1
|
Goldstein SI, Fan AC, Wang Z, Naineni SK, Cencic R, Garcia-Gutierrez SB, Patel K, Huang S, Brown LE, Emili A, Porco JA. Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays. J Proteome Res 2025; 24:2026-2039. [PMID: 40077831 PMCID: PMC12039896 DOI: 10.1021/acs.jproteome.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe a strategy for the discovery of substrate-dependent ligand binding. Using proteome integral solubility alteration (PISA) assays, we show that simple biochemical additives can enable detection of RNA-protein-small molecule complexes in native cell lysates. We apply our approach to rocaglates, molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) helicase family. To identify unexpected interactions, we used a target class-specific thermal window and compared ATP analog and RNA base dependencies for key rocaglate-DDX interactions. We report novel DDX targets of high-profile rocaglates-including the clinical candidate Zotatifin-and validate our findings using limited proteolysis-mass spectrometry and fluorescence polarization (FP) experiments. We also provide structural insight into divergent DDX3X affinities between synthetic rocaglates. Taken together, our study provides a model for screening uncompetitive inhibitors using a chemical proteomics approach and uncovers actionable DDX clamping targets, clearing a path toward characterization of novel molecular clamps and associated RNA helicases.
Collapse
Affiliation(s)
- Stanley I. Goldstein
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University, Boston, MA 02215, USA
| | - Alice C. Fan
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Zihao Wang
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Sai K. Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Kesha Patel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Lauren E. Brown
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Andrew Emili
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - John A. Porco
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Sun H, Dai Q, Zhou B, Lan X, Qiu Y, Zhang Q, Wang D, Cui Y, Guo J, Hou L, Liu J, Zhou J. DDX21 Promotes PCV3 Replication by Binding to Cap Protein and Inhibiting Interferon Responses. Viruses 2025; 17:166. [PMID: 40006921 PMCID: PMC11861039 DOI: 10.3390/v17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DDX21, which functions mainly through controlling interferon (IFN)-β levels. However, how the interaction between DDX21 and PCV3 Cap regulates viral replication remains unknown. In the present study, upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV3 proliferation via a lentivirus-delivered system, as indicated by reduced replicase (Rep) protein levels and viral titers. Furthermore, DDX21 negatively regulated IFN-β and interferon-stimulated gene (ISG) levels, promoting PCV3 replication. Mechanistically, PCV3 Cap co-localized and interacted with DDX21, and the nuclear localization signal (NLS) of PCV3 Cap and 763GSRSNRFQNK772 at the C-terminal domain (CTD) of DDX21 were indispensable to the interaction. Moreover, PCV3 infection prevented the repression of DDX21 to facilitate its pro-viral activity. Taken together, these results show that DDX21 promotes PCV3 replication by binding to the PCV3 Cap protein and prohibiting IFN-β response, which provides important insight on the prevention and control of PCV3 infection.
Collapse
Affiliation(s)
- Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Beiyi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianqian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Goldstein SI, Fan AC, Wang Z, Naineni SK, Cencic R, Garcia-Gutierrez SB, Patel K, Huang S, Brown LE, Emili A, Porco JA. Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590252. [PMID: 38659867 PMCID: PMC11042367 DOI: 10.1101/2024.04.19.590252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe a strategy for the discovery of substrate-dependent ligand binding. Using proteome integral solubility alteration (PISA) assays, we show that simple biochemical additives can enable detection of RNA-protein-small molecule complexes in native cell lysates. We apply our approach to rocaglates, molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) helicase family. To identify unexpected interactions, we used a target class-specific thermal window and compared ATP analog and RNA base dependencies for key rocaglate-DDX interactions. We report and validate novel DDX targets of high-profile rocaglates - including the clinical candidate Zotatifin - using limited proteolysis-mass spectrometry and fluorescence polarization (FP) experiments. We also provide structural insight into divergent DDX3X affinities between synthetic rocaglates. Taken together, our study provides a model for screening uncompetitive inhibitors using a chemical proteomics approach and uncovers actionable DDX clamping targets, clearing a path towards characterization of novel molecular clamps and associated RNA helicases.
Collapse
Affiliation(s)
- Stanley I. Goldstein
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University, Boston, MA, USA
| | - Alice C. Fan
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Zihao Wang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Sai K. Naineni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Kesha Patel
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - John A. Porco
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Xiao Y, Fan J, Li Z, Hou Y. DDX21 at the Nexus of RNA Metabolism, Cancer Oncogenesis, and Host-Virus Crosstalk: Decoding Its Biomarker Potential and Therapeutic Implications. Int J Mol Sci 2024; 25:13581. [PMID: 39769343 PMCID: PMC11676383 DOI: 10.3390/ijms252413581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
DDX21, a member of the DEAD-box RNA helicase family, plays a pivotal role in various aspects of RNA metabolism, including ribosomal RNA (rRNA) processing, transcription, and translation. Its diverse functions in cancer progression and viral infections have attracted considerable attention. DDX21 exerts a pivotal function through ribosomal DNA (rDNA) transcription and rRNA processing. DDX21 is involved in different biological processes of mRNA transcription. It interacts with transcription factors, modulates RNA polymerase II elongation, binds R-loops to regulate transcription, and participates in alternative splicing. The elevated expression of DDX21 has been observed in most cancers, where it influences tumorigenesis by affecting ribosome biogenesis, transcription, genome stability, and cell cycle regulation. Additionally, DDX21 plays a key role in the antiviral defense of host by interacting with viral proteins to regulate essential stages of the infection process. This review provides a thorough examination of the biological functions of DDX21, its involvement in cancer progression and viral infections, and its potential as both a biomarker and a therapeutic target. Future studies should aim to clarify the specific mechanisms of the activity of DDX21, advance the development of targeted therapies, and assess its clinical relevance across various cancer types and stages.
Collapse
Affiliation(s)
- Yalan Xiao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Jiankun Fan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Zhigang Li
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Wang S, Yang R, Song M, Li J, Zhou Y, Dai C, Song T. Current understanding of the role of DDX21 in orchestrating gene expression in health and diseases. Life Sci 2024; 349:122716. [PMID: 38762067 DOI: 10.1016/j.lfs.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
RNA helicases are involved in almost all biological events, and the DDXs family is one of the largest subfamilies of RNA helicases. Recently, studies have reported that RNA helicase DDX21 is involved in several biological events, specifically in orchestrating gene expression. Hence, in this review, we provide a comprehensive overview of the function of DDX21 in health and diseases. In the genome, DDX21 contributes to genome stability by promoting DNA damage repair and resolving R-loops. It also facilitates transcriptional regulation by directly binding to promoter regions, interacting with transcription factors, and enhancing transcription through non-coding RNA. Moreover, DDX21 is involved in various RNA metabolism such as RNA processing, translation, and decay. Interestingly, the activity and function of DDX21 are regulated by post-translational modifications, which affect the localization and degradation of DDX21. Except for its role of RNA helicase, DDX21 also acts as a non-enzymatic function in unwinding RNA, regulating transcriptional modifications and promoting transcription. Next, we discuss the potential application of DDX21 as a clinical predictor for diseases, which may facilitate providing novel pharmacological targets for molecular therapy.
Collapse
Affiliation(s)
- Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhen Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; City of Hope Medical Center, Duarte, CA 91010, USA; Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | - Yanrong Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Jiang Y, Sun S, Liu X, Su K, Zhang C, Zhang P, Zhao Z, Su Y, Wang C, Du X. U3 snoRNA inter-regulates with DDX21 in the perichromosomal region to control mitosis. Cell Death Dis 2024; 15:342. [PMID: 38760378 PMCID: PMC11101645 DOI: 10.1038/s41419-024-06725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
U3 snoRNA is essential for ribosome biogenesis during interphase. Upon mitotic onset, the nucleolus disassembles and U3 snoRNA relocates to the perichromosomal region (PR) to be considered as a chromosome passenger. Whether U3 controls mitosis remains unknown. Here, we demonstrate that U3 snoRNA is required for mitotic progression. We identified DDX21 as the predominant U3-binding protein during mitosis and confirmed that U3 snoRNA colocalizes with DDX21 in the PR. DDX21 knockdown induces mitotic catastrophe and similar mitotic defects caused by U3 snoRNA depletion. Interestingly, the uniform PR distribution of U3 snoRNA and DDX21 is interdependent. DDX21 functions in mitosis depending on its PR localization. Mechanistically, U3 snoRNA regulates DDX21 PR localization through maintaining its mobility. Moreover, Cy5-U3 snoRNA downsizes the fibrous condensates of His-DDX21 at proper molecular ratios in vitro. This work highlights the importance of the equilibrium between U3 snoRNA and DDX21 in PR formation and reveals the potential relationship between the PR assembly and mitotic regulation.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, Peking University, Beijing, 100142, China
| | - Kunqi Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Peipei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Zhuochen Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Ya Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Chang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
| |
Collapse
|
7
|
Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, Cuella-Martin R, Hayward SB, Kesner JS, Ghasemzadeh A, Nambiar TS, Ho P, Rialdi A, Hebrard M, Li Y, Gao J, Gopinath S, Adeleke OA, Venters BJ, Drake CG, Baer R, Izar B, Guccione E, Keogh MC, Guerois R, Sun L, Lu C, Califano A, Ciccia A. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell 2024; 187:861-881.e32. [PMID: 38301646 PMCID: PMC10980358 DOI: 10.1016/j.cell.2024.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/23/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Vasciaveo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Wendy Mao
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanay Thakar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alina Vaitsiankova
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jordan S Kesner
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ali Ghasemzadeh
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia Ho
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander Rialdi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jinmei Gao
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | | | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin Izar
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Zhou J, Zhao J, Sun H, Dai B, Zhu N, Dai Q, Qiu Y, Wang D, Cui Y, Guo J, Feng X, Hou L, Liu J. DEAD-box RNA helicase 21 interacts with porcine circovirus type 2 Cap protein and facilitates viral replication. Front Microbiol 2024; 15:1298106. [PMID: 38380105 PMCID: PMC10877017 DOI: 10.3389/fmicb.2024.1298106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Porcine circovirus type 2 (PCV2) is the etiological agent of PCV2-associated diseases that pose a serious threat to the swine industry. PCV2 capsid (Cap) protein has been shown to interact with DEAD-box RNA helicase 21 (DDX21), an important protein that regulates RNA virus replication. However, whether the interaction between DDX21 and the PCV2 Cap regulates PCV2 replication remains unclear. Herein, by using western blotting, interaction assays, and knockdown analysis, we found that PCV2 infection induced the cytoplasmic relocation of DDX21 from the nucleolus in cultured PK-15 cells. Moreover, the nuclear localization signal (NLS) of PCV2 Cap interacted directly with DDX21. The NLS of PCV2 Cap and 763GSRSNRFQNK772 residues at the C-terminal domain (CTD) of DDX21 were essential for the dual interaction. Upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV2 replication via a lentivirus-delivered system, as evidenced by decreased levels of viral protein expression and virus production. In contrast, the replication of PCV2 increased in transiently DDX21-overexpressing cells. Our results indicate that DDX21 interacts with PCV2 Cap and plays a crucial role in virus replication. These results provide a reference for developing novel potential targets for prevention and control of PCV2 infection.
Collapse
Affiliation(s)
- Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Beining Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Ni C, Buszczak M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev Biol 2023; 136:13-26. [PMID: 35440410 PMCID: PMC9569395 DOI: 10.1016/j.semcdb.2022.03.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The continued integrity of biological systems depends on a balance between interdependent elements at the molecular, cellular, and organismal levels. This is particularly true for the generation of ribosomes, which influence almost every aspect of cell and organismal biology. Ribosome biogenesis (RiBi) is an energetically demanding process that involves all three RNA polymerases, numerous RNA processing factors, chaperones, and the coordinated expression of 79-80 ribosomal proteins (r-proteins). Work over the last several decades has revealed that the dynamic regulation of ribosome production represents a major mechanism by which cells maintain homeostasis in response to changing environmental conditions and acute stress. More recent studies suggest that cells and tissues within multicellular organisms exhibit dramatically different levels of ribosome production and protein synthesis, marked by the differential expression of RiBi factors. Thus, distinct bottlenecks in the RiBi process, downstream of rRNA transcription, may exist within different cell populations of multicellular organisms during development and in adulthood. This review will focus on our current understanding of the mechanisms that link the complex molecular process of ribosome biogenesis with cellular and organismal physiology. We will discuss diverse topics including how different steps in the RiBi process are coordinated with one another, how MYC and mTOR impact RiBi, and how RiBi levels change between stem cells and their differentiated progeny. In turn, we will also review how regulated changes in ribosome production itself can feedback to influence cell fate and function.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
10
|
Li J, Fang P, Zhou Y, Wang D, Fang L, Xiao S. DEAD-box RNA helicase 21 negatively regulates cytosolic RNA-mediated innate immune signaling. Front Immunol 2022; 13:956794. [PMID: 36032158 PMCID: PMC9399600 DOI: 10.3389/fimmu.2022.956794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
DEAD-box RNA helicase 21 (DDX21), also known as RHII/Gu, is an ATP-dependent RNA helicase. In addition to playing a vital role in regulating cellular RNA splicing, transcription, and translation, accumulated evidence has suggested that DDX21 is also involved in the regulation of innate immunity. However, whether DDX21 induces or antagonizes type I interferon (IFN-I) production has not been clear and most studies have been performed through ectopic overexpression or RNA interference-mediated knockdown. In this study, we generated DDX21 knockout cell lines and found that knockout of DDX21 enhanced Sendai virus (SeV)-induced IFN-β production and IFN-stimulated gene (ISG) expression, suggesting that DDX21 is a negative regulator of IFN-β. Mechanistically, DDX21 competes with retinoic acid-inducible gene I (RIG-I) for binding to double-stranded RNA (dsRNA), thereby attenuating RIG-I-mediated IFN-β production. We also identified that the 217-784 amino acid region of DDX21 is essential for binding dsRNA and associated with its ability to antagonize IFN production. Taken together, our results clearly demonstrated that DDX21 negatively regulates IFN-β production and functions to maintain immune homeostasis.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,*Correspondence: Shaobo Xiao,
| |
Collapse
|
11
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
12
|
Zhou J, Wang Y, Qiu Y, Wang Y, Yang X, Liu C, Shi Y, Feng X, Hou L, Liu J. Contribution of DEAD-Box RNA Helicase 21 to the Nucleolar Localization of Porcine Circovirus Type 4 Capsid Protein. Front Microbiol 2022; 13:802740. [PMID: 35283818 PMCID: PMC8914316 DOI: 10.3389/fmicb.2022.802740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Porcine circovirus type 4 (PCV4) is a newly emerging pathogen which might be associated with diverse clinical signs, including respiratory and gastrointestinal distress, dermatitis, and various systemic inflammations. The host cellular proteins binding to PCV4 capsid (Cap) protein are still not clear. Herein, we found that the PCV4 Cap mediated translocation of DEAD-box RNA helicase 21 (DDX21) to the cytoplasm from the nucleolus and further verified that the nucleolar localization signal (NoLS) of the PCV4 Cap bound directly to the DDX21. The NoLS of PCV4 Cap and 763GSRSNRFQNK772 residues at the C-terminal domain (CTD) of DDX21 were required for this PCV4 Cap/DDX21 interaction. Further studies indicated that the PCV4 Cap NoLS exploited DDX21 to facilitate its nucleolar localization. In summary, our results firstly demonstrated that DDX21 binds directly to the NoLS of the PCV4 Cap thereby contributing to the nucleolar localization of the PCV4 Cap protein.
Collapse
Affiliation(s)
- Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuexia Wang
- Qingpu District Municipal Agriculture Commission, Shanghai, China
| | - Yonghui Qiu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongxia Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jue Liu,
| |
Collapse
|
13
|
Li J, Wang D, Fang P, Pang Y, Zhou Y, Fang L, Xiao S. DEAD-Box RNA Helicase 21 (DDX21) Positively Regulates the Replication of Porcine Reproductive and Respiratory Syndrome Virus via Multiple Mechanisms. Viruses 2022; 14:v14030467. [PMID: 35336874 PMCID: PMC8949431 DOI: 10.3390/v14030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) remains a persistent hazard in the global pig industry. DEAD (Glu-Asp-Ala-Glu) box helicase 21 (DDX21) is a member of the DDX family. In addition to its function of regulating cellular RNA metabolism, DDX21 also regulates innate immunity and is involved in the replication cycle of some viruses. However, the relationship between DDX21 and PRRSV has not yet been explored. Here, we found that a DDX21 overexpression promoted PRRSV replication, whereas knockdown of DDX21 reduced PRRSV proliferation. Mechanistically, DDX21 promoted PRRSV replication independently of its ATPase, RNA helicase, and foldase activities. Furthermore, overexpression of DDX21 stabilized the expressions of PRRSV nsp1α, nsp1β, and nucleocapsid proteins, three known antagonists of interferon β (IFN-β). Knockdown of DDX21 activated the IFN-β signaling pathway in PRRSV-infected cells, suggesting that the effect of DDX21 on PRRSV-encoded IFN-β antagonists may be a driving factor for its contribution to viral proliferation. We also found that PRRSV infection enhanced DDX21 expression and promoted its nucleus-to-cytoplasm translocation. Screening PRRSV-encoded proteins showed that nsp1β interacted with the C-terminus of DDX21 and enhanced the expression of DDX21. Taken together, these findings reveal that DDX21 plays an important role in regulating PRRSV proliferation through multiple mechanisms.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yu Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
14
|
Koltowska K, Okuda KS, Gloger M, Rondon-Galeano M, Mason E, Xuan J, Dudczig S, Chen H, Arnold H, Skoczylas R, Bower NI, Paterson S, Lagendijk AK, Baillie GJ, Leshchiner I, Simons C, Smith KA, Goessling W, Heath JK, Pearson RB, Sanij E, Schulte-Merker S, Hogan BM. The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nat Cell Biol 2021; 23:1136-1147. [PMID: 34750583 DOI: 10.1038/s41556-021-00784-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Mason
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Dudczig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hannah Arnold
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne Karine Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ignaty Leshchiner
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Wolfram Goessling
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Joan K Heath
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Medical Faculty, WWU Münster, Münster, Germany.,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia. .,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Miyake T, McDermott JC. Nucleolar localization of c-Jun. FEBS J 2021; 289:748-765. [PMID: 34499807 DOI: 10.1111/febs.16187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023]
Abstract
Nucleoli are well defined for their function in ribosome biogenesis, but only a small fraction of the nucleolar proteome has been characterized. Here, we report that the proto-oncogene, c-Jun, is targeted to the nucleolus. Using live cell imaging in myogenic cells, we document that the c-Jun basic domain contains a unique, evolutionarily conserved motif that determines nucleolar targeting. Fos family Jun dimer partners, such as Fra2, while nuclear, do not co-localize with c-Jun in the nucleolus. A point mutation in c-Jun that mimics Fra2 (M260E) in its Nucleolar Localization sequence (NoLS) results in loss of c-Jun nucleolar targeting while still preserving nuclear localization. Fra2 can sequester c-Jun in the nucleoplasm, indicating that the stoichiometric ratio of heterodimeric partners regulates c-Jun nucleolar targeting. Finally, nucleolar localization of c-Jun modulates nucleolar architecture and ribosomal RNA accumulation. These studies highlight a novel role for Jun family proteins in the nucleolus, having potential implications for a diverse array of AP-1-regulated cellular processes.
Collapse
Affiliation(s)
- Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, Canada
| |
Collapse
|
16
|
Abstract
Melanoma is the deadliest form of skin cancer. While clinical developments have significantly improved patient prognosis, effective treatment is often obstructed by limited response rates, intrinsic or acquired resistance to therapy, and adverse events. Melanoma initiation and progression are associated with transcriptional reprogramming of melanocytes to a cell state that resembles the lineage from which the cells are specified during development, that is the neural crest. Convergence to a neural crest cell (NCC)-like state revealed the therapeutic potential of targeting developmental pathways for the treatment of melanoma. Neural crest cells have a unique sensitivity to metabolic dysregulation, especially nucleotide depletion. Mutations in the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) particularly affect neural crest-derived tissues and cause Miller syndrome, a genetic disorder characterized by craniofacial malformations in patients. The developmental susceptibility of the neural crest to nucleotide deficiency is conserved in melanoma and provides a metabolic vulnerability that can be exploited for therapeutic purposes. We review the current knowledge on nucleotide stress responses in neural crest and melanoma and discuss how the recent scientific advances that have improved our understanding of transcriptional regulation during nucleotide depletion can impact melanoma treatment.
Collapse
Affiliation(s)
- Audrey Sporrij
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Leonard I Zon
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
17
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
18
|
Abstract
DEAD (Glu-Asp-Ala-Glu) box RNA helicases have been proven to contribute to antiviral innate immunity. The DDX21 RNA helicase was identified as a nuclear protein involved in rRNA processing and RNA unwinding. DDX21 was also proven to be the scaffold protein in the complex of DDX1-DDX21-DHX36, which senses double-strand RNA and initiates downstream innate immunity. Here, we identified that DDX21 undergoes caspase-dependent cleavage after virus infection and treatment with RNA/DNA ligands, especially for RNA virus and ligands. Caspase-3/6 cleaves DDX21 at D126 and promotes its translocation from the nucleus to the cytoplasm in response to virus infection. The cytoplasmic cleaved DDX21 negatively regulates the interferon beta (IFN-β) signaling pathway by suppressing the formation of the DDX1-DDX21-DHX36 complex. Thus, our data identify DDX21 as a regulator of immune balance and most importantly uncover a potential role of DDX21 cleavage in the innate immune response to virus.
Collapse
|
19
|
Ozols M, Eckersley A, Mellody KT, Mallikarjun V, Warwood S, O'Cualain R, Knight D, Watson REB, Griffiths CEM, Swift J, Sherratt MJ. Peptide location fingerprinting reveals modification-associated biomarker candidates of ageing in human tissue proteomes. Aging Cell 2021; 20:e13355. [PMID: 33830638 PMCID: PMC8135079 DOI: 10.1111/acel.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6β4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Kieran T. Mellody
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
| | - Venkatesh Mallikarjun
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Stacey Warwood
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Ronan O'Cualain
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - David Knight
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Rachel E. B. Watson
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Christopher E. M. Griffiths
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Joe Swift
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| |
Collapse
|
20
|
Sergeeva O, Zatsepin T. RNA Helicases as Shadow Modulators of Cell Cycle Progression. Int J Mol Sci 2021; 22:2984. [PMID: 33804185 PMCID: PMC8001981 DOI: 10.3390/ijms22062984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The progress of the cell cycle is directly regulated by modulation of cyclins and cyclin-dependent kinases. However, many proteins that control DNA replication, RNA transcription and the synthesis and degradation of proteins can manage the activity or levels of master cell cycle regulators. Among them, RNA helicases are key participants in RNA metabolism involved in the global or specific tuning of cell cycle regulators at the level of transcription and translation. Several RNA helicases have been recently evaluated as promising therapeutic targets, including eIF4A, DDX3 and DDX5. However, targeting RNA helicases can result in side effects due to the influence on the cell cycle. In this review, we discuss direct and indirect participation of RNA helicases in the regulation of the cell cycle in order to draw attention to downstream events that may occur after suppression or inhibition of RNA helicases.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
21
|
Marcaida MJ, Kauzlaric A, Duperrex A, Sülzle J, Moncrieffe MC, Adebajo D, Manley S, Trono D, Dal Peraro M. The Human RNA Helicase DDX21 Presents a Dimerization Interface Necessary for Helicase Activity. iScience 2020; 23:101811. [PMID: 33313488 PMCID: PMC7721647 DOI: 10.1016/j.isci.2020.101811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Members of the DEAD-box helicase family are involved in all fundamental processes of RNA metabolism, and as such, their malfunction is associated with various diseases. Currently, whether and how oligomerization impacts their biochemical and biological functions is not well understood. In this work, we show that DDX21, a human DEAD-box helicase with RNA G-quadruplex resolving activity, is dimeric and that its oligomerization state influences its helicase activity. Solution small-angle X-ray scattering (SAXS) analysis uncovers a flexible multi-domain protein with a central dimerization domain. While the Arg/Gly rich C termini, rather than dimerization, are key to maintaining high affinity for RNA substrates, in vitro helicase assays indicate that an intact dimer is essential for both DDX21 ATP-dependent double-stranded RNA unwinding and ATP-independent G-quadruplex remodeling activities. Our results suggest that oligomerization plays a key role in regulating RNA DEAD-box helicase activity. The human RNA DEAD-box helicase DDX21 is dimeric DDX21 dimerization is mediated by a hydrophobic central core domain SAXS-based modeling reveals that DDX21 is intrinsically flexible Dimerization and C-terminal domains mediate G-quadruplex and dsRNA unwinding
Collapse
Affiliation(s)
- Maria J Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Annamaria Kauzlaric
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Alice Duperrex
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Jenny Sülzle
- Laboratory for Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Martin C Moncrieffe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Damilola Adebajo
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Suliana Manley
- Laboratory for Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Didier Trono
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| |
Collapse
|
22
|
Yao RW, Liu CX, Chen LL. Linking RNA Processing and Function. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:67-82. [PMID: 32019863 DOI: 10.1101/sqb.2019.84.039495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA processing is critical for eukaryotic mRNA maturation and function. It appears there is no exception for other types of RNAs. Long noncoding RNAs (lncRNAs) represent a subclass of noncoding RNAs, have sizes of >200 nucleotides (nt), and participate in various aspects of gene regulation. Although many lncRNAs are capped, polyadenylated, and spliced just like mRNAs, others are derived from primary transcripts of RNA polymerase II and stabilized by forming circular structures or by ending with small nucleolar RNA-protein complexes. Here we summarize the recent progress in linking the processing and function of these unconventionally processed lncRNAs; we also discuss how directional RNA movement is achieved using the radial flux movement of nascent precursor ribosomal RNA (pre-rRNA) in the human nucleolus as an example.
Collapse
Affiliation(s)
- Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
McRae EKS, Dupas SJ, Booy EP, Piragasam RS, Fahlman RP, McKenna SA. An RNA guanine quadruplex regulated pathway to TRAIL-sensitization by DDX21. RNA (NEW YORK, N.Y.) 2020; 26:44-57. [PMID: 31653714 PMCID: PMC6913123 DOI: 10.1261/rna.072199.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
DDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we used label-free proteomic MS/MS to identify 26 proteins that are expressed at significantly different levels in cells expressing an rG4-binding deficient DDX21 (M4). MS data are available via ProteomeXchange with identifier PXD013501. From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5'-UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in MCF-7 cells, rendering them sensitive to TRAIL-mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by the potential to form rG4 in their 5'-UTRs.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2R7
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| |
Collapse
|
24
|
Gaviraghi M, Vivori C, Tonon G. How Cancer Exploits Ribosomal RNA Biogenesis: A Journey beyond the Boundaries of rRNA Transcription. Cells 2019; 8:cells8091098. [PMID: 31533350 PMCID: PMC6769540 DOI: 10.3390/cells8091098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
The generation of new ribosomes is a coordinated process essential to sustain cell growth. As such, it is tightly regulated according to cell needs. As cancer cells require intense protein translation to ensure their enhanced growth rate, they exploit various mechanisms to boost ribosome biogenesis. In this review, we will summarize how oncogenes and tumor suppressors modulate the biosynthesis of the RNA component of ribosomes, starting from the description of well-characterized pathways that converge on ribosomal RNA transcription while including novel insights that reveal unexpected regulatory networks hacked by cancer cells to unleash ribosome production.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Experimental Imaging Center; Ospedale San Raffaele, 20132 Milan, Italy.
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
25
|
Activation of PARP-1 by snoRNAs Controls Ribosome Biogenesis and Cell Growth via the RNA Helicase DDX21. Mol Cell 2019; 75:1270-1285.e14. [PMID: 31351877 DOI: 10.1016/j.molcel.2019.06.020] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
PARP inhibitors (PARPi) prevent cancer cell growth by inducing synthetic lethality with DNA repair defects (e.g., in BRCA1/2 mutant cells). We have identified an alternative pathway for PARPi-mediated growth control in BRCA1/2-intact breast cancer cells involving rDNA transcription and ribosome biogenesis. PARP-1 binds to snoRNAs, which stimulate PARP-1 catalytic activity in the nucleolus independent of DNA damage. Activated PARP-1 ADP-ribosylates DDX21, an RNA helicase that localizes to nucleoli and promotes rDNA transcription when ADP-ribosylated. Treatment with PARPi or mutation of the ADP-ribosylation sites reduces DDX21 nucleolar localization, rDNA transcription, ribosome biogenesis, protein translation, and cell growth. The salient features of this pathway are evident in xenografts in mice and human breast cancer patient samples. Elevated levels of PARP-1 and nucleolar DDX21 are associated with cancer-related outcomes. Our studies provide a mechanistic rationale for efficacy of PARPi in cancer cells lacking defects in DNA repair whose growth is inhibited by PARPi.
Collapse
|
26
|
Yan Q, Zhu C, Guang S, Feng X. The Functions of Non-coding RNAs in rRNA Regulation. Front Genet 2019; 10:290. [PMID: 31024617 PMCID: PMC6463246 DOI: 10.3389/fgene.2019.00290] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/18/2019] [Indexed: 02/04/2023] Open
Abstract
Ribosomes are ribonucleoprotein machines that decode the genetic information embedded in mRNAs into polypeptides. Ribosome biogenesis is tightly coordinated and controlled from the transcription of pre-rRNAs to the assembly of ribosomes. Defects or disorders in rRNA production result in a number of human ribosomopathy diseases. During the processes of rRNA synthesis, non-coding RNAs, especially snoRNAs, play important roles in pre-rRNA transcription, processing, and maturation. Recent research has started to reveal that other long and short non-coding RNAs, including risiRNA, LoNA, and SLERT (among others), are also involved in pre-rRNA transcription and rRNA production. Here, we summarize the current understanding of the mechanisms of non-coding RNA-mediated rRNA generation and regulation and their biological roles.
Collapse
Affiliation(s)
- Qi Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, China
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
27
|
Cao J, Wu N, Han Y, Hou Q, Zhao Y, Pan Y, Xie X, Chen F. DDX21 promotes gastric cancer proliferation by regulating cell cycle. Biochem Biophys Res Commun 2018; 505:1189-1194. [PMID: 30322617 DOI: 10.1016/j.bbrc.2018.10.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp) cassette helicase 21 (DDX21) is an ATP-dependent RNA helicase that is overexpressed in various malignancies. There is increasing evidence that DDX21 is involved in carcinogenesis and cancer progression by promoting cell proliferation. However, the functional role of DDX21 in gastric cancer is largely unknown. In this study, we observed that DDX21 was significantly up-regulated in gastric cancer tissues compared to paired adjacent normal tissues. The expression of DDX21 was closely related to the pathological stage of gastric cancer. In vitro and in vivo studies had shown that knockdown of DDX21 inhibited gastric cancer cell proliferation, colony formation, G1/S cell cycle transition and xenograft growth, while ectopic expression of DDX21 promoted these cell functions. Mechanically, DDX21 induced gastric cancer cell growth by up-regulating levels of Cyclin D1 and CDK2. Taken together, these results revealed a novel role for DDX21 in the proliferation of gastric cancer cells via the Cyclin D1 and CDK2 pathways. Therefore, DDX21 can be used as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jiayi Cao
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Nan Wu
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Yuying Han
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Qiuqiu Hou
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Yu Zhao
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Yanan Pan
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Xin Xie
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
28
|
Abstract
Small nucleolar RNAs (snoRNAs) are a family of conserved nuclear RNAs that function in the modification of small nuclear RNAs (snRNAs) or ribosomal RNAs (rRNAs), or participate in the processing of rRNAs during ribosome subunit maturation. Eukaryotic DNA transcription and RNA processing produce many long noncoding RNA (lncRNA) species. Although most lncRNAs are processed like typical mRNAs to be 5' capped and 3' polyadenylated, other types of lncRNAs are stabilized from primary Pol II transcripts by alternative mechanisms. One way to generate stable lncRNAs is to co-operate with snoRNA processing to produce snoRNA-ended lncRNAs (sno-lncRNAs) and 5' snoRNA-ended and 3'-polyadenylated lncRNAs (SPAs). Rather than silently accumulating in the nucleus, some sno-lncRNAs and SPAs are involved in the regulation of pre-rRNA transcription and alternative splicing of pre-mRNAs. Here we provide a mini-review to discuss the biogenesis and functions of these unusually processed lncRNAs.
Collapse
Affiliation(s)
- Yu-Hang Xing
- a State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai , China
| | - Ling-Ling Chen
- a State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai , China.,b School of Life Science and Technology , ShanghaiTech University , Shanghai , China
| |
Collapse
|
29
|
McRae EKS, Booy EP, Moya-Torres A, Ezzati P, Stetefeld J, McKenna SA. Human DDX21 binds and unwinds RNA guanine quadruplexes. Nucleic Acids Res 2017; 45:6656-6668. [PMID: 28472472 PMCID: PMC5499804 DOI: 10.1093/nar/gkx380] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Guanine quadruplexes (G4s) are an important structure of nucleic acids (DNA and RNA) with roles in several cellular processes. RNA G4s require specialized unwinding enzymes, of which only two have been previously identified. We describe the results of a simple and specific mass spectrometry guided method used to screen HEK293T cell lysate for G4 binding proteins. From these results, we validated the RNA helicase protein DDX21. DDX21 is an established RNA helicase, but has not yet been validated as a G4 binding protein. Through biochemical techniques, we confirm that DDX21-quadruplex RNA interactions are direct and mediated via a site of interaction at the C-terminus of the protein. Furthermore, through monitoring changes in nuclease sensitivity we show that DDX21 can unwind RNA G4. Finally, as proof of principle, we demonstrate the ability of DDX21 to suppress the expression of a protein with G4s in the 3΄ UTR of its mRNA.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
30
|
Xing YH, Yao RW, Zhang Y, Guo CJ, Jiang S, Xu G, Dong R, Yang L, Chen LL. SLERT Regulates DDX21 Rings Associated with Pol I Transcription. Cell 2017; 169:664-678.e16. [DOI: 10.1016/j.cell.2017.04.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/06/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
|
31
|
TLR4/NF-κB-responsive microRNAs and their potential target genes: a mouse model of skeletal muscle ischemia-reperfusion injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:410721. [PMID: 25692136 PMCID: PMC4321099 DOI: 10.1155/2015/410721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022]
Abstract
Background. The aim of this study was to profile TLR4/NF-κB-responsive microRNAs (miRNAs) and their potential target genes in the skeletal muscles of mice following ischemia-reperfusion injury. Methods. Thigh skeletal muscles of C57BL/6, Tlr4−/−, and NF-κB−/− mice isolated based on femoral artery perfusion were subjected to ischemia for 2 h and reperfusion for 0 h, 4 h, 1 d, and 7 d. The muscle specimens were analyzed with miRNA arrays. Immunoprecipitation with an argonaute 2- (Ago2-) specific monoclonal antibody followed by whole genome microarray was performed to identify mRNA associated with the RNA-silencing machinery. The potential targets of each upregulated miRNA were identified by combined analysis involving the bioinformatics algorithm miRanda and whole genome expression. Results. Three TLR4/NF-κB-responsive miRNAs (miR-15a, miR-744, and miR-1196) were significantly upregulated in the muscles following ischemia-reperfusion injury. The combined in silico and whole genome microarray approaches identified 5, 4, and 20 potential target genes for miR-15a, miR-744, and miR-1196, respectively. Among the 3 genes (Zbed4, Lrsam1, and Ddx21) regulated by at least 2 of the 3 upregulated miRNAs, Lrsam1 and Ddx21 are known to be associated with the innate immunity pathway. Conclusions. This study profiled TLR4/NF-κB-responsive miRNAs and their potential target genes in mouse skeletal muscle subjected to ischemia-reperfusion injury.
Collapse
|
32
|
Sloan KE, Leisegang MS, Doebele C, Ramírez AS, Simm S, Safferthal C, Kretschmer J, Schorge T, Markoutsa S, Haag S, Karas M, Ebersberger I, Schleiff E, Watkins NJ, Bohnsack MT. The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21. Nucleic Acids Res 2014; 43:553-64. [PMID: 25477391 PMCID: PMC4288182 DOI: 10.1093/nar/gku1291] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Translation fidelity and efficiency require multiple ribosomal (r)RNA modifications that are mostly mediated by small nucleolar (sno)RNPs during ribosome production. Overlapping basepairing of snoRNAs with pre-rRNAs often necessitates sequential and efficient association and dissociation of the snoRNPs, however, how such hierarchy is established has remained unknown so far. Here, we identify several late-acting snoRNAs that bind pre-40S particles in human cells and show that their association and function in pre-40S complexes is regulated by the RNA helicase DDX21. We map DDX21 crosslinking sites on pre-rRNAs and show their overlap with the basepairing sites of the affected snoRNAs. While DDX21 activity is required for recruitment of the late-acting snoRNAs SNORD56 and SNORD68, earlier snoRNAs are not affected by DDX21 depletion. Together, these observations provide an understanding of the timing and ordered hierarchy of snoRNP action in pre-40S maturation and reveal a novel mode of regulation of snoRNP function by an RNA helicase in human cells.
Collapse
Affiliation(s)
- Katherine E Sloan
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Matthias S Leisegang
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Carmen Doebele
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Ana S Ramírez
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Charlotta Safferthal
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Jens Kretschmer
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Tobias Schorge
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Stavroula Markoutsa
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Sara Haag
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University, 60438 Frankfurt, Germany
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Markus T Bohnsack
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University, 60438 Frankfurt, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
33
|
Zhang Y, Baysac KC, Yee LF, Saporita AJ, Weber JD. Elevated DDX21 regulates c-Jun activity and rRNA processing in human breast cancers. Breast Cancer Res 2014; 16:449. [PMID: 25260534 PMCID: PMC4303128 DOI: 10.1186/s13058-014-0449-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The DDX21 RNA helicase has been shown to be a nucleolar and nuclear protein involved in ribosome RNA processing and AP-1 transcription. DDX21 is highly expressed in colon cancer, lymphomas, and some breast cancers, but little is known about how DDX21 might promote tumorigenesis. METHODS Immunohistochemistry was performed on a breast cancer tissue array of 187 patients. In order to study the subcellular localization of DDX21 in both tumor tissue and tumor cell lines, indirect immunofluorescence was applied. The effect of DDX21 knockdown was measured by cellular apoptosis, rRNA processing assays, soft agar growth and mouse xenograft imaging. AP-1 transcriptional activity was analyzed with a luciferase reporter and bioluminescence imaging, as well as qRT-PCR analysis of downstream target, cyclin D1, to determine the mechanism of action for DDX21 in breast tumorigenesis. RESULTS Herein, we show that DDX21 is highly expressed in breast cancer tissues and established cell lines. A significant number of mammary tumor tissues and established breast cancer cell lines exhibit nuclear but not nucleolar localization of DDX21. The protein expression level of DDX21 correlates with cell proliferation rate and is markedly induced by EGF signaling. Mechanistically, DDX21 is required for the phosphorylation of c-Jun on Ser73 and DDX21 deficiency markedly reduces the transcriptional activity of AP-1. Additionally, DDX21 promotes rRNA processing in multiple breast cancer cell lines. Tumor cells expressing high levels of endogenous DDX21 undergo apoptosis after acute DDX21 knockdown, resulting in significant reduction of tumorigenicity in vitro and in vivo. CONCLUSIONS Our findings indicate that DDX21 expression in breast cancer cells can promote AP-1 activity and rRNA processing, and thus, promote tumorigenesis by two independent mechanisms. DDX21 could serve as a marker for a subset of breast cancer patients with higher proliferation potential and may be used as a therapeutic target for a subset of breast cancer patients.
Collapse
|
34
|
Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, Yao H. Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 2013; 288:26067-26077. [PMID: 23884423 DOI: 10.1074/jbc.m113.486175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CCCTC-binding factor (CTCF) is a ubiquitously expressed "master weaver" and plays multiple functions in the genome, including transcriptional activation/repression, chromatin insulation, imprinting, X chromosome inactivation, and high-order chromatin organization. It has been shown that CTCF facilitates the recruitment of the upstream binding factor onto ribosomal DNA (rDNA) and regulates the local epigenetic state of rDNA repeats. However, the mechanism by which CTCF modulates rRNA gene transcription has not been well understood. Here we found that wild-type CTCF augments the pre-rRNA level, cell size, and cell growth in cervical cancer cells. In contrast, RNA interference-mediated knockdown of CTCF reduced pre-rRNA transcription. CTCF positively regulates rRNA gene transcription in a RNA polymerase I-dependent manner. We identified an RRGR motif as a putative nucleolar localization sequence in the C-terminal region of CTCF that is required for activating rRNA gene transcription. Using mass spectrometry, we identified SMC2 and SMC4, two subunits of condensin complexes that interact with CTCF. Condensin negatively regulates CTCF-mediated rRNA gene transcription. Knockdown of SMC2 expression significantly facilitates the loading of CTCF and the upstream binding factor onto the rDNA locus and increases histone acetylation across the rDNA locus. Taken together, our study suggests that condensin competes with CTCF in binding to a specific rDNA locus and negatively regulates CTCF-mediated rRNA gene transcription.
Collapse
Affiliation(s)
- Kaimeng Huang
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,; the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Jinping Jia
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wu
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingze Yao
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Min Li
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jingji Jin
- the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Cizhong Jiang
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Cai
- the College of Life Science, Jilin University, Changchun, Jilin 130012, China, and
| | - Duanqing Pei
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangjin Pan
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,.
| | - Hongjie Yao
- From the Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,.
| |
Collapse
|
35
|
Bonzheim I, Irmler M, Klier-Richter M, Steinhilber J, Anastasov N, Schäfer S, Adam P, Beckers J, Raffeld M, Fend F, Quintanilla-Martinez L. Identification of C/EBPβ target genes in ALK+ anaplastic large cell lymphoma (ALCL) by gene expression profiling and chromatin immunoprecipitation. PLoS One 2013; 8:e64544. [PMID: 23741337 PMCID: PMC3669320 DOI: 10.1371/journal.pone.0064544] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
C/EBPβ (CCAAT enhancer binding protein) is a transcription factor that plays a crucial role in survival and transformation of ALK+ anaplastic large cell lymphoma (ALCL). The aim of this study was to identify the downstream targets of C/EBPβ responsible for ALK-mediated oncogenesis. C/EBPβ was knocked down in ALK+ ALCL cell lines with a C/EBPβ-shRNA, followed by gene expression profiling (GEP). GEP analysis revealed a reproducible signature of genes that were significantly regulated by C/EBPβ. Classification into biological categories revealed overrepresentation of genes involved in the immune response, apoptosis and cell proliferation. Transcriptional regulation by C/EBPβ was found in 6 of 11 (BCL2A1, G0S2, TRIB1, S100A9, DDX21 and DDIT4) genes investigated by chromatin immunoprecipitation. We demonstrated that BCL2A1, G0S2 and DDX21 play a crucial role in survival and proliferation of ALK+ ALCL cells. DDX21, a gene involved in rRNA biogenesis, was found differentially overexpressed in primary ALK+ ALCL cases. All three candidate genes were validated in primary ALCL cases by either immunohistochemistry or RT-qPCR. In conclusion, we identified and validated several key C/EBPβ-regulated genes with major impact on survival and cell growth in ALK+ ALCL, supporting the central role of C/EBPβ in ALK-mediated oncogenesis.
Collapse
MESH Headings
- CCAAT-Enhancer-Binding Protein-beta/antagonists & inhibitors
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Survival/genetics
- Chromatin Immunoprecipitation
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Minor Histocompatibility Antigens
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Comprehensive Cancer Center, Eberhard-Karls-University, Tübingen, Germany
- Institute of Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Margit Klier-Richter
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Comprehensive Cancer Center, Eberhard-Karls-University, Tübingen, Germany
- Institute of Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Comprehensive Cancer Center, Eberhard-Karls-University, Tübingen, Germany
| | - Nataša Anastasov
- Institute of Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine Schäfer
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Comprehensive Cancer Center, Eberhard-Karls-University, Tübingen, Germany
| | - Patrick Adam
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Comprehensive Cancer Center, Eberhard-Karls-University, Tübingen, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Mark Raffeld
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Comprehensive Cancer Center, Eberhard-Karls-University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Comprehensive Cancer Center, Eberhard-Karls-University, Tübingen, Germany
- Institute of Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
36
|
Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:854-65. [PMID: 23567047 PMCID: PMC7157912 DOI: 10.1016/j.bbagrm.2013.03.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Traditional functions of DExD/H-box helicases are concerned with RNA metabolism; they have been shown to play a part in nearly every cellular process that involves RNA. On the other hand, it is accepted that DexD/H-box helicases also engage in activities that do not require helicase activity. A number of DExD/H-box helicases have been shown to be involved in anti-viral immunity. The RIG-like helicases, RIG-I, mda5 and lgp2, act as important cytosolic pattern recognition receptors for viral RNA. Detection of viral nucleic acids by the RIG-like helicases or other anti-viral pattern recognition receptors leads to the induction of type I interferons and pro-inflammatory cytokines. More recently, additional DExD/H-box helicases have also been implicated to act as cytosolic sensors of viral nucleic acids, including DDX3, DDX41, DHX9, DDX60, DDX1 and DHX36. However, there is evidence that at least some of these helicases might have more downstream functions in pattern recognition receptor signalling pathways, as signalling adaptors or transcriptional regulators. In an interesting twist, a lot of DExD/H-box helicases have also been identified as essential host factors for the replication of different viruses, suggesting that viruses 'hijack' their RNA helicase activities for their benefit. Interestingly, DDX3, DDX1 and DHX9 are among the helicases that are required for the replication of a diverse range of viruses. This might suggest that these helicases are highly contested targets in the ongoing 'arms race' between viruses and the host immune system. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Anthony Fullam
- National University of Ireland, Maynooth, Kildare, Ireland.
| | | |
Collapse
|
37
|
Qin Y, Ouyang H, Liu J, Xie Y. Proteome identification of proteins interacting with histone methyltransferase SET8. Acta Biochim Biophys Sin (Shanghai) 2013; 45:303-8. [PMID: 23419719 DOI: 10.1093/abbs/gmt011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SET8 (also known as PR-Set7/9, SETD8, KMT5A), a member of the SET domain containing methyltransferase family, which specifically catalyzes mono-methylation of K20 on histone H4 (H4K20me1), has been implicated in multiple biological processes, such as gene transcriptional regulation, cell cycle control, genomic integrity maintenance and development. In this study, we used GST-SET8 fusion protein as bait to search for SET8 interaction partners to elucidate physiological functions of SET8. In combination with mass spectrometry, we identified 40 proteins that potentially interact with SET8. DDX21, a nucleolar protein, was further confirmed to associate with SET8. Furthermore, we discovered a novel function of SET8 in the regulation of rRNA transcription.
Collapse
Affiliation(s)
- Yi Qin
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
38
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
39
|
Ferraris SE, Isoniemi K, Torvaldson E, Anckar J, Westermarck J, Eriksson JE. Nucleolar AATF regulates c-Jun-mediated apoptosis. Mol Biol Cell 2012; 23:4323-32. [PMID: 22933572 PMCID: PMC3484108 DOI: 10.1091/mbc.e12-05-0419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The AP-1 transcription factor c-Jun is essential for stress-induced apoptosis in several models. The apoptosis-antagonizing transcription factor is a novel nucleolar stress sensor, which is required as a cofactor for c-Jun–mediated apoptosis. The AP-1 transcription factor c-Jun has been shown to be essential for stress-induced apoptosis in several models. However, the molecular mechanisms underlying the proapoptotic activity of c-Jun are poorly understood. We identify the apoptosis-antagonizing transcription factor (AATF) as a novel nucleolar stress sensor, which is required as a cofactor for c-Jun–mediated apoptosis. Overexpression or down-regulation of AATF expression levels led to a respective increase or decrease in the amount of activated and phosphorylated c-Jun with a proportional alteration in the induction levels of the proapoptotic c-Jun target genes FasL and TNF-α. Accordingly, AATF promoted commitment of ultraviolet (UV)-irradiated cells to c-Jun-dependent apoptosis. Whereas AATF overexpression potentiated UV-induced apoptosis in wild-type cells, c-Jun–deficient mouse embryonic fibroblasts were resistant to AATF-mediated apoptosis induction. Furthermore, AATF mutants defective in c-Jun binding were also defective in inducing AP-1 activity and c-Jun–mediated apoptosis. UV irradiation induced a translocation of AATF from the nucleolus to the nucleus, thereby enabling its physical association to c-Jun. Analysis of AATF deletion mutants revealed that the AATF domains required for compartmentalization, c-Jun binding, and enhancement of c-Jun transcriptional activity were all also required to induce c-Jun–dependent apoptosis. These results identify AATF as a nucleolar-confined c-Jun cofactor whose expression levels and spatial distribution determine the stress-induced activity of c-Jun and the levels of c-Jun–mediated apoptosis.
Collapse
Affiliation(s)
- Saima E Ferraris
- Department of Biosciences, Åbo Akademi University, FIN-20521 Turku, Finland
| | | | | | | | | | | |
Collapse
|
40
|
Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2012; 10:4-18. [PMID: 22922795 DOI: 10.4161/rna.21879] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis.
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Göttingen University, Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
De Wever V, Lloyd DC, Nasa I, Nimick M, Trinkle-Mulcahy L, Gourlay R, Morrice N, Moorhead GBG. Isolation of human mitotic protein phosphatase complexes: identification of a complex between protein phosphatase 1 and the RNA helicase Ddx21. PLoS One 2012; 7:e39510. [PMID: 22761809 PMCID: PMC3386289 DOI: 10.1371/journal.pone.0039510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 05/21/2012] [Indexed: 12/30/2022] Open
Abstract
Metazoan mitosis requires remodelling of sub-cellular structures to ensure proper division of cellular and genetic material. Faults often lead to genomic instability, cell cycle arrests and disease onset. These key structural changes are under tight spatial-temporal and post-translational control, with crucial roles for reversible protein phosphorylation. The phosphoprotein phosphatases PP1 and PP2A are paramount for the timely execution of mitotic entry and exit but their interaction partners and substrates are still largely unresolved. High throughput, mass-spectrometry based studies have limited sensitivity for the detection of low-abundance and transient complexes, a typical feature of many protein phosphatase complexes. Moreover, the limited timeframe during which mitosis takes place reduces the likelihood of identifying mitotic phosphatase complexes in asynchronous cells. Hence, numerous mitotic protein phosphatase complexes still await identification. Here we present a strategy to enrich and identify serine/threonine protein phosphatase complexes at the mitotic spindle. We thus identified a nucleolar RNA helicase, Ddx21/Gu, as a novel, direct PP1 interactor. Furthermore, our results place PP1 within the toposome, a Topoisomerase II alpha (TOPOIIα) containing complex with a key role in mitotic chromatin regulation and cell cycle progression, possibly via regulated protein phosphorylation. This study provides a strategy for the identification of further mitotic PP1 partners and the unravelling of PP1 functions during mitosis.
Collapse
Affiliation(s)
- Veerle De Wever
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - David C. Lloyd
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Isha Nasa
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mhairi Nimick
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Nick Morrice
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Greg B. G. Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
42
|
Hochstatter J, Hölzel M, Rohrmoser M, Schermelleh L, Leonhardt H, Keough R, Gonda TJ, Imhof A, Eick D, Längst G, Németh A. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA. J Biol Chem 2012; 287:24365-77. [PMID: 22645127 DOI: 10.1074/jbc.m111.303719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ribosomal RNA gene transcription, co-transcriptional processing, and ribosome biogenesis are highly coordinated processes that are tightly regulated during cell growth. In this study we discovered that Mybbp1a is associated with both the RNA polymerase I complex and the ribosome biogenesis machinery. Using a reporter assay that uncouples transcription and RNA processing, we show that Mybbp1a represses rRNA gene transcription. In addition, overexpression of the protein reduces RNA polymerase I loading on endogenous rRNA genes as revealed by chromatin immunoprecipitation experiments. Accordingly, depletion of Mybbp1a results in an accumulation of the rRNA precursor in vivo but surprisingly also causes growth arrest of the cells. This effect can be explained by the observation that the modulation of Mybbp1a protein levels results in defects in pre-rRNA processing within the cell. Therefore, the protein may play a dual role in the rRNA metabolism, potentially linking and coordinating ribosomal DNA transcription and pre-rRNA processing to allow for the efficient synthesis of ribosomes.
Collapse
Affiliation(s)
- Julia Hochstatter
- Biochemistry Center Regensburg, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Salhia B, Van Cott C, Tegeler T, Polpitiya A, Duquette RA, Gale M, Hostteter G, Petritis K, Carpten J. Differential effects of AKT1(p.E17K) expression on human mammary luminal epithelial and myoepithelial cells. Hum Mutat 2012; 33:1216-27. [PMID: 22505016 DOI: 10.1002/humu.22100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/29/2012] [Indexed: 01/18/2023]
Abstract
Recently, we identified a somatic mutation in AKT1, which results in a glutamic acid to lysine substitution (p.Glu17Lys or E17K). E17K mutations appear almost exclusively in breast cancers of luminal origin. Cellular models involving cell lines such as human mammary epithelial and MCF10 are model systems that upon transformation lead to rare forms of human breast cancer. Hence, we studied the effects of E17K using a clinically pertinent luminal cell line model while providing evidence to explain why E17K mutations do not occur in the mammary myoepithelium. Thus the purpose of our study was to perform a functional and differential proteomics study to assess the role of AKT1(E17K) in the development of breast cancer. We used a set of genetically matched nontumorigenic and tumorigenic mammary luminal and myoepithelial cells. We demonstrated that in myoepithelial cells, expression of E17K inhibited growth, migration, and protein synthesis compared with wild-type AKT1. In luminal cells, E17K enhanced cell survival and migration, possibly offering a selective advantage in this type of cell. However, antineoplastic effects of E17K in luminal cells, such as inhibition of growth and protein synthesis, may ultimately be associated with favorable prognosis. Our study illustrates the importance of cellular context in determining phenotypic effects of putative oncogenic mutations.
Collapse
Affiliation(s)
- Bodour Salhia
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Naji S, Ambrus G, Cimermančič P, Reyes JR, Johnson JR, Filbrandt R, Huber MD, Vesely P, Krogan NJ, Yates JR, Saphire AC, Gerace L. Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production. Mol Cell Proteomics 2011; 11:M111.015313. [PMID: 22174317 DOI: 10.1074/mcp.m111.015313] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 Rev protein plays a key role in the late phase of virus replication. It binds to the Rev Response Element found in underspliced HIV mRNAs, and drives their nuclear export by the CRM1 receptor pathway. Moreover, mounting evidence suggests that Rev has additional functions in viral replication. Here we employed proteomics and statistical analysis to identify candidate host cell factors that interact with Rev. For this we studied Rev complexes assembled in vitro with nuclear or cytosolic extracts under conditions emulating various intracellular environments of Rev. We ranked the protein-protein interactions by combining several statistical features derived from pairwise comparison of conditions in which the abundance of the binding partners changed. As a validation set, we selected the eight DEAD/H box proteins of the RNA helicase family from the top-ranking 5% of the proteins. These proteins all associate with ectopically expressed Rev in immunoprecipitates of cultured cells. From gene knockdown approaches, our work in combination with previous studies indicates that six of the eight DEAD/H proteins are linked to HIV production in our cell model. In a more detailed analysis of infected cells where either DDX3X, DDX5, DDX17, or DDX21 was silenced, we observed distinctive phenotypes for multiple replication features, variously involving virus particle release, the levels of unspliced and spliced HIV mRNAs, and the nuclear and cytoplasmic concentrations of these transcripts. Altogether the work indicates that our top-scoring data set is enriched in Rev-interacting proteins relevant to HIV replication. Our more detailed analysis of several Rev-interacting DEAD proteins suggests a complex set of functions for the helicases in regulation of HIV mRNAs. The strategy used here for identifying Rev interaction partners should prove effective for analyzing other viral and cellular proteins.
Collapse
Affiliation(s)
- Souad Naji
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lo D, Lu H. Nucleostemin: Another nucleolar "Twister" of the p53-MDM2 loop. Cell Cycle 2010; 9:3227-32. [PMID: 20703089 PMCID: PMC2943035 DOI: 10.4161/cc.9.16.12605] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 01/19/2023] Open
Abstract
Several nucleolar proteins, such as ARF, ribosomal protein (RP) L5, L11, L23 and S7, have been shown to induce p53 activation by inhibiting MDM2 E3 ligase activity and consequently to trigger cell cycle arrest and/or apoptosis. Our recent study revealed another nucleolar protein called nucleostemin (NS), a nucleolar GTP binding protein, as a novel regulator of the p53-MDM2 feedback loop. However, unlike other known nucleolar regulators of this loop, NS surprisingly plays a dual role, as both up and downregulations of its levels could turn on p53 activity. Here, we try to offer some prospective views for this unusual phenomenon by reconciling previously and recently published studies in the field in hoping to better depict the role of NS in linking the p53 pathway with ribosomal biogenesis during cell growth and proliferation as well as to propose NS as another potential molecular target for anti-cancer drug development.
Collapse
Affiliation(s)
- Dorothy Lo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Simon Cancer Center, Indianapolis, Indiana, USA
| | | |
Collapse
|
46
|
Gustafson EA, Wessel GM. DEAD-box helicases: posttranslational regulation and function. Biochem Biophys Res Commun 2010; 395:1-6. [PMID: 20206133 PMCID: PMC2863303 DOI: 10.1016/j.bbrc.2010.02.172] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022]
Affiliation(s)
- Eric A. Gustafson
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
| | - Gary M. Wessel
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
47
|
Watanabe Y, Ohtaki N, Hayashi Y, Ikuta K, Tomonaga K. Autogenous translational regulation of the Borna disease virus negative control factor X from polycistronic mRNA using host RNA helicases. PLoS Pathog 2009; 5:e1000654. [PMID: 19893625 PMCID: PMC2766071 DOI: 10.1371/journal.ppat.1000654] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 10/13/2009] [Indexed: 11/24/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that employs several unique strategies for gene expression. The shortest transcript of BDV, X/P mRNA, encodes at least three open reading frames (ORFs): upstream ORF (uORF), X, and P in the 5′ to 3′ direction. The X is a negative regulator of viral polymerase activity, while the P phosphoprotein is a necessary cofactor of the polymerase complex, suggesting that the translation of X is controlled rigorously, depending on viral replication. However, the translation mechanism used by the X/P polycistronic mRNA has not been determined in detail. Here we demonstrate that the X/P mRNA autogenously regulates the translation of X via interaction with host factors. Transient transfection of cDNA clones corresponding to the X/P mRNA revealed that the X ORF is translated predominantly by uORF-termination-coupled reinitiation, the efficiency of which is upregulated by expression of P. We found that P may enhance ribosomal reinitiation at the X ORF by inhibition of the interaction of the DEAD-box RNA helicase DDX21 with the 5′ untranslated region of X/P mRNA, via interference with its phosphorylation. Our results not only demonstrate a unique translational control of viral regulatory protein, but also elucidate a previously unknown mechanism of regulation of polycistronic mRNA translation using RNA helicases. All viruses rely on host cell factors to complete their life cycles. Therefore, the replication strategies of viruses may provide not only the understanding of virus pathogenesis but also useful models to disentangle the complex machinery of host cells. Translation regulation of viral mRNA is a good example of this. Borna disease virus (BDV) is a highly neurotropic RNA virus which is characterized by persistent infection. BDV expresses mRNAs as polycistronic coding transcripts. Among them, the 0.8 kb X/P mRNA encodes at least three open reading frames (ORFs), upstream ORF, X, and P. Although BDV X and P have opposing effects in terms of viral polymerase activity, the translational regulation of X/P polycistronic mRNA has not been elucidated. In this study, we show an ingenious strategy of translational control of viral regulatory protein using host factors. We demonstrate that host RNA helicases, mainly DDX21, can affect ribosomal reinitiation of X via interaction with the 5′ untranslated region (UTR) of X/P mRNA and that the downstream P protein autogenously controls the translation of X by interfering with the binding of DDX21 to the 5′ UTR. Our findings uncover not only a unique translational control of viral regulatory protein but also a previously unknown mechanism of translational regulation of polycistronic mRNA using RNA helicases.
Collapse
Affiliation(s)
- Yohei Watanabe
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Naohiro Ohtaki
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Yohei Hayashi
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- Section of Viral Infections, Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Keizo Tomonaga
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
48
|
Takagi S, Simizu S, Osada H. RECK negatively regulates matrix metalloproteinase-9 transcription. Cancer Res 2009; 69:1502-8. [PMID: 19208844 DOI: 10.1158/0008-5472.can-08-2635] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RECK, a glycosylphosphatidylinositol-anchored glycoprotein, inhibits the enzymatic activities of some matrix metalloproteinases (MMP), thereby suppressing tumor cell metastasis; however, the detailed mechanism is still obscure. In this study, we compared the gene expression profiles between mock- and RECK-transfected HT1080 cells and showed that RECK decreases MMP-9 mRNA levels but not other MMP mRNA levels. Moreover, treatment with RECK-specific siRNA increased MMP-9 mRNA in RECK-expressing cells. The promoter assay showed that MMP-9 promoter activity was suppressed by RECK and that RECK-mediated suppression of MMP-9 promoter activity requires 12-O-tetradecanoylphorbol-13-acetate-responsive element (TRE) and kappaB sites. Moreover, the binding ability of Fra-1 and c-Jun to TRE within the MMP-9 promoter region was suppressed by RECK. Thus, these results show that RECK is a negative regulator of MMP-9 transcription.
Collapse
Affiliation(s)
- Satoshi Takagi
- Antibiotics Laboratory and Chemical Biology Department, Advanced Science Institute, RIKEN and Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | | | |
Collapse
|
49
|
Mialon A, Thastrup J, Kallunki T, Mannermaa L, Westermarck J, Holmström TH. Identification of nucleolar effects in JNK-deficient cells. FEBS Lett 2008; 582:3145-51. [PMID: 18703060 DOI: 10.1016/j.febslet.2008.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
The c-Jun N-terminal kinase (JNK) signalling pathway has an established role in cellular stress signalling, cell survival and tumorigenesis. Here, we demonstrate that inhibition of JNK signalling results in partial delocalization of the RNA helicase DDX21 from the nucleolus to the nucleoplasm, increased nucleolar mobility of DDX21 and inhibition of rRNA processing. Furthermore, our results show that JNK signalling regulates DDX21 phosphorylation and protein expression. In conclusion, the results presented in this study reveal a previously unidentified cellular role for JNK signalling in the regulation of nucleolar functions. Based on these results, we propose that JNK-mediated effects on nucleolar homeostasis and rRNA processing should be considered when interpreting cellular phenotypes observed in JNK-deficient cell and animal models.
Collapse
Affiliation(s)
- Antoine Mialon
- Center for Biotechnology, University of Turku and Abo Akademi University, Artillerigatan 6, 20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|