1
|
Rusciano D. Health Benefits of Epigallocatechin Gallate and Forskolin with a Special Emphasis on Glaucoma and Other Retinal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1957. [PMID: 39768839 PMCID: PMC11678229 DOI: 10.3390/medicina60121957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
This review highlights the therapeutic potential of epigallocatechin gallate (EGCG) and forskolin in managing retinal diseases, with a focus on glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. EGCG, a potent polyphenol from green tea, exhibits significant antioxidant, anti-inflammatory, and neuroprotective effects, making it a promising candidate for reducing oxidative stress and inflammation in ocular tissues. Forskolin, a diterpene from Coleus forskohlii, increases cyclic AMP (cAMP) levels, which helps lower intraocular pressure (IOP) and provides neuroprotection. Both compounds target critical pathways involved in retinal disease progression, including oxidative stress, mitochondrial dysfunction, and inflammation, offering complementary therapeutic benefits. This review consolidates preclinical and clinical studies, highlighting the potential of EGCG and forskolin as adjunctive or alternative treatments for retinal diseases. Future research should explore the synergistic effects of these compounds, particularly in combination therapies aimed at addressing multiple pathogenic mechanisms in retinal health.
Collapse
|
2
|
Çubuk C, Lau R, Cutillas P, Rajeeve V, John CR, Surace AEA, Hands R, Fossati-Jimack L, Lewis MJ, Pitzalis C. Phosphoproteomic profiling of early rheumatoid arthritis synovium reveals active signalling pathways and differentiates inflammatory pathotypes. Arthritis Res Ther 2024; 26:120. [PMID: 38867295 PMCID: PMC11167927 DOI: 10.1186/s13075-024-03351-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Kinases are intracellular signalling mediators and key to sustaining the inflammatory process in rheumatoid arthritis (RA). Oral inhibitors of Janus Kinase family (JAKs) are widely used in RA, while inhibitors of other kinase families e.g. phosphoinositide 3-kinase (PI3K) are under development. Most current biomarker platforms quantify mRNA/protein levels, but give no direct information on whether proteins are active/inactive. Phosphoproteome analysis has the potential to measure specific enzyme activation status at tissue level. METHODS We validated the feasibility of phosphoproteome and total proteome analysis on 8 pre-treatment synovial biopsies from treatment-naive RA patients using label-free mass spectrometry, to identify active cell signalling pathways in synovial tissue which might explain failure to respond to RA therapeutics. RESULTS Differential expression analysis and functional enrichment revealed clear separation of phosphoproteome and proteome profiles between lymphoid and myeloid RA pathotypes. Abundance of specific phosphosites was associated with the degree of inflammatory state. The lymphoid pathotype was enriched with lymphoproliferative signalling phosphosites, including Mammalian Target Of Rapamycin (MTOR) signalling, whereas the myeloid pathotype was associated with Mitogen-Activated Protein Kinase (MAPK) and CDK mediated signalling. This analysis also highlighted novel kinases not previously linked to RA, such as Protein Kinase, DNA-Activated, Catalytic Subunit (PRKDC) in the myeloid pathotype. Several phosphosites correlated with clinical features, such as Disease-Activity-Score (DAS)-28, suggesting that phosphosite analysis has potential for identifying novel biomarkers at tissue-level of disease severity and prognosis. CONCLUSIONS Specific phosphoproteome/proteome signatures delineate RA pathotypes and may have clinical utility for stratifying patients for personalised medicine in RA.
Collapse
Affiliation(s)
- Cankut Çubuk
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Rachel Lau
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Pedro Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher R John
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Anna E A Surace
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK.
- IRCCS Istituto Clinico Humanitas, Via Manzoni 56, Rozzao, Milan, Italy.
| |
Collapse
|
3
|
Wu X, Pan X, Zhou Y, Pan J, Kang J, Yu JJJ, Cao Y, Quan C, Gong L, Li Y. Identification of key genes for atherosclerosis in different arterial beds. Sci Rep 2024; 14:6543. [PMID: 38503760 PMCID: PMC10951242 DOI: 10.1038/s41598-024-55575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Atherosclerosis (AS) is the pathologic basis of various cardiovascular and cerebrovascular events, with a high degree of heterogeneity among different arterial beds. However, mechanistic differences between arterial beds remain unexplored. The aim of this study was to explore key genes and potential mechanistic differences between AS in different arterial beds through bioinformatics analysis. Carotid atherosclerosis (CAS), femoral atherosclerosis (FAS), infrapopliteal atherosclerosis (IPAS), abdominal aortic atherosclerosis (AAS), and AS-specific differentially expressed genes (DEGs) were screened from the GSE100927 and GSE57691 datasets. Immune infiltration analysis was used to identify AS immune cell infiltration differences. Unsupervised cluster analysis of AS samples from different regions based on macrophage polarization gene expression profiles. Weighted gene co-expression network analysis (WGCNA) was performed to identify the most relevant module genes with AS. Hub genes were then screened by LASSO regression, SVM-REF, and single-gene differential analysis, and a nomogram was constructed to predict the risk of AS development. The results showed that differential expression analysis identified 5, 4, 121, and 62 CAS, FAS, IPAS, AAS-specific DEGs, and 42 AS-common DEGs, respectively. Immune infiltration analysis demonstrated that the degree of macrophage and mast cell enrichment differed significantly in different regions of AS. The CAS, FAS, IPAS, and AAS could be distinguished into two different biologically functional and stable molecular clusters based on macrophage polarization gene expression profiles, especially for cardiomyopathy and glycolipid metabolic processes. Hub genes for 6 AS (ADAP2, CSF3R, FABP5, ITGAX, MYOC, and SPP1), 4 IPAS (CLECL1, DIO2, F2RL2, and GUCY1A2), and 3 AAS (RPL21, RPL26, and RPL10A) were obtained based on module gene, gender stratification, machine learning algorithms, and single-gene difference analysis, respectively, and these genes were effective in differentiating between different regions of AS. This study demonstrates that there are similarities and heterogeneities in the pathogenesis of AS between different arterial beds.
Collapse
Affiliation(s)
- Xize Wu
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - J J Jiajia Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Yingyue Cao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Chao Quan
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
4
|
Abstract
Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the β1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Li H, Han X, Du W, Meng Y, Li Y, Sun T, Liang Q, Li C, Suo C, Gao X, Qiu Y, Tian W, An M, Zhang H, Fu Y, Li X, Lan T, Yang S, Zhang Z, Geng W, Ding C, Shang H. Comparative miRNA transcriptomics of macaques and mice reveals MYOC is an inhibitor for Cryptococcus neoformans invasion into the brain. Emerg Microbes Infect 2022; 11:1572-1585. [PMID: 35621025 PMCID: PMC9176638 DOI: 10.1080/22221751.2022.2081619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cryptococcal meningoencephalitis (CM) is emerging as an infection in HIV/AIDS patients shifted from primarily ARTnaive to ART-experienced individuals, as well as patients with COVID-19 and immunocompetent hosts. This fungal infection is mainly caused by the opportunistic human pathogen Cryptococcus neoformans. Brain or central nervous system (CNS) dissemination is the deadliest process for this disease; however, mechanisms underlying this process have yet to be elucidated. Moreover, illustrations of clinically relevant responses in cryptococcosis are currently limited due to the low availability of clinical samples. In this study, to explore the clinically relevant responses during C. neoformans infection, macaque and mouse infection models were employed and miRNA-mRNA transcriptomes were performed and combined, which revealed cytoskeleton, a major feature of HIV/AIDS patients, was a centric pathway regulated in both infection models. Notably, assays of clinical immune cells confirmed an enhanced macrophage “Trojan Horse” in patients with HIV/AIDS, which could be shut down by cytoskeleton inhibitors. Furthermore, myocilin, encoded by MYOC, was found to be a novel enhancer for the macrophage “Trojan Horse,” and an enhanced fungal burden was achieved in the brains of MYOC-transgenic mice. Taken together, the findings from this study reveal fundamental roles of the cytoskeleton and MYOC in fungal CNS dissemination, which not only helps to understand the high prevalence of CM in HIV/AIDS but also facilitates the development of novel therapeutics for meningoencephalitis caused by C. neoformans and other pathogenic microorganisms.
Collapse
Affiliation(s)
- Hailong Li
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Du
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, People's Republic of China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People's Republic of China
| | - Qiaojing Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Chao Li
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yu Qiu
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wen Tian
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaolin Li
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tian Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Sheng Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wenqing Geng
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
7
|
Animal Model Contributions to Primary Congenital Glaucoma. J Ophthalmol 2022; 2022:6955461. [PMID: 35663518 PMCID: PMC9162845 DOI: 10.1155/2022/6955461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Primary congenital glaucoma (PCG) is an ocular disease characterized by congenital anterior segmental maldevelopment with progressive optic nerve degeneration. Certain genes, such as cytochrome P450 family 1 subfamily B member 1 and latent TGF-β-binding protein 2, are involved in the pathogenesis of PCG, but the exact pathogenic mechanism has not yet been fully elucidated. There is an urgent need to determine the etiology and pathophysiology of PCG and develop new therapeutic methods to stop disease progression. Animal models can simulate PCG and are essential to study the pathogenesis and treatment of PCG. Various animal species have been used in the study of PCG, including rabbits, rats, mice, cats, zebrafish, and quails. These models are formed spontaneously or by combining with genetic engineering technology. The focus of the present study is to review the characteristics and potential applications of animal models in PCG and provide new approaches to understand the mechanism and develop new treatment strategies for patients with PCG.
Collapse
|
8
|
Ikegami K, Masubuchi S. Suppression of trabecular meshwork phagocytosis by norepinephrine is associated with nocturnal increase in intraocular pressure in mice. Commun Biol 2022; 5:339. [PMID: 35396348 PMCID: PMC8993819 DOI: 10.1038/s42003-022-03295-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Intraocular pressure (IOP) is an important factor in glaucoma development, which involves aqueous humor (AH) dynamics, with inflow from the ciliary body and outflow through the trabecular meshwork (TM). IOP has a circadian rhythm entrained by sympathetic noradrenaline (NE) or adrenal glucocorticoids (GCs). Herein, we investigated the involvement of GC/NE in AH outflow. Pharmacological prevention of inflow/outflow in mice indicated a diurnal outflow increase, which was related to TM phagocytosis. NE showed a non-self-sustained inhibition in phagocytosis of immortalized human TM cells, but not GC. The pharmacological and reverse genetic approaches identified β1-adrenergic receptor (AR)-mediated exchange proteins directly activated by cyclic adenosine monophosphate (EPAC)-SHIP1 signal activation by ablation of phosphatidylinositol triphosphate, regulating phagocytic cup formation. Furthermore, we revealed the phagocytosis involvement in the β1-AR-EPAC-SHIP1-mediated nocturnal IOP rise in mice. These suggest that TM phagocytosis suppression by NE can regulate IOP rhythm through AH outflow. This discovery may aid glaucoma management.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Department of Physiology, School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan.
| | - Satoru Masubuchi
- Department of Physiology, School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
9
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Chen W, Yang X, Fang J, Zhang Y, Zhu W, Yang X. Rho-Associated Protein Kinase Inhibitor Treatment Promotes Proliferation and Phagocytosis in Trabecular Meshwork Cells. Front Pharmacol 2020; 11:302. [PMID: 32256367 PMCID: PMC7090161 DOI: 10.3389/fphar.2020.00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/28/2020] [Indexed: 02/02/2023] Open
Abstract
Purpose Continuous reductions in trabecular meshwork (TM) cellularity inhibit aqueous humor (AH) outflow, which is the main cause of primary open-angle glaucoma. Rho-associated protein kinase inhibitor (ROCKi) targets the TM to reduce intraocular pressure (IOP) and increase AH outflow facility. However, the underlying mechanisms are not entirely clear. Here, we aimed to investigate the effect of a ROCKi (Y-27632) on TM cell proliferation and phagocytosis. Methods Immortalized human TM (iHTM) cells, glaucomatous TM (GTM3) cells, and primary human TM (pTM) cells were cultured and identified. The effects of various concentrations of Y-27632 on F-actin cytoskeleton were assessed using immunofluorescence. Cell proliferation effects were evaluated using a cell counting kit-8 (CCK8), cell counting, and Ki67 immunostaining. Cell phagocytosis was evaluated using immunofluorescence and flow cytometry in immortalized TM cells. C57BL/6J and Tg-MYOCY437H mice were used to investigate the proliferative effects of Y-27632 on TM cells in vivo. The effect of Y-27632 on IOP was monitored for 2 weeks, and the outflow facility was detected 2 weeks after IOP measurement. TM cells in mice were counted using immunohistochemistry. Results Y-27632 (100 μM) significantly promoted the proliferation of both immortal TM cells and pTM cells. In GTM3 cells, phagocytosis was significantly greater in the Y-27632 group than in the control group, nearly reaching the level of phagocytosis in iHTM, as determined using immunofluorescence and flow cytometry. In Tg-MYOCY437H mice, treatment with Y-27632 significantly decreased IOP and increased outflow facility, which greatly influenced the long-term IOP-lowering effect. The number of TM cells in Tg-MYOCY437H mice was significantly improved after Y-27632 administration. Conclusion Y-27632 promoted cell proliferation and phagocytosis of TM cells, and its proliferative effect was demonstrated in a transgenic mouse model. These results revealed a new IOP-lowering mechanism of Y-27632 through effects on TM cells, suggesting the potential for a correlation between TM cellularity and long-term recovery of IOP.
Collapse
Affiliation(s)
- Wenshi Chen
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwang Fang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yuqing Zhang
- Department of Ophthalmology, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xian Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
13
|
Efficacy of Topically Administered Rho-Kinase Inhibitor AR-12286 in Patients With Exfoliation Syndrome and Ocular Hypertension or Glaucoma. J Glaucoma 2017; 25:e807-14. [PMID: 27552517 DOI: 10.1097/ijg.0000000000000508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To evaluate the efficacy of rho-associated protein kinase inhibitor, AR-12286 topical solution, for its effect in eyes with exfoliation syndrome (XFS) and ocular hypertension (OHT) or exfoliative glaucoma (XFG) and examine any lasting effect on intraocular pressure (IOP) after discontinuation. METHODS Prospective, double-masked, randomized, interventional study. Patients with XFS and OHT or XFG were enrolled. The study eyes were treated once daily with AR-12286, randomized to 0.5% or 0.7% for 24 weeks. Visits included baseline, 1, 4, and 12 weeks after drug initiation; at 12 weeks AR-12286 was discontinued for 1 week and was resumed at week 13. At the week 24 visit, AR-12286 was discontinued, and a final reexamination was performed at week 25. RESULTS Ten patients were treated. Mean baseline IOP was 25±2.4 mm Hg, mean IOP was reduced to 19.1±2.3 mm Hg at 1 week (P<0.001), 17.5±3.6 mm Hg at 4 weeks (P<0.001), and 17.4±3.6 mm Hg at 12 weeks (P<0.001), yielding an average IOP reduction of 23.6%, 30%, and 30.4%, respectively. At the week 13 visit, 1 week after the drug was discontinued, mean IOP increased to 21.6±5.4 mm Hg (P=0.06 compared with baseline visit). At week 24, the mean IOP was 21.8±7.8 mm Hg (P=0.2, and AR-12286 was discontinued). At week 25, the mean IOP was 21.3±5.3 mm Hg (P=0.06). CONCLUSIONS AR-12286 was well tolerated and provided statistically significant reduction in IOP in patients with XFS and OHT or XFG. This drug may represent an additional therapeutic paradigm for the treatment of XFG.
Collapse
|
14
|
Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci 2017; 2017:4320408. [PMID: 30723498 PMCID: PMC5664381 DOI: 10.1155/2017/4320408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major global cause of blindness, but the molecular mechanisms responsible for the neurodegenerative damage are not clear. Undoubtedly, the high intraocular pressure (IOP) and the secondary ischemic and mechanical damage of the optic nerve have a crucial role in retinal ganglion cell (RGC) death. Several studies specifically analyzed the events that lead to nerve fiber layer thinning, showing the importance of both intra- and extracellular factors. In parallel, many neuroprotective substances have been tested for their efficacy and safety in hindering the negative effects that lead to RGC death. New formulations of these compounds, also suitable for chronic oral administration, are likely to be used in clinical practice in the future along with conventional therapies, in order to control the progression of the visual impairment due to primary open-angle glaucoma (POAG). This review illustrates some of these old and new promising agents for the adjuvant treatment of POAG, with particular emphasis on forskolin and melatonin.
Collapse
|
15
|
Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp Eye Res 2016; 158:23-32. [PMID: 27593914 DOI: 10.1016/j.exer.2016.08.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is considered to be a predominant risk factor for primary open angle glaucoma, the most prevalent form of glaucoma. Although the etiological mechanisms responsible for increased IOP are not completely clear, impairment in aqueous humor (AH) drainage through the conventional or trabecular pathway is recognized to be a primary cause in glaucoma patients. Importantly, lowering of IOP has been demonstrated to reduce progression of vision loss and is a mainstay of treatment for all types of glaucoma. Currently however, there are limited therapeutic options available for lowering IOP especially as it relates to enhancement of AH outflow through the trabecular pathway. Towards addressing this challenge, bench and bedside research conducted over the course of the last decade and a half has identified the significance of inhibiting Rho kinase for lowering IOP. Rho kinase is a downstream effector of Rho GTPase signaling that regulates actomyosin dynamics in numerous cell types. Studies from several laboratories have demonstrated that inhibition of Rho kinase lowers IOP via relaxation of the trabecular meshwork which enhances AH outflow. By contrast, activation of Rho GTPase/Rho kinase signaling in the trabecular outflow pathway increases IOP by altering the contractile, cell adhesive and permeability barrier characteristics of the trabecular meshwork and Schlemm's canal tissues, and by influencing extracellular matrix production and fibrotic activity. This article, written in honor of the late David Epstein, MD, summarizes findings from both basic and clinical studies that have been instrumental for recognition of the importance of the Rho/Rho kinase signaling pathway in regulation of AH outflow, and in the development of Rho kinase inhibitors as promising IOP- lowering agents for glaucoma treatment.
Collapse
|
16
|
Saccà SC, Pulliero A, Izzotti A. The Dysfunction of the Trabecular Meshwork During Glaucoma Course. J Cell Physiol 2014; 230:510-25. [DOI: 10.1002/jcp.24826] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/05/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies; St Martino Hospital; Ophthalmology Unit; Genoa Italy
| | - Alessandra Pulliero
- Department of Health Sciences; Section of Hygiene and Preventive Medicine; University of Genoa; Genoa Italy
| | - Alberto Izzotti
- Department of Health Sciences; Section of Hygiene and Preventive Medicine; University of Genoa; Genoa Italy
- Mutagenesis Unit; IST National Institute for Cancer Research; IRCCS Hospital-University San Martino Company; Genoa Italy
| |
Collapse
|
17
|
Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 2014; 71:2197-218. [PMID: 24142347 PMCID: PMC11113507 DOI: 10.1007/s00018-013-1493-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
Primary open-angle glaucoma is a multifactorial disease that affects the retinal ganglion cells, but currently its therapy is to lower the eye pressure. This indicates a definite involvement of the trabecular meshwork, key region in the pathogenesis of glaucoma. This is the first target of glaucoma, and its functional complexity is a real challenge to search. Its functions are those to allow the outflow of aqueous humor and not the reflux. This article describes the morphological and functional changes that happen in anterior chamber. The "primus movens" is oxidative stress that affects trabecular meshwork, particularly its endothelial cells. In these develops a real mitochondriopaty. This leads to functional impotence, the trabecular meshwork altering both motility and cytoarchitecture. Its cells die by apoptosis, losing barrier functions and altering the aqueous humor outflow. All the morphological alterations occur that can be observed under a microscope. Intraocular pressure rises and the malfunctioning trabecular meshwork endotelial cells express proteins that completely alter the aqueous humor. This is a liquid whose functional proteomics complies with the conditions of the trabecular meshwork. Indeed, in glaucoma, it is possible detect the presence of proteins which testify to what occurs in the anterior chamber. There are six classes of proteins which confirm the vascular endothelium nature of the anterior chamber and are the result of the morphofunctional trabecular meshwork decay. It is possible that, all or in part, these proteins can be used as a signal to the posterior pole.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Ophthalmology Unit, Department of Head and Neck Pathologies, St Martino Hospital, Viale Benedetto XV, 16132, Genoa, Italy,
| | | |
Collapse
|
18
|
Koch MA, Rosenhammer B, Koschade SE, Braunger BM, Volz C, Jägle H, Tamm ER. Myocilin modulates programmed cell death during retinal development. Exp Eye Res 2014; 125:41-52. [PMID: 24837143 DOI: 10.1016/j.exer.2014.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 11/20/2022]
Abstract
Mutations in the myocilin gene (MYOC) are causative for 10% of cases with juvenile open-angle glaucoma and 3-4% of those with primary open-angle glaucoma. Myocilin is a secreted protein with relatively ill-defined matricellular properties. Despite its high expression in the eye, myocilin-deficient mice have originally been reported to have no obvious ocular phenotype. Here we revisited the ocular phenotype of myocilin-deficient mice and detected a higher number of neurons in their inner (INL) and outer (ONL) nuclear layers, as well as a higher number of retinal ganglion cells (RGC) and their axons. The increase in retinal neurons appears to be caused by a decrease in programmed developmental cell death, as apoptosis of retinal neurons between postnatal days 4 and 10 was found to be attenuated when compared to that of wildtype littermates. In contrast, when Myoc(-/-) mice were crossed with βB1-crystallin-MYOC mice with ectopic overexpression of myocilin in the eye, no differences in developmental apoptosis, RGC number and INL thickness were observed when compared to wildtype littermates. The amounts of the anti-apoptotic Bcl-2-like protein 1 (BCL2L1, Bcl-xL) and its mRNA were increased in retinae of Myoc(-/-) mice, while lower amounts of BCL2L1 and its mRNA were detected in mixed Myoc(-/-)/βB1-crystallin-MYOC mice. The structural differences between Myoc(-/-) mice and wildtype littermates did not result in functional differences as measured by electroretinography. Noteworthy though mixed Myoc(-/-)/βB1-crystallin-MYOC mice with ocular overexpression of myocilin had significant cone function deficits. Myocilin appears to modulate apoptotic death of retinal neurons likely by interacting with the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Marcus A Koch
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Bernd Rosenhammer
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Sebastian E Koschade
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Barbara M Braunger
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Cornelia Volz
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
19
|
Rao PV. Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. J Ocul Pharmacol Ther 2014; 30:181-90. [PMID: 24283588 PMCID: PMC3991961 DOI: 10.1089/jop.2013.0194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 01/21/2023] Open
Abstract
Homeostasis of aqueous humor (AH) outflow and intraocular pressure (IOP) is essential for normal vision. Impaired AH outflow through the trabecular meshwork (TM) and a resultant elevation in IOP are common changes in primary open-angle glaucoma (POAG), which is the most prevalent form of glaucoma. Although elevated IOP has been recognized as a definitive risk factor for POAG and lowering elevated IOP remains a mainstay for glaucoma treatment, little is known about the molecular mechanisms, especially external cues and intracellular pathways, involved in the regulation of AH outflow in both normal and glaucomatous eyes. In addition, despite the recognition that increased resistance to AH outflow via the conventional pathway consisting of TM and Schlemm's canal is the main cause for elevated IOP, there are no clinically approved drugs that target the conventional pathway to lower IOP in glaucoma patients. The aim of this article is to briefly review published work on the importance of bioactive lysophospholipids (eg, lysophosphatidic acid and sphingosine-1-phosphate), their receptors, metabolism, signaling, and role in the regulation of AH outflow via the TM and IOP, and to discuss pharmacological targeting of key proteins in the lysophospholipid signaling pathways to lower IOP in glaucoma patients.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
20
|
Borrás T. The effects of myocilin expression on functionally relevant trabecular meshwork genes: a mini-review. J Ocul Pharmacol Ther 2014; 30:202-12. [PMID: 24564495 DOI: 10.1089/jop.2013.0218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Myocilin is a secreted glaucoma-associated protein, specifically induced by dexamethasone in human trabecular meshwork cells, where it was discovered. Myocilin is expressed in several tissues of the body, but it causes disease only in the eye. The protein contains two domains: an N-terminal region with significant homologies to nonmuscle myosin, and a C-terminal region, which is similar to the olfactomedin proteins. Forty percent of myocilin undergoes an intracellular endoproteolytic cleavage by calpain II, a calcium-dependent cysteine protease, which releases the 2 domains. The protein is known to interact with intracellular and extracellular matrix proteins, and some is released into the extracellular space associated with exosomes. Myocilin mutations are linked to glaucoma and induce elevated intraocular pressure. Most of the glaucoma-causative mutations map to the olfactomedin domain, which appears to be a critical domain for the function of the protein. Myocilin mutants are misfolded, aggregate in the endoplasmic reticulum, and are not secreted. Overexpression of myocilin and of its mutants in primary human trabecular meshwork cells triggers changes in the expression of numerous genes, many of which have been known to be involved in mechanisms important for the physiology and pathology of the tissue. Here we review recent studies from our laboratory and those of others that deal with trabecular meshwork genes, which are altered by the overexpression of wild-type and glaucoma-causative mutant myocilin genes.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine , Chapel Hill, North Carolina
| |
Collapse
|
21
|
Torrejon KY, Pu D, Bergkvist M, Danias J, Sharfstein ST, Xie Y. Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol Bioeng 2013; 110:3205-18. [PMID: 23775275 DOI: 10.1002/bit.24977] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/15/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness, resulting from an increase in intraocular pressure (IOP). IOP is the only modifiable risk factor of glaucoma and is controlled by the outflow of the aqueous humor through the human trabecular meshwork (HTM). Currently, the lack of a proper in vitro HTM model impedes advances in understanding outflow physiology and discovering effective IOP-lowering anti-glaucoma therapeutics. Therefore, we designed and constructed an in vitro HTM model using micropatterned, porous SU-8 scaffolds, which support cells to recapitulate functional HTM morphology and allow the study of outflow physiology. The pore size of SU-8 scaffolds, surface coating, cell seeding density, and culture duration were evaluated for HTM cell growth. The bioengineered HTM was characterized by F-actin staining and immunocytochemistry of HTM markers. A stand-alone perfusion chamber with an integrated pressure sensing system was further constructed and used for the investigation of the outflow facility of the bioengineered HTM treated with latrunculin B-an IOP lowering agent. Cells in the in vitro model exhibited HTM-like morphology, expression of α-smooth muscle actin, myocilin, and αß-crystallin, outflow characteristics and drug responsiveness. Altogether, we have developed an in vitro HTM model system for understanding HTM cell biology and screening of pharmacological or biological agents that affect trabecular outflow facility, expediting discovery of IOP-lowering, anti-glaucoma therapeutics.
Collapse
Affiliation(s)
- Karen Y Torrejon
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, New York, 12203
| | | | | | | | | | | |
Collapse
|
22
|
Ying H, Shen X, Yue BYJT. Establishment of inducible wild type and mutant myocilin-GFP-expressing RGC5 cell lines. PLoS One 2012; 7:e47307. [PMID: 23082156 PMCID: PMC3474840 DOI: 10.1371/journal.pone.0047307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
Background Myocilin is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Gln368stop (Q368X) and Pro370Leu (P370L) have been identified in patients. The exact role of myocilin and its functional association with glaucoma are still unclear. In the present study, we established tetracycline-inducible (Tet-on) wild type and mutant myocilin-green fluorescence protein (GFP) expressing RGC5 stable cell lines and studied the changes in cell migration and barrier function upon induction. Methodology/Principal Findings After several rounds of selection, clones that displayed low, moderate, or high expression of wild type, Q368X or P370L myocilin-GFP upon doxycycline (Dox) induction were obtained. The levels of wild type and mutant myocilin-GFP in various clones were confirmed by Western blotting. Compared to non-induced controls, the cell migration was retarded, the actin stress fibers were fewer and shorter, and the trypsinization time needed for cells to round up was reduced when wild type or mutant myocilin was expressed. The barrier function was in addition aberrant following induced expression of wild type, Q368X or P370L myocilin. Immunoblotting further showed that tight junction protein occludin was downregulated in induced cells. Conclusions/Significance Tet-on inducible, stable RGC5 cell lines were established. These cell lines, expressing wild type or mutant (Q368X or P370L) myocilin-GFP upon Dox induction, are valuable in facilitating studies such as proteomics, as well as functional and pathogenesis investigations of disease-associated myocilin mutants. The barrier function was found impaired and the migration of cells was hindered with induced expression of wild type and mutant myocilin in RGC5 cell lines. The reduction in barrier function might be related to the declined level of occludin. The retarded cell migration was consistent with demonstrated myocilin phenotypes including the loss of actin stress fibers, lowered RhoA activities and compromised cell-matrix adhesiveness.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mookherjee S, Acharya M, Banerjee D, Bhattacharjee A, Ray K. Molecular basis for involvement of CYP1B1 in MYOC upregulation and its potential implication in glaucoma pathogenesis. PLoS One 2012; 7:e45077. [PMID: 23028769 PMCID: PMC3448602 DOI: 10.1371/journal.pone.0045077] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 08/17/2012] [Indexed: 01/30/2023] Open
Abstract
CYP1B1 has been implicated in primary congenital glaucoma with autosomal recessive mode of inheritance. Mutations in CYP1B1 have also been reported in primary open angle glaucoma (POAG) cases and suggested to act as a modifier of the disease along with Myocilin (MYOC). Earlier reports suggest that over-expression of myocilin leads to POAG pathogenesis. Taken together, we propose a functional interaction between CYP1B1 and myocilin where 17β estradiol acts as a mediator. Therefore, we hypothesize that 17β estradiol can induce MYOC expression through the putative estrogen responsive elements (EREs) located in its promoter and CYP1B1 could manipulate MYOC expression by metabolizing 17β estradiol to 4-hydroxy estradiol, thus preventing it from binding to MYOC promoter. Hence any mutation in CYP1B1 that reduces its 17β estradiol metabolizing activity might lead to MYOC upregulation, which in turn might play a role in glaucoma pathogenesis. It was observed that 17β estradiol is present in Human Trabecular Meshwork cells (HTM) and Retinal Pigment Epithelial cells (RPE) by immunoflouresence and ELISA. Also, the expression of enzymes related to estrogen biosynthesis pathway was observed in both cell lines by RT-PCR. Subsequent evaluation of the EREs in the MYOC promoter by luciferase assay, with dose and time dependent treatment of 17β estradiol, showed that the EREs are indeed active. This observation was further validated by direct binding of estrogen receptors (ER) on EREs in MYOC promoter and subsequent upregulation in MYOC level in HTM cells on 17β estradiol treatment. Interestingly, CYP1B1 mutants with less than 10% enzymatic activity were found to increase the level of endogenous myocilin in HTM cells. Thus the experimental observations are consistent with our proposed hypothesis that mutant CYP1B1, lacking the 17β estradiol metabolizing activity, can cause MYOC upregulation, which might have a potential implication in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Suddhasil Mookherjee
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Moulinath Acharya
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Deblina Banerjee
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ashima Bhattacharjee
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kunal Ray
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
24
|
Shen X, Ying H, Yue BYJT. Wnt activation by wild type and mutant myocilin in cultured human trabecular meshwork cells. PLoS One 2012; 7:e44902. [PMID: 23028669 PMCID: PMC3441605 DOI: 10.1371/journal.pone.0044902] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Myocilin is a gene linked to the most prevalent form of glaucoma, a major blinding disease. The trabecular meshwork (TM), a specialized eye tissue, is believed to be involved, at least in part, in the development of glaucoma. The Pro³⁷⁰ to Leu (P370L) mutation of myocilin is associated with severe glaucoma phenotypes and Gln³⁶⁸ stop (Q368X) is the most common myocilin mutation reported. Myocilin, upon overexpression, has been shown to induce phenotypes that include a loss of actin stress fibers, an increase in the cAMP level and protein kinase A (PKA) activity, as well as a reduction in the RhoA activity. We examined herein whether Wnt signaling pathway is involved in the myocilin phenotypes and whether P370L and Q368X mutants also display biological effects similar to those of the wild type myocilin. METHODOLOGY/PRINCIPAL FINDINGS Wild type myocilin, when transfected into cultured human TM cells, induced a loss of actin stress fibers as judged by phalloidin staining. Such a loss was averted by treatment of secreted Frizzled-related protein 1 (sFRP1), an inhibitor of Wnt signaling. Consistent with the notion that Wnt pathway mediates the myocilin phenotype, Wnt activation was demonstrated by TOP/FOP-Flash reporter assays. Treatment of human TM cells of a Wnt activator, SB216763, as well as transfection of myocilin P370L and Q368X mutants all resulted in actin stress fiber loss, PKA activation and RhoA inactivation. The PKA elevation was obviated by the sFRP1 treatment, indicating that Wnt signaling was upstream that of PKA. CONCLUSIONS/SIGNIFICANCE The present study demonstrated that following forced expression of wild type myocilin, Wnt was activated, triggering in turn other myocilin-related alterations. P370L and Q368X mutations induced similar phenotypes, suggesting one possible mechanism how the mutants may lead to TM cell damage and pathology.
Collapse
Affiliation(s)
- Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
25
|
Vetrugno M, Uva MG, Russo V, Iester M, Ciancaglini M, Brusini P, Centofanti M, Rossetti LM. Oral administration of forskolin and rutin contributes to intraocular pressure control in primary open angle glaucoma patients under maximum tolerated medical therapy. J Ocul Pharmacol Ther 2012; 28:536-41. [PMID: 22731245 DOI: 10.1089/jop.2012.0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tight control of intraocular pressure (IOP) is still the only therapeutic approach available for the treatment of primary open angle glaucoma (POAG). However, some patients do not respond adequately to hypotonising drugs, and despite multiple drug combinations they cannot reach their target IOP. Forskolin is a natural compound that has already shown efficacy in IOP reduction following topical application. PURPOSE The aim of this study was to evaluate the effects on the IOP of a food supplement containing forskolin and rutin when administered to POAG patients under maximum tolerated medical therapy (MTMT) and on a waiting list for filtrating surgery to further decrease their IOP. METHODS The design of the study was open and case-controlled. Ninety-seven (52 in the treatment group, and 45 in the reference group) patients were enrolled in 8 different glaucoma centers in Italy, all under MTMT and with IOP enrollment values above their target pressure. During the 30 days before surgery, patients in the treatment group were prescribed 2 tablets per day of a food supplement containing rutin and forskolin in addition to their usual topical drug treatment. Their IOP values were measured at 3 time points during the day, at enrollment and once a week until surgery. Control patients continued only with their normal topical therapy. RESULTS All patients in the treatment group, independently of the combination drug therapy that they were taking, showed a further 10% decrease (P<0.01) of their IOP, starting from 1 week after introduction of the oral supplement and lasting until the last evaluation before surgery. This decrease was more evident (15% of the enrollment value; P<0.01) in those subjects with high (IOP≥21 mmHg) enrollment values rather than in those with low (IOP<21) enrollment values (9%; P<0.01). On the contrary, IOP values in the control group remained stable from the beginning to the end of the observation period, independently of their enrollment values. CONCLUSIONS Forskolin and rutin given as oral treatment appear to contribute to a better control and a further small reduction of IOP in patients who were poorly responsive to multitherapy treatment.
Collapse
|
26
|
Stubbs EB, Von Zee CL. Prenylation of Rho G-proteins: a novel mechanism regulating gene expression and protein stability in human trabecular meshwork cells. Mol Neurobiol 2012; 46:28-40. [PMID: 22396212 DOI: 10.1007/s12035-012-8249-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
Abstract
Endogenous prenylation with sesquiterpene or diterpene isoprenoids facilitates membrane localization and functional activation of small monomeric GTP-binding proteins. A direct effect of isoprenoids on regulation of gene expression and protein stability has also been proposed. In this study, we determined the role of sesquiterpene or diterpene isoprenoids on the regulation of Rho G-protein expression, activation, and stability in human trabecular meshwork (TM) cells. In both primary and transformed human TM cells, limiting endogenous isoprenoid synthesis with lovastatin, a potent HMG-CoA reductase inhibitor, elicited marked increases in RhoA and RhoB mRNA and protein content. The effect of lovastatin was dose-dependent with newly synthesized inactive protein accumulating in the cytosol. Supplementation with geranylgeranyl pyrophosphate (GGPP) prevented, while inhibition of geranylgeranyl transferase-I mimicked, the effects of lovastatin on RhoA and RhoB protein content. Similarly, lovastatin-dependent increases in RhoA and RhoB mRNA expression were mimicked by geranylgeranyl transferase-I inhibition. Interestingly, GGPP supplementation selectively promoted the degradation of newly synthesized Rho proteins which was mediated, in part, through the 20S proteasome. Functionally, GGPP supplementation prevented lovastatin-dependent decreases in actin stress fiber organization while selectively facilitating the subcellular redistribution of accumulated Rho proteins from the cytosol to the membrane and increasing RhoA activation. Post-translational prenylation with geranylgeranyl diterpenes selectively facilitates the expression, membrane translocation, functional activation, and turnover of newly synthesized Rho proteins. Geranylgeranyl prenylation represents a novel mechanism by which active Rho proteins are targeted to the 20S proteasome for degradation in human TM cells.
Collapse
Affiliation(s)
- Evan B Stubbs
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA.
| | | |
Collapse
|
27
|
Yue BYJT. Myocilin and Optineurin: Differential Characteristics and Functional Consequences. Taiwan J Ophthalmol 2011; 1:6-11. [PMID: 24163790 DOI: 10.1016/j.tjo.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells and their axons. This review describes the characteristics of myocilin and optineurin protein products and summarizes the consequences of ectopically expressed wild type and mutant myocilin and optineurin in trabecular meshwork and/or neuronal cells. Myocilin and optineurin exhibit differential characteristics and have divergent functional consequences. They contribute to the development of glaucoma likely via distinct mechanisms.
Collapse
Affiliation(s)
- Beatrice Y J T Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
28
|
Paylakhi SH, Fan JB, Mehrabian M, Sadeghizadeh M, Yazdani S, Katanforoush A, Kanavi MR, Ronaghi M, Elahi E. Effect of PITX2 knockdown on transcriptome of primary human trabecular meshwork cell cultures. Mol Vis 2011; 17:1209-21. [PMID: 21617755 PMCID: PMC3102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/25/2011] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To identify genes whose expressions in primary human trabecular meshwork (TM) cell cultures are affected by the transcription factor pituitary homeobox 2 (PITX2) and to identify genes that may have roles in glaucoma. Known glaucoma causing genes account for disease in a small fraction of patients, and we aimed at identification of other genes that may have subtle and accumulative effects not easily identifiable by a genetic approach. METHODS Expression profiles derived using microarrays were compared between TM control cells and cells treated with PITX2 siRNAs using three protocols so as to minimize false positive and negative results. The first protocol was based on the commonly used B statistic. The second and third protocols were based on fold change in expression. The second protocol used a threshold of at least 2 fold change in expression, whereas the third protocol used ranking in fold change without setting a threshold. The likelihood of a selected gene being a true positive was considered to correlate with the number of protocols by which it was selected. By considering all genes that were selected by at least one protocol, the likelihood of false negatives was expected to decrease. Effects on a subset of selected genes were verified by real time PCR, western blots, and immunocytochemistry. Effects on ALDH1A1, were further pursued because its protein product, aldehyde dehydrogenase 1 family, member A1, has roles in oxidative stress and because oxidative stress is known to be relevant to the etiology of glaucoma. RESULTS The expression level of 41 genes was assessed by to be possibly affected by PITX2 knockdown. Twenty one genes were down-regulated and twenty were upregulated. The expression of five genes was assessed to be altered by all three analysis protocols. The five genes were DIRAS3 (DIRAS family, GTP-binding RAS-like 3), CXCL6 (chemokine (C-X-C motif) ligand 6), SAMD5 (sterile alpha motif domain containing 5), CBFB (core-binding factor, beta subunit), and MEIS2 (meis homeobox 2). Real time PCR experiments verified results on a subset of genes tested. Notably, the results were also confirmed in two independent TMs. Effects on CXCL6 and ALDH1A1 were also confirmed by western blots, and effects on ALDH1A1 were further shown by immunocytochemistry. Data consistent with PITX2 involvement in ALDH1A1 mediated response to oxidative stress were presented. CONCLUSIONS Bioinformatics tools revealed that the genes identified affect functions and pathways relevant to glaucoma. Involvement of PITX2 in expression of some of the genes and in some of the pathways is being reported here for the first time. As many of the genes identified have not been studied vis-à-vis glaucoma, we feel they introduce new candidates for understanding this devastating disease.
Collapse
Affiliation(s)
- Seyed Hassan Paylakhi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Katanforoush
- Department of Computer Science, Faculty of Mathematics, Shahid Beheshti University G.C., Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Central Eye Bank of Iran, Tehran, Iran
| | | | - Elahe Elahi
- Department of Biotechnology, University of Tehran, Tehran, Iran
- Department of Biology, University College of Science, University of Tehran, Tehran, Iran
- Center of Excellence in Biomathematics, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Ramachandran C, Patil RV, Sharif NA, Srinivas SP. Effect of elevated intracellular cAMP levels on actomyosin contraction in bovine trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011; 52:1474-85. [PMID: 21071747 DOI: 10.1167/iovs.10-6241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Elevated cAMP in the trabecular meshwork (TM) cells increases the aqueous humor outflow facility. The authors investigated the mechanisms by which elevated cAMP opposes the RhoA-Rho kinase pathway, leading to the relaxation of the actomyosin system in bovine TM cells. METHODS Forskolin (Fsk) and rolipram were used to elevate cAMP levels. Changes in the phosphorylation of RhoA at Ser188 (a putative inhibitory site), the regulatory light chain of myosin (pMLC), and the regulatory subunit of myosin phosphatase (MYPT1) were determined by Western blot analysis. The actomyosin contraction was measured by collagen gel contraction (CGC) assay. The impact of cAMP on cell-matrix adhesion was followed by immunostaining of focal adhesion proteins and by electric cell-substrate impedance sensing. RESULTS Elevated cAMP led to an increase in the phosphorylation of RhoA at Ser188, to the inhibition of endothelin-1 (ET-1)-induced activation of RhoA, and to the formation of stress fibers. The loss of pMLC along the stress fibers was comparable to that induced by Y-27632 (Rho kinase inhibitor). A concomitant reduction in both MYPT1 phosphorylation and pMLC was observed. Elevated cAMP also reduced (ET-1)-induced CGC and the cell-substrate resistance by >50%. CONCLUSIONS In TM cells, elevated cAMP leads to the phosphorylation of RhoA at Ser188. Consequent inhibition of RhoA activity reduces the phosphorylation of MYPT1 at Thr853, leading to a reduction in MLC phosphorylation and actomyosin contraction. These actions, similar to those of the Rho kinase inhibitors, possibly underlie the reported increase in outflow facility in response to Fsk perfusion ex vivo.
Collapse
|
30
|
Comes N, Buie LK, Borrás T. Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes Cells 2010; 16:243-59. [PMID: 21199193 DOI: 10.1111/j.1365-2443.2010.01483.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The trabecular meshwork tissue controls the drainage of the aqueous humor of the eye. A dysfunctional trabecular meshwork leads to an altered fluid resistance, which results in increased intraocular pressure (IOP). IOP is the major risk factor of glaucoma, the second-leading cause of blindness in the developed world. In the search for genes altered by glaucomatous insults, we identified angiopoietin-like7 (ANGPTL7), a member of the ANGPTL family. Although structurally related to the angiopoietins, ANGPTL7's function is poorly understood. Because ANGPTL7 is secreted and because extracellular matrix (ECM) deposition and organization is critical for aqueous humor resistance, we investigated the effect of ANGPTL7 on relevant trabecular meshwork ECM genes and proteins. We find that overexpression of ANGPTL7 in primary human trabecular meshwork cells altered the expression of fibronectin, collagens type I, IV & V, myocilin, versican, and MMP1. ANGPTL7 also interfered with the fibrillar assembly of fibronectin. Finally, we find that silencing ANGPTL7 during the glucocorticoid insult significantly affected the expression of other steroid-responsive proteins. These results indicate that ANGPTL7 modulates the trabecular meshwork's ECM as well as the response of this tissue to steroids. Together with previous findings, these properties strengthen ANGPTL7's candidacy for the regulation of IOP and glaucoma.
Collapse
Affiliation(s)
- Núria Comes
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | |
Collapse
|
31
|
Stitt-Cavanagh EM, Faour WH, Takami K, Carter A, Vanderhyden B, Guan Y, Schneider A, Breyer MD, Kennedy CRJ. A maladaptive role for EP4 receptors in podocytes. J Am Soc Nephrol 2010; 21:1678-90. [PMID: 20671216 DOI: 10.1681/asn.2009121234] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inhibition of p38 mitogen-activated protein kinase and cyclooxygenase-2 reduces albuminuria in models of chronic kidney disease marked by podocyte injury. Previously, we identified a feedback loop in podocytes whereby an in vitro surrogate for glomerular capillary pressure (i.e., mechanical stretch) along with prostaglandin E(2) stimulation of its EP4 receptor induced cyclooxygenase-2 in a p38-dependent manner. Here we asked whether stimulation of EP4 receptors would exacerbate glomerulopathies associated with enhanced glomerular capillary pressure. We generated mice with either podocyte-specific overexpression or depletion of the EP4 receptor (EP4(pod+) and EP4(pod-/-), respectively). Glomerular prostaglandin E(2)-stimulated cAMP levels were eightfold greater for EP4(pod+) mice compared with nontransgenic (non-TG) mice. In contrast, EP4 mRNA levels were >50% lower, and prostaglandin E(2)-induced cAMP synthesis was absent in podocytes isolated from EP4(pod-/-) mice. Non-TG and EP4(pod+) mice underwent 5/6 nephrectomy and exhibited similar increases in systolic BP (+25 mmHg) by 4 weeks compared with sham-operated controls. Two weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod+) mice (3438 μg/mg) was significantly higher than that of non-TG mice (773 μg/mg; P < 0.0001). Consistent with more severe renal injury, the survival rate for nephrectomized EP4(pod+) mice was significantly lower than that for non-TG mice (14 versus 67%). In contrast, 6 weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod-/-) mice (753 μg/mg) was significantly lower than that of non-TG mice (2516 μg/mg; P < 0.05). These findings suggest that prostaglandin E(2), acting via EP4 receptors contributes to podocyte injury and compromises the glomerular filtration barrier.
Collapse
Affiliation(s)
- Erin M Stitt-Cavanagh
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Park B, Ying H, Shen X, Park JS, Qiu Y, Shyam R, Yue BYJT. Impairment of protein trafficking upon overexpression and mutation of optineurin. PLoS One 2010; 5:e11547. [PMID: 20634958 PMCID: PMC2902519 DOI: 10.1371/journal.pone.0011547] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/17/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Glaucoma is a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Optineurin is one of the candidate genes identified so far. A mutation of Glu(50) to Lys (E50K) has been reported to be associated with a more progressive and severe disease. Optineurin, known to interact with Rab8, myosin VI and transferrin receptor (TfR), was speculated to have a role in protein trafficking. Here we determined whether, and how optineurin overexpression and E50K mutation affect the internalization of transferrin (Tf), widely used as a marker for receptor-mediated endocytosis. METHODOLOGY/PRINCIPAL FINDINGS Human retinal pigment epithelial (RPE) and rat RGC5 cells transfected to overexpress wild type optineurin were incubated with Texas Red-Tf to evaluate Tf uptake. Granular structures or dots referred to as foci formed in perinuclear regions after transfection. An impairment of the Tf uptake was in addition observed in transfected cells. Compared to overexpression of the wild type, E50K mutation yielded an increased foci formation and a more pronounced defect in Tf uptake. Co-transfection with TfR, but not Rab8 or myosin VI, construct rescued the optineurin inhibitory effect, suggesting that TfR was the factor involved in the trafficking phenotype. Forced expression of both wild type and E50K optineurin rendered TfR to colocalize with the foci. Surface biotinylation experiments showed that the surface level of TfR was also reduced, leading presumably to an impeded Tf uptake. A non-consequential Leu(157) to Ala (L157A) mutation that displayed much reduced foci formation and TfR binding had normal TfR distribution, normal surface TfR level and normal Tf internalization. CONCLUSIONS/SIGNIFICANCE The present study demonstrates that overexpression of wild type optineurin results in impairment of the Tf uptake in RPE and RGC5 cells. The phenotype is related to the optineurin interaction with TfR. Our results further indicate that E50K induces more dramatic effects than the wild type optineurin, and is thus a gain-of-function mutation. The defective protein trafficking may be one of the underlying bases why glaucoma pathology develops in patients with E50K mutation.
Collapse
Affiliation(s)
- BumChan Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Jeong-Seok Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Ye Qiu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
33
|
Abstract
Glaucoma is a group of heterogeneous optic neuropathies with complex genetic basis. Among the three principle subtypes of glaucoma, primary open angle glaucoma (POAG) occurs most frequently. Till date, 25 loci have been found to be linked to POAG. However, only three underlying genes (Myocilin, Optineurin and WDR36) have been identified. In addition, at least 30 other genes have been reported to be associated with POAG. Despite strong genetic influence in POAG pathogenesis, only a small part of the disease can be explained in terms of genetic aberration. Current concepts of glaucoma pathogenesis suggest it to be a neurodegenerative disorder which is triggered by different factors including mechanical stress due to intra-ocular pressure, reduced blood flow to retina, reperfusion injury, oxidative stress, glutamate excitotoxicity, and aberrant immune response. Here we present a mechanistic overview of potential pathways and crosstalk between them operating in POAG pathogenesis.
Collapse
Affiliation(s)
- Kunal Ray
- Molecular and Human Genetic Division, Indian Institute of Chemical Biology (a unit of CSIR), Kolkata, India.
| | | |
Collapse
|
34
|
Yu M, Sun J, Peng W, Chen Z, Lin X, Liu X, Li M, Wu K. Protein expression in human trabecular meshwork: downregulation of RhoGDI by dexamethasone in vitro. Mol Vis 2010; 16:213-23. [PMID: 20161819 PMCID: PMC2822554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/04/2010] [Indexed: 12/04/2022] Open
Abstract
PURPOSE The characterization of the human trabecular meshwork (TM) proteome is a valuable step toward understanding its role under normal and glaucomatous conditions. This study uses proteomic techniques to investigate the set of proteins expressed in normal human TM and to identify those differentially expressed in response to dexamethasone (DEX) treatment of TM cells (TMCs) in vitro. METHODS TM tissue (TMT) was isolated from human donor eyes and pooled. Immortalized human TMCs were cultured with or without DEX. Protein extracts from each were separated by two-dimensional electrophoresis (2-DE). Protein spots in TMT gel were excised, destained, and subjected to in-gel tryptic digestion and identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). To determine those proteins whose expression patterns were affected by glucocorticoids, TMCs were treated with DEX and assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) dye and 2-DE. A differentially expressed protein, RhoGDI, was validated by both western blotting and immunocytological staining. RESULTS The comprehensive protein set included more than 850 protein spots from both the TMT and TMCs, as visualized on 2-DE gel. Two-hundred-and-thirty-five spots were successfully identified in the TMT gel. The functional categories of the identified proteins were mainly comprised of metabolic process, cell adhesion, anti-apoptosis, cell motility, carbohydrate metabolic process, signal transduction, and regulation of transcription. During three days of DEX treatment, TMCs' proliferation was inhibited in a time- and dose-dependent manner, as evidenced by MTT assay. In the 48 h cultured cell group, RhoGDI expression was reduced, as detected by 2-DE, western blotting, and immunocytological staining. In contrast, the expression of RhoA, a target of RhoGDI, increased in response to DEX treatment. CONCLUSIONS Using the classic proteomic workflow, the main protein complement of normal human TMT was detected, identified, and categorized. The DEX inhibition of RhoGDI expression in TMCs was evidenced.
Collapse
Affiliation(s)
- Minbin Yu
- Zhongshan Ophthalmic Center; State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jing Sun
- Zhongshan Ophthalmic Center; State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Peng
- Zhongshan Ophthalmic Center; State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ziyan Chen
- Zhongshan Ophthalmic Center; State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xianchai Lin
- Zhongshan Ophthalmic Center; State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xuyang Liu
- Department of Ophthalmology and Ophthalmic Laboratories, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingtao Li
- The Proteomics Lab, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kaili Wu
- Zhongshan Ophthalmic Center; State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, P.R. China,The Proteomics Lab, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
35
|
Koga T, Shen X, Park JS, Qiu Y, Park BC, Shyam R, Yue BYJT. Differential effects of myocilin and optineurin, two glaucoma genes, on neurite outgrowth. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:343-52. [PMID: 19959812 DOI: 10.2353/ajpath.2010.090194] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons. To investigate the effects of force-expressed wild-type and mutant myocilin and optineurin on neurite outgrowth in neuronal cells, we transiently transfected cells with pEGFP-N1 (mock control) as well as myocilin and optineurin plasmids including pMYOC(WT)-EGFP, pMYOC(P370L)-EGFP, pMYOC(1-367)-EGFP, pOPTN(WT)-EGFP, and pOPTN(E50K)-EGFP. PC12 cells transfected with pEGFP-N1 produced, as anticipated, long and extensive neuritis on nerve growth factor induction. The neurite length in those cells transfected with myocilin constructs was shortened and the number of neurites was also reduced. A similar inhibitory effect on neurite outgrowth was also elicited by myocilin transfection in RGC5 cells. In contrast, neither transfection of the optineurin constructs pOPTN(WT)-EGFP and pOPTN(E50K)-EGFP nor the myocilin and optineurin small-interfering RNA treatments induced significant alterations in neurite outgrowth. Transfection with the wild-type optineurin construct, but not with that of the wild-type myocilin, increased the apoptotic activity in cells. These results demonstrated that the two glaucoma genes, myocilin and optineurin, exhibited differential effects on neurite outgrowth. They may contribute to the development of neurodegenerative glaucoma via distinct mechanisms.
Collapse
Affiliation(s)
- Takahisa Koga
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kazmers NH, Ma SA, Yoshida T, Stern PH. Rho GTPase signaling and PTH 3-34, but not PTH 1-34, maintain the actin cytoskeleton and antagonize bisphosphonate effects in mouse osteoblastic MC3T3-E1 cells. Bone 2009; 45:52-60. [PMID: 19361585 PMCID: PMC2722510 DOI: 10.1016/j.bone.2009.03.675] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/11/2009] [Accepted: 03/25/2009] [Indexed: 11/24/2022]
Abstract
Cytoskeletal elements are critical for cell morphology and signal transduction, and are involved in many cellular processes including motility, intracellular transport, and differentiation. Small GTP-binding proteins (G proteins) of the Ras family, such as RhoA, influence various elements of the cytoskeleton. RhoA stabilizes the actin cytoskeleton and promotes formation of focal adhesions. We found previously that RhoA is expressed in osteoblastic cells and is translocated to the plasma membrane and activated by PTH 1-34 as well as by Nleu(8,18) Tyr(34) PTH 3-34 amide, a PTH analog that does not increase cAMP. We therefore investigated effects of manipulating RhoA on the actin cytoskeleton of osteoblastic MC3T3-E1 cells. Three inhibitors were used: 1) GGTI-2166, a geranylgeranyl transferase I inhibitor that prevents the isoprenylation and membrane translocation of RhoA, 2) Y-27632, a Rho kinase inhibitor, and 3) alendronate, a nitrogen (N)-containing bisphosphonate that reduces intracellular geranylgeranylpyrophosphate through inhibiting farnesyl pyrophosphate synthase. To increase RhoA activity, we used the geranylgeranyl group donor geranylgeraniol (GGOH), and a constitutively active RhoA. The F-actin cytoskeleton and focal adhesions (FA) were visualized with rhodamine-phalloidin and fluorescent anti-vinculin antibodies, respectively. Cells were imaged with confocal microscopy. Actin stress fiber density, edge actin bundle density, focal adhesion density, cellular area and circularity (a morphological descriptor relating area and perimeter) were quantified by a program developed with Matlab software. GGTI-2166, Y-27632, and alendronate reduced actin stress fibers, FA density, and FA size, but had no effect on edge actin bundle density, cellular area, or circularity. GGOH completely antagonized the effects of alendronate, but did not significantly affect responses to GGTI-2166 or Y-27632. Constitutively active RhoA antagonized the effects of alendronate and GGTI-2166, but not those of Y-27632. The effects of alendronate were also antagonized by Nleu(8,18) Tyr(34) PTH 3-34 amide, but not by PTH 1-34. The results indicate that RhoA is involved in the maintenance of stress fibers and focal adhesions in osteoblastic cells, that PTH can affect this pathway independently of cAMP, and that a N-containing bisphosphonate can affect the actin cytoskeleton and focal adhesions through actions on geranylgeranyl groups and potentially through RhoA. In view of the importance of the actin cytoskeleton, the findings constitute evidence that N-containing bisphosphonates, when they attain certain concentrations, have effects on osteoblasts that could influence bone remodeling.
Collapse
Affiliation(s)
- Nikolas H Kazmers
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
37
|
Resch ZT, Fautsch MP. Glaucoma-associated myocilin: a better understanding but much more to learn. Exp Eye Res 2009; 88:704-12. [PMID: 18804106 PMCID: PMC2682697 DOI: 10.1016/j.exer.2008.08.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 01/20/2023]
Abstract
Over a decade has passed since myocilin was identified as the first gene linked to early and late-onset primary open-angle glaucoma. During this time, considerable effort has been put forth to understand the functional role myocilin has in normal and glaucomatous eyes. Myocilin is expressed in many ocular and non-ocular tissues, is found in both intracellular and extracellular spaces, and has been linked to elevations in intraocular pressure. Mutations in the myocilin gene that have been associated with glaucoma appear to confer a gain-of-functional activity rather than loss of function. Unfortunately, what the normal function of myocilin is and how alterations in the function can confer a glaucoma phenotype have yet to be elucidated. We will review the current understanding of myocilin with special emphasis on the structural makeup of the myocilin gene and protein, its possible physiological roles internal and external to ocular cells, the regulation of intraocular pressure as evidenced through the use of perfusion culture systems and animal models, and as a causative agent in some forms of glaucoma.
Collapse
Affiliation(s)
- Zachary T Resch
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
38
|
Faralli JA, Schwinn MK, Gonzalez JM, Filla MS, Peters DM. Functional properties of fibronectin in the trabecular meshwork. Exp Eye Res 2009; 88:689-93. [PMID: 18835267 PMCID: PMC2693904 DOI: 10.1016/j.exer.2008.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 11/17/2022]
Abstract
Fibronectin plays a number of important roles in the extracellular matrix (ECM) including providing structural support and signaling cues for cell survival, migration, differentiation, gene expression, growth factor signaling, and cell contractility. In this review, we examine recent findings about the biological and structural properties of fibronectin and discuss how these properties could contribute to the regulation of aqueous humor (AH) outflow in the trabecular meshwork (TM).
Collapse
Affiliation(s)
- Jennifer A Faralli
- Department of Pathology & Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
39
|
Sohn S, Joe MK, Kim TE, Im JE, Choi YR, Park H, Kee C. Dual localization of wild-type myocilin in the endoplasmic reticulum and extracellular compartment likely occurs due to its incomplete secretion. Mol Vis 2009; 15:545-56. [PMID: 19287508 PMCID: PMC2654785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/09/2009] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Wild-type myocilin is known to be secreted extracellularly, but a significant amount of the protein is also present in the endoplasmic reticulum (ER). The present study was undertaken to address whether intracellular myocilin is a true ER resident protein. METHODS Human wild-type myocilin was adenovirally expressed in human trabecular meshwork cells, and general characteristics of both intracellular and extracellular myocilins including molecular weight, pI, glycosylation state, and cleavage site of the signal peptide were examined by biochemical analyses. Topology and decay kinetics of myocilin were also examined by protease protection assay and pulse chase analysis, respectively. The expression pattern and cytopathic effect of myocilin were analyzed in individual cells by immunocytochemistry. RESULTS Intracellular myocilin were very similar to secreted myocilin in characteristics such as molecular weight, pI, glycosylation state, and cleavage site of the signal peptide. The intracellular protein was found to be present in the lumen of the ER where it appeared to be retained without further export to the Golgi apparatus. The kinetics of myocilin turnover clearly showed that it was intrinsically a very stable but incompletely secreted protein. The expression of myocilin was confined to a subset of cells and accompanied by the upregulation of a 78 kDa glucose-regulated protein, suggesting that it was not properly folded or processed in the ER. CONCLUSIONS Based on these findings and the fact that myocilin has no known ER retention signals, the ER localization of wild-type myocilin is likely a consequence of its incomplete secretion due to its misfolding.
Collapse
Affiliation(s)
- Seongsoo Sohn
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Myung Kuk Joe
- Center for Clinical Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tae Eun Kim
- Center for Clinical Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji-eun Im
- Center for Clinical Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Ran Choi
- Center for Clinical Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hwayong Park
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea,Center for Clinical Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
40
|
Abstract
It is well documented that mutations in the MYOCILIN gene may lead to juvenile- and adult-onset primary open-angle glaucoma. However, the functions of wild-type myocilin are still not well understood. To study the functions of human myocilin and its two proteolytic fragments, these proteins were expressed in HEK293 cells. Conditioned medium from myocilin-expressing cells, as well as purified myocilin, induced the formation of stress fibers in primary cultures of human trabecular meshwork or NIH 3T3 cells. Stress fiber-inducing activity of myocilin was blocked by antibodies against myocilin, as well as secreted inhibitors of Wnt signaling, secreted Frizzled-related protein 1 (sFRP1) or sFRP3, and beta-catenin small interfering RNA. Interaction of myocilin with sFRP1, sFRP3, and several Frizzled receptors was confirmed by immunoprecipitation experiments and by binding of myocilin to the surface of cells expressing cysteine-rich domains of different Frizzled and sFRPs. Treatment of NIH 3T3 cells with myocilin and its fragments induced intracellular redistribution of beta-catenin and its accumulation on the cellular membrane but did not induce nuclear accumulation of beta-catenin. Overexpression of myocilin in the eye angle tissues of transgenic mice stimulated accumulation of beta-catenin in these tissues. Myocilin and Wnt proteins may perform redundant functions in the mammalian eye, since myocilin modulates Wnt signaling by interacting with components of this signaling pathway.
Collapse
|
41
|
WuDunn D. Mechanobiology of trabecular meshwork cells. Exp Eye Res 2008; 88:718-23. [PMID: 19071113 DOI: 10.1016/j.exer.2008.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/29/2008] [Accepted: 11/16/2008] [Indexed: 10/21/2022]
Abstract
Trabecular meshwork (TM) cells likely play a key role in regulating outflow facility and hence intraocular pressure. They function in a dynamic environment subjected to variations in mechanical and fluid shear forces. Because the extent of mechanical stress on the trabecular meshwork is dependent on the intraocular pressure, the behavior of TM cells under mechanical strain may suggest mechanisms for how outflow facility is regulated. Studies have demonstrated that TM cells respond in a variety of ways to mechanical loads, including increased extracellular matrix turnover, altered gene expression, cytokine release, and altered signal transduction. This review highlights some of the considerations and limitations of studying the mechanobiology of TM cells.
Collapse
Affiliation(s)
- Darrell WuDunn
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
42
|
Goldwich A, Scholz M, Tamm ER. Myocilin promotes substrate adhesion, spreading and formation of focal contacts in podocytes and mesangial cells. Histochem Cell Biol 2008; 131:167-80. [PMID: 18855004 DOI: 10.1007/s00418-008-0518-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2008] [Indexed: 11/30/2022]
Abstract
Myocilin, a secreted glycoprotein of the olfactomedin family, is constitutively expressed in podocytes of the rat kidney and induced in mesangial cells during mesangioproliferative glomerulonephritis. As myocilin has been found to be associated with fibrillar components of the extracellular matrix, and adhesive properties have been shown for other members of the olfactomedin family, we hypothesized that myocilin might play a role in cell-matrix interactions in the glomerulus. To elucidate functional properties of myocilin, recombinant myocilin was expressed in 293 EBNA cells and purified by Ni-chelate and heparin chromatography. Culture plates were coated with myocilin, and primary rat mesangial cells and cells from an immortal murine podocyte cell line were seeded onto the plates in serum free conditions. Both cell types showed concentration-dependant attachment to myocilin, an effect that was statistically significant and could be blocked with specific antibodies. When compared to equal amounts of fibronectin or collagen 1, myocilin was less effective in promoting substrate adhesion. Synergistic effects in substrate adhesion were observed when myocilin was added to low concentrations of fibronectin. Twenty-five percent of cells that had attached to myocilin substrates showed spreading and expressed focal contacts which were labeled by vinculin/phalloidin staining. Comparable findings were observed when human or murine trabecular meshwork cells were seeded on myocilin substrates. Adhesive properties of myocilin required multimer formation, and were not observed when culture plates were coated with a C-terminal fragment of myocilin, containing the olfactomedin domain. We conclude that myocilin promotes substrate adhesion of podocytes and mesangial cells, and might contribute to cell-matrix adhesion of both cell types in vivo.
Collapse
Affiliation(s)
- Andreas Goldwich
- Institute of Anatomy, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
43
|
Paper W, Kroeber M, Heersink S, Stephan DA, Fuchshofer R, Russell P, Tamm ER. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. Exp Eye Res 2008; 87:257-67. [PMID: 18602390 PMCID: PMC2572563 DOI: 10.1016/j.exer.2008.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/11/2008] [Accepted: 06/08/2008] [Indexed: 11/18/2022]
Abstract
Myocilin is a 55-57kDa secreted glycoprotein and member of the olfactomedin family, which is mutated in some forms of primary open-angle glaucoma. To assess the effects of elevated amounts of myocilin on aqueous humor outflow dynamics in an in vivo system, transgenic betaB1-crystallin-MYOC mice have been developed that strongly overexpress myocilin in their eyes. The transgenic overexpression of myocilin results in an almost five-fold increase of secreted normal myocilin in the aqueous humor of betaB1-crystallin-MYOC mice. In the present study, we wanted to use betaB1-crystallin-MYOC as a tool to identify the response of ocular tissues to the presence of higher than normal amounts of myocilin, and to identify changes in gene expression that could help to shed light on the functional in vivo properties of myocilin. RNA was isolated from ocular tissues of betaB1-crystallin-MYOC mice and wild-type littermates. Changes in gene expression were determined by hybridization of gene microarrays and confirmed by real time RT-PCR and Western blotting. The expression of genes that had been found to be differentially regulated in betaB1-crystallin-MYOC mice was further analyzed in cultured human trabecular meshwork (HTM) cells treated with recombinant myocilin. Although betaB1-crystallin-MYOC mice do not have an obvious phenotype, a statistically significant up- and downregulation of several distinct genes was found when compared to gene expression in wild-type littermates. Among the genes that were found to be differentially regulated were Wasl, Ceacam1, and Spon2, which are involved in cell adhesion and cell-matrix interactions. Differences in expression were also found for Six1 which encodes for a transcription factor, and for Pftk1 whose gene product is a cdc2-related protein kinase. The expression of these genes was also found to be regulated in vitro in HTM cells treated with recombinant myocilin. Substantially higher amounts in ocular tissues of betaB1-crystallin-MYOC mice were found for connexin 46 and alphaB-crystallin. In addition, several genes that encode for olfactomedin proteins showed distinct changes in expression. Olfml3 was significantly downregulated, while Lphn1, Lphn2, and Lphn3 were significantly upregulated. Our findings support a role for myocilin in modulating cellular adhesion, and suggest functional processes that involve other proteins of the olfactomedin family.
Collapse
Affiliation(s)
- Walter Paper
- Institute of Human Anatomy and Embryology, University of Regensburg, Germany
| | - Markus Kroeber
- Institute of Human Anatomy and Embryology, University of Regensburg, Germany
| | | | - Dietrich A. Stephan
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Germany
| | - Paul Russell
- School of Veterinary Medicine, University of Wisconsin, Madison, USA
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Germany
| |
Collapse
|
44
|
Biological properties of trabecular meshwork cells. Exp Eye Res 2008; 88:671-5. [PMID: 18789927 DOI: 10.1016/j.exer.2008.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/05/2008] [Indexed: 11/21/2022]
Abstract
The molecular and physiological mechanisms that lead to the progression of glaucoma are poorly understood. Despite the fact that glaucoma afflicts millions of people worldwide, research on the disease is limited by the current animal models that do not translate well to human forms of the disease. However, recent advances in culturing and manipulating human trabecular meshwork cells may provide a means to elucidate some of the mechanisms that cause glaucoma. This review focuses on the properties of trabecular meshwork cells, from their characteristic expression profile in vivo to their responsiveness to biochemical and biophysical signals in vitro. Hopefully the study of cultured trabecular meshwork cells will provide a better understanding of glaucoma and lead to new, much needed therapies.
Collapse
|