1
|
Vissers E, Wellens J, Giorio L, Zadora W, Verstockt B, Ferrante M, Vermeire S, Matthys C, Arnauts K, Sabino J. Dietary Carrageenan Amplifies the Inflammatory Profile, but not Permeability, of Intestinal Epithelial Cells from Patients With Crohn's Disease. Inflamm Bowel Dis 2025; 31:1392-1403. [PMID: 39720875 PMCID: PMC12069985 DOI: 10.1093/ibd/izae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The consumption of ultra-processed foods has increased significantly worldwide and is associated with the rise in inflammatory bowel diseases. However, any causative factors and their underlying mechanisms are yet to be identified. This study aimed to further elucidate whether different types of the dietary emulsifier carrageenan (CGN) can alter the permeability and inflammatory state of the intestinal epithelium. METHODS Caco-2/HT29-MTX cocultures (n = 4) were exposed to either κ-, ι-, or λ-CGN (100 µg mL-1) for 24 hours. Organoid-derived monolayers from patients with Crohn's Disease (CD) were exposed to κ-CGN (100 µg mL-1) for 48 hours (n = 10). In both models, an inflamed condition was established by adding a mix of inflammatory stimuli. Changes in permeability were measured by transepithelial electrical resistance (TEER). In the organoid-derived monolayers, cytokines were quantified in the apical and basolateral supernatant and gene expression was analyzed with RT-qPCR. RESULTS None of the CGN subtypes altered permeability of non-inflamed or inflamed Caco-2/HT29-MTX cocultures. In organoid-derived monolayers, κ-CGN did not affect TEER, but induced alterations in the gene expression of tight junctions and mucus proteins. Expression of TNF, IL8, and IL1B increased upon κ-CGN stimulation, both in inflamed and non-inflamed monolayers. Cytokine release in the supernatant was increased by κ-CGN for IL-6, IL-13, IL-4, IL-2, and IL-10. CONCLUSIONS Dietary CGN caused upregulation of inflammatory markers and affected cytokine release of intestinal epithelial cells from CD patients, while permeability remained unaltered. When inflammation was already present, this pro-inflammatory effect was more pronounced, suggesting a role for dietary CGN during active CD.
Collapse
Affiliation(s)
- Eva Vissers
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Judith Wellens
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lorenzo Giorio
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ward Zadora
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Christophe Matthys
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Endocrinology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Kaline Arnauts
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - João Sabino
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Fitzpatrick JA, Gibson PR, Taylor KM, Anderson EJ, Friedman AB, Ardalan ZS, Smith RL, Halmos EP. Clinical Trial: The Effects of Emulsifiers in the Food Supply on Disease Activity in Crohn's Disease: An Exploratory Double-Blinded Randomised Feeding Trial. Aliment Pharmacol Ther 2025; 61:1276-1289. [PMID: 39967287 PMCID: PMC11950802 DOI: 10.1111/apt.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Advice to avoid dietary emulsifiers in Crohn's disease (CD) is based on preclinical data. AIMS To examine the effect of diets high (HED) and low (LED) in emulsifiers in the food supply on disease activity in CD. METHODS In a double-blinded, randomised feeding study, we randomised adults with symptomatic, sonographically active CD with ileal involvement on ≥ 2 months' stable medical therapy to 4 weeks of a HED or LED modelled on Australian healthy eating guidelines. We measured the Harvey-Bradshaw Index (HBI), sonographic indices (IBUS-SAS, bowel wall thickness), quality of life (QOL) and fatigue at baseline and study completion. RESULTS We randomised 24 patients, mean age 37 (95% CI 32, 41) years, 12 male, HBI 6 (6, 8), bowel wall thickness 6.0 (5.5-6.6) mm. Adherence was > 95%. Clinical remission (HBI < 5) occurred in 9/12 on HED and 7/12 on LED; 2 and 3, respectively, withdrew early with increasing gastrointestinal symptoms. IBUS-SAS fell from 51 (35, 68) to 33 (15, 51) on HED (p = 0.014) and from 57 (38, 76) to 44 (29, 59) on LED (p = 0.01). Bowel wall thickness reduced by 34% on HED and 15% on LED in those who completed the study. QOL and fatigue improved on both diets (p ≤ 0.05). There were no statistically significant differences in outcomes between diets. CONCLUSIONS In the context of a healthy diet, the emulsifier content had no influence over disease activity over 4 weeks in patients with CD. Recommendations to avoid emulsifiers in patients with active CD are not supported. Australian New Zealand Clinical Trials Registry (ACTRN12619001099112).
Collapse
Affiliation(s)
- Jessica A. Fitzpatrick
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| | - Peter R. Gibson
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| | - Kirstin M. Taylor
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| | - Ellen J. Anderson
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| | - Antony B. Friedman
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| | - Zaid S. Ardalan
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| | - Rebecca L. Smith
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| | - Emma P. Halmos
- Department of GastroenterologySchool of Translational Medicine, Monash University and Alfred HealthMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Valitutti F, Mennini M, Monacelli G, Fagiolari G, Piccirillo M, Di Nardo G, Di Cara G. Intestinal permeability, food antigens and the microbiome: a multifaceted perspective. FRONTIERS IN ALLERGY 2025; 5:1505834. [PMID: 39850945 PMCID: PMC11754301 DOI: 10.3389/falgy.2024.1505834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases. Several gaps of knowledge still exist as regards this multi-level interaction. In this review we aim to summarize current evidence linking food antigens, microbiota and gut permeability interference in diverse disease conditions such as celiac disease (CeD), non-celiac wheat sensitivity (NCWS), food allergies (FA), eosinophilic gastrointestinal disorder (EOGID) and irritable bowel syndrome (IBS). Specific food elimination diets are recommended for CeD, NCWS, FA and in some cases for EOGID. Undoubtfully, each of these conditions is very different and quite unique, albeit food antigens/compounds, intestinal permeability and specific microbiota signatures orchestrate immune response and decide clinical outcomes for all of them.
Collapse
Affiliation(s)
- Francesco Valitutti
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Maurizio Mennini
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Gianluca Monacelli
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Giulia Fagiolari
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Marisa Piccirillo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Goenka S. Comparative evaluation of six commercial adult toothpaste formulations reveals cytotoxicity and altered functions in a human oral melanocyte model: an in vitro study. Odontology 2025; 113:163-179. [PMID: 38822982 DOI: 10.1007/s10266-024-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
This study aims to compare six commercial adult toothpaste (labeled as A, B, C, D, E, and F) for cytotoxicity and melanocyte function alterations in vitro using primary human epidermal melanocytes from a Caucasian donor (HEMn-LP cells) as a model of oral melanocytes. Cells were incubated with toothpaste extracts (50% w/v) in culture media at dilutions (1:25, 1:50, 1:100, 1:200, 1:500, 1:800, and 1:1000) for 24 h. MTS and LDH assays were used to assess cytotoxicity. The effects of noncytotoxic toothpaste concentrations on melanocyte functional endpoints were then examined using spectrophotometric methods. All toothpaste showed concentration-dependent cytotoxicity that was heterogeneous across toothpaste containing SLS detergent. IC50 values of cytotoxicity followed the order: A = E > C > B > D > F. To compare toothpaste, they were tested at 1:800 and 1:1000 dilutions that were noncytotoxic after 24 h. None of the toothpaste affected cellular melanin production. However, toothpaste A, C, and D suppressed tyrosinase activity at both dilutions, while toothpaste B suppressed tyrosinase activity only at 1:800 dilution. Toothpaste A, C, E, and F elevated ROS production at 1:800 dilution, with no change at 1:1000 dilution. Toothpaste has a heterogeneous effect on melanocytes. Toothpaste B, E, and F at 1:1000 dilution were the safest as they did not alter melanocyte functions at this dilution, although toothpaste F is the least cytotoxic of these. Future studies are necessary to expand these results in a physiological environment of oral tissue. The findings of this study provide novel insight into the biocompatibility studies of toothpaste on oral melanocytes. They can aid dental practitioners and consumers in selecting noncytotoxic toothpaste that do not contribute to ROS generation by melanocytes in the oral cavity or lead to cytotoxicity and impaired cellular function.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5281, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Albaladejo-Riad N, El Qendouci M, Cuesta A, Esteban MÁ. Ability of short-chain fatty acids to reduce inflammation and attract leucocytes to the inflamed skin of gilthead seabream (Sparus aurata L.). Sci Rep 2024; 14:31404. [PMID: 39732927 PMCID: PMC11682419 DOI: 10.1038/s41598-024-83033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
The aim of the study was to investigate the potential preventive use of short-chain fatty acids (SCFAs) to modulate inflammatory responses in gilthead seabream (Sparus aurata) skin. Initially, in vitro experiments were conducted to evaluate the effects of various concentrations of butyric acid, acetic acid and propionic acid, as well as their combination, on the cytotoxicity and cell viability of three different cell lines. The results determined the safe concentration of SCFAs, which was then used for an in vivo study. Fish were allocated into six groups and administered different combinations of SCFAs via intramuscular injection, followed by an injection of carrageenan as an inflammatory agent. Skin samples were taken from the injection site three hours post-administration and used to analyse gene expression and immunohistochemistry. The results demonstrated that treatment with SCFAs resulted in increased expression of proinflammatory and anti-inflammatory genes and leucocyte markers in the inflamed skin of fish. The highest gene expression and recruitment of acidophilic granulocytes were observed in fish injected with propionic acid and carrageenan. It is concluded that acetic acid is the most effective anti-inflammatory SCFA tested in gilthead seabream exposed to acute inflammation induced by carrageenan injection. Acetic acid exhibited the most pronounced direct anti-inflammatory effect, although propionic acid appeared to play a significant role in several mechanisms contributing to the resolution of inflammation and recruitment of immune cells to the site of carrageenan-inflamed area in gilthead seabream skin.
Collapse
Affiliation(s)
- Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Mouna El Qendouci
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences, University of Mohammed V, Rabat, Morocco
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
6
|
Besedin D, Shah R, Brennan C, Panzeri E, Hao Van TT, Eri R. Food additives and their implication in inflammatory bowel disease and metabolic syndrome. Clin Nutr ESPEN 2024; 64:483-495. [PMID: 39522876 DOI: 10.1016/j.clnesp.2024.10.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Over the past half a century the Western diet (WD) has become saturated with food additives. During the same time, there has been an increase in Western diseases, such as inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Emerging research has shown that food additives may be implicated in these diseases. However, critics have suggested that some of this research is problematic and may cause unnecessary fear amongst consumers. Here we review the emerging research concerning food additives and their implication in IBD and MetS, and criticisms thereof. To make the review more relevant to the WD, we only included common food additives, selected using supermarket data. Over a dozen common food additives from four categories were identified for their potential role in directly promoting these diseases. A consistent limitation of the research was the use of unrealistic human exposure conditions, such as high doses and modes of administration, as well as a lack of human trials. Another limitation was the absence of studies investigating the potential synergetic effect of consuming multiple food additives, as is common in the WD. Despite the limitations, there is some evidence that common food additives may be contributing to these additives, especially via their dysbiotic effect on the gut microbiota.
Collapse
Affiliation(s)
- Darislav Besedin
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rohan Shah
- School of Health and Biomedical Sciences, STEM College, RMIT University, Vic 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia.
| | - Charles Brennan
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | | | - Thi Thu Hao Van
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| |
Collapse
|
7
|
Félix J, Bellanco A, Díaz-Del Cerro E, Martínez-Cuesta MC, Requena T, De la Fuente M. High exposure to carrageenan in young mice may impair behavior, immunity, redox and inflammatory states throughout the aging process. Food Res Int 2024; 197:115143. [PMID: 39593356 DOI: 10.1016/j.foodres.2024.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The rate of aging can be determined, among other factors, by the diet during childhood and adolescence. Many additives are currently added to food, including carrageenan (E-407), a thickener derived from red algae. Although the acceptable daily intake for carrageenan is periodically re-evaluated, children show the highest levels of exposure with unknown potential effects on the aging process and longevity. Therefore, the aim of the present study is to know the effects in young mice of carrageenan intake, at the maximum level exposure scenario surveyed in children, on the homeostatic (nervous and immune) systems, the redox-inflammatory state and the repercussion that this may have on the aging and longevity of the animals. Swiss mice of 2 months of age (equivalent to 8 years old children) were used and 4 experimental groups were created (N = 10 animals/group): females and males that ingested carrageenan (540 mg/kg of κ-carrageenan in 200 μL of drinking water by pipette tip administration) and control females and males that took 200 μL of water, daily for 15 days. After that time, a battery of behavioral tests was performed, and peritoneal leukocytes were extracted to assess different immune functions and their redox and inflammatory state. These tests were repeated when the mice reached adulthood (7 months) and old age (18 months). Fecal microbiota was analyzed at the same sampling times. The results showed that animals that ingested carrageenan presented elevated levels of anxiety, impaired immune function and increased oxidative-inflammatory stress, with these effects extending into adulthood and old age and leading to reduced longevity in these mice. Overall, observed microbiota changes were related more to the aging process than the carrageenan intake. In conclusion, the exposure to high doses of the food additive carrageenan in childhood may contribute to an impairment of homeostasis, and consequently of health, with an increased oxidative-inflammatory stress, which implies an accelerated aging process, leading to a lower longevity.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Alicia Bellanco
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación CIAL-CSIC, Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación CIAL-CSIC, Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación CIAL-CSIC, Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| |
Collapse
|
8
|
Wagner R, Buettner J, Heni M, Fritsche L, Kullmann S, Wagmüller M, Peter A, Preissl H, Machann J, Jumpertz von Schwartzenberg R, Birkenfeld AL, Pape UF, van Hall G, Plomgaard P, Häring HU, Fritsche A, Thompson KN, Klein R, Stefan N. Carrageenan and insulin resistance in humans: a randomised double-blind cross-over trial. BMC Med 2024; 22:558. [PMID: 39593091 PMCID: PMC11590543 DOI: 10.1186/s12916-024-03771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The potential impact of specific food additives, common in Western diets, on the risk of developing type 2 diabetes is not well understood. This study focuses on carrageenan, a widely used food additive known to induce insulin resistance and gut inflammation in animal models, and its effects on human health. METHODS In a randomised, double-blind, placebo-controlled, cross-over trial conducted at a university hospital metabolic study centre, 20 males (age 27.4 ± 4.3 years, BMI 24.5 ± 2.5 kg/m2) participated. The intervention involved oral intake of carrageenan (250 mg) or placebo in the morning and in the evening and each intervention lasted 2 weeks. The primary outcome measured was insulin sensitivity (using oral glucose tolerance test [OGTT] and hyperinsulinaemic-euglycaemic clamp). Additional end-points included whole body and hepatic insulin sensitivity, MRI-measured brain inflammation and insulin resistance, intestinal permeability (via lactulose-mannitol test and plasma zonulin levels), and gut microbiome composition. Immune-cell activation and pro-inflammatory cytokine release from peripheral blood mononuclear cells were measured. RESULTS Overall insulin sensitivity did not show significant differences between the treatments. However, interactions between BMI and treatment were observed (OGTT-based insulin sensitivity index: p=0.04, fasting insulin resistance: p=0.01, hepatic insulin sensitivity index: p=0.04). In overweight participants, carrageenan exposure resulted in lower whole body and hepatic insulin sensitivity, a trend towards increased brain inflammation, and elevated C-reactive protein (CRP) and IL-6 levels compared to placebo. Additionally, carrageenan was associated with increased intestinal permeability. In vitro natural killer (NK-)cell activation and increased pro-inflammatory cytokine release were found after carrageenan exposure in the participant's peripheral blood mononuclear cells. CONCLUSIONS These findings suggest that carrageenan, a common food additive, may contribute to insulin resistance and subclinical inflammation in overweight individuals through pro-inflammatory mechanisms in the gut. Further investigation into the long-term health impacts of carrageenan and other food additives is warranted. TRIAL REGISTRATION NCT02629705.
Collapse
Affiliation(s)
- Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Moorenstr 5, Düsseldorf, 40225, Germany.
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- Department of Biostatistics, Microbiome Analysis Core, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Janine Buettner
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Moritz Wagmüller
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry; Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Section On Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Reiner Jumpertz von Schwartzenberg
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ulrich-Frank Pape
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin, Berlin, Germany
- Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Gerrit van Hall
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kelsey N Thompson
- Department of Biostatistics, Microbiome Analysis Core, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Reinhild Klein
- Department of Internal Medicine II, Division of Haematology, Oncology, Immunology and Rheumatology, University Hospital of Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
9
|
Justil-Guerrero HJ, Arroyo-Acevedo JL, Rojas-Armas JP, García-Bustamante CO, Palomino-Pacheco M, Almonacid-Román RD, Calva Torres JW. Evaluation of Bioactive Compounds, Antioxidant Capacity, and Anti-Inflammatory Effects of Lipophilic and Hydrophilic Extracts of the Pericarp of Passiflora tripartita var. mollissima at Two Stages of Ripening. Molecules 2024; 29:4964. [PMID: 39459332 PMCID: PMC11510094 DOI: 10.3390/molecules29204964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic disease inflammation requires safe complementary treatments. The pericarp of Passiflora tripartita var. mollissima (PTM) contains potential anti-inflammatory metabolites. This study aimed to evaluate the bioactive components, antioxidant capacity, and anti-inflammatory effects of PTM extracts at two ripening stages. The bioactive compounds in the hydrophilic and lipophilic extracts of mature and green pericarps were identified by GC-MS and UV-VIS, while the antioxidant capacity was measured by free radical reduction. Anti-inflammatory effects were tested using a rat paw edema model with carrageenan-induced edema, indomethacin, or PTM extracts (100, 250, and 500 mg/kg). The effect of mature hydrophilic extract was further evaluated in an air pouch model, where rats received the placebo, carrageenan, indomethacin, or the extract (500 and 1000 mg/kg). Leukocytes, cytokines, and markers of oxidative stress were evaluated. The results showed the presence of organic compounds, total phenols, and flavonoids. The mature hydrophilic extract exhibited the highest antioxidant activity. At 500 mg/kg, it reduced edema, leukocyte migration, and levels of IL-1β, IL-6, and TNF-α while managing oxidative stress and preventing histological damage. In conclusion, PTM contains bioactive compounds with potential pharmacological properties. The hydrophilic extract of the mature pericarp, at a dose of 500 mg/kg, exhibits an enhanced antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Hugo Jesús Justil-Guerrero
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Jorge Luis Arroyo-Acevedo
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Juan Pedro Rojas-Armas
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Carlos Orlando García-Bustamante
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Miriam Palomino-Pacheco
- Laboratory of Biochemistry, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
| | - Robert Dante Almonacid-Román
- Laboratory of Microbiology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Huanta 1182, Lima 15001, Peru;
| | - James Willan Calva Torres
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador;
| |
Collapse
|
10
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
11
|
Zhang P, Xue Y, Cao Z, Guo Y, Pang X, Chen C, Zhang W. Raffinose Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Targeting the Inflammatory TLR4-MyD88-NF-κB Signaling Pathway. Foods 2024; 13:1849. [PMID: 38928791 PMCID: PMC11203344 DOI: 10.3390/foods13121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to explore the protective effects of raffinose (Raf) against inflammatory bowel disease in mice with colitis. Mice were administered 100, 200, or 400 mg/kg Raf for 21 d, followed by drinking-water containing 3% dextran sulfate sodium salt (DSS) for 3 d. Thereafter, the phenotype, pathological lesions in the colon, cytokines levels, and gut microbiota were evaluated. Treatment with Raf reduced the severity of the pathological changes in the colon, mitigating the reduction in colon length. Following Raf intervention, serum levels of inflammatory cytokines (IL-2, IL-6, IL-1β, and TNF-α) tended to return to normal. These results suggest that the anti-inflammatory effects of Raf are associated with a reduction in TLR4-MyD88-NF-κB pathway expression in mouse colonic tissues. Analysis of gut microbiota abundance and its correlation with colitis parameters revealed that DSS-induced dysbiosis was partially mitigated by Raf. In conclusion, Raf exerts a protective effect in colitis by modulating the gut microbiota and TLR4-MyD88-NF-κB pathway.
Collapse
|
12
|
Prokopiuk V, Onishchenko A, Tryfonyuk L, Posokhov Y, Gorbach T, Kot Y, Kot K, Maksimchuk P, Nakonechna O, Tkachenko A. Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes. Cell Biochem Biophys 2024; 82:747-766. [PMID: 38334853 DOI: 10.1007/s12013-024-01225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Aim In the current study, hemocompatibility of three major commercially available types of carrageenans (ι, κ and λ) was investigated focusing on eryptosis. MATERIALS AND METHODS Carrageenans of ι-, κ- and λ-types were incubated with washed erythrocytes (hematocrit 0.4%) at 0-1-5-10 g/L for either 24 h or 48 h. Incubation was followed by flow cytometry-based quantitative analysis of eryptosis parameters, including cell volume, cell membrane scrambling and reactive oxygen species (ROS) production, lipid peroxidation markers and confocal microscopy-based evaluation of intracellular Ca2+ levels, assessment of lipid order in cell membranes and the glutathione antioxidant system. Confocal microscopy was used to assess carrageenan cellular internalization using rhodamine B isothiocyanate-conjugated carrageenans. RESULTS All three types of carrageenans were found to trigger eryptosis. Pro-eryptotic properties were type-dependent and λ-carrageenan had the strongest impact inducing phosphatidylserine membrane asymmetry, changes in cell volume, Ca2+ signaling and oxidative stress characterized by ROS overproduction, activation of lipid peroxidation and severe glutathione system depletion. Eryptosis induction by carrageenans does not require their uptake by erythrocytes. Changes in physicochemical properties of cell membrane were also type-dependent. No carrageenan-induced generation of superoxide and hydroxyl radicals was observed in cell-free milieu. CONCLUSIONS Our findings suggest that ι-, κ- and λ-types trigger eryptosis in a type-dependent manner and indicate that carrageenans can be further investigated as potential eryptosis-regulating therapeutic agents.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st, 33000, Rivne, Ukraine
| | - Yevgen Posokhov
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
- Department of Organic Chemistry, Biochemistry, Paints and Coatings, The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000, Kharkiv, Ukraine
| | - Tetyana Gorbach
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave., 61022, Kharkiv, Ukraine
| | - Yurii Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022, Kharkiv, Ukraine
| | - Kateryna Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022, Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072, Kharkiv, Ukraine
| | - Oksana Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave., 61022, Kharkiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| |
Collapse
|
13
|
Ye Z, Li L, Li Y, Hu Y, Wu M, Yu H, Zhao Q, Zhang C, Lu F, Peng X, Sun M, Ganesan K, Qin K, Ye Q. Tou Nong powder obstructs ulcerative colitis through the regulation of NF-κB/NLRP3/Caspase-1/GSDMD inflammasome pyroptotic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116846. [PMID: 37356744 DOI: 10.1016/j.jep.2023.116846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tou Nong Powder (TNP), a classical Chinese medicinal formula originated from the Chinese Ming Dynasty, has been applied to treat skin ulcers in patients with deficient constitutions. According to theory of traditional Chinese medicine, colonic ulcers share similar pathological conditions with skin ulcers, and consequently, TNP has been applied to ulcerative colitis (UC) safely and effectively. AIM OF STUDY To investigate whether TNP obstructs 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced enteric inflammation through regulation of NLRP3 inflammasome and attenuating enteric pyroptosis. MATERIALS AND METHODS Network pharmacology and UPLC-Q-TOF/MS were operated to identify compounds and pharmacological potential targets. The therapeutic effects of TNP were assessed on TNBS induced colitis via general symptoms (disease activity index, colonic weight and length) and histopathological observation. The NF-κB/NLRP3/Caspase-1/GSDMD signaling pathway regulation was investigated by Western blot and real time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS TNP ameliorates the disease activity index, reverses the increase of colonic weight increase, alleviates colonic shortening and colonic histopathological injury. A decrease in tumor necrosis factor α (TNF-α), diamine oxidase (DAO), intercellular adhesion molecule-1 (ICAM-1), and endo-toxin (ET) were investigated in peripheral circulation. Moreover, TNP significantly obstructed the NF-κB/NLRP3/Caspase-1/GSDMD signaling pathway. CONCLUSION TNP displays a promising therapeutic effect on UC via suppressing NF-κB/NLRP3/Caspase-1/GSDMD signaling pathway and reducing the expression of IL-1β and IL-18.
Collapse
Affiliation(s)
- Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yuzheng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, China.
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Fating Lu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Road, Chengdu, Sichuan, China.
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, China.
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Tahiri M, Johnsrud C, Steffensen IL. Evidence and hypotheses on adverse effects of the food additives carrageenan (E 407)/processed Eucheuma seaweed (E 407a) and carboxymethylcellulose (E 466) on the intestines: a scoping review. Crit Rev Toxicol 2023; 53:521-571. [PMID: 38032203 DOI: 10.1080/10408444.2023.2270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
This scoping review provides an overview of publications reporting adverse effects on the intestines of the food additives carrageenan (CGN) (E 407)/processed Eucheuma seaweed (PES) (E 407a) and carboxymethylcellulose (CMC) (E 466). It includes evidence from human, experimental mammal and in vitro research publications, and other evidence. The databases Medline, Embase, Scopus, Web of Science Core Collection, Cochrane Database of Systematic Reviews and Epistemonikos were searched without time limits, in addition to grey literature. The publications retrieved were screened against predefined criteria. From two literature searches, 2572 records were screened, of which 224 records were included, as well as 38 records from grey literature, making a total of 262 included publications, 196 on CGN and 101 on CMC. These publications were coded and analyzed in Eppi-Reviewer and data gaps presented in interactive maps. For CGN, five, 69 and 33 research publications on humans, experimental mammals and in vitro experiments were found, further separated as degraded or native (non-degraded) CGN. For CMC, three human, 20 animal and 14 in vitro research publications were obtained. The most studied adverse effects on the intestines were for both additives inflammation, the gut microbiome, including fermentation, intestinal permeability, and cancer and metabolic effects, and immune effects for CGN. Further studies should focus on native CGN, in the form and molecular weight used as food additive. For both additives, randomized controlled trials of sufficient power and with realistic dietary exposure levels of single additives, performed in persons of all ages, including potentially vulnerable groups, are needed.
Collapse
Affiliation(s)
- Mirlinda Tahiri
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Celine Johnsrud
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
15
|
Abaidullah M, La S, Liu M, Liu B, Cui Y, Wang Z, Sun H, Ma S, Shi Y. Polysaccharide from Smilax glabra Roxb Mitigates Intestinal Mucosal Damage by Therapeutically Restoring the Interactions between Gut Microbiota and Innate Immune Functions. Nutrients 2023; 15:4102. [PMID: 37836386 PMCID: PMC10574425 DOI: 10.3390/nu15194102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Smilax glabra Roxb (S. glabra) is a conventional Chinese medicine that is mainly used for the reliability of inflammation. However, bioactive polysaccharides from S. glabra (SGPs) have not been thoroughly investigated. Here, we demonstrate for the first time that SGPs preserve the integrity of the gut epithelial layer and protect against intestinal mucosal injury induced by dextran sulfate sodium. Mechanistically, SGPs mitigated colonic mucosal injury by restoring the association between the gut flora and innate immune functions. In particular, SGPs increased the number of goblet cells, reduced the proportion of apoptotic cells, improved the differentiation of gut tight junction proteins, and enhanced mucin production in the gut epithelial layer. Moreover, SGPs endorsed the propagation of probiotic bacteria, including Lachnospiraceae bacterium, which strongly correlated with decreased pro-inflammatory cytokines via the blocking of the TLR-4 NF-κB and MyD88 pathways. Overall, our study establishes a novel use of SGPs for the treatment of inflammatory bowel disease (IBD)-associated mucosal injury and provides a basis for understanding the therapeutic effects of natural polysaccharides from the perspective of symbiotic associations between host innate immune mechanisms and the gut microbiome.
Collapse
Affiliation(s)
- Muhammad Abaidullah
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Shaokai La
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
16
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Guo J, Shang X, Chen P, Huang X. How does carrageenan cause colitis? A review. Carbohydr Polym 2023; 302:120374. [PMID: 36604052 DOI: 10.1016/j.carbpol.2022.120374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Carrageenan is a common additive, but mounting studies have reported that it may cause or aggravate inflammation in the intestines. The safety of carrageenan remains controversial and its inflammatory mechanisms are unclear. In this review, the pathogenesis of colitis by carrageenans was discussed. We analyzed the pathogenesis of inflammatory bowel disease, followed that line of thought, the existing evidence of carrageenans causing colitis in cellular and animal models was summarized to draw its colitis pathogenesis. Two pathways were described including: 1) carrageenan changed the composition of intestinal microbiota, especially Akkermansia muciniphila, which destroyed the mucosal barrier and triggered the inflammatory immune response; and 2) carrageenan directly contacted with receptors on epithelial cells and activated the NF-κB inflammatory pathway. This review aim to provide guidance for exploring the treatment of colitis caused by carrageenan, and safe processing and utilization of carrageenan in food industry, which is worthy of study in the future.
Collapse
Affiliation(s)
- Juanjuan Guo
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xuke Shang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peilin Chen
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Xiaozhou Huang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| |
Collapse
|
18
|
Cassotta M, Cianciosi D, De Giuseppe R, Navarro-Hortal MD, Armas Diaz Y, Forbes-Hernández TY, Pifarre KT, Pascual Barrera AE, Grosso G, Xiao J, Battino M, Giampieri F. Possible role of nutrition in the prevention of inflammatory bowel disease-related colorectal cancer: A focus on human studies. Nutrition 2023; 110:111980. [PMID: 36965240 DOI: 10.1016/j.nut.2023.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Patients with inflammatory bowel disease (IBD) are at substantially high risk for colorectal cancer (CRC). IBD-associated CRC accounts for roughly 10% to 15% of the annual mortality in patients with IBD. IBD-related CRC also affects younger patients compared with sporadic CRC, with a 5-y survival rate of 50%. Regardless of medical therapies, the persistent inflammatory state characterizing IBD raises the risk for precancerous changes and CRC, with additional input from several elements, including genetic and environmental risk factors, IBD-associated comorbidities, intestinal barrier dysfunction, and gut microbiota modifications. It is well known that nutritional habits and dietary bioactive compounds can influence IBD-associated inflammation, microbiome abundance and composition, oxidative stress balance, and gut permeability. Additionally, in recent years, results from broad epidemiologic and experimental studies have associated certain foods or nutritional patterns with the risk for colorectal neoplasia. The present study aimed to review the possible role of nutrition in preventing IBD-related CRC, focusing specifically on human studies. It emerges that nutritional interventions based on healthy, nutrient-dense dietary patterns characterized by a high intake of fiber, vegetables, fruit, ω-3 polyunsaturated fatty acids, and a low amount of animal proteins, processed foods, and alcohol, combined with probiotic supplementation have the potential of reducing IBD-activity and preventing the risk of IBD-related CRC through different mechanisms, suggesting that targeted nutritional interventions may represent a novel promising approach for the prevention and management of IBD-associated CRC.
Collapse
Affiliation(s)
- Manuela Cassotta
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Maria Dolores Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Tamara Yuliett Forbes-Hernández
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Project Department, Universidade Internacional do Cuanza, Cuito, Bié, Angola
| | - Alina Eugenia Pascual Barrera
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Project Management, Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, Ourense, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
19
|
Vissers E, Wellens J, Sabino J. Ultra-processed foods as a possible culprit for the rising prevalence of inflammatory bowel diseases. Front Med (Lausanne) 2022; 9:1058373. [PMID: 36419796 PMCID: PMC9676654 DOI: 10.3389/fmed.2022.1058373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract, and the exact pathogenesis is still unclear. It is believed that IBD develops in response to a complex interaction between the microbiota, environmental factors, and the immune system, in genetically predisposed individuals. Identifying these environmental factors will offer more insight in the development of the disease, and reveal new therapeutic targets for IBD patients. One of the environmental factors that has gained more interest over the last years is our diet. The prevalence of IBD has increased significantly and this increase is thought to be associated with a ‘Western diet', characterized by high intake of fats, added sugar, meat, and ultra-processed foods (UPFs). The UPFs now account for almost 50% of the energy intake in Westernized countries and are therefore an important characteristic of this Western diet. UPFs are characterized by higher amounts of salt, fat, sugar and the presence of different food additives. Epidemiological studies have found associations between UPF intake and a range of non-communicable diseases, including inflammatory bowel disease (IBD). Preclinical and clinical evidence suggest that non-nutritive ingredients and additives, present in UPFs, can negatively affect different components of the intestinal barrier, such as the microbiota, the mucus layer, the epithelium, and the immune cells in the lamina propria. Disruption of this barrier can cause the immune system to encounter an increased bacterial exposure, leading to an aberrant immune response. In this article, the available evidence on the possible role of UPFs and their components in the increasing incidence and prevalence of IBD is reviewed. These findings can be translated to the clinic and may be helpful to consider when giving dietary advice to IBD patients. A better understanding of the role of UPFs may lead to less restrictive diets for patients with IBD, hence increasing the dietary compliance and efficacy of exclusion diets.
Collapse
Affiliation(s)
- Eva Vissers
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Judith Wellens
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: João Sabino
| |
Collapse
|
20
|
Campos-Sánchez JC, Guardiola FA, Esteban MÁ. In vitro effects of λ-carrageenin in the head-kidney leucocytes of gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2022; 127:813-821. [PMID: 35842113 DOI: 10.1016/j.fsi.2022.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The λ-carrageenin is a sulphated mucopolysaccharide that has been used for decades to induce experimental inflammation in mammals. However, it has been little considered in fish. We studied the in vitro effects of λ-carrageenin on gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs). For this purpose, HKLs were incubated with serial concentrations (from 0 to 1,000 μg mL-1) of λ-carrageenin for 3, 6, 12 and 24 h to assess its influence on cell viability and morphology, cell activity and modulation of several selected inflammation-related genes. The viability results demonstrated that λ-carrageenin has no negative effects on HKLs. The respiratory burst activity and phagocytic ability of HKLs after being incubated with λ-carrageenin (100 and 1,000 μg mL-1) for 24 h were increased, whereas the phagocytic capacity was inhibited by the higher dose at the same experimental time compared with control samples. However, the peroxidase activity of HKLs was not changed by incubation with λ-carrageenin. According to transmission electron microscopy results, incubation of HKLs with the higher dose of λ-carrageenin appeared to activate the cells being evident different morphological changes without sign of cell death. Furthermore, up-regulation of three proinflammatory cytokines (il1b, tnfa, and il6) and down-regulation of anti-inflammatory genes (tgfb) were denoted in HKLs incubated with carrageenin. The present results provide a detailed approach to the effects of λ-carrageenin on fish leucocytes, which could have some impact on how we understand the response of these cells when inducing an inflammatory process in fish.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
21
|
Wu W, Zhou J, Xuan R, Chen J, Han H, Liu J, Niu T, Chen H, Wang F. Dietary κ-carrageenan facilitates gut microbiota-mediated intestinal inflammation. Carbohydr Polym 2022; 277:118830. [PMID: 34893247 DOI: 10.1016/j.carbpol.2021.118830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The inflammatory effects of carrageenan (CGN), a ubiquitous food additive, remains controversial. Gut microbiota and intestinal homeostasis may be a breakthrough in resolving this controversy. Here we show that, κ-CGN did not cause significant inflammatory symptoms, but it did cause reduced bacteria-derived short-chain fatty acids (SCFAs) and decreased thickness of the mucus layer by altering microbiota composition. Administration of the pathogenic bacterium Citrobacter rodentium, further aggravated the inflammation and mucosal damage in the presence of κ-CGN. Mucus layer degradation and altered SCFA levels could be reproduced by fecal transplantation from κ-CGN-fed mice, but not from germ-free κ-CGN-fed mice. These symptoms could be partially repaired by administering probiotics. Our results suggest that κ-CGN may not be directly inflammatory, but it creates an environment that favors inflammation by perturbation of gut microbiota composition and then facilitates expansion of pathogens, and this effect may be partially reversed by the introduction of probiotics.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiawei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rongrong Xuan
- Department of Gynecology and Obstetrics, the Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hui Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingwangwei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tingting Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315040, China.
| |
Collapse
|
22
|
Campos-Sánchez JC, Vitarelli E, Guardiola FA, Ceballos-Francisco D, García Beltrán JM, Ieni A, Esteban MÁ. Implication of mucus-secreting cells, acidophilic granulocytes and monocytes/macrophages in the resolution of skin inflammation caused by subcutaneous injection of λ/κ-carrageenin to gilthead seabream (Sparus aurata) specimens. JOURNAL OF FISH DISEASES 2022; 45:19-33. [PMID: 34549432 DOI: 10.1111/jfd.13528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
To date, the mechanisms of inflammation have been poorly studied in fish of commercial interest, due to the lack of development of appropriate experimental models. The current study evaluated a local inflammation triggered by a polymeric carrageenin mixture (a mucopolysaccharide derived from the red seaweed Chondrus crispus) in the skin of gilthead seabream (Sparus aurata). Fish were injected subcutaneously with phosphate-buffered saline (as control) or λ/κ-carrageenin (1%), and skin samples from the injection sites were collected 1.5, 3 and 6 hr post-injection, processed for inclusion in paraplast and stained with haematoxylin-eosin, Alcian blue or periodic acid-Schiff. Furthermore, immunohistochemistry and expression analyses of several cells' markers and proinflammatory genes were also analysed in samples of the injected sites. Microscopic results indicated an increased number of skin mucus-secreting cells and acidophilic granulocytes in the skin of fish studied at 1.5 hr and 3 hr post-injection with carrageenin, respectively, with respect to the data obtained in control fish. Otherwise, both the gene expression of the non-specific cytotoxic cell marker (granzyme B, grb) and the proinflammatory cytokine (interleukin-1β, il-1β) were up-regulated at 1.5 hr in the skin of fish injected with carrageenin compared with the control fish, whilst the gene expression of acidophilic granulocyte markers (NADPH oxidase subunit Phox22 and Phox40, phox22 and phox40) was up-regulated at 3 and 6 hr in the carrageenin group, compared with the control group. In addition, the gene expression of myeloperoxidase (mpo) was also up-regulated at 6 hr in the skin of fish injected with carrageenin in comparison with control samples. The present results indicate the chronological participation of two important immune cells involved in the resolution of the inflammation in the skin of gilthead seabream.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Enrica Vitarelli
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - Francisco A Guardiola
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - José María García Beltrán
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - María Ángeles Esteban
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
23
|
Jarmakiewicz-Czaja S, Piątek D, Filip R. The impact of selected food additives on the gastrointestinal tract in the example of nonspecific inflammatory bowel diseases. Arch Med Sci 2022; 18:1286-1296. [PMID: 36160334 PMCID: PMC9479712 DOI: 10.5114/aoms/125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Various types of food additives are widely used in the food industry. Due to their properties extending the usefulness for consuming food products, they give them different colours, consistency, or taste. The products are marked 'E' and the code is assigned to the subscription used. Many of the supplements affect human health negatively. Emulsifiers or stabilizers can lead to epithelial loads and the development of inflammation. Sucrose and other sweeteners may change the composition of the intestinal microflora and thus lead to intestinal blockage. Some additives classified as preservatives are available and may predispose to intestinal dysbiosis. Available substances belonging to food dyes may predispose to genotoxic and cytotoxic effects and cause inflammation in the intestines. Substances added to food can also cause disorders of intestinal homeostasis.
Collapse
Affiliation(s)
| | - Dominika Piątek
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Lublin, Poland
| | - Rafał Filip
- Department of Gastroenterology with IBD, Unit of Clinical Hospital 2, Rzeszow, Poland
- Medical College of Rzeszow University, Rzeszow, Poland
| |
Collapse
|
24
|
Hou Y, Wang SF, Zhou K, Dai SX. Comparison and recommendation of dietary patterns based on nutrients for Eastern and Western patients with inflammatory bowel disease. Front Nutr 2022; 9:1066252. [PMID: 36817063 PMCID: PMC9928567 DOI: 10.3389/fnut.2022.1066252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Inflammatory bowel disease (IBD), a non-specific chronic idiopathic inflammatory condition of the digestive system, requires lifelong treatment in which drugs are the mainstay, along with surgery when necessary. In adjuvant therapies, the diet is considered to be an essential, controllable, and economical component. However, the majority of recent nutrition research has focused on the general effects of nutrients on IBD, with little attention given to the advantages and negative aspects of individual foods and dietary combinations. To cover these shortcomings, we surveyed the benefits and drawbacks of typical foods and their chemical compositions on intestinal pathophysiology by comparing nutrients existing in the foods in Eastern and Western countries. Moreover, for Eastern and Western patients with IBD, we innovatively propose a 3-step dietary recommendation based on modified customary eating habits, including lowering the triggering foods, modifying dietary advice to control disease progression, and improving surgery prognosis.
Collapse
Affiliation(s)
- Yue Hou
- Department of Gastroenterology, (Guangdong Provincial Geriatrics Institute), National Key Clinical Specialty, Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Sai-Feng Wang
- Department of Gastroenterology, (Guangdong Provincial Geriatrics Institute), National Key Clinical Specialty, Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shi-Xue Dai
- Department of Gastroenterology, (Guangdong Provincial Geriatrics Institute), National Key Clinical Specialty, Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Shi-Xue Dai,
| |
Collapse
|
25
|
Campos-Sánchez JC, Mayor-Lafuente J, González-Silvera D, Guardiola FA, Esteban MÁ. Acute inflammatory response in the skin of gilthead seabream (Sparus aurata) caused by carrageenin. FISH & SHELLFISH IMMUNOLOGY 2021; 119:623-634. [PMID: 34656758 DOI: 10.1016/j.fsi.2021.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Although inflammation is a well-characterized process in mammals, few studies have dealt with the mechanisms involved in this process in fish. The present study evaluated the expression of inflammation-related genes in the skin of fish injected with carrageenin, which has previously been used in inflammatory models in mammals. In our case, fish were injected subcutaneously with PBS (as control) or carrageenin (1%), and skin samples from the injection site were collected 1.5, 3 and 6 h post-injection. The gene expression of inflammatory markers (csfr1, mhc-ii and phox40), several pro-inflammatory cytokines (il1b, tnfa, il6, il8 and il18) and other molecules related (such as myd88 and c-rel) were up-regulated at 1.5 and 3 h in fish injected with carrageenin compared with control levels. By contrast, the gene expression of anti-inflammatory molecules (nlrx1, nlrc5 isoform 1, ctsd and ctss) was down-regulated in fish injected with carrageenin and sampled 3 h post injection, again compared to the gene expression in control fish. According to our results, carrageenin can be considered not only a good stimulator to study skin inflammation in gilthead seabream but also this method might be use to study the modulation of fish inflammatory process caused by internal or external factors.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniel González-Silvera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
26
|
Harikrishnan R, Devi G, Van Doan H, Balamurugan P, Arockiaraj J, Balasundaram C. Hepatic antioxidant activity, immunomodulation, and pro-anti-inflammatory cytokines manipulation of κ-carrageenan (κ-CGN) in cobia, Rachycentron canadum against Lactococcus garvieae. FISH & SHELLFISH IMMUNOLOGY 2021; 119:128-144. [PMID: 34562582 DOI: 10.1016/j.fsi.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The effects of dietary k-Carrageenan (k-CGN) at 10, 20, and 30 g kg-1 on growth rate, hemato-biochemical indices, innate-adaptive parameters and modification of pro- and/or anti-inflammatory cytokines and chemokines pathway in cobia, Rachycentron canadum against Lactococcus garvieae is reported. The weight gain (WG) increased substantially (P < 0.05) in all k-CGN treated groups; the specific growth rate (SGR) was significant in healthy uninfected normal (HuN) and L. garvieae challenged (LaC) groups fed with 20 g kg-1k-CGN diet on 45 and 60 days. The white blood cell (WBC) counts, total protein (TP) level, total anti-oxidant (T-AOC), catalase (CAT), and glutathione (GSH) activities increased significantly when fed with 20 g and 30 g kg-1k-CG diets on 45th and 60th day. The immunological parameters such as phagocytic (PC) index and the activity of phagocytic (PC), respiratory burst (RB), superoxide dismutase (SOD), alternate complement pathway (ACH50), and lysozyme (LZM) were significantly enhanced with all k-CG diets in 45 and 60 days of treatment. No cumulative mortality (CM) in HuN group fed by control or any k-CGN diets. CM was 5% in LaC group fed with 20 g kg-1k-CGN diet whereas in LaC groups fed with 10 g and 30 g kg-1k-CGN diets the CM was 10%. The interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα) pro-inflammatory cytokines mRNA transcripts were one-fold high (P < 0.05) in both HuN and LaC group fed all k-CGN enriched diets on 45 and 60 days. Similarly, IL-18 and TLR2 mRNA was one-fold high expression in both groups fed the 20 g and 30 g kg-1k-CGN enriched diets on 45 or 60 days. Interferon gamma (IFNγ) and interferon regulatory factor 3/7 (IRF3/IRF7) mRNA transcripts did not change with any diet. IL-6, IL-10, and IL-11 mRNA were one-fold high expressions in both groups fed the 20 g and 30 g kg-1k-CGN enriched diets on 45 and 60 days. However, the expression of CC1, CC3, and CCR9 pro-inflammatory chemokines mRNA did not vary with any control or k-CGN enriched diets. The results indicate that diet enriched with k-CGN at 20 g kg-1 significantly influences the growth, antioxidant and innate-adaptive immune performance, and pro-anti-inflammatory cytokines and chemokines regulation in cobia against L. garvieae.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Paramaraj Balamurugan
- Department of Biotechnology, St. Michael College of Engineering and Technology, Kalayarkoil, 630 551, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| |
Collapse
|
27
|
Wu W, Zhou D, Xuan R, Zhou J, Liu J, Chen J, Han H, Niu T, Li X, Chen H, Wang F. λ-carrageenan exacerbates Citrobacter rodentium-induced infectious colitis in mice by targeting gut microbiota and intestinal barrier integrity. Pharmacol Res 2021; 174:105940. [PMID: 34666171 DOI: 10.1016/j.phrs.2021.105940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022]
Abstract
For nearly half a century, the scientific community has been unable to agree upon the safety profile of carrageenan (CGN), a ubiquitous food additive. Little is known about the mechanisms by which consumption of CGN aggravates the etiopathogenesis of murine colitis. However, analyses of gut microbiota and intestinal barrier integrity have provided a breakthrough in explaining the synergistic effect of CGN upon colitis. In Citrobacter rodentium-induced infectious murine colitis, inflammation and the clinical severity of gut tissue were aggravated in the presence of λ-CGN. Using fecal transplantation and germ-free mice experiments, we evaluated the role of intestinal microbiota on the pro-inflammatory effect of λ-CGN. Mice with high dietary λ-CGN consumption showed altered colonic microbiota composition that resulted in degradation of the colonic mucus layer, a raised fecal LPS level, and a decrease in the presence of bacterially derived short-chain fatty acids (SCFAs). Mucus layer defects and altered fecal LPS and SCFA levels could be reproduced in germ-free mice by fecal transplantation from CGN-H-fed mice, but not from germ-free CGN-H-fed mice. Our results confirm that λ-CGN may create an environment that favors inflammation by altering gut microbiota composition and gut bacterial metabolism. The present study provides evidence that the "gut microbiota-barrier axis" could be an alternative target for ameliorating the colitis promoting effect of λ-CGN.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Sleep Medicine, Ningbo 315211, China
| | - Rongrong Xuan
- Department of Gynecology and Obstetrics, the Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiawei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingwangwei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hui Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tingting Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xingxing Li
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Sleep Medicine, Ningbo 315211, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China.
| |
Collapse
|
28
|
Liao YC, Chang CC, Nagarajan D, Chen CY, Chang JS. Algae-derived hydrocolloids in foods: applications and health-related issues. Bioengineered 2021; 12:3787-3801. [PMID: 34281484 PMCID: PMC8806640 DOI: 10.1080/21655979.2021.1946359] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/09/2023] Open
Abstract
Hydrocolloids are a class of food additives with broad applications in the food industry to develop structure in food ingredients. Hydrocolloids can be synthetic, plant-based, or animal-based. Increasing consumer awareness has led to the use of natural food ingredients derived from natural sources, making algae-derived hydrocolloids more appealing nowadays. Algae-derived hydrocolloids such as carrageenan, agar, and alginate are widely used in the food industry as thickening, gelling, and emulsifying agents. Carrageenans are sulfated polysaccharides with diverse structural specificities. The safety of carrageenan use in the food industry has been widely debated recently due to the reported pro-inflammatory activities of carrageenan and the probable digestion of carrageenan by the gut microbiota to generate pro-inflammatory oligosaccharides. In contrast, both agar and alginate are primarily nontoxic, and generally no dispute regarding the use of the same in food ingredients. This review provides an overview of the algae industry, the food additives, the algae-derived hydrocolloids, the applications of algae-derived hydrocolloids in food industries, health-related studies, and other sectors, along with future perspectives. Even though differences of opinion exist in the use of carrageenan, it is continued to be used by the food industry and will be used until suitable alternatives are available. In summary, algal hydrocolloids are 'label-friendly' and considered a safe option against synthetic additives.
Collapse
Affiliation(s)
- Yu-Chen Liao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Orlacchio A, Mazzone P. The Role of Toll-like Receptors (TLRs) Mediated Inflammation in Pancreatic Cancer Pathophysiology. Int J Mol Sci 2021; 22:12743. [PMID: 34884547 PMCID: PMC8657588 DOI: 10.3390/ijms222312743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal forms of cancer, characterized by its aggressiveness and metastatic potential. Despite significant improvements in PC treatment and management, the complexity of the molecular pathways underlying its development has severely limited the available therapeutic opportunities. Toll-like receptors (TLRs) play a pivotal role in inflammation and immune response, as they are involved in pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Activation of TLRs initiates a signaling cascade, which in turn, leads to the transcription of several genes involved in inflammation and anti-microbial defense. TLRs are also deregulated in several cancers and can be used as prognostic markers and potential targets for cancer-targeted therapy. In this review we discuss the current knowledge about the role of TLRs in PC progression, focusing on the available TLRs-targeting compounds and their possible use in PC therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Pellegrino Mazzone
- Biogem Scarl, Istituto di Ricerche Genetiche Gaetano Salvatore, 83031 Ariano Irpino, Italy
| |
Collapse
|
30
|
Wang Q, Zhang L, He Y, Zeng L, He J, Yang Y, Zhang T. Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Pogozhykh D, Posokhov Y, Myasoedov V, Gubina-Vakulyck G, Chumachenko T, Knigavko O, Polikarpova H, Kalashnyk-Vakulenko Y, Sharashydze K, Nakonechna O, Prokopyuk V, Onishchenko A, Tkachenko A. Experimental Evaluation of Food-Grade Semi-Refined Carrageenan Toxicity. Int J Mol Sci 2021; 22:11178. [PMID: 34681837 PMCID: PMC8539956 DOI: 10.3390/ijms222011178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
The safety of food additives E407 and E407a has raised concerns in the scientific community. Thus, this study aims to assess the local and systemic toxic effects of the common food additive E407a in rats orally exposed to it for two weeks. Complex evaluations of the effects of semi-refined carrageenan (E407a) on rats upon oral exposure were performed. Local effects of E407a on the intestine were analyzed using routine histological stains and CD68 immunostaining. Furthermore, circulating levels of inflammatory markers were assessed. A fluorescent probe O1O (2- (2'-OH-phenyl)-5-phenyl-1,3-oxazole) was used for evaluating the state of leukocyte cell membranes. Cell death modes of leukocytes were analyzed by flow cytometry using Annexin V and 7-aminoactinomycin D staining. Oral administration of the common food additive E407a was found to be associated with altered small and large intestinal morphology, infiltration of the lamina propria in the small intestine with macrophages (CD68+ cells), high systemic levels of inflammation markers, and changes in the lipid order of the phospholipid bilayer in the cell membranes of leukocytes, alongside the activation of their apoptosis. Our findings suggest that oral exposure to E407a through rats results in the development of intestinal inflammation.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Yevgen Posokhov
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine; (Y.P.); (V.P.); (A.O.)
- Department of Organic Chemistry, Biochemistry, Paints and Coatings, The National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova st, 61000 Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine;
| | - Galina Gubina-Vakulyck
- Department of Pathological Anatomy, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine;
| | - Tetyana Chumachenko
- Department of Epidemiology, Kharkiv National Medical University, 12 Trinklera st, 61022 Kharkiv, Ukraine;
| | - Oleksandr Knigavko
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine;
| | - Hanna Polikarpova
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine; (H.P.); (O.N.)
| | - Yuliia Kalashnyk-Vakulenko
- Department of Otorhinolaryngology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine;
| | - Ketino Sharashydze
- Department of Obstetrics and Gynecology, Kharkiv National Medical University, 4 Malinovskogo st, 61052 Kharkiv, Ukraine;
| | - Oksana Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine; (H.P.); (O.N.)
| | - Volodymyr Prokopyuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine; (Y.P.); (V.P.); (A.O.)
- Department of Cryobiology of the Reproductive System, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine; (Y.P.); (V.P.); (A.O.)
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine; (H.P.); (O.N.)
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine; (Y.P.); (V.P.); (A.O.)
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine; (H.P.); (O.N.)
| |
Collapse
|
32
|
Campos-Sánchez JC, Mayor-Lafuente J, Guardiola FA, Esteban MÁ. In silico and gene expression analysis of the acute inflammatory response of gilthead seabream (Sparus aurata) after subcutaneous administration of carrageenin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1623-1643. [PMID: 34448108 PMCID: PMC8478728 DOI: 10.1007/s10695-021-00999-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
Inflammation is one of the main causes of loss of homeostasis at both the systemic and molecular levels. The aim of this study was to investigate in silico the conservation of inflammation-related proteins in the gilthead seabream (Sparus aurata L.). Open reading frames of the selected genes were used as input in the STRING database for protein-protein interaction network analysis, comparing them with other teleost protein sequences. Proteins of the large yellow croaker (Larimichthys crocea L.) presented the highest percentages of identity with the gilthead seabream protein sequence. The gene expression profile of these proteins was then studied in gilthead seabream specimens subcutaneously injected with carrageenin (1%) or phosphate-buffered saline (control) by analyzing skin samples from the injected zone 12 and 24 h after injection. Gene expression analysis indicated that the mechanisms necessary to terminate the inflammatory response to carrageenin and recover skin homeostasis were activated between 12 and 24 h after injection (at the tested dose). The gene analysis performed in this study could contribute to the identification of the main mechanisms of acute inflammatory response and validate the use of carrageenin as an inflammation model to elucidate these mechanisms in fish.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.
| |
Collapse
|
33
|
Borsani B, De Santis R, Perico V, Penagini F, Pendezza E, Dilillo D, Bosetti A, Zuccotti GV, D’Auria E. The Role of Carrageenan in Inflammatory Bowel Diseases and Allergic Reactions: Where Do We Stand? Nutrients 2021; 13:3402. [PMID: 34684400 PMCID: PMC8539934 DOI: 10.3390/nu13103402] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Carrageenan (CGN) is a high molecular weight polysaccharide extracted from red seaweeds, composed of D-galactose residues linked in β-1,4 and α-1,3 galactose-galactose bond, widely used as a food additive in processed foods for its properties as a thickener, gelling agent, emulsifier, and stabilizer. In recent years, with the spread of the Western diet (WD), its consumption has increased. Nonetheless, there is a debate on its safety. CGN is extensively used as an inflammatory and adjuvant agent in vitro and in animal experimental models for the investigation of immune processes or to assess the activity of anti-inflammatory drugs. CGN can activate the innate immune pathways of inflammation, alter the gut microbiota composition and the thickness of the mucus barrier. Clinical evidence suggests that CGN is involved in the pathogenesis and clinical management of inflammatory bowel diseases (IBD), indeed food-exclusion diets can be an effective therapy for disease remission. Moreover, specific IgE to the oligosaccharide α-Gal has been associated with allergic reactions commonly referred to as the "α-Gal syndrome". This review aims to discuss the role of carrageenan in inflammatory bowel diseases and allergic reactions following the current evidence. Furthermore, as no definitive data are available on the safety and the effects of CGN, we suggest gaps to be filled and advise to limit the human exposure to CGN by reducing the consumption of ultra-processed foods.
Collapse
Affiliation(s)
- Barbara Borsani
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20122 Milan, Italy; (R.D.S.); (V.P.); (F.P.); (E.P.); (D.D.); (A.B.); (G.V.Z.); (E.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oral and Topical Anti-Inflammatory and Antipyretic Potentialities of Araucaria bidiwillii Shoot Essential Oil and Its Nanoemulsion in Relation to Chemical Composition. Molecules 2021; 26:molecules26195833. [PMID: 34641376 PMCID: PMC8510361 DOI: 10.3390/molecules26195833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Different parts of Araucaria bidiwillii (bunya pin) trees, such as nuts, seeds, bark, and shoots, are widely used in cooking, tea, and traditional medicines around the world. The shoots essential oil (EO) has not yet been studied. Herein, the chemical profile of A. bidiwillii shoots EO (ABSEO) was created by GC–MS analysis. Additionally, the in vivo oral and topical anti-inflammatory effect against carrageenan-induced models, as well as antipyretic potentiality of ABSEO and its nanoemulsion were evaluated. Forty-three terpenoid components were identified and categorized as mono- (42.94%), sesqui- (31.66%), and diterpenes (23.74%). The main compounds of the ABSEO were beyerene (20.81%), α-pinene (16.21%), D-limonene (14.22%), germacrene D (6.69%), β-humulene (4.14%), and sabinene (4.12%). The ABSEO and its nanoemulsion exhibited significant inflammation suppression in carrageenan-induced rat paw edema model, in both oral (50 and 100 mg/kg) and topical (5% in soyabean oil) routes, compared to the control and reference drugs groups. All the results demonstrated the significant inflammation reduction via the inflammatory cytokines (IL-1β and IL8), nitrosative (NO), and prostaglandin E2 (PGE2) supported by the histopathological studies and immunohistochemical assessment of MMP-9 and NF-κβ levels in paw tissues. Moreover, the oral administration of ABSEO and its nanoemulsion (50 and 100 mg/kg) exhibited antipyretic activity in rats, demonstrated by the inhibition of hyperthermia induced by intramuscular injection of brewer’s yeast. These findings advised that the use of ABSEO and its nanoemulsion against numerous inflammatory and hyperthermia ailments that could be attributed to its active constituents.
Collapse
|
35
|
Campos-Sánchez JC, Guardiola FA, García Beltrán JM, Ceballos-Francisco D, Esteban MÁ. Effects of subcutaneous injection of λ/κ-carrageenin on the immune and liver antioxidant status of gilthead seabream (Sparus aurata). JOURNAL OF FISH DISEASES 2021; 44:1449-1462. [PMID: 34032302 DOI: 10.1111/jfd.13452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the acute inflammatory response induced by subcutaneous injection of carrageenin (1%) or phosphate-buffered saline (control) in gilthead seabream (Sparus aurata). Skin mucus, serum, head kidney (HK) and liver were sampled at 1.5, 3 and 6 hr post-injection (p.i.) to determine the immune and antioxidant status of this fish species. The skin mucus of the carrageenin group showed increased superoxide dismutase and peroxidase activities, lysozyme abundance, bactericidal activity against Vibrio anguillarum and Photobacterium damselae, and total immunoglobulins compared with those of the control group. However, the carrageenin-injected fish sampled at 6 hr p.i. showed decreased protease activity in the skin mucus and peroxidase activity in the HK leucocytes compared with the control. Moreover, the carrageenin injection had no effects on the systemic immune system, but it reduced the liver catalase activities at both 3 and 6 hr in the carrageenin group relative to those in the control group. The expression levels of several proinflammatory and cell marker genes in the HK and liver were also determined. In the HK, the expression levels of interleukin-1β and prostaglandin D synthase 1 were upregulated at 1.5 and 3 hr, respectively, in the carrageenin group compared with those in the control group. Contrarily, the expression of the NADPH oxidase subunit phox40 (an acidophilic granulocyte marker) in the carrageenin group at 6 hr was downregulated compared with that in the control group. These results suggested that subcutaneous injection of κ/λ-carrageenin in gilthead seabream triggered an acute skin inflammation characterized by the rapid recruitment of acidophilic granulocytes and the release of humoral mediators into the skin mucus.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco A Guardiola
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - José María García Beltrán
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
36
|
Tkachenko A, Kot Y, Prokopyuk V, Onishchenko A, Bondareva A, Kapustnik V, Chumachenko T, Perskiy Y, Butov D, Nakonechna O. Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien Med Wochenschr 2021; 172:10.1007/s10354-021-00874-2. [PMID: 34383224 DOI: 10.1007/s10354-021-00874-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Concerns about the biosafety of the common food additive E407a have been raised. It has been demonstrated to induce intestinal inflammation, accompanied by activation of apoptosis, upon oral exposure. Thus, it is of interest to investigate how E407a affects eryptosis, a suicidal cell death mode of red blood cells. OBJECTIVE To evaluate the effects of semi-refined carrageenan (E407a) on eryptosis. METHODS Flow cytometry was employed to assess eryptosis in blood exposed to various concentrations of E407a (0 g/L, 1 g/L, 5 g/L, and 10 g/L) during incubation for 24 h by analyzing phosphatidylserine externalization in erythrocytes using annexin V staining and via evaluating reactive oxygen species (ROS) generation using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). In addition, the eryptosis indices mentioned above were determined in rats orally administered E407a at a dose of 140 mg/kg weight for 2 weeks. Confocal scanning laser microscopy was performed to visualize cell membrane scrambling. RESULTS Oral intake of E407a for 2 weeks by rats was not associated with membrane scrambling in erythrocytes. However, ROS overproduction was observed. Meanwhile, incubation of blood with various concentrations of semi-refined carrageenan resulted in a dose-dependent promotion of eryptosis, evidenced by the enhanced percentage of annexin V-positive erythrocytes and higher mean fluorescence intensity (MFI) values of annexin V-FITC in all erythrocytes. The highest concentration of E407a promotes a statistically significant increase in ROS generation in erythrocytes, suggesting the role of ROS-mediated induction of eryptosis in this case. CONCLUSION Incubation of blood with the food additive E407a leads to the activation of eryptosis in a dose-dependent manner. ROS-mediated mechanisms are partially responsible for E407a-induced eryptosis.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Nauky ave 4, 61022, Kharkiv, Ukraine.
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine.
| | - Yurii Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 61022, Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Nauky ave 4, 61022, Kharkiv, Ukraine
- Department of Cryobiology of the Reproduction System , Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 61015, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Nauky ave 4, 61022, Kharkiv, Ukraine
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Alla Bondareva
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Valeriy Kapustnik
- Department of Internal and Occupational Diseases, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Tetyana Chumachenko
- Department of Epidemiology, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Yevgen Perskiy
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 61022, Kharkiv, Ukraine
| | - Dmytro Butov
- Department of Phthisiology and Pulmonology, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| | - Oksana Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, 61022, Kharkiv, Ukraine
| |
Collapse
|
37
|
Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K. Food Additive Emulsifiers and Their Impact on Gut Microbiome, Permeability, and Inflammation: Mechanistic Insights in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:1068-1079. [PMID: 33336247 DOI: 10.1093/ecco-jcc/jjaa254] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The global burden of inflammatory bowel disease [IBD] has increased over the 21st century. Despite multiple studies investigating the pathogenesis of IBD, the causative mechanisms pertaining to its increased prevalence remain unclear. There is growing evidence that aspects of a 'Western diet' increase the risk of developing IBD. More recently, evidence implicating dietary emulsifiers has accumulated, with ecological studies showing a positive correlation between inflammatory bowel disease and emulsifier consumption. Further to these, cell and animal studies have demonstrated plausible mechanisms by which dietary emulsifiers may contribute to IBD pathogenesis through mechanisms including: promotion of pro-inflammatory intestinal microbiota; disruption of mucus architecture; increased intestinal permeability; activation of inflammatory pathways; and disruption of the cell cycle. This review critically analyses the current evidence for these mechanisms that may be of pathological relevance to IBD, evaluates recent dietary trials, acknowledges the challenges of dietary intervention studies, and gives an overview of ongoing and future clinical trials in this important area.
Collapse
Affiliation(s)
- Aaron S Bancil
- King's College London, Department of Nutritional Sciences, London, UK
| | - Alicia M Sandall
- King's College London, Department of Nutritional Sciences, London, UK
| | - Megan Rossi
- King's College London, Department of Nutritional Sciences, London, UK
| | - Benoit Chassaing
- INSERM U1016, CNRS UMR 8104, Université de Paris, Paris, France.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA, USA
| | - James O Lindsay
- Queen Mary University of London, Blizard Institute, Barts and the London School of Medicine, London, UK
| | - Kevin Whelan
- King's College London, Department of Nutritional Sciences, London, UK
| |
Collapse
|
38
|
Takayama S, Kawanishi M, Yamauchi K, Tokumitsu D, Kojima H, Masutani T, Iddamalgoda A, Mitsunaga T, Tanaka H. Ellagitannins from Rosa roxburghii suppress poly(I:C)-induced IL-8 production in human keratinocytes. J Nat Med 2021; 75:623-632. [PMID: 33830449 DOI: 10.1007/s11418-021-01509-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/27/2021] [Indexed: 12/18/2022]
Abstract
The anti-inflammatory effects of a 50% aqueous extract of Rosa roxburghii fruit (RRFE) and two ellagitannins (strictinin and casuarictin) isolated from the RRFE were evaluated in a cell model of skin inflammation induced by self-RNA released from epidermal cells damaged by UV ray (UVR) irradiation. The RRFE inhibited interleukin-8 (IL-8) mRNA expression in normal human epidermal keratinocytes (NHEKs) stimulated with polyinosinic:polycytidylic acid (poly(I:C)), a ligand of toll-like receptor-3 (TLR-3). The plant-derived anti-inflammatory agents, dipotassium glycyrrhizinate (GK2) and allantoin, had no influence on the IL-8 expression. The purified compounds, strictinin and casuarictin, inhibited the IL-8 mRNA expression and IL-8 release induced in NHEKs by poly(I:C). These ellagitannins were thus found to be responsible for the biological activity exhibited by the RRFE. This study demonstrates that RRFE and isolated RRFE compounds show promise as ingredients for products formulated to improve skin disorders induced by UVR irradiation.
Collapse
Affiliation(s)
- Satoru Takayama
- Medical Science Division, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan. .,Research and Development Department, Ichimaru Pharcos Co., Ltd, 318-1 Asagi, Motosu City, Gifu, 501-0475, Japan.
| | - Miho Kawanishi
- Department of Applied Life Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Kosei Yamauchi
- Department of Applied Life Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Daiki Tokumitsu
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu City, Gifu, 501-1196, Japan
| | - Hiroyuki Kojima
- Research and Development Department, Ichimaru Pharcos Co., Ltd, 318-1 Asagi, Motosu City, Gifu, 501-0475, Japan
| | - Teruaki Masutani
- Research and Development Department, Ichimaru Pharcos Co., Ltd, 318-1 Asagi, Motosu City, Gifu, 501-0475, Japan
| | - Arunasiri Iddamalgoda
- Research and Development Department, Ichimaru Pharcos Co., Ltd, 318-1 Asagi, Motosu City, Gifu, 501-0475, Japan
| | - Tohru Mitsunaga
- Department of Applied Life Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Hiroyuki Tanaka
- Medical Science Division, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan. .,Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu City, Gifu, 501-1196, Japan.
| |
Collapse
|
39
|
Melo CPB, Saito P, Vale DL, Rodrigues CCA, Pinto IC, Martinez RM, Bezerra JR, Baracat MM, Verri WA, Fonseca-Bazzo YM, Georgetti SR, Casagrande R. Protective effect of oral treatment with Cordia verbenacea extract against UVB irradiation deleterious effects in the skin of hairless mouse. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 216:112151. [PMID: 33581679 DOI: 10.1016/j.jphotobiol.2021.112151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Photochemoprotection of the skin can be achieved by inhibiting inflammation and oxidative stress, which we tested using Cordia verbenacea extract, a medicinal plant known for its rich content of antioxidant molecules and anti-inflammatory activity. In vitro antioxidant evaluation of Cordia verbenacea leaves ethanolic extract (CVE) presented the following results: ferric reducing antioxidant power (886.32 μM equivalent of Trolox/g extract); IC50 of 19.128 μg/ml for scavenging 2,2-diphenyl-1-picrylhydrazyl; IC50 of 12.48 μg/mL for scavenging 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); decrease of hydroperoxides from linoleic acid (IC50 of 10.20 μg/mL); inhibition of thiobarbituric acid reactive substances (IC50 8.90 μg/mL); iron-chelating ability in bathophenanthroline iron assay (IC50 47.35 μg/mL); chemiluminescence triggered by free radicals in the H2O2/horseradish peroxidase/luminol (IC50 0.286 μg/mL) and xanthine/xanthine oxidase/luminol (IC50 0.42 μg/mL) methods. CVE (10-100 mg per kg, 30 min before and immediately after UVB exposure) treatment was performed by gavage in hairless mice. CVE inhibited skin edema, neutrophil infiltration, and overproduction of MMP-9; reduced levels of TNF-α, IL-1β, and IL- 6; numbers of skin mast cells, epidermal thickening, number of epidermal apoptotic keratinocytes, and collagen degradation. CVE increased the skin's natural antioxidant defenses as observed by Nrf-2, NAD(P)H quinone oxidoreductase 1, and heme oxygenase 1 mRNA expression enhancement. Furthermore, CVE inhibited lipid peroxidation and superoxide anion production and recovered antioxidant reduced glutathione, catalase activity, and ROS scavenging capacity of the skin. Concluding, CVE downregulates the skin inflammatory and oxidative damages triggered by UVB, demonstrating its potentialities as a therapeutic approach.
Collapse
Affiliation(s)
- Cristina P B Melo
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Priscila Saito
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - David L Vale
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Camilla C A Rodrigues
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Ingrid C Pinto
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Julia Rojo Bezerra
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Yris Maria Fonseca-Bazzo
- Laboratório de Controle da Qualidade, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF CEP 70910-900, Brazil.
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil.
| |
Collapse
|
40
|
The Role of Creatine in the Development and Activation of Immune Responses. Nutrients 2021; 13:nu13030751. [PMID: 33652752 PMCID: PMC7996722 DOI: 10.3390/nu13030751] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
The use of dietary supplements has become increasingly common over the past 20 years. Whereas supplements were formerly used mainly by elite athletes, age and fitness status no longer dictates who uses these substances. Indeed, many nutritional supplements are recommended by health care professionals to their patients. Creatine (CR) is a widely used dietary supplement that has been well-studied for its effects on performance and health. CR also aids in recovery from strenuous bouts of exercise by reducing inflammation. Although CR is considered to be very safe in recommended doses, a caveat is that a preponderance of the studies have focused upon young athletic individuals; thus there is limited knowledge regarding the effects of CR on children or the elderly. In this review, we examine the potential of CR to impact the host outside of the musculoskeletal system, specifically, the immune system, and discuss the available data demonstrating that CR can impact both innate and adaptive immune responses, together with how the effects on the immune system might be exploited to enhance human health.
Collapse
|
41
|
Cicinskas E, Begun MA, Vikhareva VV, Karetin YA, Kalitnik AA. Immunological effects of Chondrus armatus carrageenans and their low molecular weight degradation products. J Biomed Mater Res A 2020; 109:1136-1146. [PMID: 32985066 DOI: 10.1002/jbm.a.37106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022]
Abstract
Ability of high molecular weight (HMW) κ- and λ-carrageenans of the red marine algae Chondrus armatus and their low molecular weight degradation products (LMWDPs) (0.7-20 and 10-170 kDa respectively) to influence functional properties (motility and phagocytosis) of murine peritoneal macrophages was assessed in this study as an in vitro and a weeklong feeding experiment. We demonstrated that, with an exception of one, all carrageenan samples at 100 μg/ml increased cellular motility and dose-dependently decreased phagocytic activity; LMWDPs of λ-carrageenan suppressed motility and had no effect on phagocytosis. Oral administration of all the carrageenan samples at 100 μg/kg/day for 7 days to mice had no effect on their clinical appearance, body weight, weight of their liver, spleen or thymus or development of noticeable changes to their inner organs. All samples induced a shift of the cell composition of the peritoneal cavity towards macrophages. Consumption of LMWDPs of κ-carrageenan resulted in development of leukopenia, however, no changes to relative WBC count were introduced by either of the samples. All samples decreased murine peritoneal macrophages phagocytic activity, with λ-samples possessing higher efficacy than their κ-counterparts; all LMWDPs stimulated peritoneal macrophages motility, with κ-samples possessing higher efficacy than their λ-counterparts In conclusion, we have shown that κ- and λ-carrageenans of the C. armatus and their LMWDPs suppress phagocytotic activity of peritoneal macrophages under both in vitro and in vivo conditions. This allows them to be viewed as pharmacologically active substances andpropagates the need for their further investigation as such.
Collapse
Affiliation(s)
- Eduardas Cicinskas
- Department of Cell Biology, Vilnius Institute of Natural Sciences, Vilnius, Lithuania.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Maria A Begun
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | - Yuri A Karetin
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | | |
Collapse
|
42
|
Sandall AM, Cox SR, Lindsay JO, Gewirtz AT, Chassaing B, Rossi M, Whelan K. Emulsifiers Impact Colonic Length in Mice and Emulsifier Restriction is Feasible in People with Crohn's Disease. Nutrients 2020; 12:nu12092827. [PMID: 32942699 PMCID: PMC7551245 DOI: 10.3390/nu12092827] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
There is an association between food additive emulsifiers and the prevalence of Crohn’s disease. This study aimed to investigate: (i) the effect of different classes of emulsifiers on markers of intestinal inflammation in mice and (ii) the feasibility, nutritional adequacy and symptom impact of restricting all emulsifier classes in Crohn’s disease. Mice were exposed to different classes of emulsifiers (carboxymethycellose, polysorbate-80, soy lecithin, gum arabic) in drinking water for 12-weeks, after which markers of inflammation and metabolism were measured. A low emulsifier diet was developed to restrict all classes of emulsifiers and its feasibility measured over 14-days in 20 participants with stable Crohn’s disease. Crohn’s disease-related symptoms, disease control, body weight and composition, nutrient intake and food-related quality of life (QoL) were measured. All emulsifiers resulted in lower murine colonic length compared with control (mean 9.5 cm (SEM 0.20)), but this only reached significance for polysorbate-80 (8.2 cm (0.34), p = 0.024) and carboxymethylcellulose (8.0 cm (0.35), p = 0.013). All 20 participants completed the feasibility study. The frequency of consuming emulsifier-containing foods decreased by 94.6% (SD 10.3%). Food-related QoL improved between habitual (median 81.5 (IQR 25.0)) and low emulsifier diet (90.0 (24.0), p = 0.028). Crohn’s disease-related symptoms reduced (median 3.0 (IQR 5.3) vs. 1.4 (3.9), p = 0.006), and disease control scores improved (13.5 (IQR 6.0) vs. 15.5 (IQR 3.0), p = 0.026). A range of emulsifiers may influence intestinal inflammation in mice, and dietary restriction of emulsifiers is feasible. Trials investigating the efficacy of a low emulsifier diet in Crohn’s disease are warranted.
Collapse
Affiliation(s)
- Alicia M. Sandall
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (A.M.S.); (S.R.C.); (M.R.)
| | - Selina R. Cox
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (A.M.S.); (S.R.C.); (M.R.)
| | - James O. Lindsay
- Department of Gastroenterology, Barts Health NHS Trust, Royal London Hospital, London E1 1BB, UK;
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Andrew T. Gewirtz
- Centre for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (A.T.G.); (B.C.)
| | - Benoit Chassaing
- Centre for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (A.T.G.); (B.C.)
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- INSERM, U1016, Team “Mucosal microbiota in chronic inflammatory diseases”, 75006 Paris, France
- Université de Paris, 75006 Paris, France
| | - Megan Rossi
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (A.M.S.); (S.R.C.); (M.R.)
| | - Kevin Whelan
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (A.M.S.); (S.R.C.); (M.R.)
- Correspondence: ; Tel.: +44-(0)-207-848-3858
| |
Collapse
|
43
|
Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, Marques LMM, Cunha FQ, Alves-Filho JC, Zamboni DS, Lopes NP, Franklin BS, Gombault A, Ramalho FS, Quesniaux VFJ, Couillin I, Ryffel B, Cunha TM. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal 2020; 18:141. [PMID: 32894139 PMCID: PMC7487827 DOI: 10.1186/s12964-020-00621-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low molecular weight carrageenan (Cg) is a seaweed-derived sulfated polysaccharide widely used as inflammatory stimulus in preclinical studies. However, the molecular mechanisms of Cg-induced inflammation are not fully elucidated. The present study aimed to investigate the molecular basis involved in Cg-induced macrophages activation and cytokines production. METHODS Primary culture of mouse peritoneal macrophages were stimulated with Kappa Cg. The supernatant and cell lysate were used for ELISA, western blotting, immunofluorescence. Cg-induced mouse colitis was also developed. RESULTS Here we show that Cg activates peritoneal macrophages to produce pro-inflammatory cytokines such as TNF and IL-1β. While Cg-induced TNF production/secretion depends on TLR4/MyD88 signaling, the production of pro-IL-1β relies on TLR4/TRIF/SYK/reactive oxygen species (ROS) signaling pathway. The maturation of pro-IL1β into IL-1β is dependent on canonical NLRP3 inflammasome activation via Pannexin-1/P2X7/K+ efflux signaling. In vivo, Cg-induced colitis was reduced in mice in the absence of NLRP3 inflammasome components. CONCLUSIONS In conclusion, we unravel a critical role of the NLRP3 inflammasome in Cg-induced pro-inflammatory cytokines production and colitis, which is an important discovery on the pro-inflammatory properties of this sulfated polysaccharide for pre-clinical studies. Video abstract Carrageenan (Cg) is one the most used flogistic stimulus in preclinical studies. Nevertheless, the molecular basis of Cg-induced inflammation is not totally elucidated. Herein, Lopes et al. unraveled the molecular basis for Cg-induced macrophages production of biological active IL-1β. The Cg-stimulated macrophages produces pro-IL-1β depends on TLR4/TRIF/Syk/ROS, whereas its processing into mature IL-1β is dependent on the canonical NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alexandre H. Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Rangel L. Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Miriam D. Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Francisco I. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Alexandre G. Maganin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Lucas S. Ribeiro
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | | | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Jose C. Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Dario S. Zamboni
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Norberto P. Lopes
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Bernardo S. Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | - Aurélie Gombault
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Fernando Silva Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Valerie F. J. Quesniaux
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Isabelle Couillin
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| |
Collapse
|
44
|
Cox S, Sandall A, Smith L, Rossi M, Whelan K. Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. Nutr Rev 2020; 79:726-741. [PMID: 32626902 DOI: 10.1093/nutrit/nuaa038] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Food additive intakes have increased with the increase in "ultra-processed" food consumption. Food additive emulsifiers have received particular research attention in recent years due to preliminary evidence of adverse gastrointestinal and metabolic health effects. In this review, the use of emulsifiers as food additives is discussed, and the current estimations of exposure to, and safety of, emulsifiers are critically assessed. Food additive emulsifier research is complicated by heterogeneity in additives considered to be emulsifiers and labelling of them on foods globally. Major limitations exist in estimating food additive emulsifier exposure, relating predominantly to a lack of available food occurrence and concentration data. Development of brand-specific food additive emulsifier databases are crucial to accurately estimating emulsifier exposure. Current research on the health effects of food additive emulsifiers are limited to in vitro and murine studies and small, acute studies in humans, and future research should focus on controlled human trials of longer duration.
Collapse
Affiliation(s)
- Selina Cox
- Department of Nutritional Sciences, King's College London, London, UK
| | - Alicia Sandall
- Department of Nutritional Sciences, King's College London, London, UK
| | - Leanne Smith
- Department of Nutritional Sciences, King's College London, London, UK
| | - Megan Rossi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
45
|
Feferman L, Bhattacharyya S, Oates E, Haggerty N, Wang T, Varady K, Tobacman JK. Carrageenan-Free Diet Shows Improved Glucose Tolerance and Insulin Signaling in Prediabetes: A Randomized, Pilot Clinical Trial. J Diabetes Res 2020; 2020:8267980. [PMID: 32377523 PMCID: PMC7191375 DOI: 10.1155/2020/8267980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/30/2020] [Accepted: 03/04/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Carrageenan is well known to cause inflammation and is used in laboratory experiments to study mediators and treatments of inflammation. However, carrageenan is added to hundreds of processed foods to improve texture. Previous work indicated that low concentrations of carrageenan in drinking water caused marked glucose intolerance and insulin resistance in a mouse model. This exploratory, clinical study tested the impact of the no-carrageenan diet in prediabetes. Research Design and Methods. Participants with prediabetes (n = 13), defined as HbA1c of 5.7%-6.4%, enrolled in a 12-week, randomized, parallel-arm, feeding trial. One group (n = 8) was provided all meals and snacks with no carrageenan. A second group (n = 5) received a similar diet with equivalent content of protein, fat, and carbohydrate, but with carrageenan. Blood samples were collected at baseline and during oral glucose tolerance tests at 6 and 12 weeks. The primary outcome measure was changed in %HbA1c between baseline and 12 weeks. Statistical analysis included paired and unpaired t-tests, correlations, and 2 × 2 ANOVAs. RESULTS Subjects on no carrageenan had declines in HbA1c and HOMA-IR (p = 0.006, p = 0.026; paired t-test, two tailed). They had increases in C-peptide (p = 0.029) and Matsuda Index (2.1 ± 0.7 to 4.8 ± 2.3; p = 0.052) and declines in serum IL-8, serum galectin-3, and neutrophil phospho-(Ser307/312)-IRS1 (p = 0.049, p = 0.003, and p = 0.006; paired t-tests, two tailed). Subjects on the diet with carrageenan had no significant changes in these parameters. Significant differences between no-carrageenan and carrageenan-containing diet groups for changes from baseline to 12 weeks occurred in C-peptide, phospho-Ser-IRS1, phospho-AKT1, and mononuclear cell arylsulfatase B (p = 0.007, p = 0.038, p = 0.0012, and p = 0.0008; 2 × 2 ANOVA). Significant correlations were evident between several of the variables. CONCLUSIONS Findings indicate improvement in HbA1c and HOMA-IR in participants on no-carrageenan diets, but not in participants on carrageenan-containing diets. Significant differences between groups suggest that removing carrageenan may improve insulin signaling and glucose tolerance. Larger studies are needed to further consider the impact of carrageenan on development of diabetes.
Collapse
Affiliation(s)
- Leo Feferman
- Department of Medicine, College of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Sumit Bhattacharyya
- Department of Medicine, College of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Erin Oates
- Department of Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicole Haggerty
- Department of Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Tianxiu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Krista Varady
- Department of Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanne K. Tobacman
- Department of Medicine, College of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
46
|
Yang DH, Guo T, Yuan ZZ, Lei C, Ding SZ, Yang YF, Tan ZP, Luo H. Mutant CARD10 in a family with progressive immunodeficiency and autoimmunity. Cell Mol Immunol 2020; 17:782-784. [PMID: 32238915 DOI: 10.1038/s41423-020-0423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dan-Hui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Ting Guo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Zhuang-Zhuang Yuan
- School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Cheng Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Shui-Zi Ding
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Yi-Feng Yang
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhi-Ping Tan
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China. .,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
47
|
Van Den Rym A, Taur P, Martinez-Barricarte R, Lorenzo L, Puel A, Gonzalez-Navarro P, Pandrowala A, Gowri V, Safa A, Toledano V, Cubillos-Zapata C, López-Collazo E, Vela M, Pérez-Martínez A, Sánchez-Ramón S, Recio MJ, Casanova JL, Desai MM, Perez de Diego R. Human BCL10 Deficiency due to Homozygosity for a Rare Allele. J Clin Immunol 2020; 40:388-398. [PMID: 32008135 DOI: 10.1007/s10875-020-00760-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
Abstract
In 2014, a child with broad combined immunodeficiency (CID) who was homozygous for a private BCL10 allele was reported to have complete inherited human BCL10 deficiency. In the present study, we report a new BCL10 mutation in another child with CID who was homozygous for a BCL10 variant (R88X), previously reported as a rare allele in heterozygosis (minor allele frequency, 0.000003986). The mutant allele was a loss-of-expression and loss-of-function allele. As with the previously reported patient, this patient had complete BCL10 deficiency. The clinical phenotype shared features, such as respiratory infections, but differed from that of the previous patient that he did not develop significant gastroenteritis episodes or chronic colitis. Cellular and immunological phenotypes were similar to those of the previous patient. TLR4, TLR2/6, and Dectin-1 responses were found to depend on BCL10 in fibroblasts, and final maturation of T cell and B cell maturation into memory cells was affected. Autosomal-recessive BCL10 deficiency should therefore be considered in children with CID.
Collapse
Affiliation(s)
- Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Prasad Taur
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
| | - Pablo Gonzalez-Navarro
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ambreen Pandrowala
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Vijaya Gowri
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Amin Safa
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Victor Toledano
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Center for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Maria Vela
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
- Department of Paediatric Haemato-oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Clinical Immunology Department, San Carlos Clinical Hospital, 28040, Madrid, Spain
| | - Maria J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
- Paediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Mukesh M Desai
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
48
|
Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway. Pharmacol Res 2020; 152:104603. [DOI: 10.1016/j.phrs.2019.104603] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
|
49
|
Cicinskas E, Begun MA, Tiasto VA, Belousov AS, Vikhareva VV, Mikhailova VA, Kalitnik AA. In vitro antitumor and immunotropic activity of carrageenans from red algae Chondrus armatus and their low-molecular weight degradation products. J Biomed Mater Res A 2019; 108:254-266. [PMID: 31606930 DOI: 10.1002/jbm.a.36812] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Antitumor and immunotropic effects of κ-, λ-carrageenan from red marine algae Chondrus armatus and their low-molecular weight (LMW) degradation products were explored. Effects on human esophageal cancer cell lines KYSE30 and FLO1 viability and ability to induce production of pro- and anti-inflammatory cytokines by human monocytes was assessed. All polysaccharides demonstrated antimetabolic and cytostatic activity towards cancer lines, with high-molecular weight carrageenans possessing higher antimetabolic and lower cytostatic activity than their LMW degradation products. All carrageenans induced monocytes to produce pro-inflammatory cytokines IL1β, IL6, IL18, and TNFα. However, secretion of anti-inflammatory cytokine IL10 was induced only by LMW λ-carrageenan, which exhibited the highest cytokine production inducing efficacy overall. We demonstrate that LMW carrageenan degradation products not only retain biological activity of their precursors, but also increase their efficacy in type-dependent manner, allowing for their future development for pharmacological practice.
Collapse
Affiliation(s)
- Eduardas Cicinskas
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,Laboratory of Cell Biology, Vilnius Institute of Natural Sciences, Vilnius, Lithuania
| | - Maria A Begun
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena A Tiasto
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrei S Belousov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | | | - Alexandra A Kalitnik
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,National Scientific Center of Marine Biology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
50
|
Molecular mechanism of action responsible for carrageenan-induced inflammatory response. Mol Immunol 2019; 109:38-42. [PMID: 30851635 DOI: 10.1016/j.molimm.2019.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/04/2023]
Abstract
Carrageenan-induced inflammation has long been used as an in vivo model of local inflammation. We developed an in vitro model of inflammation using primary blood cells to characterize gene induction following carrageenan (λ-CGN) stimulation and identify the signal transduction pathway(s) through which λ-CGN worked, using swine whole blood cultures from Yorkshire barrows. Blood samples were divided into stimulated and unstimulated groups. Unstimulated blood was a control for λ-CGN treated cultures to delineate treatment effects from time-in-culture effects. All cultures were collected and separated into two fractions; supernatant for ELISA analyses and white blood cells for mRNA expression. Lambda (λ)-CGN induced MCP-1 at the proteomic and the genomic levels. Lambda-CGN increased IL-8 protein production but had no impact on serum amyloid A protein levels. Alveolar Macrophage-Derived Neutrophil Chemotactic Factor-II (AMCF-II), a swine-specific member of the IL8/GRO family, showed increased gene expression. TNF-α and IL-6 protein levels were not induced by λ-CGN stimulation. Stimulation of HEK-293 cells co-transfected with a single pattern recognition receptor and the secreted embryonic alkaline phosphatase (SEAP) read-out system demonstrated that λ-CGN signals through the TLR-2 and TLR-4 signal transduction pathways. Using silencing RNA to inhibit TLR6 expression in TLR2 transfected HEK-293 cells indicated that λ-CGN works through the TLR2/6 pathway. Silencing TLR6 expression in TLR4 transfected HEK-293 cells showed that λ-CGN stimulation of this cell line worked through a TLR4/6 heterodimer, as lipopolysaccharide (LPS) induced SEAP production through a TLR4 homodimer. These results demonstrate that although carrageenan can stimulate through TLR4 signaling pathways, it initiates an inflammatory response in these cells that differs from a typical endotoxin effect such as LPS stimulation, in terms of the pathways and gene products altered, suggesting that activation of TLR2/6 and TLR4/6 are the predominant pathways through which carrageenan induces inflammatory responses.
Collapse
|