1
|
Wang T, Lin P, Wang Y, Chen Y, Zhang Z, Li F, Feng J. FADD cooperates with Caspase-8 to positively regulate the innate immune response and promote apoptosis following bacterial infection in Japanese eel. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110110. [PMID: 39755288 DOI: 10.1016/j.fsi.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica). Expression analysis revealed that AjFADD was significantly induced by LPS, poly I:C, and Aeromonas hydrophila infection in vivo and in vitro. The expression of IFNs and IRFs, c-Rel and c-Fos, IL1 and TNF-α, and the essential antimicrobial peptide LEAP-2 in Japanese eel liver cells was enhanced by overexpressing AjFADD, with a significant decrease of those genes following knockdown AjFADD. Luciferase activity assay, flow cytometry, and wound healing results showed that AjFADD cooperated with AjCaspase-8 to promote apoptosis of HEK293 cells and Japanese eel liver cells infected with A. hydrophila. Furthermore, AjFADD and AjCaspase-8 co-localized in the cytoplasm and displayed a direct protein-protein interaction by immunoprecipitation. Our results collectively showed that FADD cooperated with Caspase-8 to positively regulate the innate immune response and promote apoptosis in response to the A. hydrophila challenge in Japanese eel.
Collapse
Affiliation(s)
- Tianyu Wang
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Peng Lin
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Yilei Wang
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Yun Chen
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fuyan Li
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Jianjun Feng
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China.
| |
Collapse
|
2
|
Tang J, Ma Y, Li M, Liu X, Wang Y, Zhang J, Shu H, Liu Z, Zhang C, Fu L, Hu J, Zhang Y, Jia Z, Feng Y. FADD regulates adipose inflammation, adipogenesis, and adipocyte survival. Cell Death Discov 2024; 10:323. [PMID: 39009585 PMCID: PMC11250791 DOI: 10.1038/s41420-024-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Adipose tissue, aside from adipocytes, comprises various abundant immune cells. The accumulation of low-grade chronic inflammation in adipose tissue serves as a primary cause and hallmark of insulin resistance. In this study, we investigate the physiological roles of FADD in adipose tissue inflammation, adipogenesis, and adipocyte survival. High levels of Fadd mRNA were observed in mitochondrial-rich organs, particularly brown adipose tissue. To explore its metabolic functions, we generated global Fadd knockout mice, resulting in embryonic lethality, while heterozygous knockout (Fadd+/-) mice did not show any significant changes in body weight or composition. However, Fadd+/- mice exhibited reduced respiratory exchange ratio (RER) and serum cholesterol levels, along with heightened global and adipose inflammatory responses. Furthermore, AT masses and expression levels of adipogenic and lipogenic genes were decreased in Fadd+/- mice. In cellular studies, Fadd inhibition disrupted adipogenic differentiation and suppressed the expression of adipogenic and lipogenic genes in cultured adipocytes. Additionally, Fadd overexpression caused adipocyte death in vitro with decreased RIPK1 and RIPK3 expression, while Fadd inhibition downregulated RIPK3 in iWAT in vivo. These findings collectively underscore the indispensable role of FADD in adipose inflammation, adipogenesis, and adipocyte survival.
Collapse
Affiliation(s)
- Jianlei Tang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Endocrinology Department of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Yue Ma
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Meilin Li
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Xiangpeng Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Yuting Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Hui Shu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Chi Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Suzhou Medical School, Soochow University, Suzhou, China.
| | - Yong Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China.
| | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China.
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Suzhou Medical School, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Awadia S, Sitto M, Ram S, Ji W, Liu Y, Damani R, Ray D, Lawrence TS, Galban CJ, Cappell SD, Rehemtulla A. The adapter protein FADD provides an alternate pathway for entry into the cell cycle by regulating APC/C-Cdh1 E3 ubiquitin ligase activity. J Biol Chem 2023; 299:104786. [PMID: 37146968 PMCID: PMC10248554 DOI: 10.1016/j.jbc.2023.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.
Collapse
Affiliation(s)
- Sahezeel Awadia
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Merna Sitto
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sundaresh Ram
- Department of Radiology and Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wenbin Ji
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yajing Liu
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Raheema Damani
- Department of Biomedical Engineering, University of Alabama, Birmingham, Alabama, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Craig J Galban
- Department of Radiology and Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel) 2019; 11:cancers11101462. [PMID: 31569512 PMCID: PMC6826683 DOI: 10.3390/cancers11101462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis, but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various mechanisms involved in regulating FADD functions have been identified, essentially posttranslational modifications and secretion. All these aspects have been thoroughly addressed in previous reviews. However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in cancer is a complex issue since both overexpression and downregulation have been reported, but the mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this review, we aim to provide detailed, updated information on alterations leading to changes in FADD expression and function in cancer. The participation of FADD in various biological processes is recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as regulation of gene expression and control of metabolic pathways. Finally, we gather all the available evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been proposed as a potential biomarker with prognostic value.
Collapse
|
5
|
Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma. Oncotarget 2018; 7:61485-61499. [PMID: 27556297 PMCID: PMC5308666 DOI: 10.18632/oncotarget.11370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
In the present work, we show that T-cell lymphoblastic lymphoma cells exhibit a reduction of FADD availability in the cytoplasm, which may contribute to impaired apoptosis. In addition, we observe a reduction of FADD phosphorylation that inversely correlates with the proliferation capacity and tumor aggressiveness. The resultant balance between FADD-dependent apoptotic and non-apoptotic abilities may define the outcome of the tumor. Thus, we propose that FADD expression and phosphorylation can be reliable biomarkers with prognostic value for T-LBL stratification.
Collapse
|
6
|
De Araújo RF, Pessoa JB, Cruz LJ, Chan AB, De Castro Miguel E, Cavalcante RS, Brito GAC, Silva HFO, Gasparotto LHS, Guedes PMM, Araújo AA. Apoptosis in human liver carcinoma caused by gold nanoparticles in combination with carvedilol is mediated via modulation of MAPK/Akt/mTOR pathway and EGFR/FAAD proteins. Int J Oncol 2017; 52:189-200. [PMID: 29115423 DOI: 10.3892/ijo.2017.4179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
In cancers, apoptosis signaling pathways and cell survival and growth pathways responsible for resistance to conventional treatments, such as Pi3K/Akt/mTOR and mitogen-activated protein kinase (MAPK) become dysregulated. Recently, alternative treatments to promote tumor cell death have become important. The present study reports on the antitumor and cytoprotective action of gold nanoparticles (GNPs) and carvedilol in combination and in isolated application. Apoptosis was analyzed by FITC/propidium iodide staining flow cytometry; caspase-3, caspase-8, Bcl-2 and MAPK/ERK activity by immunofluorescence microscopy; gene expression of proteins related to cell death as Akt, mTOR, EGFR, MDR1, survivin, FADD and Apaf, by the real-time PCR; and western blot analysis for MAPK/ERK, Akt and mTOR. Oxidative stress evaluation was performed by reduced glutathione (GSH) and malondialdehyde (MDA) levels. Intracellular GNPs targets were identified by transmission electron microscopy. After exposure to a combination of GNPs (6.25 µg/ml) and carvedilol (3 µM), death as promoted by apoptosis was detected using flow cytometry, for expression of pro-apoptotic proteins FADD, caspase-3, caspase-8 and sub-regulation of anti-apoptotic MAPK/ERK, Akt, mTOR, EGFR and MDR1 resistance. Non-tumor cell cytoprotection with GSH elevation and MDA reduction levels was detected. GNPs were identified within the cell near to the nucleus when combined with carvedilol. The combination of GNP and carvedilol promoted downregulation of anti-apoptotic and drug resistance genes, over-regulation of pro-apoptotic proteins in tumor cells, as well as cytoprotection of non-tumor cells with reduction of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Raimundo F De Araújo
- Department of Morphology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Jonas B Pessoa
- Post Graduation Programme in Structural and Functional Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 CL Leiden, The Netherlands
| | - Alan B Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | | | - Rômulo S Cavalcante
- Post Graduation Programme in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Gerly Anne C Brito
- Department of Morphology/Postgraduate Program in Morphology/UFC, Fortaleza, CE, Brazil
| | - Heloiza Fernada O Silva
- Group of Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Luiz H S Gasparotto
- Group of Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Paulo M M Guedes
- Department of Parasitology and Microbiology and Post Graduation Program in Parasitary Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Aurigena A Araújo
- Department of Biophysics and Pharmacology, Post Graduation Programme in Public Health, Post Graduation Programme in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| |
Collapse
|
7
|
Zhuang H, Wang X, Zha D, Gan Z, Cai F, Du P, Yang Y, Yang B, Zhang X, Yao C, Zhou Y, Jiang C, Guan S, Zhang X, Zhang J, Jiang W, Hu Q, Hua ZC. FADD is a key regulator of lipid metabolism. EMBO Mol Med 2016; 8:895-918. [PMID: 27357657 PMCID: PMC4967943 DOI: 10.15252/emmm.201505924] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
FADD, a classical apoptotic signaling adaptor, was recently reported to have non‐apoptotic functions. Here, we report the discovery that FADD regulates lipid metabolism. PPAR‐α is a dietary lipid sensor, whose activation results in hypolipidemic effects. We show that FADD interacts with RIP140, which is a corepressor for PPAR‐α, and FADD phosphorylation‐mimic mutation (FADD‐D) or FADD deficiency abolishes RIP140‐mediated transcriptional repression, leading to the activation of PPAR‐α. FADD‐D‐mutant mice exhibit significantly decreased adipose tissue mass and triglyceride accumulation. Also, they exhibit increased energy expenditure with enhanced fatty acid oxidation in adipocytes due to the activation of PPAR‐α. Similar metabolic phenotypes, such as reduced fat formation, insulin resistance, and resistance to HFD‐induced obesity, are shown in adipose‐specific FADD knockout mice. Additionally, FADD‐D mutation can reverse the severe genetic obesity phenotype of ob/ob mice, with elevated fatty acid oxidation and oxygen consumption in adipose tissue, improved insulin resistance, and decreased triglyceride storage. We conclude that FADD is a master regulator of glucose and fat metabolism with potential applications for treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Xueshi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Daolong Zha
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Ziyi Gan
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Pan Du
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yunwen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Bingya Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Chun Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yuqiang Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Chizhou Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Shengwen Guan
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| | - Xuerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Wenhui Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Qingang Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| |
Collapse
|
8
|
Yao C, Zhuang H, Cheng W, Lin Y, Du P, Yang B, Huang X, Chen S, Hu Q, Hua ZC. FADD phosphorylation impaired islet morphology and function. J Cell Physiol 2015; 230:1448-56. [PMID: 25641109 DOI: 10.1002/jcp.24885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022]
Abstract
Previous studies have indicated that Fas-FasL pathway and its downstream caspase-8 can regulate islet mass and insulin secretion. As a classical adaptor in Fas-FasL signaling, Fas-associated death domain-containing protein (FADD) takes part in many non-apoptosis processes regulated by its phosphorylation. However, its role in islets has not been evaluated to date. Here, through comparative proteomics and bioinformatic analysis on FADD phosphorylated (FADD-D) and wild-type (WT) MEFs, we found three proteins involved in islet differentiation and function were dysregulated due to FADD phosphorylation. The mouse model of FADD-D, which mimics constitutive phosphorylated FADD expression in mice, was further analyzed to address this issue. We confirmed the proteomic results by immunohistological analyses on pancreatic islets. In addition, we found that FADD-D mice displayed decreased islet area, and the glucose stimulated insulin secretion (GSIS) of FADD-D islets was impaired. These data suggest a novel role of FADD in islet development and insulin secretion.
Collapse
Affiliation(s)
- Chun Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Stomatology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bowman BM, Sebolt KA, Hoff BA, Boes JL, Daniels DL, Heist KA, Galbán CJ, Patel RM, Zhang J, Beer DG, Ross BD, Rehemtulla A, Galbán S. Phosphorylation of FADD by the kinase CK1α promotes KRASG12D-induced lung cancer. Sci Signal 2015; 8:ra9. [PMID: 25628462 PMCID: PMC4416214 DOI: 10.1126/scisignal.2005607] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Genomic amplification of the gene encoding and phosphorylation of the protein FADD (Fas-associated death domain) is associated with poor clinical outcome in lung cancer and in head and neck cancer. Activating mutations in the guanosine triphosphatase RAS promotes cell proliferation in various cancers. Increased abundance of phosphorylated FADD in patient-derived tumor samples predicts poor clinical outcome. Using immunohistochemistry analysis and in vivo imaging of conditional mouse models of KRAS(G12D)-driven lung cancer, we found that the deletion of the gene encoding FADD suppressed tumor growth, reduced the proliferative index of cells, and decreased the activation of downstream effectors of the RAS-MAPK (mitogen-activated protein kinase) pathway that promote the cell cycle, including retinoblastoma (RB) and cyclin D1. In mouse embryonic fibroblasts, the induction of mitosis upon activation of KRAS required FADD and the phosphorylation of FADD by CK1α (casein kinase 1α). Deleting the gene encoding CK1α in KRAS mutant mice abrogated the phosphorylation of FADD and suppressed lung cancer development. Phosphorylated FADD was most abundant during the G2/M phase of the cell cycle, and mass spectrometry revealed that phosphorylated FADD interacted with kinases that mediate the G2/M transition, including PLK1 (Polo-like kinase 1), AURKA (Aurora kinase A), and BUB1 (budding uninhibited by benzimidazoles 1). This interaction was decreased in cells treated with a CKI-7, a CK1α inhibitor. Therefore, as the kinase that phosphorylates FADD downstream of RAS, CK1α may be a therapeutic target for KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Brittany M Bowman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katrina A Sebolt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin A Hoff
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer L Boes
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Kevin A Heist
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajiv M Patel
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianke Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David G Beer
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian D Ross
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Stefanie Galbán
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Abstract
Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | | | | |
Collapse
|
11
|
Patel S, Murphy D, Haralambieva E, Abdulla ZA, Wong KK, Chen H, Gould E, Roncador G, Hatton C, Anderson AP, Banham AH, Pulford K. Increased Expression of Phosphorylated FADD in Anaplastic Large Cell and Other T-Cell Lymphomas. Biomark Insights 2014; 9:77-84. [PMID: 25232277 PMCID: PMC4159367 DOI: 10.4137/bmi.s16553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
Collapse
Affiliation(s)
- Suketu Patel
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Derek Murphy
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland. ; School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland. ; Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hong Chen
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edith Gould
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Chris Hatton
- Department of Hematology, John Radcliffe Hospital, Oxford, UK
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Karen Pulford
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
12
|
FADD regulates thymocyte development at the β-selection checkpoint by modulating Notch signaling. Cell Death Dis 2014; 5:e1273. [PMID: 24901044 PMCID: PMC4611708 DOI: 10.1038/cddis.2014.198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/08/2022]
Abstract
Non-apoptotic functions of Fas-associated protein with death domain (FADD) have been implicated in T lineage lymphocytes, but the nature of FADD-dependent non-apoptotic mechanism in early T-cell development has not been completely elucidated. In this study, we show that tissue-specific deletion of FADD in immature (CD44–CD25+) thymocytes results in severe perturbation of αβ lineage development. Meanwhile, loss of FADD signaling at a later (CD44–CD25–) developmental stage does not affect subsequent T-cell development. Collectively, our work presents that FADD deficiency induces failed survival in double-negative 4 (DN4) cells, while pre-T-cell receptor (TCR) signal remains intact. In addition, Notch signaling is positive regulated on DN4 and double-positive thymocytes in T-cell-specific FADD-knockout mice, which express higher levels of a subset of Notch-target genes, including Hes1, Deltex1 and CD25. Moreover, a transcriptional repressor of Notch1, NKAP is downregulated coupled with the loss of FADD in thymocytes and is found to associate with FADD. These data suggest that as a death receptor, FADD is also required for cell survival in β-selection as a regulator of Notch1 expression.
Collapse
|
13
|
Arias CF, Herrero MA, Acosta FJ, Fernandez-Arias C. A mathematical model for a T cell fate decision algorithm during immune response. J Theor Biol 2014; 349:109-20. [PMID: 24512913 DOI: 10.1016/j.jtbi.2014.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/26/2013] [Accepted: 01/31/2014] [Indexed: 01/25/2023]
Abstract
We formulate and analyze an algorithm of cell fate decision that describes the way in which division vs. apoptosis choices are made by individual T cells during an infection. Such model involves a minimal number of known biochemical mechanisms: it basically relies on the interplay between cell division and cell death inhibitors on one hand, and membrane receptors on the other. In spite of its simplicity, the proposed decision algorithm is able to account for some significant facts in immune response. At the individual level, the existence of T cells that continue to replicate in the absence of antigen and the possible occurrence of T cell apoptosis in the presence of antigen are predicted by the model. Moreover, the latter is shown to yield an emergent collective behavior, the observed delay in clonal contraction with respect to the end of antigen stimulation, which is shown to arise just from individual T cell decisions made according to the proposed mechanism.
Collapse
Affiliation(s)
- Clemente F Arias
- Departamento de Ecología, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040, Spain
| | - Miguel A Herrero
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid 28040, Spain.
| | - Francisco J Acosta
- Departamento de Ecología, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040, Spain
| | - Cristina Fernandez-Arias
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
14
|
Eun YG, Chung DH, Kim SW, Lee YC, Kim SK, Kwon KH. A Fas-associated via death domain promoter polymorphism (rs10898853, -16C/T) as a risk factor for papillary thyroid cancer. Eur Surg Res 2014; 52:1-7. [PMID: 24434721 DOI: 10.1159/000355878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 09/23/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE To determine whether a Fas-associated via death domain (FADD) promoter single-nucleotide polymorphism (SNP) is associated with susceptibility to papillary thyroid cancer (PTC) and clinicopathological features of PTC. METHODS To identify a possible association with PTC, 94 patients with PTC and 346 healthy controls were recruited. One promoter SNP (rs10898853, -16C/T) was analyzed by direct sequencing. Multiple logistic regression models (co-dominant, dominant, recessive, and log-additive models) were applied, and odds ratios (ORs), 95% confidence intervals (CIs), and p values were calculated. RESULTS The genotype of the promoter SNP (rs10898853) of FADD was found to be significantly associated with PTC in the co-dominant model 2 (T/T vs. C/C; p = 0.002, OR = 2.80, 95% CI = 1.39-5.65), the recessive model (p = 0.003, OR = 2.21, 95% CI = 1.31-3.71), and the log-additive model (p = 0.002, OR = 1.71, 95% CI = 1.20-2.44). Allele frequency analysis showed that the C allele of rs10898853 was significantly associated with an increased risk of PTC (p = 0.002, OR = 1.67, 95% CI = 1.21-2.32). CONCLUSIONS Our results suggest that the FADD promoter polymorphism is associated with susceptibility to PTC.
Collapse
Affiliation(s)
- Y G Eun
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Kim H, Lee HJ, Oh Y, Choi SG, Hong SH, Kim HJ, Lee SY, Choi JW, Su Hwang D, Kim KS, Kim HJ, Zhang J, Youn HJ, Noh DY, Jung YK. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nat Commun 2014; 5:3351. [PMID: 24548998 PMCID: PMC3948464 DOI: 10.1038/ncomms4351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/30/2014] [Indexed: 01/16/2023] Open
Abstract
Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADD(Ser194). Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2(+/-) mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADD(Ser191). These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.
Collapse
Affiliation(s)
- Hyunjoo Kim
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
- These authors contributed equally to this work
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
- These authors contributed equally to this work
| | - Yumin Oh
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Seon-Guk Choi
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Se-Hoon Hong
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Hyo-Jin Kim
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
| | - Song-Yi Lee
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Ji-Woo Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Deog Su Hwang
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Key-Sun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hyo-Joon Kim
- Department of Biochemistry, Hanyang University, Ansan, Kyeonggi-do 425-791, Korea
| | - Jianke Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Hyun-Jo Youn
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yong-Keun Jung
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| |
Collapse
|
16
|
Cheng W, Wang L, Yang B, Zhang R, Yao C, He L, Liu Z, Du P, Hammache K, Wen J, Li H, Xu Q, Hua Z. Self-renewal and differentiation of muscle satellite cells are regulated by the Fas-associated death domain. J Biol Chem 2013; 289:5040-50. [PMID: 24375410 DOI: 10.1074/jbc.m113.533448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Making the decision between self-renewal and differentiation of adult stem cells is critical for tissue repair and homeostasis. Here we show that the apoptotic adaptor Fas-associated death domain (FADD) regulates the fate decisions of muscle satellite cells (SCs). FADD phosphorylation was specifically induced in cycling SCs, which was high in metaphase and declined in later anaphase. Furthermore, phosphorylated FADD at Ser-191 accumulated in the uncommitted cycling SCs and was asymmetrically localized in the self-renewing daughter SCs. SCs containing a phosphoryl-mimicking mutation at Ser-191 of FADD (FADD-D) expressed higher levels of stem-like markers and reduced commitment-associated markers. Moreover, a phosphoryl-mimicking mutation at Ser-191 of FADD suppressed SC activation and differentiation, which promoted the cycling SCs into a reversible quiescent state. Therefore, these data indicate that FADD regulates the fate determination of cycling SCs.
Collapse
Affiliation(s)
- Wei Cheng
- From the State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing 210093, Jiangsu, China and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
18
|
Yao C, Zhuang H, Du P, Cheng W, Yang B, Guan S, Hu Y, Zhu D, Christine M, Shi L, Hua ZC. Role of Fas-associated death domain-containing protein (FADD) phosphorylation in regulating glucose homeostasis: from proteomic discovery to physiological validation. Mol Cell Proteomics 2013; 12:2689-700. [PMID: 23828893 DOI: 10.1074/mcp.m113.029306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fas-associated death domain-containing protein (FADD), a classical apoptotic signaling adaptor, participates in different nonapoptotic processes regulated by its phosphorylation. However, the influence of FADD on metabolism, especially glucose homeostasis, has not been evaluated to date. Here, using both two-dimensional electrophoresis and liquid chromatography linked to tandem mass spectrometry (LC/MS/MS), we found that glycogen synthesis, glycolysis, and gluconeogenesis were dysregulated because of FADD phosphorylation, both in MEFs and liver tissue of the mice bearing phosphorylation-mimicking mutation form of FADD (FADD-D). Further physiological studies showed that FADD-D mice exhibited lower blood glucose, enhanced glucose tolerance, and increased liver glycogen content without alterations in insulin sensitivity. Moreover, investigations on the molecular mechanisms revealed that, under basal conditions, FADD-D mice had elevated phosphorylation of Akt with alterations in its downstream signaling, leading to increased glycogen synthesis and decreased gluconeogenesis. Thus, we uncover a novel role of FADD in the regulation of glucose homeostasis by proteomic discovery and physiological validation.
Collapse
Affiliation(s)
- Chun Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee EW, Seo J, Jeong M, Lee S, Song J. The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 2013; 45:496-508. [PMID: 23010170 DOI: 10.5483/bmbrep.2012.45.9.186] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.
Collapse
Affiliation(s)
- Eun-Woo Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | | | | | |
Collapse
|
20
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
21
|
FADD Expression as a Prognosticator in Early-Stage Glottic Squamous Cell Carcinoma of the Larynx Treated Primarily With Radiotherapy. Int J Radiat Oncol Biol Phys 2012; 83:1220-6. [PMID: 22208968 DOI: 10.1016/j.ijrobp.2011.09.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 07/31/2011] [Accepted: 09/27/2011] [Indexed: 01/07/2023]
|
22
|
Cheng W, Wang L, Zhang R, Du P, Yang B, Zhuang H, Tang B, Yao C, Yu M, Wang Y, Zhang J, Yin W, Li J, Zheng W, Lu M, Hua Z. Regulation of protein kinase C inactivation by Fas-associated protein with death domain. J Biol Chem 2012; 287:26126-35. [PMID: 22582393 DOI: 10.1074/jbc.m112.342170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein kinase C (PKC) plays important roles in diverse cellular processes. PKC has been implicated in regulating Fas-associated protein with death domain (FADD), an important adaptor protein involved in regulating death receptor-mediated apoptosis. FADD also plays an important role in non-apoptosis processes. The functional interaction of PKC and FADD in non-apoptotic processes has not been examined. In this study, we show that FADD is involved in maintaining the phosphorylation of the turn motif and hydrophobic motif in the activated conventional PKC (cPKC). A phosphoryl-mimicking mutation (S191D) in FADD (FADD-D) abolished the function of FADD in the facilitation of the turn motif and hydrophobic motif dephosphorylation of cPKC, suggesting that phosphorylation of Ser-191 negatively regulates FADD. We show that FADD interacts with PP2A, which is a major phosphatase involved in dephosphorylation of activated cPKC and FADD deficiency abolished PP2A mediated dephosphorylation of cPKC. We show that FADD deficiency leads to increased stability and activity of cPKC, which, in turn, promotes cytoskeleton reorganization, cell motility, and chemotaxis. Collectively, these results reveal a novel function of FADD in a non-apoptotic process by modulating cPKC dephosphorylation, stability, and signaling termination.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc Natl Acad Sci U S A 2010; 107:13034-9. [PMID: 20615958 DOI: 10.1073/pnas.1005997107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell death is an important mechanism to limit uncontrolled T-cell expansion during immune responses. Given the role of death-receptor adapter protein Fas-associated death domain (FADD) in apoptosis, it is intriguing that T-cell receptor (TCR)-induced proliferation is blocked in FADD-defective T cells. Necroptosis is an alternate form of death that can be induced by death receptors and is linked to autophagy. It requires the death domain-containing kinase RIP1 and, in certain instances, RIP3. FADD and its apoptotic partner, Caspase-8, have also been implicated in necroptosis. To accurately assess the role of FADD in mature T-cell proliferation and death, we generated a conditional T-cell-specific FADD knockout mouse strain. The T cells of these mice develop normally, but lack FADD at the mature stage. FADD-deficient T cells respond poorly to TCR triggering, exhibit slow cell cycle entry, and fail to expand over time. We find that programmed necrosis occurs during the late stage of normal T-cell proliferation and that this process is greatly amplified in FADD-deficient T cells. Inhibition of necroptosis using an inhibitor of RIP1 kinase activity rescues the FADD knockout proliferative defect. However, TCR-induced necroptosis did not appear to require autophagy or involve RIP3. Consistent with their defective CD8 T-cell response, these mice succumb to Toxoplasma gondii infection more readily than wild-type mice. We conclude that FADD constitutes a mechanism to keep TCR-induced programmed necrotic signaling in check during early phases of T-cell clonal expansion.
Collapse
|
24
|
Mutation of the protein kinase A phosphorylation site influences the anti-proliferative activity of mitofusin 2. Atherosclerosis 2010; 211:216-23. [DOI: 10.1016/j.atherosclerosis.2010.02.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 11/23/2022]
|
25
|
Papoff G, Trivieri N, Crielesi R, Ruberti F, Marsilio S, Ruberti G. FADD-calmodulin interaction: a novel player in cell cycle regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:898-911. [PMID: 20420860 DOI: 10.1016/j.bbamcr.2010.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/26/2010] [Accepted: 04/12/2010] [Indexed: 11/16/2022]
Abstract
Analyses of knockout and mutant transgenic mice as well as in vitro studies demonstrated a complex role of FADD in the regulation of cell fate. FADD is involved in death receptor induced apoptosis, cell cycle progression and cell proliferation. In a search for mechanisms that might regulate FADD functions, we identified, upon the screening of a lambda-phage cDNA library, calmodulin (CaM) as a novel FADD interacting protein. CaM is a key mediator of signals by the secondary messenger calcium and it is an essential regulator of cell cycle progression and cell survival. Here, we describe the identification and characterization of two calcium dependent CaM binding sites in the alpha helices 8-9 and 10-11 of FADD. Phosphorylation of human FADD at the C-terminal serine 194, by casein kinase I alpha (CKIalpha), has been shown to regulate FADD-dependent non-apoptotic activities. Remarkably, we showed that both FADD and CaM are CKIalpha substrates and that in synchronized HeLa cells, FADD, CaM and CKIalpha co-localize at the mitotic spindle in metaphase and anaphase. Moreover, complementation experiments in Jurkat FADD-/- T cells indicated that: a) cells expressing FADD mutants in the CaM binding sites are protected from Taxol-induced G2/M cell cycle arrest; b) FADD/CaM interaction is not required for Fas receptor-mediated apoptosis although Fas and CaM might compete for binding to FADD. We suggest that the interplay of FADD, CaM and CKIalpha may have an important role in the regulation of cell fate.
Collapse
Affiliation(s)
- Giuliana Papoff
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A. Buzzati-Traverso, Monterotondo, Rome, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Xue L, Sun Y, Chiang L, He B, Kang C, Nolla H, Winoto A. Coupling of the cell cycle and apoptotic machineries in developing T cells. J Biol Chem 2010; 285:7556-65. [PMID: 20068041 DOI: 10.1074/jbc.m109.035535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation and apoptosis are diametrically opposite processes. Expression of certain genes like c-Myc, however, can induce both, pointing to a possible linkage between them. Developing CD4(+)CD8(+) thymocytes are intrinsically sensitive to apoptosis, but the molecular basis is not known. We have found that these noncycling cells surprisingly express many cell cycle proteins. We generated transgenic mice expressing a CDK2 kinase-dead (CDK2-DN) protein in the T cell compartment. Analysis of these mice showed that the CDK2-DN protein acts as a dominant negative mutant in mature T cells as expected, but surprisingly, it acts as a dominant active protein in CD4(+)CD8(+) thymocytes. The levels of CDK2 kinase activity, cyclin E, cyclin A, and other cell cycle proteins in transgenic CD4(+)CD8(+) thymocytes are increased. Concurrently, caspase levels are elevated, and apoptosis is significantly enhanced in vitro and in vivo. E2F-1, the unique E2F member capable of inducing apoptosis when overexpressed, is specifically up-regulated in transgenic CD4(+)CD8(+) thymocytes but not in other T cell populations. These results demonstrate that the cell cycle and apoptotic machineries are normally linked, and expression of cell cycle proteins in developing T cells contributes to their inherent 1sensitivity to apoptosis.
Collapse
Affiliation(s)
- Ling Xue
- Cancer Research Laboratory and Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang J, Chen Y, Huang Q, Cheng W, Kang Y, Shu L, Yin W, Hua ZC. Nuclear localization of c-FLIP-L and its regulation of AP-1 activity. Int J Biochem Cell Biol 2009; 41:1678-84. [PMID: 19433309 DOI: 10.1016/j.biocel.2009.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/15/2009] [Accepted: 02/10/2009] [Indexed: 12/29/2022]
Abstract
Cellular FLICE-like inhibitory protein (c-FLIP-L), similar in structure to caspase-8, is capable of blocking Fas- or other death receptors (DR)-mediated apoptosis through association with FADD in the DISC. Recent studies have implicated the function of c-FLIP-L in T-cell proliferation, but the exact mechanism underlying this process remains to be elucidated. In this report, we showed for the first time that c-FLIP-L was present in both the cytoplasm and nucleus of cells, but was more abundantly distributed in the nucleus. The putative NLS signal locates within the p12 region of caspase-like domain. Furthermore, c-FLIP's export to cytoplasm membrane was dependent on apoptotic stimulation, while it rapidly translocated to the nucleus in response to proliferative stimuli. To gain insights into the possible function of c-FLIP-L in the nucleus, we found c-FLIP-L could activate the AP-1 transcriptional activity independent of MAPK activation. In sum, our findings describe a novel function of c-FLIP-L involved in AP-1 activation and cell proliferation.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Center of Hepatobiliary Diseases and the State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Gulou Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
García-Fuster MJ, Ramos-Miguel A, Miralles A, García-Sevilla JA. Opioid receptor agonists enhance the phosphorylation state of Fas-associated death domain (FADD) protein in the rat brain: Functional interactions with casein kinase Iα, Gαi proteins, and ERK1/2 signaling. Neuropharmacology 2008; 55:886-99. [DOI: 10.1016/j.neuropharm.2008.06.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 06/02/2008] [Accepted: 06/28/2008] [Indexed: 11/29/2022]
|
29
|
Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer. Breast Cancer Res 2008; 10:R81. [PMID: 18823530 PMCID: PMC2614516 DOI: 10.1186/bcr2150] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/04/2008] [Accepted: 09/29/2008] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The amplification event occurring at chromosome locus 11q13, reported in several different cancers, includes a number of potential oncogenes. We have previously reported amplification of one such oncogene, namely CCND1, to be correlated with an adverse effect of tamoxifen in premenopausal breast cancer patients. Over-expression of cyclin D1 protein, however, confers tamoxifen resistance but not a tamoxifen-induced adverse effect. Potentially, co-amplification of an additional 11q13 gene, with a resulting protein over-expression, is required to cause an agonistic effect. Moreover, during 11q13 amplification a deletion of the distal 11q region has been described. In order to assess the potential impact of the deletion we examined a selected marker for this event. METHOD Array comparative genomic hybridization analysis was employed to identify and confirm changes in the gene expression of a number of different genes mapping to the 11q chromosomal region, associated with CCND1 amplification. The subsequent protein expression of these candidate genes was then examined in a clinical material of 500 primary breast cancers from premenopausal patients who were randomly assigned to either tamoxifen or no adjuvant treatment. The protein expression was also compared with gene expression data in a subset of 56 breast cancer samples. RESULTS Cortactin and FADD (Fas-associated death domain) over-expression was linked to CCND1 amplification, determined by fluorescence in situ hybridization, but was not associated with a diminished effect of tamoxifen. However, deletion of distal chromosome 11q, defined as downregulation of the marker Chk1 (checkpoint kinase 1), was associated with an impaired tamoxifen response, and interestingly with low proliferative breast cancer of low grade. For Pak1 (p21-activated kinase 1) and cyclin D1 the protein expression corresponded to the gene expression data. CONCLUSIONS The results indicate that many 11q13 associated gene products are over-expressed in conjunction with cyclin D1 but not linked to an agonistic effect of tamoxifen. Finally, the deletion of distal 11q, linked to 11q13 amplification, might be an important event affecting breast cancer outcome and tamoxifen response.
Collapse
|
30
|
Normal development is an integral part of tumorigenesis in T cell-specific PTEN-deficient mice. Proc Natl Acad Sci U S A 2008; 105:2022-7. [PMID: 18250301 DOI: 10.1073/pnas.0712059105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PTEN is a tumor suppressor gene but whether cancer can develop in all PTEN-deficient cells is not known. In T cell-specific PTEN-deficient (tPTEN-/-) mice, which suffer from mature T cell lymphomas, we found that premalignancy, as defined by elevated AKT and senescence pathways, starts in immature T cell precursors and surprisingly not in mature T cells. Premalignancy only starts in 6-week-old mice and becomes much stronger in 9-week-old mice although PTEN is lost since birth. tPTEN-/- immature T cells do not become tumors, and senescence has no role in this model because these cells exist in a novel cell cycle state, expressing proliferating proteins but not proliferating to any significant degree. Instead, the levels of p27(kip1), which is lower in tPTEN-/- immature T cells and almost nonexistent in tPTEN-/- mature T cells, correlate with the proliferation capability of these cells. Interestingly, transient reduction of these cancer precursor cells in adult tPTEN-/- mice within a crucial time window significantly delayed lymphomas and mouse lethality. Thus, loss of PTEN alone is not sufficient for cells to become cancerous, therefore other developmental events are necessary for tumor formation.
Collapse
|
31
|
Gibcus JH, Menkema L, Mastik MF, Hermsen MA, de Bock GH, van Velthuysen MLF, Takes RP, Kok K, Alvarez Marcos CA, van der Laan BFAM, van den Brekel MWM, Langendijk JA, Kluin PM, van der Wal JE, Schuuring E. Amplicon mapping and expression profiling identify the Fas-associated death domain gene as a new driver in the 11q13.3 amplicon in laryngeal/pharyngeal cancer. Clin Cancer Res 2008; 13:6257-66. [PMID: 17975136 DOI: 10.1158/1078-0432.ccr-07-1247] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Amplification of the 11q13 region is a frequent event in human cancer. The highest incidence (36%) is found in head and neck squamous cell carcinomas. Recently, we reported that the amplicon size in 30 laryngeal and pharyngeal carcinomas with 11q13 amplification is determined by unique genomic structures, resulting in the amplification of a set of genes rather than a single gene. EXPERIMENTAL DESIGN To investigate which gene(s) drive the 11q13 amplicon, we determined the smallest region of overlap with amplification and the expression levels of all genes within this amplicon. RESULTS Using array-based comparative genomic hybridization analysis, we detected a region of approximately 1.7 Mb containing 13 amplified genes in more than 25 of the 29 carcinomas. Quantitative reverse transcription-PCR revealed that overexpression of 8 potential driver genes including, cyclin D1, cortactin, and Fas-associated death domain (FADD), correlated significantly with DNA amplification. FADD protein levels correlated well with DNA amplification, implicating that FADD is also a candidate driver gene in the 11q13 amplicon. Analysis of 167 laryngeal carcinomas showed that increased expression of FADD (P = 0.007) and Ser(194) phosphorylated FADD (P = 0.011) were associated with a worse disease-specific survival. FADD was recently reported to be involved in cell cycle regulation, and cancer cells expressing high levels of the Ser(194) phosphorylated isoform of FADD proved to be more sensitive to Taxol-induced cell cycle arrest. CONCLUSION Because of the frequent amplification of the 11q13 region and concomitant overexpression of FADD in head and neck squamous cell carcinomas, we hypothesize that FADD is a marker to select patients that might benefit from Taxol-based chemoradiotherapy.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tay YMS, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, Lufkin T, Rigoutsos I, Thomson AM, Lim B. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 2007; 26:17-29. [PMID: 17916804 DOI: 10.1634/stemcells.2007-0295] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hundreds of microRNAs (miRNAs) are expressed in mammalian cells, where they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. Functional studies to date have demonstrated that several of these miRNAs are important during development. However, the role of miRNAs in the regulation of stem cell growth and differentiation is not well understood. We show herein that microRNA (miR)-134 levels are maximally elevated at day 4 after retinoic acid-induced differentiation or day 2 after N2B27-induced differentiation of mouse embryonic stem cells (mESCs), but this change is not observed during embryoid body differentiation. The elevation of miR-134 levels alone in mESCs enhances differentiation toward ectodermal lineages, an effect that is blocked by a miR-134 antagonist. The promotion of mESC differentiation by miR-134 is due, in part, to its direct translational attenuation of Nanog and LRH1, both of which are known positive regulators of Oct4/POU5F1 and mESC growth. Together, the data demonstrate that miR-134 alone can enhance the differentiation of mESCs to ectodermal lineages and establish a functional role for miR-134 in modulating mESC differentiation through its potential to target and regulate multiple mRNAs.
Collapse
Affiliation(s)
- Yvonne M-S Tay
- Stem Cell and Developmental Biology, Genome Institute of Singapore, #02-01 Genome, Singapore 138672
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|