1
|
Daniels HG, Knicely BG, Miller AK, Thompson A, Plattner R, Goellner EM. Inhibition of ABL1 by tyrosine kinase inhibitors leads to a downregulation of MLH1 by Hsp70-mediated lysosomal protein degradation. Front Genet 2022; 13:940073. [PMID: 36338985 PMCID: PMC9631443 DOI: 10.3389/fgene.2022.940073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023] Open
Abstract
The DNA mismatch repair (MMR) pathway and its regulation are critical for genomic stability. Mismatch repair (MMR) follows replication and repairs misincorporated bases and small insertions or deletions that are not recognized and removed by the proofreading polymerase. Cells deficient in MMR exhibit an increased overall mutation rate and increased expansion and contraction of short repeat sequences in the genome termed microsatellite instability (MSI). MSI is often a clinical measure of genome stability in tumors and is used to determine the course of treatment. MMR is also critical for inducing apoptosis after alkylation damage from environmental agents or DNA-damaging chemotherapy. MLH1 is essential for MMR, and loss or mutation of MLH1 leads to defective MMR, increased mutation frequency, and MSI. In this study, we report that tyrosine kinase inhibitors, imatinib and nilotinib, lead to decreased MLH1 protein expression but not decreased MLH1 mRNA levels. Of the seven cellular targets of Imatinib and nilotinib, we show that silencing of ABL1 also reduces MLH1 protein expression. Treatment with tyrosine kinase inhibitors or silencing of ABL1 results in decreased apoptosis after treatment with alkylating agents, suggesting the level of MLH1 reduction is sufficient to disrupt MMR function. We also report MLH1 is tyrosine phosphorylated by ABL1. We demonstrate that MLH1 downregulation by ABL1 knockdown or inhibition requires chaperone protein Hsp70 and that MLH1 degradation can be abolished with the lysosomal inhibitor bafilomycin. Taken together, we propose that ABL1 prevents MLH1 from being targeted for degradation by the chaperone Hsp70 and that in the absence of ABL1 activity at least a portion of MLH1 is degraded through the lysosome. This study represents an advance in understanding MMR pathway regulation and has important clinical implications as MMR status is used in the clinic to inform patient treatment, including the use of immunotherapy.
Collapse
Affiliation(s)
- Hannah G. Daniels
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Breanna G. Knicely
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Anna Kristin Miller
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Ana Thompson
- Berea College, Berea, KY, United States,University of Kentucky Markey Cancer Center, Lexington, KY, United States
| | - Rina Plattner
- University of Kentucky Markey Cancer Center, Lexington, KY, United States,University of Kentucky, College of Medicine Department of Pharmacology and Nutritional Sciences, Lexington, KY, United States
| | - Eva M. Goellner
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States,University of Kentucky Markey Cancer Center, Lexington, KY, United States,*Correspondence: Eva M. Goellner,
| |
Collapse
|
2
|
Zhou D, Yan H, Yang S, Zhang Y, Xu X, Cen X, Lei K, Xia H. SC75741, A Novel c-Abl Inhibitor, Promotes the Clearance of TDP25 Aggregates via ATG5-Dependent Autophagy Pathway. Front Pharmacol 2021; 12:741219. [PMID: 34776962 PMCID: PMC8586708 DOI: 10.3389/fphar.2021.741219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Abnormal accumulation of TDP43-related mutant proteins in the cytoplasm causes amyotrophic lateral sclerosis (ALS). Herein, unbiased drug screening approaches showed that SC75741, a multi-target inhibitor, inhibited inflammation-induced aggregation by inhibiting NF-κB and also degraded already aggregated proteins by inhibiting c-Abl mediated autophagy-lysosomal pathway. We delineate the mechanism that SC75741 could markedly enhance TFEB nuclear translocation by an mTORC1-independent TFEB regulatory pathway. In addition, SC75741 enhanced the interaction between p62 with TDP25 and LC3C, thus promoting TDP25 degradation. Taken together, these findings show that SC75741 has beneficial neuroprotective effects in ALS. Our study elucidates that dual-targeted inhibition of c-Abl and NF-κB may be a potential treatment for TDP43 proteinopathies and ALS.
Collapse
Affiliation(s)
- Dongheng Zhou
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Huanhuan Yan
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shuying Yang
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yuhong Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoyan Xu
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xufeng Cen
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
3
|
Li Y, Zhang S, Wang Y, Peng J, Fang F, Yang X. MLH1 enhances the sensitivity of human endometrial carcinoma cells to cisplatin by activating the MLH1/c-Abl apoptosis signaling pathway. BMC Cancer 2018; 18:1294. [PMID: 30594176 PMCID: PMC6311060 DOI: 10.1186/s12885-018-5218-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/13/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND MLH1 plays a critical role in maintaining the fidelity of DNA replication, and defects in human MLH1 have been reported. However, the role of MLH1 in endometrial carcinoma has not been fully investigated. Therefore, we aimed to study the role of MLH1 in the sensitivity of human endometrial carcinoma cells to cisplatin. METHODS In this study, we detected the expression of MLH1 in Ishikawa and RL95-2 cells. MLH1-siRNA and ADV-MLH1 were adopted for the silencing and overexpression of MLH1, respectively. Real-time polymerase chain reaction, Western blotting, cell proliferation assays, and cell cycle and apoptotic analyses by flow cytometry were employed to explore the underlying mechanism. A mouse xenograft model was used to investigate the effect of MLH1 on tumor growth after treatment with cisplatin. RESULTS Over-expression of MLH1 in Ishikawa cells dramatically increased the sensitivity of cells to cisplatin and enhanced cell apoptosis. By contrast, knockdown of MLH1 yielded the opposite effects in vitro. Mechanistically, cisplatin induced the MLH1/c-Abl apoptosis signaling pathway in ADV-MLH1-infected endometrial carcinoma cells, and these effects involved c-Abl, caspase-9, caspase-3 and PARP. Altogether, our results indicate that ADV-MLH1 might attenuate Ishikawa cell growth in vivo, resulting in increased cisplatin sensitivity. CONCLUSIONS MLH1 may render endometrial carcinoma cells more sensitive to cisplatin by activating the MLH1/c-Abl apoptosis signaling pathway. In addition, an applicable adenovirus vector (ADV-MLH1) for MLH1 overexpression in endometrial carcinoma was generated. Thus, ADV-MLH1 might be a novel potential therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Yue Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, No. 70, Heping Road, WeiHai, Shandong, 264200, People's Republic of China
| | - Shihong Zhang
- Department of Obstetrics and Gynecology, Weihai Municipal Hospital, No. 70, Heping Road, WeiHai, Shandong, 264200, People's Republic of China
| | - Yuanjian Wang
- Huaxi Clinical Medical College of Sichuan University, Jiang'an campus, Chengdu City, Sichuan, 610207, People's Republic of China
| | - Jin Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fang Fang
- Department of Obstetrics and Gynecology, Weihai Municipal Hospital, No. 70, Heping Road, WeiHai, Shandong, 264200, People's Republic of China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
4
|
Morrison CD, Allington TM, Thompson CL, Gilmore HL, Chang JC, Keri RA, Schiemann WP. c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression. Oncotarget 2018; 7:72777-72794. [PMID: 27626309 PMCID: PMC5340126 DOI: 10.18632/oncotarget.11909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression.
Collapse
Affiliation(s)
- Chevaun D Morrison
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tressa M Allington
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado-Denver, Aurora, CO 80045, USA
| | - Cheryl L Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah L Gilmore
- Department of Pathology, University Hospitals, Case Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jenny C Chang
- Houston Methodist Research Center, Houston, TX 77030, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Ah-Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin-Blank N, Fabre EE, Schischmanoff O. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med 2016; 20:1956-65. [PMID: 27464833 PMCID: PMC5020624 DOI: 10.1111/jcmm.12887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy.
Collapse
Affiliation(s)
- Laurent Ah-Koon
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Denis Lesage
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Elodie Lemadre
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Inès Souissi
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France
| | - Remi Fagard
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France.,AP-HP, GHU-PSSD, Hôpital Avicenne, Service de Biochimie, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, U978, Bobigny, France. .,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France.
| | - Emmanuelle E Fabre
- INSERM, U978, Bobigny, France.,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France.,AP-HP, GHU-PSSD, Hôpital Avicenne, Service de Biochimie, Bobigny, France
| | - Olivier Schischmanoff
- INSERM, U978, Bobigny, France. .,Université Paris 13, UFR SMBH, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Bobigny, France. .,AP-HP, GHU-PSSD, Hôpital Avicenne, Service de Biochimie, Bobigny, France.
| |
Collapse
|
6
|
Li LS, Reddy S, Lin ZH, Liu S, Park H, Chun SG, Bornmann WG, Thibodeaux J, Yan J, Chakrabarti G, Xie XJ, Sumer BD, Boothman DA, Yordy JS. NQO1-Mediated Tumor-Selective Lethality and Radiosensitization for Head and Neck Cancer. Mol Cancer Ther 2016; 15:1757-67. [PMID: 27196777 PMCID: PMC5123441 DOI: 10.1158/1535-7163.mct-15-0765] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/14/2016] [Indexed: 01/30/2023]
Abstract
UNLABELLED Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed. NAD(P)H quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and β-lapachone (β-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis. β-Lap represents a novel therapeutic opportunity in HNC leading to tumor-selective lethality that will enhance the efficacy of IR. Immunohistochemical staining and Western blot assays were used to assess the expression levels of NQO1 in HNC cells and tumors. Forty-five percent of endogenous HNCs expressed elevated NQO1 levels. In addition, multiple HNC cell lines and tumors demonstrated elevated levels of NQO1 expression and activity and were tested for anticancer lethality and radiosensitization by β-lap using long-term survival assays. The combination of nontoxic β-lap doses and IR significantly enhanced NQO1-dependent tumor cell lethality, increased ROS, TUNEL-positive cells, DNA damage, NAD(+), and ATP consumption, and resulted in significant antitumor efficacy and prolonged survival in two xenograft murine HNC models, demonstrating β-lap radiosensitization of HNCs through a NQO1-dependent mechanism. This translational study offers a potential biomarker-driven strategy using NQO1 expression to select tumors susceptible to β-lap-induced radiosensitization. Mol Cancer Ther; 15(7); 1757-67. ©2016 AACR.
Collapse
Affiliation(s)
- Long-Shan Li
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Srilakshmi Reddy
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Zhen-Hua Lin
- Department of Pathology, Yanbian University Medical College, Yanji, Jilin, China
| | - Shuangping Liu
- Department of Pathology, Yanbian University Medical College, Yanji, Jilin, China
| | - Hyunsil Park
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Stephen G Chun
- Department of Radiation Oncology, MD Anderson Comprehensive Cancer Center, Houston, Texas
| | - William G Bornmann
- Department of Experimental Therapeutics, MD Anderson Comprehensive Cancer Center, Houston, Texas
| | - Joel Thibodeaux
- Department of Pathology, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Jingsheng Yan
- Department of Clinical Sciences, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Gaurab Chakrabarti
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Xian-Jin Xie
- Department of Clinical Sciences, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Baran D Sumer
- Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas. Department of Otolaryngology, Head and Neck Surgery, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - John S Yordy
- Valley Radiation Therapy Center, Palmer, Alaska.
| |
Collapse
|
7
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
8
|
Patidar PL, Motea EA, Fattah FJ, Zhou Y, Morales JC, Xie Y, Garner HR, Boothman DA. The Kub5-Hera/RPRD1B interactome: a novel role in preserving genetic stability by regulating DNA mismatch repair. Nucleic Acids Res 2016; 44:1718-31. [PMID: 26819409 PMCID: PMC4770225 DOI: 10.1093/nar/gkv1492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022] Open
Abstract
Ku70-binding protein 5 (Kub5)-Hera (K-H)/RPRD1B maintains genetic integrity by concomitantly minimizing persistent R-loops and promoting repair of DNA double strand breaks (DSBs). We used tandem affinity purification-mass spectrometry, co-immunoprecipitation and gel-filtration chromatography to define higher-order protein complexes containing K-H scaffolding protein to gain insight into its cellular functions. We confirmed known protein partners (Ku70, RNA Pol II, p15RS) and discovered several novel associated proteins that function in RNA metabolism (Topoisomerase 1 and RNA helicases), DNA repair/replication processes (PARP1, MSH2, Ku, DNA-PKcs, MCM proteins, PCNA and DNA Pol δ) and in protein metabolic processes, including translation. Notably, this approach directed us to investigate an unpredicted involvement of K-H in DNA mismatch repair (MMR) where K-H depletion led to concomitant MMR deficiency and compromised global microsatellite stability. Mechanistically, MMR deficiency in K-H-depleted cells was a consequence of reduced stability of the core MMR proteins (MLH1 and PMS2) caused by elevated basal caspase-dependent proteolysis. Pan-caspase inhibitor treatment restored MMR protein loss. These findings represent a novel mechanism to acquire MMR deficiency/microsatellite alterations. A significant proportion of colon, endometrial and ovarian cancers exhibit k-h expression/copy number loss and may have severe mutator phenotypes with enhanced malignancies that are currently overlooked based on sporadic MSI+ screening.
Collapse
Affiliation(s)
- Praveen L Patidar
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yunyun Zhou
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Heath Science Center, Oklahoma City, OK, USA
| | - Yang Xie
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine and the MITTE Office, Virginia Tech, Blacksburg, VA, USA
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Fukuhara S, Chang I, Mitsui Y, Chiyomaru T, Yamamura S, Majid S, Saini S, Hirata H, Deng G, Gill A, Wong DK, Shiina H, Nonomura N, Dahiya R, Tanaka Y. DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells. Oncotarget 2015; 5:11297-307. [PMID: 25526032 PMCID: PMC4294331 DOI: 10.18632/oncotarget.2315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023] Open
Abstract
Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis.
Collapse
Affiliation(s)
- Shinichiro Fukuhara
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America. Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Inik Chang
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Oral Biology,Yonsei University College of Dentistry, Seoul, Korea
| | - Yozo Mitsui
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America. Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Takeshi Chiyomaru
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America. Department of Urology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Soichiro Yamamura
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America
| | - Shahana Majid
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America
| | - Sharanjot Saini
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America
| | - Hiroshi Hirata
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America
| | - Guoren Deng
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America
| | - Ankurpreet Gill
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Darryn K Wong
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Hiroaki Shiina
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rajvir Dahiya
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America
| | - Yuichiro Tanaka
- Department of Surgery/Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America. Department of Urology, University of California, San Francisco, California, United States of America
| |
Collapse
|
10
|
Gniot M, Lewandowski K, Ratajczak B, Lewandowska M, Lehmann-Kopydłowska A, Jarmuż-Szymczak M, Komarnicki M. Transient presence of clonal chromosomal aberrations in Ph-negative cells in patients with chronic myeloid leukemia remaining in deep molecular response on tyrosine kinase inhibitor treatment. Cancer Genet 2014; 207:503-10. [PMID: 25496750 DOI: 10.1016/j.cancergen.2014.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022]
Abstract
Advancements in treatment of chronic myeloid leukemia (CML) turned this formerly fatal neoplasm into a manageable chronic condition. Therapy with tyrosine kinase inhibitors (TKIs) often leads to significant reduction of disease burden, known as the deep molecular response (DMR). Herein, we decided to analyze the cohort of CML patients treated in our center with TKIs, who obtain and retain DMR for a period longer than 24 months. The aim of the study was to evaluate the frequency of clonal cytogenetic aberrations in Philadelphia-negative (Ph-) cells in patients with DMR during TKI treatment. The analyzed data was obtained during routine molecular and cytogenetic treatment monitoring, using G-banded trypsin and Giemsa stain (GTG) karyotyping and reverse transcription quantitative PCR. We noticed that approximately 50% of patients (28 of 55) in DMR had, at some follow-up point, transient changes in the karyotype of their Ph- bone marrow cells. In 9.1% of cases (5 of 55), the presence of the same aberrations was observed at different time points. The most frequently appearing aberrations were monosomies of chromosomes 19, 20, 21, and Y. Statistical analysis suggests that the occurrence of such abnormalities in CML patients correlates with the TKI treatment time.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Chromosome Aberrations
- Cytogenetic Analysis
- Female
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative
- Male
- Middle Aged
- Philadelphia Chromosome
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Michał Gniot
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland.
| | - Krzysztof Lewandowski
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| | - Błażej Ratajczak
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| | - Maria Lewandowska
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| | | | - Małgorzata Jarmuż-Szymczak
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland; Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska, Poznan, Poland
| | - Mieczysław Komarnicki
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| |
Collapse
|
11
|
Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, Okamoto A, Yamaguchi N, Iwama A, Nakayama Y, Yamaguchi N. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem 2014; 289:12313-29. [PMID: 24634213 DOI: 10.1074/jbc.m113.533752] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage checkpoint arrests cell cycle progression to allow time for repair. Once DNA repair is completed, checkpoint signaling is terminated. Currently little is known about the mechanism by which checkpoint signaling is terminated, and the disappearance of DNA lesions is considered to induce the end of checkpoint signaling; however, here we show that the termination of checkpoint signaling is an active process promoted by Src family tyrosine kinases. Inhibition of Src activity delays recovery from the G2 phase DNA damage checkpoint following DNA repair. Src activity is required for the termination of checkpoint signaling, and inhibition of Src activity induces persistent activation of ataxia telangiectasia mutated (ATM)- and Rad3-related (ATR) and Chk1 kinases. Src-dependent nuclear protein tyrosine phosphorylation and v-Src expression suppress the ATR-mediated Chk1 and Rad17 phosphorylation induced by DNA double strand breaks or DNA replication stress. Thus, Src family kinases promote checkpoint recovery through termination of ATR- and Chk1-dependent G2 DNA damage checkpoint. These results suggest a model according to which Src family kinases send a termination signal between the completion of DNA repair and the initiation of checkpoint termination.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jacobs JE, Wagner M, Dhahbi J, Boffelli D, Martin DIK. Deficiency of MIWI2 (Piwil4) induces mouse erythroleukemia cell differentiation, but has no effect on hematopoiesis in vivo. PLoS One 2013; 8:e82573. [PMID: 24376547 PMCID: PMC3871168 DOI: 10.1371/journal.pone.0082573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022] Open
Abstract
Piwi proteins and their small non-coding RNA partners are involved in the maintenance of stem cell character and genome integrity in the male germ cells of mammals. MIWI2, one of the mouse Piwi-like proteins, is expressed in the prepachytene phase of spermatogenesis during the period of de novo methylation. Absence of this protein leads to meiotic defects and a progressive loss of germ cells. There is an accumulation of evidence that Piwi proteins may be active in hematopoietic tissues. Thus, MIWI2 may have a role in hematopoietic stem and/or progenitor cell self-renewal and differentiation, and defects in MIWI2 may lead to abnormal hematopoiesis. MIWI2 mRNA can be detected in a mouse erythroblast cell line by RNA-seq, and shRNA-mediated knockdown of this mRNA causes the cells to take on characteristics of differentiated erythroid precursors. However, there are no detectable hematopoietic abnormalities in a MIWI2-deficient mouse model. While subtle, non-statistically significant changes were noted in the hematopoietic function of mice without a functional MIWI2 gene when compared to wild type mice, our results show that MIWI2 is not solely necessary for hematopoiesis within the normal life span of a mouse.
Collapse
MESH Headings
- Aging/pathology
- Animals
- Argonaute Proteins/deficiency
- Argonaute Proteins/metabolism
- Blood Cells/metabolism
- Cell Differentiation
- Cell Line, Tumor
- Gene Knockdown Techniques
- Hematopoiesis
- Hemoglobins/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Mice, Inbred C57BL
- Organ Specificity/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Sequence Analysis, RNA
- Spleen/metabolism
- Whole-Body Irradiation
Collapse
Affiliation(s)
- James E. Jacobs
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| | - Mark Wagner
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Joseph Dhahbi
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - David I. K. Martin
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| |
Collapse
|
13
|
Udden SMN, Morita-Fujimura Y, Satake M, Ikawa S. c-ABL tyrosine kinase modulates p53-dependent p21 induction and ensuing cell fate decision in response to DNA damage. Cell Signal 2013; 26:444-52. [PMID: 24177958 DOI: 10.1016/j.cellsig.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 02/05/2023]
Abstract
The c-ABL non-receptor tyrosine kinase and the p53 tumor suppressor protein are pivotal modulators of cellular responses to DNA damage. However, a comprehensive understanding of the role of c-ABL kinase in p53-dependent transcription of p21(CIP1/WAF1) and ensuing cell fate decision is still obscure. Here, we demonstrate that c-ABL tyrosine kinase regulates p53-dependent induction of p21. As a result, it modulates cell fate decision by p53 in response to DNA damage differently according to the extent of DNA damage. When human cancer cells were treated with DNA damaging agent, adriamycin (0.08 μg/ml), p21 was induced following p53 induction. Owing largely to p21, a substantial fraction of cells treated with adriamycin were blocked at the G2 phase of the cell cycle and most cells eventually became senescent. When these cells were simultaneously treated with a c-ABL kinase inhibitor, STI571, or a c-ABL-specific siRNA along with adriamycin, the p53-dependent p21 induction was dramatically diminished, even though p53 is substantially induced. Accordingly, G2-arrest, and cellular senescence largely dependent on p21 were substantially abrogated. On the contrary, when cells were treated with a relatively high dose of adriamycin (0.4 μg/ml) cells became apoptotic, and the simultaneous presence of a c-ABL kinase inhibitor STI571 augmented the extent of apoptosis. We speculate this is due to abrogation of p53-dependent p21 induction, which leads to elimination of anti-apoptotic function of p21. In summary, c-ABL appears to promote senescence or inhibit apoptosis, depending on the extent of DNA damage. These findings suggest that the combined use of ABL kinase inhibitor and DNA damaging drug in chemotherapy against tumors retaining wild type p53 should be carefully designed.
Collapse
Affiliation(s)
- S M Nashir Udden
- Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan; Department of Project Programs, Tohoku University, Sendai 980-8575, Japan; Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yuiko Morita-Fujimura
- Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan; Department of Project Programs, Tohoku University, Sendai 980-8575, Japan; International Advanced Research and Education Organization, Tohoku University, Sendai 980-8578, Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan; Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Shuntaro Ikawa
- Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan; Department of Project Programs, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
14
|
Tang J, Wang JY, Parker LL. Detection of early Abl kinase activation after ionizing radiation by using a peptide biosensor. Chembiochem 2012; 13:665-73. [PMID: 22334513 PMCID: PMC3429332 DOI: 10.1002/cbic.201100763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed Abl protein is a non-receptor tyrosine kinase that undergoes nuclear-cytoplasmic shuttling and is involved in many signaling pathways in the cell. Nuclear Abl is activated by DNA damage to regulate DNA repair, cell-cycle checkpoints and apoptosis. Previous studies have established that ataxia telangiectasia mutated (ATM) activates nuclear Abl by phosphorylating serine 465 (S465) in the kinase domain in response to ionizing radiation (IR). Using a peptide biosensor that specifically reports on the Abl kinase activity, we found that an Abl-S465A mutant, which is not capable of being activated by ATM through the canonical site, was still activated rapidly after IR. We established that DNA-dependent protein kinase (DNAPK) is likely to be responsible for a second pathway to activate Abl early on in the response to IR through phosphorylation at a site other than S465. Our findings show that nuclear and cytoplasmic Abl kinase is activated early on (within 5 min) in response to IR by both ATM and DNAPK, and that although one or the other of these kinases is required, either one is sufficient to activate Abl. These results support the concept of early Abl recruitment by both the ATM and the DNAPK pathways to regulate nuclear events triggered by DNA damage and potentially communicate them to proteins in the cytoplasm.
Collapse
Affiliation(s)
- Jiabin Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| | - Jean Y. Wang
- Department of Medicine and Division of Hematology-Oncology, Moores Cancer Center, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Laurie L. Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| |
Collapse
|
15
|
Klokov D, Leskov K, Araki S, Zou Y, Goetz EM, Luo X, Willson D, Boothman DA. Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFβ1 signaling to confer a pro-survival bystander effect. Oncogene 2012; 32:479-90. [PMID: 22391565 PMCID: PMC3371099 DOI: 10.1038/onc.2012.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inadvertent mammalian tissue exposures to low doses of ionizing radiation (IR) after radiation accidents, remediation of radioactive-contaminated areas, space travel or a dirty bomb represent an interesting trauma to an organism. Possible low-dose IR-induced bystander effects could impact our evaluation of human health effects, as cells within tissue are not equally damaged after doses of IR ≤10 cGy. To understand tissue responses after low IR doses, we generated a reporter system using the human clusterin promoter fused to firefly luciferase (hCLUp-Luc). Secretory clusterin (sCLU), an extracellular molecular chaperone, induced by low doses of cytotoxic agents, clears cell debris. Low-dose IR (≥2 cGy) exposure induced hCLUp-Luc activity with peak levels at 96 h, consistent with endogenous sCLU levels. As doses increased (≥1 Gy), sCLU induction amplitudes increased and time-to-peak response decreased. sCLU expression was stimulated by insulin-like growth factor-1, but suppressed by p53. Responses in transgenic hCLUp-Luc reporter mice after low IR doses showed that specific tissues (that is, colon, spleen, mammary, thymus and bone marrow) of female mice induced hCLUp-Luc activity more than male mice after whole body (≥10 cGy) irradiation. Tissue-specific, non-linear dose- and time-responses of hCLUp-Luc and endogenous sCLU levels were noted. Colon maintained homeostatic balance after 10 cGy. Bone marrow responded with delayed, but prolonged and elevated expression. Intraperitoneal administration of α-transforming growth factor (TGF)β1 (1D11), but not control (13C4) antibodies, immediately following IR exposure abrogated CLU induction responses. Induction in vivo also correlated with Smad signaling by activated TGFβ1 after IR. Mechanistically, media with elevated sCLU levels suppressed signaling, blocked apoptosis and increased survival of TGFβ1-exposed tumor or normal cells. Thus, sCLU is a pro-survival bystander factor that abrogates TGFβ1 signaling and most likely promotes wound healing.
Collapse
Affiliation(s)
- D Klokov
- Radiological Protection Research and Instrumentation Branch, Chalk River Laboratories, Atomic Energy Canada Limited, Chalk River, ON, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kaneko M, Matsuda D, Ohtawa M, Fukuda T, Nagamitsu T, Yamori T, Tomoda H. Potentiation of Bleomycin in Jurkat Cells by Fungal Pycnidione. Biol Pharm Bull 2012; 35:18-28. [DOI: 10.1248/bpb.35.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mayumi Kaneko
- Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Daisuke Matsuda
- Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Masaki Ohtawa
- Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Takashi Fukuda
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University
| | - Tohru Nagamitsu
- Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
17
|
Zhang Y, Rohde LH, Wu H. Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Curr Genomics 2011; 10:250-8. [PMID: 19949546 PMCID: PMC2709936 DOI: 10.2174/138920209788488544] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/25/2022] Open
Abstract
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.
Collapse
Affiliation(s)
- Ye Zhang
- NASA Johnson Space Center, Houston, Texas 77058
| | | | | |
Collapse
|
18
|
ATM-dependent IGF-1 induction regulates secretory clusterin expression after DNA damage and in genetic instability. Oncogene 2011; 30:3745-54. [PMID: 21460853 DOI: 10.1038/onc.2011.92] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Secretory clusterin (sCLU) is a stress-induced, pro-survival glycoprotein elevated in early-stage cancers, in particular in APC/Min-defective colon cancers. sCLU is upregulated after exposure to various cytotoxic agents, including ionizing radiation (IR), leading to a survival advantage. We found that stimulation of insulin-like growth factor-1 (IGF-1) and IGF-1R protein kinase signaling was required for sCLU induction after IR exposure. Here, we show that activation of Ataxia telangiectasia-mutated kinase (ATM) by endogenous or exogenous forms of DNA damage was required to relieve basal repression of IGF-1 transcription by the p53/NF-YA complex, leading to sCLU expression. Although p53 levels were stabilized and elevated after DNA damage, dissociation of NF-YA, and thereby p53, from the IGF-1 promoter resulted in IGF-1 induction, indicating that NF-YA was rate limiting. Cells with elevated endogenous DNA damage (deficient in H2AX, MDC1, NBS1, mTR or hMLH1) or cells exposed to DNA-damaging agents had elevated IGF-1 expression, resulting in activation of IGF-1R signaling and sCLU induction. In contrast, ATM-deficient cells were unable to induce sCLU after DNA damage. Our results integrate DNA damage resulting from genetic instability, IR, or chemotherapeutic agents, to ATM activation and abrogation of p53/NF-YA-mediated IGF-1 transcriptional repression, that induces IGF-1-sCLU expression. Elucidation of this pathway should uncover new mechanisms for cancer progression and reveal new targets for drug development to overcome resistance to therapy.
Collapse
|
19
|
Anti-proliferative and pro-apoptotic actions of a novel human and mouse ovarian tumor-associated gene OTAG-12: downregulation, alternative splicing and drug sensitization. Oncogene 2011; 30:2874-87. [PMID: 21339736 DOI: 10.1038/onc.2011.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In studying the age dependence and chronology of ovarian tumors in follicle stimulating hormone receptor knockout mice, we identified a novel ovarian tumor associated gene-12 (OTAG-12), which is progressively downregulated and maps to Chr. 8B3.3. OTAG-12 protein overexpression in mouse ovarian and mammary tumor cells suggested powerful anti-proliferative effects. In human epithelial ovarian cancers (OCs) and OC cell lines, OTAG-12 mRNA expression is downregulated in comparison with normal ovaries. Cloning and identification revealed that human OTAG-12 mapping to gene-rich Chr. 19p13.12 is expressed in three spliced forms: hOTAG-12a, hOTAG-12b and hOTAG-12c, of which b is predominant in the normal ovary. Functionally active hOTAG-12b is a simple protein with no disulfide bonds and a nuclear localization signal is present in all variants. Transfection of OTAG-12 variants in OC and tumorigenic HEK293 cells confirmed nuclear localization. hOTAG-12b overexpression in OC and HEK293 cells effectively suppressed cell growth, anchorage-dependent and independent colony formation followed by apoptosis, whereas hOTAG-12a and hOTAG-12c had no such effects. Deletion mutants identified the critical importance of carboxyl terminus for hOTAG-12b function. Doxycycline-inducible growth inhibition of HEK293 cells by hOTAG-12a was associated with effects on G2 cell cycle arrest and apoptosis induction. hOTAG-12b expression rendered tumorigenic cells more sensitive to four apoptotic stimuli including etoposide-a topoisomerase-II inhibitor. Doxycycline-induced hOTAG-12b expression blocked xenograft tumor growth in nude mice, whereas hOTAG-12a was ineffective. Although p53-pathway-dependent apoptotic agents could upregulate endogenous hOTAG-12b and p53 in UCI-101/107 OC cells, hOTAG-12b could also induce apoptosis in p53-null and platinum-resistant SKOV3 OC cells and Doxycycline-induced hOTAG-12b did not alter p53. Further study showed that hOTAG-12b increases mRNAs of pro-apoptotic genes such as BAD, GADD45α and CIEDB, while inhibiting anti-apoptotic NAIP and Akt1 expression, suggesting that hOTAG-12b-induced apoptosis might be p53-independent. These results indicate that hOTAG-12b is a putative ovarian tumor suppressor gene warranting further studies.
Collapse
|
20
|
Li LS, Bey EA, Dong Y, Meng J, Patra B, Yan J, Xie XJ, Brekken RA, Barnett CC, Bornmann WG, Gao J, Boothman DA. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy. Clin Cancer Res 2011; 17:275-85. [PMID: 21224367 DOI: 10.1158/1078-0432.ccr-10-1983] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Pancreatic cancer is the fourth leading cause of cancer-related deaths, in which the 5-year survival rate is less than 5%. Current standard of care therapies offer little selectivity and high toxicity. Novel, tumor-selective approaches are desperately needed. Although prior work suggested that β-lapachone (β-lap) could be used for the treatment of pancreatic cancers, the lack of knowledge of the compound's mechanism of action prevented optimal use of this agent. EXPERIMENTAL DESIGN We examined the role of NAD(P)H:quinone oxidoreductase-1 (NQO1) in β-lap-mediated antitumor activity, using a series of MIA PaCa-2 pancreatic cancer clones varying in NQO1 levels by stable shRNA knockdown. The antitumor efficacy of β-lap was determined using an optimal hydroxypropyl-β-cyclodextran (HPβ-CD) vehicle formulation in metastatic pancreatic cancer models. RESULTS β-Lap-mediated cell death required ∼90 enzymatic units of NQO1. Essential downstream mediators of lethality were as follows: (i) reactive oxygen species (ROS); (ii) single-strand DNA breaks induced by ROS; (iii) poly(ADP-ribose)polymerase-1 (PARP1) hyperactivation; (iv) dramatic NAD(+)/ATP depletion; and (v) programmed necrosis. We showed that 1 regimen of β-lap therapy (5 treatments every other day) efficaciously regressed and reduced human pancreatic tumor burden and dramatically extended the survival of athymic mice, using metastatic pancreatic cancer models. CONCLUSIONS Because NQO1 enzyme activities are easily measured and commonly overexpressed (i.e., >70%) in pancreatic cancers 5- to 10-fold above normal tissue, strategies using β-lap to efficaciously treat pancreatic cancers are indicated. On the basis of optimal drug formulation and efficacious antitumor efficacy, such a therapy should be extremely safe and not accompanied with normal tissue toxicity or hemolytic anemia.
Collapse
Affiliation(s)
- Long Shan Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Allington TM, Schiemann WP. The Cain and Abl of epithelial-mesenchymal transition and transforming growth factor-β in mammary epithelial cells. Cells Tissues Organs 2010; 193:98-113. [PMID: 21051857 DOI: 10.1159/000320163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) normally inhibits breast cancer development by preventing mammary epithelial cell (MEC) proliferation, by inducing MEC apoptosis, and by creating cell microenvironments that maintain MEC homeostasis and prevent their uncontrolled growth and motility. Mammary tumorigenesis elicits dramatic alterations in MEC architecture and microenvironment integrity, which collectively counteract the tumor-suppressing activities of TGF-β and enable its stimulation of breast cancer invasion and metastasis. How malignant MECs overcome the cytostatic actions imposed by normal microenvironments and TGF-β, and how abnormal microenvironments conspire with TGF-β to stimulate the development and progression of mammary tumors remains largely undefined. These knowledge gaps have prevented science and medicine from implementing treatments effective in simultaneously targeting abnormal cellular microenvironments, and in antagonizing the oncogenic activities of TGF-β in developing and progressing breast cancers. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that essentially oversees all aspects of cell physiology, including the regulation of cell proliferation, migration and adhesion, as well as that of cell survival. Thus, the biological functions of c-Abl are highly reminiscent of those attributed to TGF-β, including the ability to function as either a suppressor or promoter of tumorigenesis. Interestingly, while dysregulated Abl activity clearly promotes tumorigenesis in hematopoietic cells, an analogous role for c-Abl in regulating solid tumor development, including those of the breast, remains controversial. Here, we review the functions of c-Abl in regulating breast cancer development and progression, and in alleviating the oncogenic activities of TGF-β and its stimulation of epithelial-mesenchymal transition during mammary tumorigenesis.
Collapse
Affiliation(s)
- Tressa M Allington
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colo., USA
| | | |
Collapse
|
22
|
Li LS, Morales JC, Veigl M, Sedwick D, Greer S, Meyers M, Wagner M, Fishel R, Boothman DA. DNA mismatch repair (MMR)-dependent 5-fluorouracil cytotoxicity and the potential for new therapeutic targets. Br J Pharmacol 2009; 158:679-92. [PMID: 19775280 DOI: 10.1111/j.1476-5381.2009.00423.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The metabolism and efficacy of 5-fluorouracil (FUra) and other fluorinated pyrimidine (FP) derivatives have been intensively investigated for over fifty years. FUra and its antimetabolites can be incorporated at RNA- and DNA-levels, with RNA level incorporation provoking toxic responses in human normal tissue, and DNA-level antimetabolite formation and incorporation believed primarily responsible for tumour-selective responses. Attempts to direct FUra into DNA-level antimetabolites, based on mechanism-of-action studies, have led to gradual improvements in tumour therapy. These include the use of leukovorin to stabilize the inhibitory thymidylate synthase-5-fluoro-2'-deoxyuridine 5' monophoshate (FdUMP)-5,10-methylene tetrahydrofolate (5,10-CH(2)FH(4)) trimeric complex. FUra incorporated into DNA also contributes to antitumour activity in preclinical and clinical studies. This review examines our current state of knowledge regarding the mechanistic aspects of FUra:Gua lesion detection by DNA mismatch repair (MMR) machinery that ultimately results in lethality. MMR-dependent direct cell death signalling or futile cycle responses will be discussed. As 10-30% of sporadic colon and endometrial tumours display MMR defects as a result of human MutL homologue-1 (hMLH1) promoter hypermethylation, we discuss the use and manipulation of the hypomethylating agent, 5-fluorodeoxycytidine (FdCyd), and our ability to manipulate its metabolism using the cytidine or deoxycytidylate (dCMP) deaminase inhibitors, tetrahydrouridine or deoxytetrahydrouridine, respectively, as a method for re-expression of hMLH1 and re-sensitization of tumours to FP therapy.
Collapse
Affiliation(s)
- Long Shan Li
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun G, Jin S, Baskaran R. MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N'-nitro-N-nitrosoguanidine. Exp Cell Res 2009; 315:3163-75. [PMID: 19766113 DOI: 10.1016/j.yexcr.2009.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 01/09/2023]
Abstract
Agents inducing O(6)-methylguanine (O(6)MeG) in DNA such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are cytotoxic and a deficiency in mismatch repair (MMR) results in lack of sensitivity to this genotoxin (termed alkylation tolerance). Here, we show that ING2, a member of the inhibitor of growth family, is required for cell death induced by MNNG. We further observe that MNNG treatment increases cellular protein levels of ING2 that is dependent on intact MMR function and that MNNG-induced ING2 localizes and associates with p73alpha in the nucleus. Suppression of ING2 by short hairpin RNA (shRNA) in MMR-proficient colorectal cancer cells decreased its sensitivity to MNNG and, in addition, abrogated MNNG-induced stabilization and acetylation of p73alpha. Interestingly, suppression of p73alpha had a greater impact on MNNG-induced cell death than ING2 leading us to conclude that ING2 regulates the cell death response, in part, through p73alpha. Inhibition of c-Abl by STI571 or suppression of c-Abl expression by shRNA blocked ING2 induction and p73alpha acetylation induced by this alkylator. Similarly, suppression of MMR (MLH1) by shRNA abrogated ING2 induction/p73alpha acetylation. Taken together, these results demonstrate that MLH1/c-Abl-dependent activation of ING2>p73alpha signaling regulates cell death triggered by MNNG and further suggests that dysregulation of this event may, in part, be responsible for alkylation tolerance observed in MMR compromised cells.
Collapse
Affiliation(s)
- Guoming Sun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, E1205 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
24
|
Allington TM, Galliher-Beckley AJ, Schiemann WP. Activated Abl kinase inhibits oncogenic transforming growth factor-beta signaling and tumorigenesis in mammary tumors. FASEB J 2009; 23:4231-43. [PMID: 19690215 DOI: 10.1096/fj.09-138412] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a ubiquitous cytokine with dual roles in tumor suppression and promotion, and these dichotomous functions have frustrated the development of therapies targeting oncogenic signaling by TGF-beta. In comparison, Abl is well established as an initiator of hematopoietic cancers; however, a clear role for Abl in regulating solid tumor development remains elusive. Here, we investigated the role of Abl in TGF-beta-mediated epithelial-mesenchymal transition (EMT) in normal and metastatic mammary epithelial cells (MECs). In doing so, we identified Abl as an essential regulator of MEC morphology and showed that Abl inactivation was sufficient to induce phenotypic and transcriptional EMT in normal MECs. Increasing Abl activity in metastatic MECs resulted in their complete morphological reversion, restored their cytostatic response to TGF-beta, and blocked their secretion of matrix metalloproteinases induced by TGF-beta. Constitutively active Abl expression blocked TGF-beta-responsive mammary tumor growth in mice, while Imatinib therapy afforded no clinical benefit in mice bearing mammary tumors. Collectively, this investigation establishes Abl as a potent mediator of MEC identity, and as a suppressor of oncogenic TGF-beta signaling during mammary tumorigenesis. Notably, our findings strongly caution against the use of pharmacological Abl antagonists in the treatment of developing and progressing mammary tumors.
Collapse
Affiliation(s)
- Tressa M Allington
- Department of Pharmacology, MS-8303, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
25
|
Li LS, Morales JC, Hwang A, Wagner MW, Boothman DA. DNA mismatch repair-dependent activation of c-Abl/p73alpha/GADD45alpha-mediated apoptosis. J Biol Chem 2008; 283:21394-403. [PMID: 18480060 DOI: 10.1074/jbc.m709954200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cells with functional DNA mismatch repair (MMR) stimulate G(2) cell cycle checkpoint arrest and apoptosis in response to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MMR-deficient cells fail to detect MNNG-induced DNA damage, resulting in the survival of "mutator" cells. The retrograde (nucleus-to-cytoplasm) signaling that initiates MMR-dependent G(2) arrest and cell death remains undefined. Since MMR-dependent phosphorylation and stabilization of p53 were noted, we investigated its role(s) in G(2) arrest and apoptosis. Loss of p53 function by E6 expression, dominant-negative p53, or stable p53 knockdown failed to prevent MMR-dependent G(2) arrest, apoptosis, or lethality. MMR-dependent c-Abl-mediated p73alpha and GADD45alpha protein up-regulation after MNNG exposure prompted us to examine c-Abl/p73alpha/GADD45alpha signaling in cell death responses. STI571 (Gleevec, a c-Abl tyrosine kinase inhibitor) and stable c-Abl, p73alpha, and GADD45alpha knockdown prevented MMR-dependent apoptosis. Interestingly, stable p73alpha knockdown blocked MMR-dependent apoptosis, but not G(2) arrest, thereby uncoupling G(2) arrest from lethality. Thus, MMR-dependent intrinsic apoptosis is p53-independent, but stimulated by hMLH1/c-Abl/p73alpha/GADD45alpha retrograde signaling.
Collapse
Affiliation(s)
- Long Shan Li
- Laboratory of Molecular Stress Responses, Department of Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|