1
|
Agoncillo ML, Gao Z, De Kraker HC, McHardy SF, Messing RO, Small L, Schmitz-Peiffer C. Effects of a protein kinase C epsilon inhibitor on insulin signalling in lipid-treated HepG2 hepatocytes and glucose tolerance in fat-fed mice. Eur J Pharmacol 2025; 997:177465. [PMID: 40054721 DOI: 10.1016/j.ejphar.2025.177465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
AIMS Protein kinase C epsilon (PKCε) plays a causative role in the development of glucose intolerance, and is a potential target for the treatment of type 2 diabetes. Here, we examined the effects of the PKCε inhibitor CIDD-0150612 (CP612) on insulin action in palmitate-treated HepG2 hepatocytes in vitro and on glucose homeostasis in fat-fed mice in vivo. METHODS HepG2 cells were treated with palmitate and CP612 and stimulated with insulin. Insulin signalling was examined by immunoblotting and glucose incorporation into glycogen was measured using glucose tracer. Mice were fed a high-fat diet and treated with CP612 prior to glucose tolerance tests and tissue harvest. Proteomic analysis of liver was carried out by mass spectrometry. RESULTS CP612 promoted Akt phosphorylation in a highly insulin-dependent manner and reversed the inhibition of insulin-stimulated Akt phosphorylation and glucose incorporation into glycogen by palmitate. Fat-fed mice treated with CP612 had reduced fat mass, but not lean mass, compared with vehicle-treated littermates. Mice treated acutely with CP612 exhibited elevated fasting blood glucose. However, mice studied 24h after the last dose had lower fasting glucose and improved glucose tolerance with a lower insulin excursion. Proteomic analysis of liver from CP612-treated fat-fed mice indicated a reduction in gluconeogenic gene expression and decreased phosphorylation of the transcription factor Foxk1. CONCLUSIONS The PKCε inhibitor CP612 had beneficial effects on insulin action in hepatocytes and on fat mass and glucose homeostasis in mice. Because certain effects were not previously observed in genetically PKCε-deficient mice, off-target effects may be partly responsible.
Collapse
Affiliation(s)
- Miguel L Agoncillo
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
| | - Zhongmin Gao
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
| | - Harmannus C De Kraker
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Stanton F McHardy
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, E 24th Street, Austin, TX, 78712, USA.
| | - Lewin Small
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
| | - Carsten Schmitz-Peiffer
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia; St Vincent's Clinical School, University of New South Wales, 390 Victoria St, Darlinghurst, NSW, NSW 2010, Australia.
| |
Collapse
|
2
|
Khaliq SA, Park SY, Maham S, Cho Y, Lee M, Nam S, Seong JK, Chen J, Choi CS, Yoon MS. ARHGEF3 coordinates adipocyte hypertrophy and differentiation through dual YAP-RhoA and PPARγ activation. J Adv Res 2025:S2090-1232(25)00229-2. [PMID: 40216078 DOI: 10.1016/j.jare.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Obesity presents a significant global health burden, necessitating insights into the molecular drivers of adipogenesis and adipose tissue regulation. OBJECTIVES This study investigates the role of Rho guanine nucleotide exchange factor 3 (ARHGEF3) in adipocyte differentiation and hypertrophy, focusing on its influence on adipogenesis and body weight regulation under high-fat diet conditions. METHODS ARHGEF3-/- mice and littermate controls were subjected to a high-fat diet (HFD) and underwent comprehensive metabolic phenotyping. In vitro studies in C3H10T1/2 cells were conducted to assess ARHGEF3's role in adipogenesis, utilizing quantitative PCR, western blotting, chromatin immunoprecipitation (ChIP), immunoprecipitation (IP), immunostaining, and luciferase reporter assays. RESULTS ARHGEF3 expression increased in white adipose tissue (WAT) of HFD-fed mice and during adipogenic differentiation in C3H10T1/2 cells. ARHGEF3-deficient mice exhibited reduced weight gain and adipocyte size, correlating with decreased RhoA expression and altered cytoskeletal dynamics. Additionally, ARHGEF3 facilitated yes-associated protein (YAP) nuclear translocation and its direct binding to the RhoA promoter, an effect reliant on ARHGEF3. ARHGEF3 also enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ), establishing a reciprocal activation loop to drive adipocyte differentiation and hypertrophy. CONCLUSION ARHGEF3 emerges as a pivotal regulator of adipocyte dynamics by coordinating YAP-RhoA signaling and enhancing PPARγ activity. These findings offer novel therapeutic insights for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Shi-Young Park
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Syeda Maham
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Yoonil Cho
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Miseon Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheol Soo Choi
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea.
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
3
|
Tran NNQ, Choi H, Sactivel B, Oh YJ, Maeng HJ, Kim MK, Lee J, Kim YB, Lee DH, Oh BC, Jun HS, Chun KH. The dual targeting effects of KD025 on casein kinase 2 and ROCK2 in a mouse model of diet-induced obesity. Biochem Pharmacol 2025; 237:116933. [PMID: 40210126 DOI: 10.1016/j.bcp.2025.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
KD025(belumosudil), a selective ROCK2 inhibitor, exhibits unique anti-adipogenic activity through inhibition of casein kinase 2 (CK2). This study investigated the dual inhibitory effects of KD025 on metabolism in a diet-induced obese model. C57BL/6 mice on a high fat diet (HFD) were treated with KD025 for 4 weeks, while fasudil (a pan-ROCK inhibitor) and CX-4945 (a CK2-specific inhibitor) served as comparison treatments. KD025 significantly reduced body weight gain without affecting food intake, serum insulin, or fasting blood glucose levels. In contrast, while both CX-4945 and fasudil treatments showed a trend toward weight reduction, these results were not statistically significant. KD025 improved lipid metabolism by significantly lowering LDL cholesterol and triglyceride, although it slightly impaired glucose metabolism, as observed in insulin and glucose tolerance tests. Weight reduction in the KD025- and CX-4945-treated groups was attributed to decreased adipose tissue mass, particularly in inguinal (ingWAT) and epididymal (epiWAT) fat depots. Hematoxylin and eosin (H&E) staining confirmed smaller adipocyte size in these groups. KD025 had no significant effect on serum levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), or monocyte chemoattractant protein-1 (MCP-1) with varied inflammatory responses. Furthermore, KD025 and CX-4945 upregulated adipogenic and browning markers, such as Cebpa, Cidea, and Pparg in the epiWAT, though without significant UCP1 expression. Overall, KD025 effectively reduced weight gain in HFD-fed mice through dual inhibition of CK2 and ROCK2, highlighting its potential as a therapeutic agent for obesity-related conditions.
Collapse
Affiliation(s)
- Nhu Nguyen Quynh Tran
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hojung Choi
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Bathiga Sactivel
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Yu Jin Oh
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Kyung Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
4
|
Umetsu A, Ida Y, Sato T, Higashide M, Nishikiori N, Furuhashi M, Ohguro H, Watanabe M. RHO-Associated Coiled-Coil-Containing Protein Kinase Inhibitors Significantly Modulate the Epithelial-Mesenchymal Transition Induced by TGF-β2 in the 2-D and 3-D Cultures of Human Corneal Stroma Fibroblasts. Biomedicines 2024; 12:2784. [PMID: 39767691 PMCID: PMC11673340 DOI: 10.3390/biomedicines12122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The objective of the present study was to examine the unidentified effects that RHO-associated coiled-coil-containing protein kinase 1 and 2 antagonists exert on the transforming growth factor beta2-induced epithelial-mesenchymal transition of the human corneal stroma. METHODS In the presence or absence of pan-RHO-associated coiled-coil-containing protein kinase inhibitors, ripasudil or Y27632 and RHO-associated coiled-coil-containing protein kinase 2 inhibitor, KD025, we analyzed the following: (1) planar proliferation caused by trans-endothelial electrical resistance and the cellular metabolic characteristics of the two-dimensional cultures of human corneal stroma fibroblasts; (2) the physical properties of a three-dimensional human corneal stroma fibroblasts spheroid; and (3) the gene expressions and their regulators in the extracellular matrix, along with the tissue inhibitors of metalloproteinases and matrix metalloproteinases and the endoplasmic reticulum stress-related factors of the two-dimensional and three-dimensional cultures in human corneal stroma fibroblasts. RESULTS Exposure to 5 nM of the transforming growth factor beta2 markedly increased the trans-endothelial electrical resistance values as well as the metabolic function in two-dimensional cultures of human corneal stroma fibroblasts. With an increase in stiffening, this exposure also reduced the size of three-dimensional human corneal stroma fibroblast spheroids, which are typical cellular phenotypes of the epithelial-mesenchymal transition. Both pan-RHO-associated coiled-coil-containing protein kinase inhibitors and RHO-associated coiled-coil-containing protein kinase 2 inhibitors substantially modulated these transforming growth factor beta2-induced effects, albeit in a different manner. Gene expression analysis supported such biological alterations via either with transforming growth factor beta2 alone or with the RHO-associated coiled-coil-containing protein kinase inhibitors variants with the noted exception being the transforming growth factor beta2-induced effects toward the three-dimensional human corneal stroma fibroblast spheroid. CONCLUSIONS The findings presented herein suggest the following: (1) the epithelial-mesenchymal transition could be spontaneously evoked in the three-dimensional human corneal stroma fibroblast spheroid, and, therefore, the epithelial-mesenchymal transition induced by transforming growth factor beta2 could differ between two-dimensional and three-dimensional cultured HCSF cells; and (2) the inhibition of ROCK1 and 2 significantly modulates the transforming growth factor beta2-induced an epithelial-mesenchymal transition in both two-dimensionally and three-dimensionally cultured human corneal stroma fibroblasts, albeit in a different manner.
Collapse
Affiliation(s)
- Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan; (A.U.)
| | - Yosuke Ida
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan; (A.U.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan
- Department of Cellular Physiology and Signal Transduction, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan
| | - Megumi Higashide
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan; (A.U.)
| | - Nami Nishikiori
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan; (A.U.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan; (A.U.)
| | - Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan; (A.U.)
| |
Collapse
|
5
|
Xu J, Huang Z, Shi S, Xia J, Chen G, Zhou K, Zhang Y, Bian C, Shen Y, Yin X, Lu L, Gu H. Glial maturation factor-β deficiency prevents oestrogen deficiency-induced bone loss by remodelling the actin network to suppress adipogenesis of bone marrow mesenchymal stem cells. Cell Death Dis 2024; 15:829. [PMID: 39543090 PMCID: PMC11564563 DOI: 10.1038/s41419-024-07234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
An imbalance between the adipogenesis and osteogenesis of bone marrow mesenchymal stem cells (BMSCs) is considered the basic pathogenesis of osteoporosis. Although actin cytoskeleton remodelling plays a crucial role in the differentiation of BMSCs, the role of actin cytoskeleton remodelling in the adipogenesis of BMSCs and postmenopausal osteoporosis (PMOP) has remained elusive. Glia maturation factor-beta (GMFB) has a unique role in remodelling the polymerization/depolymerization cycles of actin. We observed that GMFB expression was increased in bone tissue from both ovariectomized (OVX) rats and PMOP patients. GMFB knockout inhibited the accumulation of bone marrow adipocytes and increased bone mass in the OVX rat model. The inhibition of adipocyte differentiation in GMFB knockout BMSCs was mediated via actin cytoskeleton remodelling and the Ca2+-calcineurin-NFATc2 axis. Furthermore, we found that GMFB shRNA treatment in vivo had favourable effects on osteoporosis induced by OVX. Together, these findings suggest a pathological association of the GMFB with PMOP and highlight the potential of the GMFB as a therapeutic target for osteoporosis patients.
Collapse
Affiliation(s)
- Jun Xu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Si Shi
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China
| | - Jiangni Xia
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Kaifeng Zhou
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yiming Zhang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Chong Bian
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yuqin Shen
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China
| | - Xiaofan Yin
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China.
| | - Lixia Lu
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China.
- Department of Biochemistry and Molecular Biology, Tongji University School of medicine, Shanghai, PR China.
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
6
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
7
|
Addition of ROCK Inhibitors Alleviates Prostaglandin-Induced Inhibition of Adipogenesis in 3T3L-1 Spheroids. Bioengineering (Basel) 2022; 9:bioengineering9110702. [DOI: 10.3390/bioengineering9110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
To elucidate the additive effects of the ROCK inhibitors (ROCK-i), ripasudil (Rip) and Y27632 on bimatoprost acid (BIM-A), a prostaglandin analog (PG), on adipose tissue, two- and three-dimensional (2D or 3D) cultures of 3T3-L1 cells, the most well characterized cells in the field of lipid research, were used. The cells were subjected to a variety of analyses including lipid staining, real-time cellular metabolic analysis, the mRNA expressions of genes related to adipogenesis and extracellular matrices (ECMs) as well as the sizes and physical properties of the 3D spheroids by a micro-squeezer. BIM-A induced strong inhibitory effects on most of the adipogenesis-related changes in the 2D and 3D cultured 3T3-L1 cells, including (1) the enlargement and softening of the 3D spheroids, (2) a dramatic enhancement in lipid staining and the expression of adipogenesis-related genes, and (3) a decrease in mitochondrial and glycolytic metabolic function. By adding ROCK-i to the BIM-A, most of these BIM-A-induced effects were cancelled. The collective findings reported herein suggest that ROCK-i eliminated the PG-induced suppression of adipogenesis in the 3T3-L1 cells, accompanied by the formation of enlarged 3D spheroids. Such effects of adding ROCK-i to a PG in preadipocytes on cellular properties appear to be associated with the suppression of PG-induced adverse effects, and provide additional insight into our understanding of lipid-related research.
Collapse
|
8
|
ELKATTAWY HA, MAHMOUD ABDELMONEM ELSHERBINI D, ALI EBRAHIM H, ABDULLAH DM, AL-ZAHABY SA, NOSERY Y, EL-SAYED HASSAN A. Rho-kinase inhibition ameliorates non-alcoholic fatty liver disease in type 2 diabetic rats. Physiol Res 2022; 71:615-630. [PMID: 36047723 PMCID: PMC9841803 DOI: 10.33549/physiolres.934869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is linked to type 2 diabetes mellitus (T2DM), obesity, and insulin resistance. The Rho/ROCK pathway had been involved in the pathophysiology of diabetic complications. This study was designed to assess the possible protective impacts of the Rho/Rho-associated coiled-coil containing protein kinase (Rho/ROCK) inhibitor fasudil against NAFLD in T2DM rats trying to elucidate the underlying mechanisms. Animals were assigned into control rats, non-treated diabetic rats with NAFLD, and diabetic rats with NAFLD that received fasudil treatment (10 mg/kg per day) for 6 weeks. The anthropometric measures and biochemical analyses were performed to assess metabolic and liver function changes. The inflammatory and oxidative stress markers and the histopathology of rat liver tissues were also investigated. Groups with T2DM showed increased body weight, serum glucose, and insulin resistance. They exhibited disturbed lipid profile, enhancement of inflammatory cytokines, and deterioration of liver function. Fasudil administration reduced body weight, insulin resistance, and raised liver enzymes. It improved the disturbed lipid profile and attenuated liver inflammation. Moreover, it slowed down the progression of high fat diet (HFD)-induced liver injury and reduced the caspase-3 expression. The present study demonstrated beneficial amelioration effect of fasudil on NAFLD in T2DM. The mechanisms underlying these impacts are improving dyslipidemia, attenuating oxidative stress, downregulated inflammation, improving mitochondrial architecture, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hany A. ELKATTAWY
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Kingdom of Saudi Arabia,Medical Physiology Department, College of Medicine, Zagazig University, Egypt
| | - Dalia MAHMOUD ABDELMONEM ELSHERBINI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Kingdom of Saudi Arabia,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hasnaa ALI EBRAHIM
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Doaa M. ABDULLAH
- Clinical Pharmacology Department, College of Medicine, Zagazig University, Egypt
| | | | - Yousef NOSERY
- Pathology Department, College of Medicine, Zagazig University, Egypt
| | - Ahmed EL-SAYED HASSAN
- Medical Physiology Department, College of Medicine, Zagazig University, Egypt,Department of Basic Medical Sciences, College of Medicine, Sulaiman AlRajhi University, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Tan X, He Y, Qin Y, Yan Z, Chen J, Zhao R, Zhou S, Irwin DM, Li B, Zhang S. Comparative analysis of differentially abundant proteins between high and low intramuscular fat content groups in donkeys. Front Vet Sci 2022; 9:951168. [PMID: 35967999 PMCID: PMC9364086 DOI: 10.3389/fvets.2022.951168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Intramuscular fat (IMF) is an important regulator that determines meat quality, and its content is closely related to flavor, tenderness, and juiciness. Many studies have used quantitative proteomic analysis to identify proteins associated with meat quality traits in livestock, however, the potential candidate proteins that influence IMF in donkey muscle are not fully understood. In this study, we performed quantitative proteomic analysis, with tandem-mass-tagged (TMT) labeling, with samples from the longissimus dorsi (LD) muscle of the donkey. A total of 585,555 spectra were identified from the six muscle samples used in this study. In total, 20,583 peptides were detected, including 15,279 unique peptides, and 2,540 proteins were identified. We analyzed differentially abundant proteins (DAPs) between LD muscles of donkeys with high (H) and low (L) IMF content. We identified 30 DAPs between the H and L IMF content groups, of which 17 were upregulated and 13 downregulated in the H IMF group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of these DAPs revealed many GO terms (e.g., bone morphogenetic protein (BMP) receptor binding) and pathways (e.g., Wnt signaling pathway and Hippo signaling pathway) involved in lipid metabolism and adipogenesis. The construction of protein-protein interaction networks identified 16 DAPs involved in these networks. Our data provide a basis for future investigations into candidate proteins involved in IMF deposition and potential new approaches to improve meat quality in the donkey.
Collapse
Affiliation(s)
- Xiaofan Tan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yu He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanchun Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhiwei Yan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jing Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruixue Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shenglan Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, Kim K, Escolano JC, Müller T, Braun J, Wabitsch M, Tschöp M, Sack I, Brankatschk M, Guck J, Stemmer K, Taubenberger AV. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci Rep 2022; 12:10325. [PMID: 35725987 PMCID: PMC9209483 DOI: 10.1038/s41598-022-13324-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.
Collapse
Affiliation(s)
- Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Petra Kotzbeck
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Alexandra Harger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Angela Ariza de Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Joan-Carles Escolano
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Torsten Müller
- JPK Instruments/Bruker, Colditzstr. 34-36, 12099, Berlin, Germany
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Wabitsch
- Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marko Brankatschk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Molecular Cell Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Masubuchi Y, Ma J, Suzuki T, Kojima I, Inagaki T, Shibata H. T1R3 homomeric sweet taste receptor negatively regulates insulin-induced glucose transport through Gαs-mediated microtubules disassembly in 3T3-L1 adipocytes. Endocr J 2022; 69:487-493. [PMID: 34803124 DOI: 10.1507/endocrj.ej21-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
T1R3 is a class C G protein-coupled receptor family member that forms heterodimeric umami and sweet taste receptors with T1R1 and T1R2, respectively, in the taste cells of taste buds. T1R3 is expressed in 3T3-L1 cells in homomeric form and negatively regulates adipogenesis in a Gαs-dependent but cAMP-independent manner. Although T1R3 expression is markedly upregulated during adipogenesis, its physiological role in mature adipocytes remains obscure. Here, we show that stimulation of T1R3 with sucralose or saccharin induces microtubule disassembly in differentiated 3T3-L1 adipocytes. The effect was reproduced by treatment with cholera toxin or isoproterenol but not with forskolin. Treatment with sucralose or saccharin for 3 h inhibited insulin-stimulated glucose uptake by 32% and 45% in differentiated adipocytes, respectively, similar to the inhibitory effect of nocodazole (by 33%). Isoproterenol treatment inhibited insulin-stimulated glucose transport by 26%, whereas sucralose did not affect the intrinsic activity of the glucose transporter, indicating that it inhibited insulin-induced GLUT4 translocation to the plasma membrane. Immunostaining analysis showed that insulin-stimulated GLUT4 accumulation on the plasma membrane was abrogated in sucralose-treated cells, in association with depolymerization of microtubules. Sucralose-mediated inhibition of GLUT4 translocation was reversed by the overexpression of dominant-negative Gαs (Gαs-G226A) or knockdown of Gαs. Additionally, membrane fractionation analysis showed that sucralose treatment reduced GLUT4 levels in the plasma membrane fraction from insulin-stimulated adipocytes. We have identified a novel non-gustatory role for homomeric T1R3 in adipocytes, and activation of the T1R3 receptor negatively regulates insulin action of glucose transport via Gαs-dependent microtubule disassembly.
Collapse
Affiliation(s)
- Yosuke Masubuchi
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Jinhui Ma
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Itaru Kojima
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Hiroshi Shibata
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
12
|
Regulatory mechanisms of the early phase of white adipocyte differentiation: an overview. Cell Mol Life Sci 2022; 79:139. [PMID: 35184223 PMCID: PMC8858922 DOI: 10.1007/s00018-022-04169-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
The adipose
organ comprises two main fat depots termed white and brown adipose tissues. Adipogenesis is a process leading to newly differentiated adipocytes starting from precursor cells, which requires the contribution of many cellular activities at the genome, transcriptome, proteome, and metabolome levels. The adipogenic program is accomplished through two sequential phases; the first includes events favoring the commitment of adipose tissue stem cells/precursors to preadipocytes, while the second involves mechanisms that allow the achievement of full adipocyte differentiation. While there is a very large literature about the mechanisms involved in terminal adipogenesis, little is known about the first stage of this process. Growing interest in this field is due to the recent identification of adipose tissue precursors, which include a heterogenous cell population within different types of adipose tissue as well as within the same fat depot. In addition, the alteration of the heterogeneity of adipose tissue stem cells and of the mechanisms involved in their commitment have been linked to adipose tissue development defects and hence to the onset/progression of metabolic diseases, such as obesity. For this reason, the characterization of early adipogenic events is crucial to understand the etiology and the evolution of adipogenesis-related pathologies, and to explore the adipose tissue precursors’ potential as future tools for precision medicine.
Collapse
|
13
|
Wei L, Shi J. Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:886534. [PMID: 35769086 PMCID: PMC9234286 DOI: 10.3389/fendo.2022.886534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and associated complications increasingly jeopardize global health and contribute to the rapidly rising prevalence of type 2 diabetes mellitus and obesity-related diseases. Developing novel methods for the prevention and treatment of excess body adipose tissue expansion can make a significant contribution to public health. Rho kinase is a Rho-associated coiled-coil-containing protein kinase (Rho kinase or ROCK). The ROCK family including ROCK1 and ROCK2 has recently emerged as a potential therapeutic target for the treatment of metabolic disorders. Up-regulated ROCK activity has been involved in the pathogenesis of all aspects of metabolic syndrome including obesity, insulin resistance, dyslipidemia and hypertension. The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in both white and beige adipogenesis. Studies using ROCK pan-inhibitors in animal models of obesity, diabetes, and associated complications have demonstrated beneficial outcomes. Studies via genetically modified animal models further established isoform-specific roles of ROCK in the pathogenesis of metabolic disorders including obesity. However, most reported studies have been focused on ROCK1 activity during the past decade. Due to the progress in developing ROCK2-selective inhibitors in recent years, a growing body of evidence indicates more attention should be devoted towards understanding ROCK2 isoform function in metabolism. Hence, studying individual ROCK isoforms to reveal their specific roles and principal mechanisms in white and beige adipogenesis, insulin sensitivity, energy balancing regulation, and obesity development will facilitate significant breakthroughs for systemic treatment with isoform-selective inhibitors. In this review, we give an overview of ROCK functions in the pathogenesis of obesity and insulin resistance with a particular focus on the current understanding of ROCK isoform signaling in white and beige adipogenesis, obesity and thermogenesis in adipose tissue and other major metabolic organs involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lei Wei
- *Correspondence: Lei Wei, ; Jianjian Shi,
| | | |
Collapse
|
14
|
Hikage F, Ichioka H, Watanabe M, Umetsu A, Ohguro H, Ida Y. ROCK inhibitors modulate the physical properties and adipogenesis of 3D spheroids of human orbital fibroblasts in different manners. FASEB Bioadv 2021; 3:866-872. [PMID: 34632320 PMCID: PMC8493964 DOI: 10.1096/fba.2021-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023] Open
Abstract
To elucidate the pharmacological effects of Rho-associated coiled-coil containing protein kinase inhibitors (ROCK-is), ripasudil (Rip), Y27632, and KD025, on human orbital fatty tissue, the human orbital fibroblasts (HOFs) were three-dimensional (3D) cultured for 12 days. The effects of ROCK-is on the physical properties of the 3D-cultured HOF spheroids, including their sizes and physical stiffness, their adipogenesis by lipid staining, and the mRNA expression of adipogenesis-related genes, PPARγ and AP2, and extracellular matrix (ECM) including collagen (COL) 1, 4, and 6, and fibronectin were analyzed. A significant increase in the sizes, physical stiffness, lipid staining, and mRNA expression of adipogenesis-related genes, COL4 and COL6, and a decrease in COL1 expression were observed with adipogenesis (DIF+). In the presence of ROCK-is, such DIF+-induced effects were differently modulated as follows: (1) the sizes were not affected or significantly enhanced by Rip, Y27632, or KD025, (2) the physical stiffness was significantly decreased in Rip and Y27632, but was substantially increased in KD025, (3) the lipid staining was further enhanced or significantly suppressed by Rip, Y27632, or KD025, and both PPARγ and AP2 expression were significantly downregulated or upregulated by KD025 or Rip, and (4) Rip upregulated the expression of COL4, Y27632 upregulated the expression of COL1, COL4, and COL6, and KD025 upregulated the expression of COL1 and COL4. This study indicates that ROCK-is significantly and differently modulate physical properties of the 3D HOF spheroids as well as their adipogenesis.
Collapse
Affiliation(s)
- Fumihito Hikage
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Hanae Ichioka
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Megumi Watanabe
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Araya Umetsu
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Hiroshi Ohguro
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Yosuke Ida
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
15
|
Hikage F, Ichioka H, Watanabe M, Umetsu A, Ohguro H, Ida Y. Addition of ROCK inhibitors to prostaglandin derivative (PG) synergistically affects adipogenesis of the 3D spheroids of human orbital fibroblasts (HOFs). Hum Cell 2021; 35:125-132. [PMID: 34591280 DOI: 10.1007/s13577-021-00623-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
To study the additive effects of Rho-associated coiled-coil containing protein kinase inhibitors, ripasudil (Rip) to bimatoprost acid (BIM-A) on orbital adipose tissue, three-dimensional (3D) cultures of human orbital fibroblasts (HOFs) were prepared and the physical properties including the 3D spheroid size and stiffness, lipid staining by BODIPY and the mRNA expression of adipogenesis-related genes, PPARγ and AP2, and extracellular matrix (ECM) including collagen (COL)1, 4 and 6, and fibronectin (FN) were analyzed. Adipogenesis (DIF+) induced (1) enlargement and increasing stiffness of the 3D HOFs spheroid, (2) increased lipid staining, the expression of adipogenesis-related gene expressions, and (3) the down-regulation of COL1 and FN and up-regulation of COL4 and COL6. In the presence of BIM-A, (1) such DIF+-induced changes in 3D spheroid size and stiffness were significantly inhibited or enhanced, respectively, (2) the lipid staining and its related gene expressions were significantly down-regulated, and (3) the expression of COL1 and COL6 were up-regulated. By the addition of Rip to BIM-A, the above BIM-A-induced effects were all inhibited, except for the up-regulation of COL6 and FN expression, that is, enlarging and decreasing stiffness, enhancement of lipid staining and its related gene expression, and down-regulation of COL1 expression. Our present study indicates that Rip significantly suppressed BIM-A-induced effects toward 3D HOFs spheroids.
Collapse
Affiliation(s)
- Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hanae Ichioka
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yosuke Ida
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| |
Collapse
|
16
|
Tran NNQ, Chun KH. ROCK2-Specific Inhibitor KD025 Suppresses Adipocyte Differentiation by Inhibiting Casein Kinase 2. Molecules 2021; 26:4747. [PMID: 34443331 PMCID: PMC8401933 DOI: 10.3390/molecules26164747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
KD025, a ROCK2 isoform-specific inhibitor, has an anti-adipogenic activity which is not mediated by ROCK2 inhibition. To identify the target, we searched binding targets of KD025 by using the KINOMEscanTM screening platform, and we identified casein kinase 2 (CK2) as a novel target. KD025 showed comparable binding affinity to CK2α (Kd = 128 nM). By contrast, CK2 inhibitor CX-4945 and ROCK inhibitor fasudil did not show such cross-reactivity. In addition, KD025 effectively inhibited CK2 at a nanomolar concentration (IC50 = 50 nM). We examined if the inhibitory effect of KD025 on adipocyte differentiation is through the inhibition of CK2. Both CX-4945 and KD025 suppressed the generation of lipid droplets and the expression of proadipogenic genes Pparg and Cebpa in 3T3-L1 cells during adipocyte differentiation. Fasudil exerted no significant effect on the quantity of lipid droplets, but another ROCK inhibitor Y-27632 increased the expression of Pparg and Cebpa. Both CX-4945 and KD025 acted specifically in the middle stage (days 1-3) but were ineffective when treated at days 0-1 or the late stages, indicating that CX-4945 and KD025 may regulate the same target, CK2. The mRNA and protein levels of CK2α and CK2β generally decreased in 3T3-L1 cells at day 2 but recovered thereafter. Other well-known CK2 inhibitors DMAT and quinalizarin inhibited effectively the differentiation of 3T3-L1 cells. Taken together, the results of this study confirmed that KD025 inhibits ROCK2 and CK2, and that the inhibitory effect on adipocyte differentiation is through the inhibition of CK2.
Collapse
Affiliation(s)
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea;
| |
Collapse
|
17
|
Simultaneous Use of ROCK Inhibitors and EP2 Agonists Induces Unexpected Effects on Adipogenesis and the Physical Properties of 3T3-L1 Preadipocytes. Int J Mol Sci 2021; 22:ijms22094648. [PMID: 33925005 PMCID: PMC8125646 DOI: 10.3390/ijms22094648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022] Open
Abstract
To elucidate the additive effects of an EP2 agonist, omidenepag (OMD) or butaprost (Buta) on the Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, ripasudil (Rip) on adipose tissue, two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells were analyzed by lipid staining, the mRNA expression of adipogenesis-related genes, extracellular matrix (ECM) molecules including collagen (Col) -1, -4 and -6, and fibronectin (Fn), and the sizes and physical properties of 3D organoids, as measured by a micro-squeezer. The results indicate that adipogenesis induced (1) an enlargement of the 3D organoids; (2) a substantial enhancement in lipid staining as well as the expression of the Pparγ, Ap2 and Leptin genes; (3) a significant softening of the 3D organoids, the effects of which were all enhanced by Rip except for Pparγ expression; and (4) a significant downregulation in Col1 and Fn, and a significant upregulation in Col4, Col6, the effects of which were unchanged by Rip. When adding the EP2 agonist to Rip, (1) the sizes of the 3D organoids were reduced substantially; (2) lipid staining was increased (OMD), or decreased (Buta); (3) the stiffness of the 3D organoids was substantially increased in Buta; (4-1) the expression of Pparγ was suppressed (2D, OMD) or increased (2D, Buta), and the expressions of Ap2 were downregulated (2D, 3D) and Leptin was increased (2D) or decreased (3D), (4-2) all the expressions of four ECM molecules were upregulated in 2D (2D), and in 3D, the expression of Col1, Col4 was upregulated. The collective findings reported herein indicate that the addition of an EP2 agonist, OMD or Buta significantly but differently modulate the Rip-induced effects on adipogenesis and the physical properties of 2D and 3D cultured 3T3-L1 cells.
Collapse
|
18
|
Audano M, Pedretti S, Ligorio S, Gualdrini F, Polletti S, Russo M, Ghisletti S, Bean C, Crestani M, Caruso D, De Fabiani E, Mitro N. Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction. J Cell Biol 2021; 220:e202003173. [PMID: 33566069 PMCID: PMC7879490 DOI: 10.1083/jcb.202003173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Ligorio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Humanitas University (Hunimed), Pieve Emanuele, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marta Russo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Camilla Bean
- Department of Biology, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Im H, Park JH, Im S, Han J, Kim K, Lee YH. Regulatory roles of G-protein coupled receptors in adipose tissue metabolism and their therapeutic potential. Arch Pharm Res 2021; 44:133-145. [PMID: 33550564 PMCID: PMC7907040 DOI: 10.1007/s12272-021-01314-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
The high incidence of obesity has increased the need to discover new therapeutic targets to combat obesity and obesity-related metabolic diseases. Obesity is defined as an abnormal accumulation of adipose tissue, which is one of the major metabolic organs that regulate energy homeostasis. However, there are currently no approved anti-obesity therapeutics that directly target adipose tissue metabolism. With recent advances in the understanding of adipose tissue biology, molecular mechanisms involved in brown adipose tissue expansion and metabolic activation have been investigated as potential therapeutic targets to increase energy expenditure. This review focuses on G-protein coupled receptors (GPCRs) as they are the most successful class of druggable targets in human diseases and have an important role in regulating adipose tissue metabolism. We summarize recent findings on the major GPCR classes that regulate thermogenesis and mitochondrial metabolism in adipose tissue. Improved understanding of GPCR signaling pathways that regulate these processes could facilitate the development of novel pharmacological approaches to treat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Hyeonyeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seowoo Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyungmin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
Al-Sayegh MA, Mahmood SR, Khair SBA, Xie X, El Gindi M, Kim T, Almansoori A, Percipalle P. β-actin contributes to open chromatin for activation of the adipogenic pioneer factor CEBPA during transcriptional reprograming. Mol Biol Cell 2020; 31:2511-2521. [PMID: 32877276 PMCID: PMC7851876 DOI: 10.1091/mbc.e19-11-0628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipogenesis is regulated by a cascade of signals that drive transcriptional reprogramming in adipocytes. Here, we report that nuclear actin regulates the chromatin states that establish tissue- specific expression during adipogenesis. To study the role of β-actin in adipocyte differentiation, we conducted RNA sequencing on wild-type and β-actin knockout mouse embryonic fibroblasts (MEFs) after reprograming to adipocytes. We found that β-actin depletion affects induction of several adipogenic genes during transcriptional reprograming. This impaired regulation of adipogenic genes is linked to reduced expression of the pioneer factor Cebpa and is rescued by reintroducing NLS-tagged β-actin. ATAC-Seq in knockout MEFs revealed that actin-dependent reduction of Cebpa expression correlates with decreased chromatin accessibility and loss of chromatin association of the ATPase Brg1. This, in turn, impairs CEBPB's association with its Cebpa promoter-proximal binding site during adipogenesis. We propose a role for the nuclear β-actin pool in maintaining open chromatin for transcriptional reprogramming during adipogenic differentiation.
Collapse
Affiliation(s)
- M A Al-Sayegh
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - S R Mahmood
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Biology, New York University, New York, NY 10003
| | - S B Abul Khair
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - X Xie
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - M El Gindi
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - T Kim
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - A Almansoori
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - P Percipalle
- Biology Program, Science Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Arima Y, Nobusue H, Saya H. Targeting of cancer stem cells by differentiation therapy. Cancer Sci 2020; 111:2689-2695. [PMID: 32462706 PMCID: PMC7419023 DOI: 10.1111/cas.14504] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022] Open
Abstract
Chemoresistance is a hallmark of cancer stem cells (CSCs). To develop novel therapeutic strategies that target CSCs, we established osteosarcoma-initiating (OSi) cells by introducing the c-Myc gene into bone marrow stromal cells derived from Ink4a/Arf KO mice. These OSi cells include bipotent committed cells (similar to osteochondral progenitor cells) with a high tumorigenic activity as well as tripotent cells (similar to mesenchymal stem cells) of low tumorigenicity. We recently showed that the tripotent OSi cells are highly resistant to chemotherapeutic agents, and that depolymerization of the actin cytoskeleton in these cells induces their terminal adipocyte differentiation and suppresses their tumorigenicity. We here provide an overview of modulation of actin cytoskeleton dynamics associated with terminal adipocyte differentiation in osteosarcoma as well as discuss the prospects for new therapeutic strategies that target chemoresistant CSCs by inducing their differentiation.
Collapse
Affiliation(s)
- Yoshimi Arima
- Division of Gene RegulationInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| | - Hiroyuki Nobusue
- Division of Gene RegulationInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| | - Hideyuki Saya
- Division of Gene RegulationInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| |
Collapse
|
22
|
Sharma P, Roy K. ROCK-2-selective targeting and its therapeutic outcomes. Drug Discov Today 2020; 25:446-455. [DOI: 10.1016/j.drudis.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/08/2019] [Accepted: 11/30/2019] [Indexed: 01/21/2023]
|
23
|
Kunitomi H, Oki Y, Onishi N, Kano K, Banno K, Aoki D, Saya H, Nobusue H. The insulin-PI3K-Rac1 axis contributes to terminal adipocyte differentiation through regulation of actin cytoskeleton dynamics. Genes Cells 2020; 25:165-174. [PMID: 31925986 DOI: 10.1111/gtc.12747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/29/2022]
Abstract
Adipocyte differentiation is accompanied by a pronounced change in the actin cytoskeleton characterized by the reorganization of filamentous (F)-actin stress fibers into cortical F-actin structures. We previously showed that depolymerization of F-actin stress fibers induced by inactivation of RhoA-ROCK (Rho-associated kinase) signaling acts as a trigger for adipocyte differentiation. The relevance and underlying mechanism of the formation of cortical F-actin structures from depolymerized actin during adipocyte differentiation have remained unclear, however. We have now examined the mechanistic relation between actin dynamics and adipogenic induction. Transient exposure to the actin-depolymerizing agent latrunculin A (LatA) supported the formation of adipocyte-associated cortical actin structures and the completion of terminal adipocyte differentiation in the presence of insulin, whereas long-term exposure to LatA prevented such actin reorganization as well as terminal adipogenesis. Moreover, these effects of insulin were prevented by inhibition of phosphatidylinositol 3-kinase (PI3K)-Rac1 signaling and the actin-related protein 2/3 (Arp2/3) complex which is a critical component of the cortical actin networks. Our findings thus suggest that the insulin-PI3K-Rac1 axis leads to the formation of adipocyte-associated cortical actin structures which is essential for the completion of adipocyte differentiation.
Collapse
Affiliation(s)
- Haruko Kunitomi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Shahbazi R, Baradaran B, Khordadmehr M, Safaei S, Baghbanzadeh A, Jigari F, Ezzati H. Targeting ROCK signaling in health, malignant and non-malignant diseases. Immunol Lett 2020; 219:15-26. [PMID: 31904392 DOI: 10.1016/j.imlet.2019.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A Rho-associated coiled-coil kinase (ROCK) is identified as a critical downstream effector of GTPase RhoA which contains two isoforms, ROCK1 (also known as p160ROCK and ROKβ) and ROCK2 (also known as Rho-kinase and ROKα), the gene of which is placed on chromosomes 18 (18q11.1) and 2 (2p24), respectively. ROCKs have a principal function in the generation of actin-myosin contractility and regulation of actin cytoskeleton dynamics. They represent a chief role in regulating various cellular functions, such as apoptosis, growth, migration, and metabolism through modulation of cytoskeletal actin synthesis, and cellular contraction through phosphorylation of numerous downstream targets. Emerging evidence has indicated that ROCKs present a significant function in cardiac physiology. Of note, dysregulation of ROCKs involves in several cardiac pathological processes like cardiac hypertrophy, cardiac fibrosis, systemic blood pressure disorder, and pulmonary hypertension. Moreover, ROCKs, in addition to their role in regulating renal arteriolar contraction, glomerular blood flow, and filtration, can also play a role in controlling podocytes, tubular cells, and mesangial cell structure and function. Hyperactivity disorder and over-gene expression of Rho/ROCK have been indicated in different cancers. Furthermore, it seems that increasing the expression of mRNA or ROCK protein has an undesirable effect on patient survival and has a positive impact on the progression and worsening of disease prognosis. This review focuses on the physiological and pathological functions of ROCKs with a particular view on its possible value of ROCK inhibitors as a new therapy in cancers and non-cancer diseases.
Collapse
Affiliation(s)
- Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Farinaz Jigari
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| |
Collapse
|
25
|
Xie Y, Wang X, Wu X, Tian L, Zhou J, Li X, Wang B. Lysophosphatidic acid receptor 4 regulates osteogenic and adipogenic differentiation of progenitor cells via inactivation of RhoA/ROCK1/β-catenin signaling. Stem Cells 2019; 38:451-463. [PMID: 31778241 DOI: 10.1002/stem.3128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Lijie Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaoxia Li
- College of Basic Medical Sciences; Tianjin Medical University; Tianjin People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| |
Collapse
|
26
|
Diep DTV, Duong KHM, Choi H, Jun HS, Chun KH. KD025 (SLx-2119) suppresses adipogenesis at intermediate stage in human adipose-derived stem cells. Adipocyte 2019; 8:114-124. [PMID: 30860936 PMCID: PMC6768280 DOI: 10.1080/21623945.2019.1590929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rho-associated kinases (ROCKs) have been reported to antagonize adipocyte differentiation, and inhibition of ROCKs by small molecules promotes adipogenesis. Surprisingly, our recent study revealed that the ROCK2-specific inhibitor KD025 (SLx-2119), suppresses differentiation at the intermediate stage in 3T3-L1 preadipocytes. To address whether the anti-adipogenic activity of KD025 is a generalizable property, we examined the effect of KD025 in human adipose-derived stem cells (hADSCs). KD025 significantly suppressed the adipocyte differentiation of hADSCs with downregulation of the protein and mRNA expression of various adipogenic and lipogenic markers, including PPARγ, C/EBPα, SREBP-1c, Glut4 and FABP4. Notably, we observed that adipocyte differentiation is effectively suppressed by exposure to KD025 during the mid-to-late period of adipogenesis but not at the earlier stages, showing stage-specificity. Contrary to expectations, KD025 upregulated the insulin signaling, as confirmed by the increased phosphorylation levels of Akt and GSK-3α/β, and the differentiation-promoting activity of insulin signaling was observed to be overwhelmed by the inhibitory activity. In addition, we observed that other ROCK inhibitors (Y-27632, fasudil, and H-1152P) did not suppress but promoted adipocyte differentiation. These results indicate that KD025 suppresses adipocyte differentiation by modulation of key factors activated at the intermediate stage of differentiation, and not by inhibition of ROCK2.
Collapse
Affiliation(s)
- Duy Trong Vien Diep
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Khue Ha Minh Duong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hojung Choi
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
27
|
Wei L, Surma M, Yang Y, Tersey S, Shi J. ROCK2 inhibition enhances the thermogenic program in white and brown fat tissue in mice. FASEB J 2019; 34:474-493. [PMID: 31914704 DOI: 10.1096/fj.201901174rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in adipogenesis. The two ROCK isoforms, ROCK1 and ROCK2, are highly homologous. The contribution of ROCK2 to adipogenesis in vivo has not been elucidated. The present study aimed at the in vivo and in vitro roles of ROCK2 in the regulation of adipogenesis and the development of obesity. We performed molecular, histological, and metabolic analyses in ROCK2+/- and ROCK2+/KD mouse models, the latter harboring an allele with a kinase-dead (KD) mutation. Both ROCK2+/- and ROCK2+/KD mouse models showed a lean body mass phenotype during aging, associated with increased amounts of beige cells in subcutaneous white adipose tissue (sWAT) and increased thermogenic gene expression in all fat depots. ROCK2+/- mice on a high-fat diet showed increased energy expenditure accompanying by reduced obesity, and improved insulin sensitivity. In vitro differentiated ROCK2+/- stromal-vascular (SV) cells revealed increased beige adipogenesis associated with increased thermogenic gene expressions. Treatment with a selective ROCK2 inhibitor, KD025, to inhibit ROCK2 activity in differentiated SV cells reproduced the pro-beige phenotype of ROCK2+/- SV cells. In conclusion, ROCK2 activity-mediated actin cytoskeleton dynamics contribute to the inhibition of beige adipogenesis in WAT, and also promotes age-related and diet-induced fat mass gain and insulin resistance.
Collapse
Affiliation(s)
- Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michelle Surma
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Tersey
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
28
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
29
|
Reply to: "Role of HGF for reprogramming human liver progenitor cells: Non-essential but stimulative supplement". J Hepatol 2019; 71:439-440. [PMID: 31097203 DOI: 10.1016/j.jhep.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/04/2022]
|
30
|
Al Hasan M, Roy P, Dolan S, Martin PE, Patterson S, Bartholomew C. Adhesion G-protein coupled receptor 56 is required for 3T3-L1 adipogenesis. J Cell Physiol 2019; 235:1601-1614. [PMID: 31304602 DOI: 10.1002/jcp.29079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Obesity-associated conditions represent major global health and financial burdens and understanding processes regulating adipogenesis could lead to novel intervention strategies. This study shows that adhesion G-protein coupled receptor 56 (GPR56) gene transcripts are reduced in abdominal visceral white adipose tissue derived from obese Zucker rats versus lean controls. Immunostaining in 3T3-L1 preadipocytes reveals both mitotic cell restricted surface and low level general expression patterns of Gpr56. Gpr56 transcripts are differentially expressed in 3T3-L1 cells during adipogenesis. Transient knockdown (KD) of Gpr56 in 3T3-L1 cells dramatically inhibits differentiation through reducing the accumulation of both neutral cellular lipids (56%) and production of established adipogenesis Pparγ 2 (60-80%), C/ebpα (40-78%) mediator, and Ap2 (56-80%) marker proteins. Furthermore, genome editing of Gpr56 in 3T3-L1 cells created CW2.2.4 and RM4.2.5.5 clones (Gpr56 -/- cells) with compound heterozygous deletion frameshift mutations which abolish adipogenesis. Genome edited cells have sustained levels of the adipogenesis inhibitor β-catenin, reduced proliferation, reduced adhesion, altered profiles, and or abundance of extracellular matrix component gene transcripts for fibronectin, types I, III, and IV collagens and loss of actin stress fibers. β-catenin KD alone is insufficient to restore adipogenesis in Gpr56 -/- cells. Together these data show that Gpr56 is required for adipogenesis in 3T3-L1 cells. This report is the first demonstration that Gpr56 participates in regulation of the adipogenesis developmental program. Modulation of the levels of this protein and/or its biological activity may represent a novel target for development of therapeutic agents for the treatment of obesity.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Poornima Roy
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Sharron Dolan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Patricia E Martin
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Steven Patterson
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Chris Bartholomew
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| |
Collapse
|
31
|
Yang F, Chen GX. Production of extracellular lysophosphatidic acid in the regulation of adipocyte functions and liver fibrosis. World J Gastroenterol 2018; 24:4132-4151. [PMID: 30271079 PMCID: PMC6158478 DOI: 10.3748/wjg.v24.i36.4132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/24/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
32
|
Generation of Gellan Gum-Based Adipose-Like Microtissues. Bioengineering (Basel) 2018; 5:bioengineering5030052. [PMID: 29954069 PMCID: PMC6163196 DOI: 10.3390/bioengineering5030052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Adipose tissue is involved in many physiological processes. Therefore, the need for adipose tissue-like analogues either for soft tissue reconstruction or as in vitro testing platforms is undeniable. In this work, we explored the natural features of gellan gum (GG) to recreate injectable stable adipose-like microtissues. GG hydrogel particles with different percentages of polymer (0.5%, 0.75%, 1.25%) were developed and the effect of obtained mechanical properties over the ability of hASCs to differentiate towards the adipogenic lineage was evaluated based on the expression of the early (PPARγ) and late (FABP4) adipogenic markers, and on lipids formation and accumulation. Constructs were cultured in adipogenic induction medium up to 21 days or for six days in induction plus nine days in maintenance media. Overall, no significant differences were observed in terms of hASCs adipogenic differentiation within the range of Young’s moduli between 2.7 and 12.9 kPa. The long-term (up to six weeks) stability of the developed constructs supported its application in soft tissue reconstruction. Moreover, their ability to function as adipose-like microtissue models for drug screening was demonstrated by confirming its sensitivity to TNFα and ROCK inhibitor, respectively involved in the repression and induction of the adipogenic differentiation.
Collapse
|
33
|
Chen L, Hu H, Qiu W, Shi K, Kassem M. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells. Stem Cell Res 2018; 29:76-83. [DOI: 10.1016/j.scr.2018.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022] Open
|
34
|
Diep DTV, Hong K, Khun T, Zheng M, Ul-Haq A, Jun HS, Kim YB, Chun KH. Anti-adipogenic effects of KD025 (SLx-2119), a ROCK2-specific inhibitor, in 3T3-L1 cells. Sci Rep 2018; 8:2477. [PMID: 29410516 PMCID: PMC5802830 DOI: 10.1038/s41598-018-20821-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/24/2018] [Indexed: 01/13/2023] Open
Abstract
Adipose tissue is a specialized organ that synthesizes and stores fat. During adipogenesis, Rho and Rho-associated kinase (ROCK) 2 are inactivated, which enhances the expression of pro-adipogenic genes and induces the loss of actin stress fibers. Furthermore, pan ROCK inhibitors enhance adipogenesis in 3T3-L1 cells. Here, we show that KD025 (formerly known as SLx-2119), a ROCK2-specific inhibitor, suppresses adipogenesis in 3T3-L1 cells partially through a ROCK2-independent mechanism. KD025 downregulated the expression of key adipogenic transcription factors PPARγ and C/EBPα during adipogenesis in addition to lipogenic factors FABP4 and Glut4. Interestingly, adipogenesis was blocked by KD025 during days 1~3 of differentiation; after differentiation terminated, lipid accumulation was unaffected. Clonal expansion occurred normally in KD025-treated cells. These results suggest that KD025 could function during the intermediate stage after clonal expansion. Data from depletion of ROCKs showed that KD025 suppressed cell differentiation partially independent of ROCK’s activity. Furthermore, no further loss of actin stress fibers emerged in KD025-treated cells during and after differentiation compared to control cells. These results indicate that in contrast to the pro-adipogenic effect of pan-inhibitors, KD025 suppresses adipogenesis in 3T3-L1 cells by regulating key pro-adipogenic factors. This outcome further implies that KD025 could be a potential anti-adipogenic/obesity agent.
Collapse
Affiliation(s)
- Duy Trong Vien Diep
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Kyungki Hong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Triyeng Khun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Mei Zheng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Asad Ul-Haq
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, 21565, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States. .,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.
| |
Collapse
|
35
|
Amaya CN, Mitchell DC, Bryan BA. Rho kinase proteins display aberrant upregulation in vascular tumors and contribute to vascular tumor growth. BMC Cancer 2017; 17:485. [PMID: 28709411 PMCID: PMC5513090 DOI: 10.1186/s12885-017-3470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/02/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The serine/threonine protein kinases ROCK1 and 2 are key RhoA-mediated regulators of cell shape and cytoskeletal dynamics. These proteins perform multiple functions in vascular endothelial cell physiology and are attractive targets for cancer therapy based on their roles as oncogenes and metastatic promoters. Given their critical functions in both of these processes, we hypothesized that molecular targeting of ROCK proteins would be exceedingly effective against vascular tumors such as hemangiomas and angiosarcomas, which are neoplasms composed of aberrant endothelial cells. METHODS In this study, we compared ROCK1 and 2 protein expression in a large panel of benign and malignant vascular tumors to that of normal vasculature. We then utilized shRNA technology to knockdown the expression of ROCK1 and 2 in SVR tumor-forming vascular cells, and evaluated tumor size and proliferation rate in a xenograft model. Finally, we employed proteomics and metabolomics to assess how knockdown of the ROCK paralogs induced alterations in protein expression/phosphorylation and metabolite concentrations in the xenograft tumors. RESULTS Our findings revealed that ROCK1 was overexpressed in malignant vascular tumors such as hemangioendotheliomas and angiosarcomas, and ROCK2 was overexpressed in both benign and malignant vascular tumors including hemangiomas, hemangioendotheliomas, hemangiopericytomas, and angiosarcomas. shRNA-mediated knockdown of ROCK2, but not ROCK1, in xenograft vascular tumors significantly reduced tumor size and proliferative index compared to control tumors. Proteomics and metabolomics analysis of the xenograft tumors revealed both overlapping as well as unique roles for the ROCK paralogs in regulating signal transduction and metabolite concentrations. CONCLUSIONS Collectively, these data indicate that ROCK proteins are overexpressed in diverse vascular tumors and suggest that specific targeting of ROCK2 proteins may show efficacy against malignant vascular tumors.
Collapse
Affiliation(s)
- Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, Center of Excellence in Cancer Research, 5001 El Paso Drive, MSB1 Room 2111, El Paso, TX, 79905, USA
| | - Dianne C Mitchell
- Minerva Genetics, 5130 Gateway Blvd East, Suite 315, El Paso, TX, 79905, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, Center of Excellence in Cancer Research, 5001 El Paso Drive, MSB1 Room 2111, El Paso, TX, 79905, USA. .,Minerva Genetics, 5130 Gateway Blvd East, Suite 315, El Paso, TX, 79905, USA.
| |
Collapse
|
36
|
T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells. PLoS One 2017; 12:e0176841. [PMID: 28472098 PMCID: PMC5417608 DOI: 10.1371/journal.pone.0176841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.
Collapse
|
37
|
Sim CK, Kim SY, Brunmeir R, Zhang Q, Li H, Dharmasegaran D, Leong C, Lim YY, Han W, Xu F. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1. PLoS One 2017; 12:e0174761. [PMID: 28358928 PMCID: PMC5373604 DOI: 10.1371/journal.pone.0174761] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1), a Rho GTPase Activating Protein (RhoGAP) previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK) and filamentous actin (F-actin), suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.
Collapse
Affiliation(s)
- Choon Kiat Sim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sun-Yee Kim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Reinhard Brunmeir
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qiongyi Zhang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hongyu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Dharmini Dharmasegaran
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Carol Leong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Yan Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
38
|
Bosco DB, Roycik MD, Jin Y, Schwartz MA, Lively TJ, Zorio DAR, Sang QXA. A new synthetic matrix metalloproteinase inhibitor reduces human mesenchymal stem cell adipogenesis. PLoS One 2017; 12:e0172925. [PMID: 28234995 PMCID: PMC5325569 DOI: 10.1371/journal.pone.0172925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/10/2017] [Indexed: 01/12/2023] Open
Abstract
Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs), into adipocytes. Since matrix metalloproteinases (MMPs) play critical roles in the cell differentiation process, we conducted investigations to determine if a novel mercaptosulfonamide-based MMP inhibitor (MMPI), YHJ-7-52, could affect hMSC adipogenic differentiation and lipid accumulation. Enzyme inhibition assays, adipogenic differentiation experiments, and quantitative PCR methods were employed to characterize this inhibitor and determine its effect upon adipogenesis. YHJ-7-52 reduced lipid accumulation in differentiated cells by comparable amounts as a potent hydroxamate MMPI, GM6001. However, YHJ-7-82, a non-inhibitory structural analog of YHJ-7-52, in which the zinc-binding thiol group is replaced by a hydroxyl group, had no effect on adipogenesis. The two MMPIs (YHJ-7-52 and GM6001) were also as effective in reducing lipid accumulation in differentiated cells as T0070907, an antagonist of peroxisome-proliferator activated receptor gamma (PPAR-gamma), at a similar concentration. PPAR-gamma is a typical adipogenic marker and a key regulatory protein for the transition of preadiopocyte to adipocyte. Moreover, MMP inhibition was able to suppress lipid accumulation in cells co-treated with Troglitazone, a PPAR-gamma agonist. Our results indicate that MMP inhibitors may be used as molecular tools for adipogenesis and obesity treatment research.
Collapse
Affiliation(s)
- Dale B. Bosco
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Mark D. Roycik
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Yonghao Jin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Martin A. Schwartz
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Ty J. Lively
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Diego A. R. Zorio
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Qing-Xiang Amy Sang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
40
|
Soliman H, Varela JN, Nyamandi V, Garcia-Patino M, Lin G, Bankar GR, Jia Z, MacLeod KM. Attenuation of obesity-induced insulin resistance in mice with heterozygous deletion of ROCK2. Int J Obes (Lond) 2016; 40:1435-43. [PMID: 27163743 DOI: 10.1038/ijo.2016.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/26/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity-associated insulin resistance is a major risk factor for the development of type 2 diabetes, cardiovascular disease and non-alcoholic liver disease. Over-activation of the RhoA-Rho kinase (ROCK) pathway has been implicated in the development of obesity-induced insulin resistance, but the relative contribution of ROCK2 has not been elucidated. This was investigated in the present study. METHODS Male ROCK2+/- mice and their wild-type (WT) littermate controls were fed normal chow or a high fat diet (HFD) for 18 weeks. Glucose and insulin tolerance tests were conducted 8 and 16 weeks after the start of feeding. At termination, isoform-specific ROCK activity and insulin signaling were evaluated in epididymal adipose tissue. Adipocyte size was assessed morphometrically, while adipose tissue production of PPARγ was determined by western blotting, and inflammatory cytokines were evaluated by RT-PCR and immunofluorescence. RESULTS The decrease in systemic insulin sensitivity and glucose tolerance produced by high fat feeding was attenuated in ROCK2+/- mice. There was no reduction in food intake, body weight or epididymal fat pad weight in HFD-ROCK2+/- mice. However, the increase in adipocyte size detected in HFD-WT mice was attenuated in HFD-ROCK2+/- mice. The increase in adipose tissue ROCK2 activity produced by high fat feeding in WT mice was also prevented in ROCK2+/- mice, and this was accompanied by improved insulin-induced phosphorylation of Akt. The expression of both isoforms of PPARγ was increased in adipose tissue from HFD-ROCK2+/- mice, while adipocyte hypertrophy and production of inflammatory cytokines were reduced compared with HFD-WT mice. CONCLUSIONS These data suggest that activation of ROCK2 in adipose tissue contributes to obesity-induced insulin resistance. This may result in part from suppression of PPARγ expression, leading to adipocyte hypertrophy and an increase in inflammatory cytokine production. ROCK2 may be a suitable target to improve insulin sensitivity in obesity.
Collapse
Affiliation(s)
- H Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - J N Varela
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - V Nyamandi
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Garcia-Patino
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G R Bankar
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Z Jia
- Neurosciences and Mental Health, the Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - K M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J Med Chem 2015; 59:2269-300. [PMID: 26486225 DOI: 10.1021/acs.jmedchem.5b00683] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rho kinases (ROCKs) belong to the serine-threonine family, the inhibition of which affects the function of many downstream substrates. As such, ROCK inhibitors have potential therapeutic applicability in a wide variety of pathological conditions including asthma, cancer, erectile dysfunction, glaucoma, insulin resistance, kidney failure, neuronal degeneration, and osteoporosis. To date, two ROCK inhibitors have been approved for clinical use in Japan (fasudil and ripasudil) and one in China (fasudil). In 1995 fasudil was approved for the treatment of cerebral vasospasm, and more recently, ripasudil was approved for the treatment of glaucoma in 2014. In this Perspective, we present a comprehensive review of the physiological and biological functions for ROCK, the properties and development of over 170 ROCK inhibitors as well as their therapeutic potential, the current status, and future considerations.
Collapse
Affiliation(s)
| | | | - Olivier Defert
- Amakem Therapeutics , Agoralaan A bis, 3590 Diepenbeek, Belgium
| | - Rongshi Li
- Center for Drug Discovery and Department of Pharmaceutical Sciences, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
42
|
Kuo KK, Wu BN, Liu CP, Yang TY, Kao LP, Wu JR, Lai WT, Chen IJ. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss. J Lipid Res 2015; 56:2070-84. [PMID: 26351364 PMCID: PMC4617394 DOI: 10.1194/jlr.m057547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1–14 or 8–14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10−7∼10−5 M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3′,5′-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit 14C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Division of Hepatobiliopancreatic Surgery, Kaohsiung Medical University Hospital
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Chung-Pin Liu
- Department of Cardiology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yang Yang
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Li-Pin Kao
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Jiunn-Ren Wu
- Department of Pedatrics, Kaohsiung Medical University Hospital
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine
| |
Collapse
|
43
|
Koga K, Yokoi H, Mori K, Kasahara M, Kuwabara T, Imamaki H, Ishii A, Mori KP, Kato Y, Ohno S, Toda N, Saleem MA, Sugawara A, Nakao K, Yanagita M, Mukoyama M. MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy. Diabetologia 2015; 58:2169-80. [PMID: 26063197 DOI: 10.1007/s00125-015-3642-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The accumulation of extracellular matrix (ECM) is a characteristic of diabetic nephropathy, and is partially caused by profibrotic proteins TGF-β and connective tissue growth factor (CTGF). We aimed to identify microRNAs (miRNAs) targeting CTGF on podocytes in diabetic nephropathy. METHODS We investigated miRNAs targeting CTGF on podocytes with miRNA array analysis and identified a candidate miRNA, miR-26a. Using overexpression and silencing of miR-26a in cultured podocytes, we examined changes of ECM and its host genes. We further investigated glomerular miR-26a expression in humans and in mouse models of diabetic nephropathy. RESULTS miR-26a, which was downregulated by TGF-β1, was expressed in glomerular cells including podocytes and in tubules by in situ hybridisation. Glomerular miR-26a expression was downregulated by 70% in streptozotocin-induced diabetic mice. Transfection of miR-26a mimics in cultured human podocytes decreased the CTGF protein level by 50%, and directly inhibited CTGF expression in podocytes, as demonstrated by a reporter assay with the 3'-untranslated region of the CTGF gene. This effect was abolished by a mutant plasmid. miR-26a mimics also inhibited TGF-β1-induced collagen expression, SMAD-binding activity and expression of its host genes CTDSP2 and CTDSPL. Knockdown of CTDSP2 and CTDSPL increased collagen expression in TGF-β-stimulated podocytes, suggesting that host genes also regulate TGF-β/SMAD signalling. Finally, we observed a positive correlation between microdissected glomerular miR-26a expression levels and estimated GFR in patients with diabetic nephropathy. CONCLUSIONS/INTERPRETATION The downregulation of miR-26a is involved in the progression of diabetic nephropathy both in humans and in mice through enhanced TGF-β/CTGF signalling.
Collapse
Affiliation(s)
- Kenichi Koga
- Department of Nephrology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Myneni VD, Melino G, Kaartinen MT. Transglutaminase 2--a novel inhibitor of adipogenesis. Cell Death Dis 2015; 6:e1868. [PMID: 26313919 PMCID: PMC4558519 DOI: 10.1038/cddis.2015.238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/12/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
Abstract
Differentiation of preadipocytes to lipid storing adipocytes involves extracellular signaling pathways, matrix remodeling and cytoskeletal changes. A number of factors have been implicated in maintaining the preadipocyte state and preventing their differentiation to adipocytes. We have previously reported that a multifunctional and protein crosslinking enzyme, transglutaminase 2 (TG2) is present in white adipose tissue. In this study, we have investigated TG2 function during adipocyte differentiation. We show that TG2 deficient mouse embryonic fibroblasts (Tgm2-/- MEFs) display increased and accelerated lipid accumulation due to increased expression of major adipogenic transcription factors, PPARγ and C/EBPα. Examination of Pref-1/Dlk1, an early negative regulator of adipogenesis, showed that the Pref-1/Dlk1 protein was completely absent in Tgm2-/- MEFs during early differentiation. Similarly, Tgm2-/- MEFs displayed defective canonical Wnt/β-catenin signaling with reduced β-catenin nuclear translocation. TG2 deficiency also resulted in reduced ROCK kinase activity, actin stress fiber formation and increased Akt phosphorylation in MEFs, but did not alter fibronectin matrix levels or solubility. TG2 protein levels were unaltered during adipogenic differentiation, and was found predominantly in the extracellular compartment of MEFs and mouse WAT. Addition of exogenous TG2 to Tgm2+/+ and Tgm2-/- MEFs significantly inhibited lipid accumulation, reduced expression of PPARγ and C/EBPα, promoted the nuclear accumulation of β-catenin, and recovered Pref-1/Dlk1 protein levels. Our study identifies TG2 as a novel negative regulator of adipogenesis.
Collapse
Affiliation(s)
- V D Myneni
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - G Melino
- Department Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - M T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
Ellawindy A, Satoh K, Sunamura S, Kikuchi N, Suzuki K, Minami T, Ikeda S, Tanaka S, Shimizu T, Enkhjargal B, Miyata S, Taguchi Y, Handoh T, Kobayashi K, Kobayashi K, Nakayama K, Miura M, Shimokawa H. Rho-Kinase Inhibition During Early Cardiac Development Causes Arrhythmogenic Right Ventricular Cardiomyopathy in Mice. Arterioscler Thromb Vasc Biol 2015; 35:2172-84. [PMID: 26315406 DOI: 10.1161/atvbaha.115.305872] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/17/2015] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty changes of the right ventricle, ventricular arrhythmias, and sudden death. Though ARVC is currently regarded as a disease of the desmosome, desmosomal gene mutations have been identified only in half of ARVC patients, suggesting the involvement of other associated mechanisms. Rho-kinase signaling is involved in the regulation of intracellular transport and organizes cytoskeletal filaments, which supports desmosomal protein complex at the myocardial cell-cell junctions. Here, we explored whether inhibition of Rho-kinase signaling is involved in the pathogenesis of ARVC. APPROACH AND RESULTS Using 2 novel mouse models with SM22α- or αMHC-restricted overexpression of dominant-negative Rho-kinase, we show that mice with Rho-kinase inhibition in the developing heart (SM22α-restricted) spontaneously develop cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, resulting in premature sudden death, phenotypes fulfilling the criteria of ARVC in humans. Rho-kinase inhibition in the developing heart results in the development of ARVC phenotypes in dominant-negative Rho-kinase mice through 3 mechanisms: (1) reduction of cardiac cell proliferation and ventricular wall thickness, (2) stimulation of the expression of the proadipogenic noncanonical Wnt ligand, Wnt5b, and the major adipogenic transcription factor, PPARγ (peroxisome proliferator activated receptor-γ), and inhibition of Wnt/β-catenin signaling, and (3) development of desmosomal abnormalities. These mechanisms lead to the development of cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, ultimately resulting in sudden premature death in this ARVC mouse model. CONCLUSIONS This study demonstrates a novel crucial role of Rho-kinase inhibition during cardiac development in the pathogenesis of ARVC in mice.
Collapse
Affiliation(s)
- Alia Ellawindy
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Kota Suzuki
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Tatsuro Minami
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Shohei Ikeda
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Shinichi Tanaka
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Toru Shimizu
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Budbazar Enkhjargal
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Yuhto Taguchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Tetsuya Handoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Kenta Kobayashi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Kazuto Kobayashi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Keiko Nakayama
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Masahito Miura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (A.E., K.S., S.S., N.K., K.S., T.M., S.I., S.T., T.S., B.E., S.M., H.S.); and Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan (T.M., S.T.); Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan (Y.T., T.H., M.M.); Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (K.K., K.K.); and United Centers for Advanced Research and Translational Medicine, Core Center of Cancer Research, Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan (K.N.).
| |
Collapse
|
46
|
Soliman H, Nyamandi V, Garcia-Patino M, Varela JN, Bankar G, Lin G, Jia Z, MacLeod KM. Partial deletion of ROCK2 protects mice from high-fat diet-induced cardiac insulin resistance and contractile dysfunction. Am J Physiol Heart Circ Physiol 2015; 309:H70-81. [PMID: 25910808 DOI: 10.1152/ajpheart.00664.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Abstract
Obesity is associated with cardiac insulin resistance and contractile dysfunction, which contribute to the development of heart failure. The RhoA-Rho kinase (ROCK) pathway has been reported to modulate insulin resistance, but whether it is implicated in obesity-induced cardiac dysfunction is not known. To test this, wild-type (WT) and ROCK2(+/-) mice were fed normal chow or a high-fat diet (HFD) for 17 wk. Whole body insulin resistance, determined by an insulin tolerance test, was observed in HFD-WT, but not HFD-ROCK2(+/-), mice. The echocardiographically determined myocardial performance index, a measure of global systolic and diastolic function, was significantly increased in HFD-WT mice, indicating a deterioration of cardiac function. However, no change in myocardial performance index was found in hearts from HFD-ROCK2(+/-) mice. Speckle-tracking-based strain echocardiography also revealed regional impairment in left ventricular wall motion in hearts from HFD-WT, but not HFD-ROCK2(+/-), mice. Activity of ROCK1 and ROCK2 was significantly increased in hearts from HFD-WT mice, and GLUT4 expression was significantly reduced. Insulin-induced phosphorylation of insulin receptor substrate (IRS) Tyr(612), Akt, and AS160 was also impaired in these hearts, while Ser(307) phosphorylation of IRS was increased. In contrast, the increase in ROCK2, but not ROCK1, activity was prevented in hearts from HFD-ROCK2(+/-) mice, and cardiac levels of TNFα were reduced. This was associated with normalization of IRS phosphorylation, downstream insulin signaling, and GLUT4 expression. These data suggest that increased activation of ROCK2 contributes to obesity-induced cardiac dysfunction and insulin resistance and that inhibition of ROCK2 may constitute a novel approach to treat this condition.
Collapse
Affiliation(s)
- Hesham Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt; and
| | - Vongai Nyamandi
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marysol Garcia-Patino
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Nogueira Varela
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Girish Bankar
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guorong Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhengping Jia
- Neurosciences and Mental Health, Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
47
|
Effects of 17β-estradiol and progesterone on the production of adipokines in differentiating 3T3-L1 adipocytes: Role of Rho-kinase. Cytokine 2015; 72:130-4. [DOI: 10.1016/j.cyto.2014.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/08/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
|
48
|
Factor XIII-A transglutaminase acts as a switch between preadipocyte proliferation and differentiation. Blood 2014; 124:1344-53. [PMID: 24934257 DOI: 10.1182/blood-2013-12-543223] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Factor XIII-A (FXIII-A) transglutaminase (TG) was recently identified as a potential causative obesity gene in human white adipose tissue (WAT). Here, we have examined the role of TG activity and the role of protein crosslinking in adipogenesis. Mouse WAT and preadipocytes showed abundant TG activity arising from FXIII-A. FXIII-A was localized to the cell surface and acted as a negative regulator of adipogenesis by promoting assembly of fibronectin (FN) from plasma into preadipocyte extracellular matrix. This modulated cytoskeletal dynamics and maintained the preadipocyte state. FXIII-A-assembled plasma FN (pFN) matrix promoted preadipocyte proliferation and potentiated the proproliferative effects of insulin (INS) while suppressing the prodifferentiating INS signaling. FXIII-A-deficient mouse embryonic fibroblasts showed increased lipid accumulation and decreased proliferation as well as decreased pFN assembly into extracellular matrix. Thus, FXIII-A serves as a preadipocyte-bound proliferation/differentiation switch that mediates effects of hepatocyte-produced circulating pFN.
Collapse
|
49
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
50
|
Xu B, Ju Y, Song G. Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells. J Biosci Bioeng 2014; 117:624-31. [DOI: 10.1016/j.jbiosc.2013.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022]
|