyte differentiation, are selectively epigenetically reprogrammed to constitutively silent states. We hypothesize that the activation of Dnmt3a, Rb1, and Ezh2 observed in ΔS/N cells may be a consequence of a stress response caused by the accumulation and malfunctioning of Rb1-interacting complexes for the epigenetic reprogramming of Pparγ2/Cebpa and prevention of adipogenesis in an inappropriate cellular context. The failure of ΔS/N cells to differentiate and express Pparγ2 and Cebpa in culture following the expression of the DN Rb1 mutant may indicate the creation of epigenetic memory for new reprogrammed epigenetic states of genes.
Collapse
Affiliation(s)
- Mikhail Baryshev
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites 5, LV-1067 Riga, Latvia; (I.M.); (I.S.)
| | | | | |
Collapse
|
3
|
Liang TL, Pan HD, Yan PY, Mi JN, Liu XC, Bao WQ, Lian LR, Zhang CF, Chen Y, Wang JR, Xie Y, Zhou H, Yao XJ, Graham P, Leung ELH, Liu L, Li RZ. Serum taurine affects lung cancer progression by regulating tumor immune escape mediated by the immune microenvironment. J Adv Res 2024:S2090-1232(24)00389-8. [PMID: 39243941 DOI: 10.1016/j.jare.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION Taurine is a naturally occurring sulfonic acid involved in various physiological and pathological processes, such as the regulation of calcium signaling, immune function, inflammatory response, and cellular aging. It has the potential to predict tumor malignant transformation and formation. Our previous work discovered the elevated taurine in lung cancer patients. However, the precise impact and mechanism of elevated serum taurine levels on lung cancer progression and the suitability of taurine or taurine-containing drinks for lung cancer patients remain unclear. OBJECTIVES Our study aimed to systematically investigate the role of taurine in lung cancer, with the ultimate goal of contributing novel strategies for lung cancer treatment. METHODS Lung cancer C57 and nude mice models, RNA sequencing, and stable transfection were applied to explored the effects and mechanisms of taurine on lung cancer. Tissues of 129 non-small cell lung cancer (NSCLC) patients derived from 2014 to 2017 for immunohistochemistry were collected in Taihe Hospital. RESULTS Low doses of taurine, as well as taurine-infused beverages at equivalent doses, significantly enhanced lung tumor growth. Equally intriguing is that the promoting effect of taurine on lung cancer progression wanes as the dosage increases. The Nuclear factor erythroid 2-like 1 (Nfe2l1 or Nrf1)-reactive oxygen species (ROS)-PD-1 axis may be a potential mechanism for dual role of taurine in lung cancer progression. However, taurine's impacts on lung cancer progression and the anti-tumor function of Nfe2l1 were mainly determined by the immune competence. Taurine inhitited lung tumor growth probably by inhibiting NF-κB-mediated inflammatory responses in nude mice rather than by affecting Nfe2l1 function. As patients age increased, Nfe2l1 gene and protein gradually returned to the levels observed in healthy individuals, but lost its anti-lung cancer effects. CONCLUSIONS Taurine emerges as a potential biomarker for lung cancer progression, predicting poor prognosis and unsuitability for specific patients. Lung cancer patients, especially young patients, should be conscious of potential effects of taurine-containing drinks. Conversely, taurine or its drinks may be more suitable for older or immune-deficient patients.
Collapse
Affiliation(s)
- Tu-Liang Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Jia-Ning Mi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Xiao-Cui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Wei-Qian Bao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Li-Rong Lian
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Cui-Fen Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Ying Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Jing-Rong Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Xiao-Jun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Pawlec Graham
- Department of Immunology, University of Tübingen, Germany
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China.
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China.
| | - Run-Ze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China.
| |
Collapse
|
4
|
Zhang H, Liu Y, Zhang K, Hong Z, Liu Z, Liu Z, Li G, Xu Y, Pi J, Fu J, Xu Y. Understanding the Transcription Factor NFE2L1/NRF1 from the Perspective of Hallmarks of Cancer. Antioxidants (Basel) 2024; 13:758. [PMID: 39061827 PMCID: PMC11274343 DOI: 10.3390/antiox13070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cells subvert multiple properties of normal cells, including escaping strict cell cycle regulation, gaining resistance to cell death, and remodeling the tumor microenvironment. The hallmarks of cancer have recently been updated and summarized. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also named NRF1) belongs to the cap'n'collar (CNC) basic-region leucine zipper (bZIP) family. It acts as a transcription factor and is indispensable for maintaining both cellular homoeostasis and organ integrity during development and growth, as well as adaptive responses to pathophysiological stressors. In addition, NFE2L1 mediates the proteasome bounce-back effect in the clinical proteasome inhibitor therapy of neuroblastoma, multiple myeloma, and triple-negative breast cancer, which quickly induces proteasome inhibitor resistance. Recent studies have shown that NFE2L1 mediates cell proliferation and metabolic reprogramming in various cancer cell lines. We combined the framework provided by "hallmarks of cancer" with recent research on NFE2L1 to summarize the role and mechanism of NFE2L1 in cancer. These ongoing efforts aim to contribute to the development of potential novel cancer therapies that target the NFE2L1 pathway and its activity.
Collapse
Affiliation(s)
- Haomeng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yong Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Ke Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhixuan Hong
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zongfeng Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhe Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Guichen Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| |
Collapse
|
5
|
Elshani M, Um IH, Leung S, Reynolds PA, Chapman A, Kudsy M, Harrison DJ. Transcription Factor NFE2L1 Decreases in Glomerulonephropathies after Podocyte Damage. Cells 2023; 12:2165. [PMID: 37681897 PMCID: PMC10487238 DOI: 10.3390/cells12172165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Podocyte cellular injury and detachment from glomerular capillaries constitute a critical factor contributing to kidney disease. Notably, transcription factors are instrumental in maintaining podocyte differentiation and homeostasis. This study explores the hitherto uninvestigated expression of Nuclear Factor Erythroid 2-related Factor 1 (NFE2L1) in podocytes. We evaluated the podocyte expression of NFE2L1, Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2), and NAD(P)H:quinone Oxidoreductase (NQO1) in 127 human glomerular disease biopsies using multiplexed immunofluorescence and image analysis. We found that both NFE2L1 and NQO1 expressions were significantly diminished across all observed renal diseases. Furthermore, we exposed human immortalized podocytes and ex vivo kidney slices to Puromycin Aminonucleoside (PAN) and characterized the NFE2L1 protein isoform expression. PAN treatment led to a reduction in the nuclear expression of NFE2L1 in ex vivo kidney slices and podocytes.
Collapse
Affiliation(s)
- Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
- NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Steve Leung
- Urology Department, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Alex Chapman
- Urology Department, Victoria Hospital, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | - Mary Kudsy
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
| |
Collapse
|
6
|
Cook J, Greene ES, Ramser A, Mullenix G, Dridi JS, Liyanage R, Wideman R, Dridi S. Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness. Sci Rep 2023; 13:5947. [PMID: 37045932 PMCID: PMC10097873 DOI: 10.1038/s41598-023-33060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.
Collapse
Affiliation(s)
- Jennifer Cook
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Garrett Mullenix
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Jalila S Dridi
- École Universitaire de Kinésithérapie, Université d'Orléans, Rue de Chartres, 45100, Orléans, France
| | - Rohana Liyanage
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Robert Wideman
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Shen S, Si M, Zeng C, Liu EK, Chen Y, Vacher J, Zhao H, Mohan S, Xing W. Leucine Repeat Rich Kinase 1 Controls Osteoclast Activity by Managing Lysosomal Trafficking and Secretion. BIOLOGY 2023; 12:511. [PMID: 37106712 PMCID: PMC10135754 DOI: 10.3390/biology12040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
We previously demonstrated that mice with targeted deletion of the leucine repeat rich kinase 1 (Lrrk1) gene were osteopetrotic due to the failure of osteoclasts to resorb bone. To determine how LRRK1 regulates osteoclast activity, we examined the intracellular and extracellular acidification with an acidotropic probe, acridine orange, in live osteoclasts on bone slices. We examined lysosome distribution in osteoclasts by localization of LAMP-2, cathepsin K, and v-ATPase by immunofluorescent staining with specific antibodies. We found that both vertical and horizontal cross-sectional images of the wild-type (WT) osteoclasts showed orange-staining of the intracellular acidic vacuoles/lysosomes dispersed to the ruffled border. By contrast, the LRRK1 deficient osteoclasts exhibited fluorescent orange staining in the cytoplasm away from the extracellular lacunae because of an altered distribution of the acidic vacuoles/lysosomes. In addition, WT osteoclasts displayed a peripheral distribution of LAMP-2 positive lysosomes with a typical actin ring. The clustered F-actin constitutes a peripheral sealing zone and a ruffled border which was stretched out into a resorption pit. The LAMP-2 positive lysosomes were also distributed to the sealing zone, and the cell was associated with a resorption pit. By contrast, LRRK1-deficient osteoclasts showed diffused F-actin throughout the cytoplasm. The sealing zone was weak and not associated with a resorption pit. LAMP-2 positive lysosomes were also diffuse in the cytoplasm and were not distributed to the ruffled border. Although the LRRK1-deficient osteoclast expressed normal levels of cathepsin K and v-ATPase, the lysosomal-associated cathepsin K and v-ATPase were not accumulated at the ruffled border in Lrrk1 KO osteoclasts. Our data indicate that LRRK1 controls osteoclast activity by regulating lysosomal distribution, acid secretion, and protease exocytosis.
Collapse
Affiliation(s)
- Sandi Shen
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mingjue Si
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Elaine K. Liu
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
| | - Yian Chen
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
| | - Jean Vacher
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
8
|
Yan C, Shi Y, Yuan L, Lv D, Sun B, Wang J, Liu X, An F. Mitochondrial quality control and its role in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1077058. [PMID: 36793284 PMCID: PMC9922754 DOI: 10.3389/fendo.2023.1077058] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are important organelles that provide cellular energy and play a vital role in cell differentiation and apoptosis. Osteoporosis is a chronic metabolic bone disease mainly caused by an imbalance in osteoblast and osteoclast activity. Under physiological conditions, mitochondria regulate the balance between osteogenesis and osteoclast activity and maintain bone homeostasis. Under pathological conditions, mitochondrial dysfunction alters this balance; this disruption is important in the pathogenesis of osteoporosis. Because of the role of mitochondrial dysfunction in osteoporosis, mitochondrial function can be targeted therapeutically in osteoporosis-related diseases. This article reviews different aspects of the pathological mechanism of mitochondrial dysfunction in osteoporosis, including mitochondrial fusion and fission, mitochondrial biogenesis, and mitophagy, and highlights targeted therapy of mitochondria in osteoporosis (diabetes induced osteoporosis and postmenopausal osteoporosis) to provide novel targets and prevention strategies for the prevention and treatment of osteoporosis and other chronic bone diseases.
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yao Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Donghui Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayu Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiyan Liu
- Internal Medicine, Northwestern University, Xian, Shanxi, China
- *Correspondence: Xiyan Liu, ; Fangyu An,
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Xiyan Liu, ; Fangyu An,
| |
Collapse
|
9
|
Xing W, Larkin D, Pourteymoor S, Tambunan W, Gomez GA, Liu EK, Mohan S. Lack of Skeletal Effects in Mice with Targeted Disruptionof Prolyl Hydroxylase Domain 1 ( Phd1) Gene Expressed in Chondrocytes. Life (Basel) 2022; 13:106. [PMID: 36676055 PMCID: PMC9862499 DOI: 10.3390/life13010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
The critical importance of hypoxia-inducible factor (HIF)s in the regulation of endochondral bone formation is now well established. HIF protein levels are closely regulated by the prolyl hydroxylase domain-containing protein (PHD) mediated ubiquitin-proteasomal degradation pathway. Of the three PHD family members expressed in bone, we previously showed that mice with conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in the trabecular bone mass of the long bones. By contrast, loss of Phd3 expression in chondrocytes had no skeletal effects. To investigate the role of Phd1 expressed in chondrocytes on skeletal development, we conditionally disrupted the Phd1 gene in chondrocytes by crossing Phd1 floxed mice with Collagen 2α1-Cre mice for evaluation of a skeletal phenotype. At 12 weeks of age, neither body weight nor body length was significantly different in the Cre+; Phd1flox/flox conditional knockout (cKO) mice compared to Cre−; Phd1flox/flox wild-type (WT) control mice. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype differences were found for any of the trabecular bone measurements of either femur or tibia. Similarly, cortical bone parameters were not affected in the Phd1 cKO mice compared to control mice. Histomorphometric analyses revealed no significant differences in bone area, bone formation rate or mineral apposition rate in the secondary spongiosa of femurs between cKO and WT control mice. Loss of Phd1 expression in chondrocytes did not affect the expression of markers of chondrocytes (collage 2, collagen 10) or osteoblasts (alkaline phosphatase, bone sialoprotein) in the bones of cKO mice. Based on these and our published data, we conclude that of the three PHD family members, only Phd2 expressed in chondrocytes regulates endochondral bone formation and development of peak bone mass in mice.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Destiney Larkin
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - William Tambunan
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Gustavo A. Gomez
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Elaine K. Liu
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
10
|
Xing W, Pourteymoor S, Chen Y, Mohan S. Targeted Deletion of the Claudin12 Gene in Mice Increases Articular Cartilage and Inhibits Chondrocyte Differentiation. Front Endocrinol (Lausanne) 2022; 13:931318. [PMID: 35937800 PMCID: PMC9354527 DOI: 10.3389/fendo.2022.931318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
To study the role of Claudin (CLDN)12 in bone, we developed mice with a targeted deletion of exon2 in the Cldn12 gene for skeletal phenotype analysis. Micro-CT analysis of the secondary spongiosa of distal femurs of mice with targeted disruption of the Cldn12 gene and control littermates showed no significant genotype-specific differences in either cortical or trabecular bone parameters for either gender in 13-week-old mice. Immunohistochemistry revealed that while CLDN12 was expressed in both differentiating chondrocytes and osteoblasts of the secondary spongiosa of 3-week-old wild-type mice, its expression was restricted to differentiating chondrocytes in the articular cartilage and growth plate in adult mice. Articular cartilage area at the knee were increased by 47% in Cldn12 knockout (KO) mice compared to control littermates. Micro-CT analyses found that while the trabecular number was increased by 9% and the trabecular spacing was reduced by 9% in the femoral epiphysis of Cldn12 KO mice, neither bone volume nor bone volume adjusted for tissue volume was different between the two genotypes. The expression levels of Clusterin, Lubricin and Mmp13 were increased by 56%, 46%, and 129%, respectively, in primary articular chondrocytes derived from KO compared to control mice. Our data indicate that targeted deletion of the Cldn12 gene in mice increases articular cartilage, in part, by promoting articular chondrocyte phenotype.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
| | - Yian Chen
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare Systems, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Biochemistry, Loma Linda University, Loma Linda, CA, United States
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA, United States
- *Correspondence: Subburaman Mohan,
| |
Collapse
|
11
|
Chen H, Fan W, He H, Huang F. PGC-1: a key regulator in bone homeostasis. J Bone Miner Metab 2022; 40:1-8. [PMID: 34424416 DOI: 10.1007/s00774-021-01263-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) is an inducible co-regulator of nuclear receptors and is involved in a wide variety of biological responses. As the master regulators of mitochondrial biogenesis and function, PGC-1α and PGC-1β have been reported to play key roles in bone metabolism. They can be rapidly induced under conditions of increased metabolic activities, such as osteoblastogenesis and osteoclastogenesis, to fulfill greater energy demand or facilitate other biochemical reactions. PGC-1α and PGC-1β have both overlapping and distinct functions with each other among their target organs. In bone homeostasis, PGC-1α and PGC-1β promote the expression of genes required for mitochondrial biogenesis via coactivator interactions with key transcription factors, respectively regulating osteoblastogenesis and osteoclastogenesis. Here, we review the current understanding of how PGC-1α and PGC-1β affect osteoblastogenesis and osteoclastogenesis, how these two PGC-1 coactivators are regulated in bone homeostasis, and how we can translate these findings into therapeutic potential for bone metabolic diseases.
Collapse
Affiliation(s)
- Haoling Chen
- Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuan Xi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuan Xi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuan Xi Road, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Reis J, Ramos A. In Sickness and in Health: The Oxygen Reactive Species and the Bone. Front Bioeng Biotechnol 2021; 9:745911. [PMID: 34888300 PMCID: PMC8650620 DOI: 10.3389/fbioe.2021.745911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress plays a central role in physiological and pathological bone conditions. Its role in signalment and control of bone cell population differentiation, activity, and fate is increasingly recognized. The possibilities of its use and manipulation with therapeutic goals are virtually unending. However, how redox balance interplays with the response to mechanical stimuli is yet to be fully understood. The present work summarizes current knowledge on these aspects, in an integrative and broad introductory perspective.
Collapse
Affiliation(s)
- Joana Reis
- Agronomic and Veterinary Sciences, School of Agriculture, Polytechnic Institute of Viana Do Castelo, Ponte de Lima, Portugal
| | - António Ramos
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Liu Z, Wang H, Hou Y, Yang Y, Jia J, Wu J, Zuo Z, Gao T, Ren S, Bian Y, Liu S, Fu J, Sun Y, Li J, Yamamoto M, Zhang Q, Xu Y, Pi J. CNC-bZIP protein NFE2L1 regulates osteoclast differentiation in antioxidant-dependent and independent manners. Redox Biol 2021; 48:102180. [PMID: 34763297 PMCID: PMC8591424 DOI: 10.1016/j.redox.2021.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
Fine-tuning of osteoclast differentiation (OD) and bone remodeling is crucial for bone homeostasis. Dissecting the mechanisms regulating osteoclastogenesis is fundamental to understanding the pathogenesis of various bone disorders including osteoporosis and arthritis. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1), which belongs to the CNC-bZIP family of transcription factors, orchestrates a variety of physiological processes and stress responses. While Nfe2l1 gene may be transcribed into multiple alternatively spliced isoforms, the biological function of the different isoforms of NFE2L1 in bone metabolism, osteoclastogenesis in particular, has not been reported. Here we demonstrate that knockout of all isoforms of Nfe2l1 transcripts specifically in the myeloid lineage in mice [Nfe2l1(M)-KO] results in increased activity of osteoclasts, decreased bone mass and worsening of osteoporosis induced by ovariectomy and aging. In comparison, LysM-Cre-mediated Nfe2l1 deletion has no significant effect on the osteoblast and osteocytes. Mechanistic investigations using bone marrow cells and RAW 264.7 cells revealed that deficiency of Nfe2l1 leads to accelerated and elevated OD, which is attributed, at least in part, to enhanced accumulation of ROS in the early stage of OD and expression of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1α (Nfatc1/α). In addition, NFE2L1 regulates the transcription of multiple antioxidant genes and Nfatc1/α and OD in an isoform-specific manner. While long isoforms of NFE2L1 function as accelerators of induction of Nfatc1/α and antioxidant genes and OD, the short isoform NFE2L1-453 serves as a brake that keeps the long isoforms' accelerator effects in check. These findings provide a novel insight into the regulatory roles of NFE2L1 in osteoclastogenesis and highlight that NFE2L1 is essential in regulating bone remodeling and thus may be a valuable therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yang Yang
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jingkun Jia
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jinzhi Wu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianchang Gao
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongxin Sun
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, 46202, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
14
|
Khajebishak Y, Alivand M, Faghfouri AH, Moludi J, Payahoo L. The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. INT J VITAM NUTR RES 2021. [PMID: 34643416 DOI: 10.1024/0300-9831/a000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Non-communicable diseases (NCDs) have received more attention because of high prevalence and mortality rate. Besides genetic and environmental factors, the epigenetic abnormality is also involved in the pathogenesis of NCDs. Methylation of DNA, chromatin remodeling, modification of histone, and long non-coding RNAs are the main components of epigenetic phenomena. Methodology: In this review paper, the mechanistic role of vitamins and dietary patterns on epigenetic modification was discussed. All papers indexed in scientific databases, including PubMed, Scopus, Embase, Google Scholar, and Elsevier were searched during 2000 - 2021 using, vitamins, diet, epigenetic repression, histones, methylation, acetylation, and NCDs as keywords. Results: The components of healthy dietary patterns like Mediterranean and dietary approaches to stop hypertension diets have a beneficial effect on epigenetic hemostasis. Both quality and quantity of dietary components influence epigenetic phenomena. A diet with calorie deficiency in protein content and methyl-donor agents in a long time, with a high level of fat, disrupts epigenetic hemostasis and finally, causes genome instability. Also, soluble and insoluble vitamins have an obvious role in epigenetic modifications. Most vitamins interact directly with methylation, acetylation, and phosphorylation pathways of histone and DNA. However, numerous indirect functions related to the cell cycle stability and genome integrity have been recognized. Conclusion: Considering the crucial role of a healthy diet in epigenetic homeostasis, adherence to a healthy dietary pattern containing enough levels of vitamin and avoiding the western diet seems to be necessary. Having a healthy diet and consuming the recommended dietary level of vitamins can also contribute to epigenetic stability.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Laleh Payahoo
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
15
|
Prolyl Hydroxylase Domain-Containing Protein 3 Gene Expression in Chondrocytes Is Not Essential for Bone Development in Mice. Cells 2021; 10:cells10092200. [PMID: 34571849 PMCID: PMC8470734 DOI: 10.3390/cells10092200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 01/28/2023] Open
Abstract
We previously showed that conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in long bone trabecular bone mass. Loss of Phd2 gene expression or inhibition of PHD2 activity by a specific inhibitor resulted in a several-fold compensatory increase in Phd3 expression in chondrocytes. To determine if expression of PHD3 plays a role in endochondral bone formation, we conditionally disrupted the Phd3 gene in chondrocytes by crossing Phd3 floxed (Phd3flox/flox) mice with Col2α1-Cre mice. Loss of Phd3 expression in the chondrocytes of Cre+; Phd3flox/flox conditional knockout (cKO) mice was confirmed by real time PCR. At 16 weeks of age, neither body weight nor body length was significantly different in the Phd3 cKO mice compared to Cre−; Phd3flox/flox wild-type (WT) mice. Areal BMD measurements of total body as well as femur, tibia, and lumbar skeletal sites were not significantly different between the cKO and WT mice at 16 weeks of age. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype difference was found for any of the trabecular bone measurements of either the femur or the tibia. Trabecular bone volume of distal femur epiphysis was not different between cKO and WT mice. Histology analyses revealed Phd3 cKO mice exhibited a comparable chondrocyte differentiation and proliferation, as evidenced by no changes in cartilage thickness and area in the cKO mice as compared to WT littermates. Consistent with the in vivo data, lentiviral shRNA-mediated knockdown of Phd3 expression in chondrocytes did not affect the expression of markers of chondrocyte differentiation (Col2, Col10, Acan, Sox9). Our study found that Phd2 but not Phd3 expressed in chondrocytes regulates endochondral bone formation, and the compensatory increase in Phd3 expression in the chondrocytes of Phd2 cKO mice is not the cause for increased trabecular bone mass in Phd2 cKO mice.
Collapse
|
16
|
Wang M, Ren Y, Hu S, Liu K, Qiu L, Zhang Y. TCF11 Has a Potent Tumor-Repressing Effect Than Its Prototypic Nrf1α by Definition of Both Similar Yet Different Regulatory Profiles, With a Striking Disparity From Nrf2. Front Oncol 2021; 11:707032. [PMID: 34268128 PMCID: PMC8276104 DOI: 10.3389/fonc.2021.707032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
Nrf1 and Nrf2, as two principal CNC-bZIP transcription factors, regulate similar but different targets involved in a variety of biological functions for maintaining cell homeostasis and organ integrity. Of note, the unique topobiological behavior of Nrf1 makes its functions more complicated than Nrf2, because it is allowed for alternatively transcribing and selectively splicing to yield multiple isoforms (e.g., TCF11, Nrf1α). In order to gain a better understanding of their similarities and differences in distinct regulatory profiles, all four distinct cell models for stably expressing TCF11, TCF11ΔN , Nrf1α or Nrf2 have been herein established by an Flp-In™ T-REx™-293 system and then identified by transcriptomic sequencing. Further analysis revealed that Nrf1α and TCF11 have similar yet different regulatory profiles, although both contribute basically to positive regulation of their co-targets, which are disparate from those regulated by Nrf2. Such disparity in those gene regulations by Nrf1 and Nrf2 was further corroborated by scrutinizing comprehensive functional annotation of their specific and/or common target genes. Conversely, the mutant TCF11ΔN, resulting from a deletion of the N-terminal amino acids 2-156 from TCF11, resembles Nrf2 with the largely consistent structure and function. Interestingly, our further experimental evidence demonstrates that TCF11 acts as a potent tumor-repressor relative to Nrf1α, albeit both isoforms possess a congruous capability to prevent malignant growth of tumor and upregulate those genes critical for improving the survival of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yonggang Ren
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China.,Department of Biochemistry, North Sichuan Medical College, Nanchong, China
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| | - Keli Liu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Abstract
Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
Collapse
Affiliation(s)
- Bo Li
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan-Wei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
18
|
Ren S, Bian Y, Hou Y, Wang Z, Zuo Z, Liu Z, Teng Y, Fu J, Wang H, Xu Y, Zhang Q, Chen Y, Pi J. The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse models. Redox Biol 2021; 44:102015. [PMID: 34058615 PMCID: PMC8170497 DOI: 10.1016/j.redox.2021.102015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Adipocytes play pivotal roles in maintaining energy homeostasis by storing lipids in adipose tissue (AT), regulating the flux of lipids between AT and the circulation in response to the body's energy requirements and secreting a variety of hormones, cytokines and other factors. Proper AT development and function ensure overall metabolic health. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and plays critical roles in regulating a wide range of essential cellular functions and varies stress responses in many cells and tissues. Human and rodent Nfe2l1 genes can be transcribed into multiple splice variants resulting in various protein isoforms, which may be further modified by a variety of post-translational mechanisms. While the long isoforms of NFE2L1 have been established as master regulators of cellular adaptive antioxidant response and proteasome homeostasis, the exact tissue distribution and physiological function of NFE2L1 isoforms, the short isoforms in particular, are still under intense investigation. With regard to key roles of NFE2L1 in adipocytes, emerging data indicates that deficiency of Nfe2l1 results in aberrant adipogenesis and impaired AT functioning. Intriguingly, a single nucleotide polymorphism (SNP) of the human NFE2L1 gene is associated with obesity. In this review, we summarize the most significant findings regarding the specific roles of the multiple isoforms of NFE2L1 in AT formation and function. We highlight that NFE2L1 plays a fundamental regulatory role in the expression of multiple genes that are crucial to AT metabolism and function and thus could be an important target to improve disease states involving aberrant adipose plasticity and lipid homeostasis.
Collapse
Affiliation(s)
- Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhendi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yue Teng
- Department of Hepatopancreatobiliary Surgery, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, Liaoning, 110001, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
19
|
Han JJW, Ho DV, Kim HM, Lee JY, Jeon YS, Chan JY. The deubiquitinating enzyme USP7 regulates the transcription factor Nrf1 by modulating its stability in response to toxic metal exposure. J Biol Chem 2021; 296:100732. [PMID: 33933455 PMCID: PMC8163974 DOI: 10.1016/j.jbc.2021.100732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The nuclear factor E2-related factor 1 (Nrf1) transcription factor performs a critical role in regulating cellular homeostasis as part of the cellular stress response and drives the expression of antioxidants and detoxification enzymes among many other functions. Ubiquitination plays an important role in controlling the abundance and thus nuclear accumulation of Nrf1 proteins, but the regulatory enzymes that act on Nrf1 are not fully defined. Here, we identified ubiquitin specific protease 7 (USP7), a deubiquitinating enzyme, as a novel regulator of Nrf1 activity. We found that USP7 interacts with Nrf1a and TCF11—the two long protein isoforms of Nrf1. Expression of wildtype USP7, but not its catalytically defective mutant, resulted in decreased ubiquitination of TCF11 and Nrf1a, leading to their increased stability and increased transactivation of reporter gene expression by TCF11 and Nrf1a. In contrast, knockdown or pharmacologic inhibition of USP7 dramatically increased ubiquitination of TCF11 and Nrf1a and reduction of their steady state levels. Loss of USP7 function attenuated the induction of Nrf1 protein expression in response to treatment with arsenic and other toxic metals, and inhibition of USP7 activity significantly sensitized cells to arsenic treatment. Collectively, these findings suggest that USP7 may act to modulate abundance of Nrf1 protein to induce gene expression in response to toxic metal exposure.
Collapse
Affiliation(s)
- John J W Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Hyun M Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Jun Y Lee
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Yerin S Jeon
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA.
| |
Collapse
|
20
|
Sánchez-de-Diego C, Pedrazza L, Pimenta-Lopes C, Martinez-Martinez A, Dahdah N, Valer JA, Garcia-Roves P, Rosa JL, Ventura F. NRF2 function in osteocytes is required for bone homeostasis and drives osteocytic gene expression. Redox Biol 2020; 40:101845. [PMID: 33373776 PMCID: PMC7773566 DOI: 10.1016/j.redox.2020.101845] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Osteocytes, the most abundant bone cell type, are derived from osteoblasts through a process in which they are embedded in an osteoid. We previously showed that nutrient restriction promotes the osteocyte transcriptional program and is associated with increased mitochondrial biogenesis. Here, we show that increased mitochondrial biogenesis increase reactive oxygen species (ROS) levels and consequently, NRF2 activity during osteocytogenesis. NRF2 activity promotes osteocyte-specific expression of Dmp1, Mepe, and Sost in IDG-SW3 cells, primary osteocytes, and osteoblasts, and in murine models with Nfe2l2 deficiency in osteocytes or osteoblasts. Moreover, ablation of Nfe2l2 in osteocytes or osteoblasts generates osteopenia and increases osteoclast numbers with marked sexual dimorphism. Finally, treatment with dimethyl fumarate prevented the deleterious effects of ovariectomy in trabecular bone masses of mice and restored osteocytic gene expression. Altogether, we uncovered the role of NRF2 activity in osteocytes during the regulation of osteocyte gene expression and maintenance of bone homeostasis. ROS levels and NRF2 activity are increased during osteocytogenesis. NRF2 drives osteocyte specification and activate the transcription of osteocyte-specific genes. NRF2 in osteocytes has a fundamental role in bone homeostasis and its deletion induces osteopenia. Activation of NRF2 with dimethyl fumarate prevents osteopenia induced by ovariectomy.
Collapse
Affiliation(s)
- Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Pablo Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
21
|
Brzezińska O, Łukasik Z, Makowska J, Walczak K. Role of Vitamin C in Osteoporosis Development and Treatment-A Literature Review. Nutrients 2020; 12:E2394. [PMID: 32785080 PMCID: PMC7469000 DOI: 10.3390/nu12082394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis and associated low energy fractures are a significant clinical problem, especially in the elderly population. The occurrence of a hip fracture is associated with significant mortality and a high risk of disability. For this, apart from the treatment of osteoporosis, effective prevention of both the development of the disease and related fractures is extremely important. One aspect of osteoporosis prevention is proper dietary calcium intake and normal vitamin D3 levels. However, there is some evidence for a potential role of vitamin C in osteoporosis and fracture prevention, too. This review aims to summarize the current knowledge about the role of vitamin C in osteoporosis development, prevention and treatment. The PubMed/Medline search on the role of vitamin C in bone metabolism database was performed for articles between 2000 and May 2020. Reports from in vitro and animal studies seem promising. Epidemiological studies also indicate the positive effect of high vitamin C content in the daily diet on bone mineral density. Despite promising observations, there are still few observational and intervention studies and their results do not allow for unequivocal determination of the benefits of high daily intake of vitamin C or its long-term supplementation.
Collapse
Affiliation(s)
- Olga Brzezińska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland; (Z.Ł.); (J.M.)
| | - Zuzanna Łukasik
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland; (Z.Ł.); (J.M.)
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland; (Z.Ł.); (J.M.)
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 90-050 Lodz, Poland;
| |
Collapse
|
22
|
Cytoprotective Preconditioning of Osteoblast-Like Cells with N-Acetyl- L-Cysteine for Bone Regeneration in Cell Therapy. Int J Mol Sci 2019; 20:ijms20205199. [PMID: 31635184 PMCID: PMC6834301 DOI: 10.3390/ijms20205199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress hinders tissue regeneration in cell therapy by inducing apoptosis and dysfunction in transplanted cells. N-acetyl-L-cysteine (NAC) reinforces cellular antioxidant capabilities by increasing a major cellular endogenous antioxidant molecule, glutathione, and promotes osteogenic differentiation. This study investigates the effects of pretreatment of osteoblast-like cells with NAC on oxidative stress-induced apoptosis and dysfunction and bone regeneration in local transplants. Rat femur bone marrow-derived osteoblast-like cells preincubated for 3 h with and without 5 mM NAC were cultured in a NAC-free osteogenic differentiation medium with continuous exposure to 50 μM hydrogen peroxide to induce oxidative stress. NAC preincubation prevented disruption of intracellular redox balance and alleviated apoptosis and negative impact on osteogenic differentiation, even under oxidative stress. Autologous osteoblast-like cells with and without NAC pretreatment in a collagen sponge vehicle were implanted in critical-size defects in rat femurs. In the third week, NAC-pretreated cells yielded complete defect closure with significantly matured lamellar bone tissue in contrast with poor bone healing by cells without pretreatment. Cell-tracking analysis demonstrated direct bone deposition by transplanted cells pretreated with NAC. Pretreatment of osteoblast-like cells with NAC enhances bone regeneration in local transplantation by preventing oxidative stress-induced apoptosis and dysfunction at the transplanted site.
Collapse
|
23
|
Lindsey RC, Cheng S, Mohan S. Vitamin C effects on 5-hydroxymethylcytosine and gene expression in osteoblasts and chondrocytes: Potential involvement of PHD2. PLoS One 2019; 14:e0220653. [PMID: 31390373 PMCID: PMC6685624 DOI: 10.1371/journal.pone.0220653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/20/2019] [Indexed: 12/02/2022] Open
Abstract
Vitamin C (ascorbic acid, AA) is a well-known regulator of bone and cartilage metabolism. However, the mechanisms of AA’s action in these tissues are only partly understood. In this study, we confirmed that AA contributes to bone and cartilage metabolism by showing decreased articular cartilage and trabecular bone in AA-deficient spontaneous fracture (sfx) mutant mice. In vitro, we found that AA exerts differential effects on chondrocyte and osteoblast differentiation. Since AA is known to increase levels of 5-hydroxymethylcytosine (5-hmC) and induce DNA demethylation via the ten-eleven translocases (TETs), and since prolyl hydroxylase domain-containing protein 2 (PHD2), a known mediator of AA’s effects in these tissues, is part of the same enzyme family as the TETs, we next investigated whether increases in 5-hmC might mediate some of these effects. All TETs and PHDs are expressed in chondrocytes and osteoblasts, and PHD2 is localized in both the cytoplasm and nucleus of the cell, lending plausibility to the hypothesis of altered 5-hmC content in these cells. We found that AA treatment increased levels of 5-hmC in both cell types globally, notably including promoter regions of osteoblast differentiation genes. Furthermore, inhibition of PHD2 decreased 5-hmC levels in chondrocyte differentiation gene promoters, and knockdown of Phd2 in chondrocytes reduced global 5-hmC levels, suggesting for the first time that PHD2 may itself directly mediate increases in 5-hmC in chondrocyte and osteoblast genes. Further investigation of this mechanism could lead to novel therapeutic approaches to treat debilitating diseases such as osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Richard C. Lindsey
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Shaohong Cheng
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Zhang J. Bioinformatics analysis of novel transcription factors and related differentially regulated modules in non-union skeletal fractures. J Back Musculoskelet Rehabil 2018; 31:623-628. [PMID: 29578472 DOI: 10.3233/bmr-169596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study aimed to further clarify the underlying pathomechanism of non-union skeletal fractures. METHODS Gene expression profile dataset GSE494 obtained from six non-union skeletal fracture and six normal samples was downloaded from the Gene Expression Omnibus database. Overlapping genes in at least two platforms were analyzed, and differentially expressed genes (DEGs) between normal and disease groups were screened. Transcriptional regulatory relationships and differentially regulated modules of various transcription factors (TFs) were determined. Differentially regulated modules with unknown functions were subjected to functional enrichment analysis. RESULTS Overall, 4,252 overlapping genes in at least two platforms and 77 DEGs, including 31 up and 46 downregulated genes, were obtained. Overall, 64,623 transcriptional regulatory relationships, including 49 TFs and 3,900 target genes, and 9 significant modules for differential regulation were identified. Three modules with unknown functions regulated by TFs, including zinc finger, ZZ-type containing 3 (ZZZ3), nuclear TF Y, alpha (NFYA), and POU class 2 homeobox 2 (POU2F2), were identified. Enriched GO-BP terms of NFYA and POU2F2 modules included cell adhesion and related terms and those of ZZ3 included cell cycle, cell proliferation, and associated terms. CONCLUSION Three TFs, including ZZZ3, POU2F2, and NFYA, and their regulated modules may have important effects on non-union skeletal fractures. Cell proliferation may be related with ZZZ3; cell adhesion and its similar process may be related with POU2F2 and NFYA.
Collapse
|
25
|
Nrf1D Is the First Candidate Secretory Transcription Factor in the Blood Plasma, Its Precursor Existing as a Unique Redox-Sensitive Transmembrane CNC-bZIP Protein in Hemopoietic and Somatic Tissues. Int J Mol Sci 2018; 19:ijms19102940. [PMID: 30261697 PMCID: PMC6213093 DOI: 10.3390/ijms19102940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/03/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Among multiple distinct isoforms, Nrf1D is synthesized from a de novo translation of an alternatively-spliced transcript of Nrf1 mRNA, as accompanied by a naturally-occurring deletion of its stop codon-flanking 1466 nucleotides. This molecular event leads to the generation of a reading frameshift mutation, which results in a constitutive substitution of the intact Nrf1's C-terminal 72 amino acids (aa, covering the second half of the leucine zipper motif to C-terminal Neh3L domain) by an additional extended 80-aa stretch to generate a unique variant Nrf1D. The C-terminal extra 80-aa region of Nrf1D was herein identified to be folded into a redox-sensitive transmembrane domain, enabling it to be tightly integrated within the endoplasmic reticulum (ER) membranes. Notably, the salient feature of Nrf1D enables it to be distinguishable from prototypic Nrf1, such that Nrf1D is endowed with a lesser ability than wild-type Nrf1 to mediate target gene expression. Further evidence has also been presented revealing that both mRNA and protein levels of Nrf1D, together with other isoforms similar to those of Nrf1, were detected to varying extents in hemopoietic and somatic tissues. Surprisingly, we found the existence of Nrf1D-derived isoforms in blood plasma, implying that it is a candidate secretory transcription factor, albeit its precursor acts as an integral transmembrane-bound CNC-bZIP protein that entails dynamic topologies across membranes, before being unleashed from the ER to enter the blood.
Collapse
|
26
|
Yuan J, Zhang S, Zhang Y. Nrf1 is paved as a new strategic avenue to prevent and treat cancer, neurodegenerative and other diseases. Toxicol Appl Pharmacol 2018; 360:273-283. [PMID: 30267745 DOI: 10.1016/j.taap.2018.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Transcription factor Nrf1 acts as a unique vital player in maintaining cellular homeostasis and organ integrity during normal development and growth throughout the life process. Loss-of-function of Nrf1 results in severe oxidative stress, genomic instability, embryonic lethality, developmental disorders, and adult diseases such as non-alcoholic steatohepatitis, hepatocellular carcinoma, diabetes and neurogenerative diseases. Thereby, Nrf1 is critically implicated in a variety of important physio-pathological processes by governing robust target genes in order to reinforce antioxidant, detoxification and cytoprotective responses to cellular stress. Notably, there also exists a proteasomal 'bounce-back' response mediated by Nrf1, insofar as to enhance the drug resistance to proteasomal inhibitors in clinical treatment of neuroblastoma, multiple myeloma and triple-negative breast cancers. Recently, several drugs or chemicals are found or re-found in new ways to block the proteasomal compensatory process through inhibiting the multistep processing of Nrf1. Conversely, activation of Nrf1 induced by some drugs or chemicals leads to cytoprotection from cell apoptosis and promotes cell viability. This is the start of constructive and meaningful studies, approaching to explore the mechanism(s) by which Nrf1 is activated to protect neurons and other cells from malignant and degenerative diseases. Overall, Nrf1 has appealed attentions as a new attractive therapeutic strategy for human diseases including cancers.
Collapse
Affiliation(s)
- Jianxin Yuan
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shuwei Zhang
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yiguo Zhang
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
27
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
28
|
Fu J, Zheng H, Cui Q, Chen C, Bao S, Sun J, Li L, Yang B, Wang H, Hou Y, Xu Y, Xu Y, Zhang Q, Pi J. Nfe2l1-silenced insulinoma cells acquire aggressiveness and chemoresistance. Endocr Relat Cancer 2018; 25:185-200. [PMID: 29203613 DOI: 10.1530/erc-17-0458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
The transcription factor nuclear factor erythroid 2-like 1 (NFE2L1 or NRF1) is involved in various critical cell processes such as maintenance of ubiquitin-proteasome system and regulation of the cellular antioxidant response. We previously determined that pancreatic β-cell-specific Nfe2l1-knockout mice had hyperinsulinemia and that silencing of Nfe2l1 in mouse islets or MIN6 insulinoma β-cells induced elevated basal insulin release and altered glucose metabolism. Hypoglycemia is a major issue with aggressive insulinomas, although a role of NFE2L1 in this pathology is not defined. In the present work, we studied the tumorigenicity of Nfe2l1-deficient insulinoma MIN6 cells (Nfe2l1-KD) and sensitivity to chemotherapy. Nfe2l1-KD cells grew faster and were more aggressive than Scramble cells in vitro In a mouse allograft transplantation model, insulinomas arising from Nfe2l1-KD cells were more aggressive and chemoresistant. The conclusion was amplified using streptozotocin (STZ) administration in an allograft transplantation model in diabetic Akita background mice. Furthermore, Nfe2l1-KD cells were resistant to damage by the chemotherapeutic drugs STZ and 5-fluorouracil, which was linked to binding of hexokinase 1 with mitochondria, enhanced mitochondrial membrane potential and closed mitochondrial potential transition pore. Overall, both in vitro and in vivo data from Nfe2l1-KD insulinoma cells provided evidence of a previously un-appreciated action of NFE2L1 in suppression of tumorigenesis. Nfe2l1 silencing desensitizes insulinoma cells and derived tumors to chemotherapeutic-induced damage, likely via metabolic reprograming. These data indicate that NFE2L1 could potentially play an important role in the carcinogenic process and impact chemosensitivity, at least within a subset of pancreatic endocrine tumors.
Collapse
Affiliation(s)
- Jingqi Fu
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hongzhi Zheng
- Department of Geriatric EndocrinologyThe First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qi Cui
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Chengjie Chen
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Simeng Bao
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Jing Sun
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Lu Li
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Bei Yang
- Department of Histology and EmbryologySchool of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Huihui Wang
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yongyong Hou
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yuanhong Xu
- Department of Pancreatic SurgeryThe First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qiang Zhang
- Department of Environmental HealthRollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jingbo Pi
- Program of Environmental ToxicologySchool of Public Health, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
29
|
Sepulveda H, Villagra A, Montecino M. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment. Mol Cell Biol 2017; 37:e00177-17. [PMID: 28784721 PMCID: PMC5615189 DOI: 10.1128/mcb.00177-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 07/22/2017] [Indexed: 12/22/2022] Open
Abstract
Here we assess histone modification, chromatin remodeling, and DNA methylation processes that coordinately control the expression of the bone master transcription factor Sp7 (osterix) during mesenchymal lineage commitment in mammalian cells. We find that Sp7 gene silencing is mediated by DNA methyltransferase1/3 (DNMT1/3)-, histone deacetylase 1/2/4 (HDAC1/2/4)-, Setdb1/Suv39h1-, and Ezh1/2-containing complexes. In contrast, Sp7 gene activation involves changes in histone modifications, accompanied by decreased nucleosome enrichment and DNA demethylation mediated by SWI/SNF- and Tet1/Tet2-containing complexes, respectively. Inhibition of DNA methylation triggers changes in the histone modification profile and chromatin-remodeling events leading to Sp7 gene expression. Tet1/Tet2 silencing prevents Sp7 expression during osteoblast differentiation as it impairs DNA demethylation and alters the recruitment of histone methylase (COMPASS)-, histone demethylase (Jmjd2a/Jmjd3)-, and SWI/SNF-containing complexes to the Sp7 promoter. The dissection of these interconnected epigenetic mechanisms that govern Sp7 gene activation reveals a hierarchical process where regulatory components mediating DNA demethylation play a leading role.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
Mármol I, Sánchez-de-Diego C, Jiménez-Moreno N, Ancín-Azpilicueta C, Rodríguez-Yoldi MJ. Therapeutic Applications of Rose Hips from Different Rosa Species. Int J Mol Sci 2017; 18:ijms18061137. [PMID: 28587101 PMCID: PMC5485961 DOI: 10.3390/ijms18061137] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view.
Collapse
Affiliation(s)
- Inés Mármol
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza 50013, Spain.
| | | | - Nerea Jiménez-Moreno
- Department of Applied Chemistry, Public University of Navarra, Pamplona 31006, Spain.
| | | | | |
Collapse
|
31
|
Tang XL, Wang CN, Zhu XY, Ni X. Protein tyrosine phosphatase SHP-1 modulates osteoblast differentiation through direct association with and dephosphorylation of GSK3β. Mol Cell Endocrinol 2017; 439:203-212. [PMID: 27614023 DOI: 10.1016/j.mce.2016.08.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
SHP-1, the Src homology-2 (SH2) domain-containing phosphatase 1, is a cytosolic protein-tyrosine phosphatase (PTP) predominantly expressed in hematopoietic-derived cells. Previous studies have focused on the involvement of SHP-1 in osteoclastogenesis. Using primary cultured mouse fetal calvaria-derived osteoblasts as a model, this study aims to investigate the effects of SHP-1 on differentiation and mineralization of osteoblasts and elucidate the signaling pathways responsible for these effects. We found that osteoblasts treated by osteogenic media showed significant increase in SHP-1 expression, which contributed to osteoblastic differentiation and mineralization. Using immunoprecipitation assay, we found that a direct association between SHP-1 and glycogen synthase kinase (GSK)-3β could be detected in differentiated osteoblasts and was significantly inhibited by SHP-1 inhibitor NSC87877. Inhibition of SHP-1 activated GSK3β, thereby leading to suppression of osteoblast differentiation and mineralization, which could be rescued by the inhibitor of GSK3β. In addition, we found that rosiglitazone (RSG) treatment led to significant decrease in SHP-1 expression. Overexpression of SHP-1 reversed RSG-induced GSK3β activation, thus rescuing the inhibitory effect of RSG on osteoblast differentiation and mineralization. These findings suggest that protein tyrosine phosphatase SHP-1 may act as a positive regulator of osteoblast differentiation through direct association with and dephosphorylation of GSK3β. Downregulation of SHP-1 may contribute to RSG-induced inhibition of mouse calvaria osteoblast differentiation by activating GSK3β-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Lu Tang
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China
| | - Chang-Nan Wang
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China
| | - Xiao-Yan Zhu
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| | - Xin Ni
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
32
|
Zeng C, Goodluck H, Qin X, Liu B, Mohan S, Xing W. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation. Am J Physiol Endocrinol Metab 2016; 311:E772-E780. [PMID: 27600824 PMCID: PMC5241559 DOI: 10.1152/ajpendo.00189.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
Abstract
Leucine-rich repeat kinase-1 (Lrrk1) consists of ankyrin repeats (ANK), leucine-rich repeats (LRR), a GTPase-like domain of Roc (ROC), a COR domain, a serine/threonine kinase domain (KD), and WD40 repeats (WD40). Previous studies have revealed that knockout (KO) of Lrrk1 in mice causes severe osteopetrosis, and a human mutation of Lrrk1 leads to osteosclerotic metaphysial dysplasia. The molecular mechanism by which Lrrk1 regulates osteoclast function is unknown. In this study, we generated a series of Lrrk1 mutants and evaluated their ability to rescue defective bone resorption in Lrrk1-deficient osteoclasts by use of pit formation assays. Overexpression of Lrrk1 or LRR-truncated Lrrk1, but not ANK-truncated Lrrk1, WD40-truncated Lrrk1, Lrrk1-KD, or K651A mutant Lrrk1, rescued bone resorption function of Lrrk1 KO osteoclasts. We next examined whether RAC1/Cdc42 small GTPases are direct substrates of Lrrk1 in osteoclasts. Western blot and pull-down assays revealed that Lrrk1 deficiency in osteoclasts resulted in reduced phosphorylation and activation of RAC1/Cdc42. In vitro kinase assays confirmed that recombinant Lrrk1 phosphorylated RAC1-GST protein, and immunoprecipitation showed that the interaction of Lrrk1 with RAC1 occurred within 10 min after RANKL treatment. Overexpression of constitutively active Q61L RAC1 partially rescued the resorptive function of Lrrk1-deficient osteoclasts. Furthermore, lack of Lrrk1 in osteoclasts led to reduced autophosphorylation of p21 protein-activated kinase-1 at Ser144, catalyzed by RAC1/Cdc42 binding and activation. Our data indicate that Lrrk1 regulates osteoclast function by directly modulating phosphorylation and activation of small GTPase RAC1/Cdc42 and that its function depends on ANK, ROC, WD40, and kinase domains.
Collapse
Affiliation(s)
- Canjun Zeng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Orthopedics, The Third Affiliated Hospital Of Southern Medical University, Guangzhou, China
| | - Helen Goodluck
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California
| | - Xuezhong Qin
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Bo Liu
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Orthopedics, The Third Xiangya Hosptial, Central South University, Changsha, Hunan, China
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California;
| |
Collapse
|
33
|
Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochem J 2016; 473:961-1000. [PMID: 27060105 DOI: 10.1042/bj20151182] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
The consensuscis-regulatory AP-1 (activator protein-1)-like AREs (antioxidant-response elements) and/or EpREs (electrophile-response elements) allow for differential recruitment of Nrf1 [NF-E2 (nuclear factor-erythroid 2)-related factor 1], Nrf2 and Nrf3, together with each of their heterodimeric partners (e.g. sMaf, c-Jun, JunD or c-Fos), to regulate different sets of cognate genes. Among them, NF-E2 p45 and Nrf3 are subject to tissue-specific expression in haemopoietic and placental cell lineages respectively. By contrast, Nrf1 and Nrf2 are two important transcription factors expressed ubiquitously in various vertebrate tissues and hence may elicit putative combinational or competitive functions. Nevertheless, they have de facto distinct biological activities because knockout of their genes in mice leads to distinguishable phenotypes. Of note, Nrf2 is dispensable during development and growth, albeit it is accepted as a master regulator of antioxidant, detoxification and cytoprotective genes against cellular stress. Relative to the water-soluble Nrf2, less attention has hitherto been drawn to the membrane-bound Nrf1, even though it has been shown to be indispensable for embryonic development and organ integrity. The biological discrepancy between Nrf1 and Nrf2 is determined by differences in both their primary structures and topovectorial subcellular locations, in which they are subjected to distinct post-translational processing so as to mediate differential expression of ARE-driven cytoprotective genes. In the present review, we focus on the molecular and cellular basis for Nrf1 and its isoforms, which together exert its essential functions for maintaining cellular homoeostasis, normal organ development and growth during life processes. Conversely, dysfunction of Nrf1 results in spontaneous development of non-alcoholic steatohepatitis, hepatoma, diabetes and neurodegenerative diseases in animal models.
Collapse
|
34
|
Park SY, Kim SH, Yoon HK, Yim CH, Lim SK. The Role of Nuclear Factor-E2-Related Factor 1 in the Oxidative Stress Response in MC3T3-E1 Osteoblastic Cells. Endocrinol Metab (Seoul) 2016; 31:336-42. [PMID: 27118276 PMCID: PMC4923419 DOI: 10.3803/enm.2016.31.2.336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) and antioxidants are associated with maintenance of cellular function and metabolism. Nuclear factor-E2-related factor 1 (NFE2L1, Nrf1) is known to regulate the expression of a number of genes involved in oxidative stress and inflammation. The purpose of this study was to examine the effects of NFE2L1 on the response to oxidative stress in osteoblastic MC3T3-E1 cells. METHODS The murine calvaria-derived MC3T3-E1 cell line was exposed to lipopolysaccharide (LPS) for oxidative stress induction. NFE2L1 effects were evaluated using small interfering RNA (siRNA) for NFE2L1 mRNA. ROS generation and the levels of known antioxidant enzyme genes were assayed. RESULTS NFE2L1 expression was significantly increased 2.4-fold compared to the control group at 10 μg/mL LPS in MC3T3-E1 cells (P<0.05). LPS increased formation of intracellular ROS in MC3T3-E1 cells. NFE2L1 knockdown led to an additional increase of ROS (20%) in the group transfected with NFE2L1 siRNA compared with the control group under LPS stimulation (P<0.05). RNA interference of NFE2L1 suppressed the expression of antioxidant genes including metallothionein 2, glutamatecysteine ligase catalytic subunit, and glutathione peroxidase 1 in LPS-treated MC3T3-E1 cells. CONCLUSION Our results suggest that NFE2L1 may have a distinct role in the regulation of antioxidant enzymes under inflammation-induced oxidative stress in MC3T3-E1 osteoblastic cells.
Collapse
Affiliation(s)
- So Young Park
- Department of Internal Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Sung Hoon Kim
- Department of Internal Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Hyun Koo Yoon
- Department of Internal Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Chang Hoon Yim
- Department of Internal Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Sung Kil Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Xing W, Aghajanian P, Goodluck H, Kesavan C, Cheng S, Pourteymoor S, Watt H, Alarcon C, Mohan S. Thyroid hormone receptor-β1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis. Am J Physiol Endocrinol Metab 2016; 310:E846-54. [PMID: 27026086 PMCID: PMC4895449 DOI: 10.1152/ajpendo.00541.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) action is mediated through two nuclear TH receptors, THRα and THRβ. Although the role of THRα is well established in bone, less is known about the relevance of THRβ-mediated signaling in bone development. On ther basis of our recent finding that TH signaling is essential for initiation and formation of secondary ossification center, we evaluated the role of THRs in mediating TH effects on epiphysial bone formation. Two-day treatment of TH-deficient Tshr(-/-) mice with TH increased THRβ1 mRNA level 3.4-fold at day 7 but had no effect on THRα1 mRNA level at the proximal tibia epiphysis. Treatment of serum-free cultures of tibias from 3-day-old mice with T3 increased THRβ1 expression 2.1- and 13-fold, respectively, at 24 and 72 h. Ten-day treatment of Tshr(-/-) newborns (days 5-14) with THRβ1 agonist GC1 at 0.2 or 2.0 μg/day increased BV/TV at day 21 by 225 and 263%, respectively, compared with vehicle treatment. Two-day treatment with GC1 (0.2 μg/day) increased expression levels of Indian hedgehog (Ihh) 100-fold, osterix 15-fold, and osteocalcin 59-fold compared with vehicle at day 7 in the proximal tibia epiphysis. Gel mobility shift assay demonstrated that a putative TH response element in the distal promoter of mouse Ihh gene interacted with THRβ1. GC1 treatment (1 nM) increased Ihh distal promoter activity 20-fold after 48 h in chondroctyes. Our data suggest a novel role for THRβ1 in secondary ossification at the epiphysis that involves transcriptional upregulation of Ihh gene.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Helen Goodluck
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Heather Watt
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California; Department of Orthopedics, Loma Linda University, Loma Linda, California; and Department of Biochemistry, Loma Linda University, Loma Linda, California
| |
Collapse
|
36
|
Liu B, Cheng S, Xing W, Pourteymoor S, Mohan S. RE1-Silencing Transcription Factor (Rest) is a Novel Regulator of Osteoblast Differentiation. J Cell Biochem 2016; 116:1932-8. [PMID: 25727884 DOI: 10.1002/jcb.25148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022]
Abstract
RE1-silencing transcription factor (Rest) has been identified as a master negative regulator of neuronal differentiation. Nothing is known about Rest function in bone cells. In this study, we examined the Rest expression levels and role during osteoblast differentiation. We found that Rest is abundantly expressed in bone marrow stromal cells, calvarial osteoblasts, and MC3T3-E1 osteoblasts. Treatment of primary osteoblasts with ascorbic acid (AA) down regulated Rest mRNA expression at an early stage, but not in later stages of differentiation. Consistent with treatment of primary cultures, AA treatment of MC3T3-E1 cells significantly reduced Rest protein expression at day 3 and at day 8 after initiation of osteoblast differentiation. Treatment of bone marrow stromal cells with BMP-2 and dexamethasone, but not IGF-I for 3 days greatly decreased Rest mRNA expression. To test the function of Rest during osteoblast differentiation, Rest expression was knocked down in MC3T3-E1 cell subclones segregated on the basis of ALP activity (differentiation status) using lentivirus expressing shRNA against Rest. An 80% knockdown of Rest expression decreased Osterix (Osx) expression by 52-57% and as a result, increased both basal and AA induced ALP expression and activity in the subclone that expresses low basal level of ALP (undifferentiated). By contrast, a 98% knockdown of Rest expression in cells that express high basal levels of ALP (differentiated cells) caused a significant reduction in Osx expression, basal and AA induced ALP expression and activity. These data suggest that Rest regulates early osteoblast differentiation via modulating Rest expression that is independent of Osx expression.
Collapse
Affiliation(s)
- Bo Liu
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California.,Department of Orthopedics, The 3rd Xiangya Hosptial, Central South University, Changsha, Hunan, China.,Departments of Medicine, Loma Linda University, Loma Linda, California
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California.,Departments of Medicine, Loma Linda University, Loma Linda, California
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California.,Departments of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
37
|
Segawa T, Miyakoshi N, Kasukawa Y, Aonuma H, Tsuchie H, Shimada Y. Combined treatment with minodronate and vitamin C increases bone mineral density and strength in vitamin C-deficient rats. Osteoporos Sarcopenia 2016; 2:30-37. [PMID: 30775465 PMCID: PMC6372727 DOI: 10.1016/j.afos.2016.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 01/05/2023] Open
Abstract
Objectives Reduced bone quality caused by vitamin C deficiency in older persons may lead to incidental fragility fractures during bisphosphonate treatment, although bisphosphonate increases bone mineral density (BMD). This study aimed to evaluate the effects of minodronate and ascorbic acid (Aa) on BMD, bone quality, and bone strength in Aa-deficient osteogenic disorder Shionogi (ODS) rats. Methods Six-month-old ODS rats were divided into four groups (n = 20 per group): (1) Aa supplementation (Aa+); (2) Aa-deficient (Aa−); (3) Aa supplementation and minodronate administration (Aa+ + Mino); and (4) Aa-deficient and minodronate administration (Aa− + Mino). BMD, bone strength, bone histomorphometry, and bone quality determined using Fourier transform infrared spectroscopy imaging (FTIRI) were evaluated after 4 and 8 weeks. Results BMD was significantly higher in the Aa+ + Mino group than in the Aa− group (p < 0.05). Bone strength was significantly higher in the Aa+ and Aa+ + Mino groups than in the Aa− group (p < 0.05). Furthermore, bone strength was significantly higher in the Aa+ + Mino group than in the Aa− + Mino group (p < 0.05). Minodronate treatment irrespective of Aa supplementation significantly decreased bone resorption compared with the Aa+ and Aa− groups (p < 0.05). No significant differences in the parameters evaluated by FTIRI were observed between the groups. Conclusions Aa supplementation improved bone strength in ODS rats. Combined treatment with minodronate and Aa, but not minodronate alone, improved bone strength and increased BMD. Aa is required for bone health because it is essential for osteoblast differentiation.
Collapse
Affiliation(s)
- Toyohito Segawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroshi Aonuma
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
38
|
Kim HM, Han JW, Chan JY. Nuclear Factor Erythroid-2 Like 1 (NFE2L1): Structure, function and regulation. Gene 2016; 584:17-25. [PMID: 26947393 DOI: 10.1016/j.gene.2016.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Nrf1 (also referred to as NFE2L1) is a member of the CNC-bZIP family of transcription factors that are characterized by a highly conserved CNC-domain, and a basic-leucine zipper domain required for dimerization and DNA binding. Nrf1 is ubiquitously expressed across tissue and cell types as various isoforms, and is induced by stress signals from a broad spectrum of stimuli. Evidence indicates that Nrf1 plays an important role in regulating a range of cellular functions including oxidative stress response, differentiation, inflammatory response, metabolism, and maintaining proteostasis. Thus, Nrf1 has been implicated in the pathogenesis of various disease processes including cancer development, and degenerative and metabolic disorders. This review summarizes our current understanding of Nrf1 and the molecular mechanism underlying its regulation and action in different cellular functions.
Collapse
Affiliation(s)
- Hyun Min Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jeong Woo Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
39
|
Tang XL, Wang CN, Zhu XY, Ni X. Rosiglitazone inhibition of calvaria-derived osteoblast differentiation is through both of PPARγ and GPR40 and GSK3β-dependent pathway. Mol Cell Endocrinol 2015; 413:78-89. [PMID: 26116229 DOI: 10.1016/j.mce.2015.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 01/17/2023]
Abstract
Rosiglitazone (RSG) can cause bone loss, however the mechanisms remain largely unknown. This study aims to investigate the effects of RSG on differentiation and mineralization of osteoblasts using primary cultured mouse fetal calvaria-derived osteoblasts as a model, and elucidate the receptor and signaling pathways responsible for these effects. We found that RSG suppressed the differentiation and mineralization of calvaria-derived osteoblasts. Peroxisome proliferators-activated receptor γ (PPARγ) siRNA significantly reversed the inhibitory effect of RSG on osteogenic differentiation. The expression of G protein-coupled receptor (GPR) 40 was suppressed during differentiation, but was increased by RSG treatment. GPR40 siRNA significantly reversed the inhibitory effect of RSG on osteogenesis. RSG activated glycogen synthase kinase (GSK)-3β, which in turn decreased β-catenin expression. RSG-induced GSK3β activation was mediated through both PPARγ and GPR40. These results suggest that both PPARγ and GRP40 are required for RSG-induced inhibition of mouse calvaria osteoblast differentiation, which is mediated through GSK3β-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Lu Tang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Chang-Nan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Yan Zhu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| | - Xin Ni
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
40
|
Changing gears in Nrf1 research, from mechanisms of regulation to its role in disease and prevention. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1260-76. [PMID: 26254094 DOI: 10.1016/j.bbagrm.2015.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022]
Abstract
The "cap'n'collar" bZIP transcription factor Nrf1 heterodimerizes with small Maf proteins to bind to the Antioxidant Response Element/Electrophile Response Element to transactivate antioxidant enzyme, phase 2 detoxification enzyme and proteasome subunit gene expression. Nrf1 specifically regulates pathways in lipid metabolism, amino acid metabolism, proteasomal degradation, the citric acid cycle, and the mitochondrial respiratory chain. Nrf1 is maintained in the endoplasmic reticulum (ER) in an inactive glycosylated state. Activation involves retrotranslocation from the ER lumen to the cytoplasm, deglycosylation and partial proteolytic processing to generate the active forms of Nrf1. Recent evidence has revealed how this factor is regulated and its involvement in various metabolic diseases. This review outlines Nrf1 structure, function, regulation and its links to insulin resistance, diabetes and inflammation. The glycosylation/deglycosylation of Nrf1 is controlled by glucose levels. Nrf1 glycosylation affects its control of glucose transport, glycolysis, gluconeogenesis and lipid metabolism.
Collapse
|
41
|
Ho DV, Chan JY. Induction of Herpud1 expression by ER stress is regulated by Nrf1. FEBS Lett 2015; 589:615-20. [PMID: 25637874 PMCID: PMC10084809 DOI: 10.1016/j.febslet.2015.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 12/30/2022]
Abstract
Herpud1 is an ER-localized protein that contributes to endoplasmic reticulum (ER) homeostasis by participating in the ER-associated protein degradation pathway. The Nrf1 transcription factor is important in cellular stress pathways. We show that loss of Nrf1 function results in decreased Herpud1 expression in cells and liver tissues. Expression of Herpud1 increases in response to ER stress, but not in Nrf1 knockout cells. Transactivation studies show that Nrf1 acts through antioxidant response elements located in the Herpud1 promoter, and chromatin immunoprecipitation demonstrates that Herpud1 is a direct Nrf1 target gene. These results indicate that Nrf1 is a transcriptional activator of Herpud1 expression during ER stress, and they suggest Nrf1 is a key player in the regulation of the ER stress response in cells.
Collapse
Affiliation(s)
- Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
42
|
Xing W, Cheng S, Wergedal J, Mohan S. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling. J Bone Miner Res 2014; 29:2262-75. [PMID: 24753031 PMCID: PMC4487616 DOI: 10.1002/jbmr.2256] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/05/2023]
Abstract
Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro-computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr(-/-) ) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)-expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin-expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day-old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60-fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix-producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Jon Wergedal
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
43
|
Cheng S, Xing W, Pourteymoor S, Mohan S. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development. J Bone Miner Res 2014; 29:2276-86. [PMID: 24753072 DOI: 10.1002/jbmr.2258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 01/04/2023]
Abstract
We have previously shown that the increase in osterix (Osx) expression during osteoblast maturation is dependent on the activity of the prolyl hydroxylase domain-containing protein 2 (Phd2), a key regulator of protein levels of the hypoxia-inducible factor family proteins in many tissues. In this study, we generated conditional Phd2 knockout mice (cKO) in osteoblast lineage cells by crossing floxed Phd2 mice with a Col1α2-iCre line to investigate the function of Phd2 in vivo. The cKO mice developed short stature and premature death at 12 to 14 weeks of age. Bone mineral content, bone area, and bone mineral density were decreased in femurs and tibias, but not vertebrae of the cKO mice compared to WT mice. The total volume (TV), bone volume (BV), and bone volume fraction (BV/TV) in the femoral trabecular bones of cKO mice were significantly decreased. Cross-sectional area of the femoral mid-diaphysis was also reduced in the cKO mice. The reduced bone size and trabecular bone volume in the cKO mice were a result of impaired bone formation but not bone resorption as revealed by dynamic histomorphometric analyses. Bone marrow stromal cells derived from cKO mice formed fewer and smaller nodules when cultured with mineralization medium. Quantitative RT-PCR and immunohistochemistry detected reduced expression of Osx, osteocalcin, and bone sialoprotein in cKO bone cells. These data indicate that Phd2 plays an important role in regulating bone formation in part by modulating expression of Osx and bone formation marker genes.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Domestic animals, including ruminants, can synthesize vitamin C (VC) in their liver; as such, the dietary requirement for VC has not been confirmed in these animals. The adequacy of VC has been evaluated by quantifying VC levels in plasma, but the reported values in bovine plasma have been widely variable. Plasma VC concentration is decreased by heat stress, hepatic lesions, fattening, and infectious diseases such as mastitis in cattle. Therefore, VC supplementation is potentially beneficial for cattle with low plasma VC concentration. This review discusses the methods for determination of plasma VC concentration in cattle, VC nutrition, and the efficacy of VC supplementation in calves, dairy cattle, and beef cattle. Additionally I propose a reference range for plasma VC concentration in Japanese Black cattle.
Collapse
|
45
|
Pan J, Ju J, Wei Q, Liu B, Jin S, Lin Z, Wang D. Noncovalently-bonded 2D-3D Metal-organic Frameworks via Assembly of Zn(Ac)2with 3, 5-Dimethylpyrazole and Carboxylate Ligands. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201300553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Digaleh H, Kiaei M, Khodagholi F. Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol Life Sci 2013; 70:4681-94. [PMID: 23800989 PMCID: PMC11113484 DOI: 10.1007/s00018-013-1409-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/26/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) lumen is chemically complex and crowded with polypeptides in different stages of assembly. ER quality control monitors chaperone-assisted protein folding, stochastic errors and off-pathway intermediates. In acute conditions, potentially toxic polypeptides overflow the capacity of the chaperone system and lead to ER stress. Activation of the unfolded protein response (UPR) following ER stress buys time for non-native polypeptides to refold or be eliminated; otherwise cell death occurs. The clearance routes for deleterious proteins are endoplasmic reticulum-associated degradation (ERAD) and ER stress-activated autophagy. The ERAD pathway is a chaperone and proteasome-mediated polypeptide degradation, while autophagy applies to wider range of substances. ER stress signal transduction recruits diverse molecules and pathways upon UPR induction to compensate stress condition. NF-E2-related factor 1 (Nrf1) and Nrf2 are two transcription factors mostly known by their induction through an antioxidant response; they can also be activated by UPR machinery. Discovery of diverse molecules downstream of Nrf1 and Nrf2 has expanded our understanding of the biological impacts of these transcription factors beyond classic antioxidant activation. In this review, we summarize our current understanding of mutual relationships between Nrf1, Nrf2, and ER stress clearance mechanisms and highlight the crosstalk of specific molecules mediating these correlations.
Collapse
Affiliation(s)
- Hadi Digaleh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Kiaei
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Xing W, Liu J, Cheng S, Vogel P, Mohan S, Brommage R. Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis. J Bone Miner Res 2013; 28:1962-74. [PMID: 23526378 PMCID: PMC9528686 DOI: 10.1002/jbmr.1935] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023]
Abstract
To assess the roles of Lrrk1 and Lrrk2, we examined skeletal phenotypes in Lrrk1 and Lrrk2 knockout (KO) mice. Lrrk1 KO mice exhibit severe osteopetrosis caused by dysfunction of multinucleated osteoclasts, reduced bone resorption in endocortical and trabecular regions, and increased bone mineralization. Lrrk1 KO mice have lifelong accumulation of bone and respond normally to the anabolic actions of teriparatide treatment, but are resistant to ovariectomy-induced bone boss. Precursors derived from Lrrk1 KO mice differentiate into multinucleated cells in response to macrophage colony-stimulating factor (M-CSF)/receptor activator of NF-κB ligand (RANKL) treatment, but these cells fail to form peripheral sealing zones and ruffled borders, and fail to resorb bone. The phosphorylation of cellular Rous sarcoma oncogene (c-Src) at Tyr-527 is significantly elevated whereas at Tyr-416 is decreased in Lrrk1-deficient osteoclasts. The defective osteoclast function is partially rescued by overexpression of the constitutively active form of Y527F c-Src. Immunoprecipitation assays in osteoclasts detected a physical interaction of Lrrk1 with C-terminal Src kinase (Csk). Lrrk2 KO mice do not show obvious bone phenotypes. Precursors derived from Lrrk2 KO mice differentiate into functional multinucleated osteoclasts. Our finding of osteopetrosis in Lrrk1 KO mice provides convincing evidence that Lrrk1 plays a critical role in negative regulation of bone mass in part through modulating the c-Src signaling pathway in mice.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
48
|
Tokita M, Chaeychomsri W, Siruntawineti J. Skeletal gene expression in the temporal region of the reptilian embryos: implications for the evolution of reptilian skull morphology. SPRINGERPLUS 2013; 2:336. [PMID: 24711977 PMCID: PMC3970585 DOI: 10.1186/2193-1801-2-336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
Reptiles have achieved highly diverse morphological and physiological traits that allow them to exploit various ecological niches and resources. Morphology of the temporal region of the reptilian skull is highly diverse and historically it has been treated as an important character for classifying reptiles and has helped us understand the ecology and physiology of each species. However, the developmental mechanism that generates diversity of reptilian skull morphology is poorly understood. We reveal a potential developmental basis that generates morphological diversity in the temporal region of the reptilian skull by performing a comparative analysis of gene expression in the embryos of reptile species with different skull morphology. By investigating genes known to regulate early osteoblast development, we find dorsoventrally broadened unique expression of the early osteoblast marker, Runx2, in the temporal region of the head of turtle embryos that do not form temporal fenestrae. We also observe that Msx2 is also uniquely expressed in the mesenchymal cells distributed at the temporal region of the head of turtle embryos. Furthermore, through comparison of gene expression pattern in the embryos of turtle, crocodile, and snake species, we find a possible correlation between the spatial patterns of Runx2 and Msx2 expression in cranial mesenchymal cells and skull morphology of each reptilian lineage. Regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal region of the reptilian skull.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan ; Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 USA
| | - Win Chaeychomsri
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| | - Jindawan Siruntawineti
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
49
|
Cheng S, Kesavan C, Mohan S, Qin X, Alarcon CM, Wergedal J, Xing W. Transgenic overexpression of ephrin b1 in bone cells promotes bone formation and an anabolic response to mechanical loading in mice. PLoS One 2013; 8:e69051. [PMID: 23874863 PMCID: PMC3708903 DOI: 10.1371/journal.pone.0069051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
To test if ephrin B1 overexpression enhances bone mass, we generated transgenic mice overexpressing ephrin B1 under the control of a 3.6 kb rat collagen 1A1 promoter (Col3.6-Tgefnb1). Col3.6-Tgefnb1 mice express 6-, 12- and 14-fold greater levels of full-length ephrin B1 protein in bone marrow stromal cells, calvarial osteoblasts, and osteoclasts, respectively. The long bones of both genders of Col3.6-Tgefnb1 mice have increased trabecular bone volume, trabecular number, and trabecular thickness and decreased trabecular separation. Enhanced bone formation and decreased bone resorption contributed to this increase in trabecular bone mass in Col3.6-Tgefnb1 mice. Consistent with these findings, our in vitro studies showed that overexpression of ephrin B1 increased osteoblast differentiation and mineralization, osterix and collagen 1A1 expression in bone marrow stromal cells. Interaction of ephrin B1 with soluble clustered EphB2-Fc decreased osteoclast precursor differentiation into multinucleated cells. Furthermore, we demonstrated that the mechanical loading-induced increase in EphB2 expression and newly formed bone were significantly greater in the Col3.6-Tgefnb1 mice than in WT littermate controls. Our findings that overexpression of ephrin B1 in bone cells enhances bone mass and promotes a skeletal anabolic response to mechanical loading suggest that manipulation of ephrin B1 actions in bone may provide a means to sensitize the skeleton to mechanical strain to stimulate new bone formation.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
- Department of Physiology, Loma Linda University, Loma Linda, California, United States of America
| | - Xuezhong Qin
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Catrina M. Alarcon
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
| | - Jon Wergedal
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Huh JE, Lee SY. IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2608-2616. [PMID: 23830919 DOI: 10.1016/j.bbamcr.2013.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 01/23/2023]
Abstract
Although Toll-like receptors (TLRs) have been implicated in the regulation of stem cell functions, their role in osteogenic differentiation of adipose-derived stromal cells (ASCs) has not been reported. We found that ASCs express a restricted subset of TLRs, including TLR1-TLR5, and that TLR agonists such as Pam3CSK4 (TLR1/2 agonist), polyinosinic:polycytidylic acid (TLR3 agonist), lipopolysaccharide (TLR4 agonist), and flagellin (TLR5 agonist), but not R848 (TLR7/8 agonist), consistently induced osteogenic differentiation in murine-derived ASCs, which coincided with the TLR expression pattern of ASCs. Cytokine expression profiles induced by TLR agonists and results from subsequent functional assays indicated that interleukin-6 (IL-6) together with soluble IL-6 receptor (sIL-6R) enhanced osteogenic differentiation of ASCs by activating STAT3. Small interfering RNA (siRNA)-mediated STAT3-silencing blunted osteogenesis and the expression of osteogenic markers, whereas STAT3 overexpression resulted in an increase in osteogenesis. Consistently, STAT3 inhibitor treatment reduced osteogenesis, STAT3 phosphorylation, and expression of osteogenic markers including osterix. Chromatin immunoprecipitation (ChIP) assays indicated that STAT3 binding to the STAT3-binding sites on the osterix promoter increased during IL-6-stimulated osteogenesis. Our results thus establish TLRs as novel regulators of ASCs which signal through IL-6/STAT3 pathway and induce osterix expression as a part of the osteogenesis.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|