1
|
Larsen K, Petrovski G, Boix-Lemonche G. Alternative cryoprotective agent for corneal stroma-derived mesenchymal stromal cells for clinical applications. Sci Rep 2024; 14:15788. [PMID: 38982099 PMCID: PMC11233711 DOI: 10.1038/s41598-024-65469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Cryopreservation of human corneal stroma-derived mesenchymal stromal cells (hCS-MSCs) with dimethylsulfoxide (DMSO) as a cryoprotective agent (CPA) has not been previously compared to that with glycerol under standard conditions. The hCS-MSCs were hereby cryopreserved with both compounds using a freezing rate of 1 °C/minute. The CPAs were tested by different concentrations in complete Minimum Essential Medium (MEM) approved for good manufacturing practice, and a medium frequently used in cell laboratory culturing-Dulbecco's modified eagle serum. The hCS-MSCs were isolated from cadaveric human corneas obtained from the Norwegian Eye Bank, and immunophenotypically characterized by flow cytometry before and after cryopreservation. The survival rate, the cellular adhesion, proliferation and cell surface coverage after cryopreservation of hCS-MSCs has been studied. The hCS-MSCs were immunofluorescent stained and examined for their morphology microscopically. The results showed that cryopreservation of hCS-MSCs in MEM with 10% glycerol gives a higher proliferation rate compared to other cryopreserving media tested. Based on the results, hCS-MSCs can safely be cryopreserved using glycerol instead of the traditional use of DMSO.
Collapse
Affiliation(s)
- Kristoffer Larsen
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- School of Medicine, University of Split, 21000, Split, Croatia
- UKLONetwork, University St. Kliment Ohridski -Bitola, 7000, Bitola, North Macedonia
| | - Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Strecanska M, Sekelova T, Csobonyeiova M, Danisovic L, Cehakova M. Therapeutic applications of mesenchymal/medicinal stem/signaling cells preconditioned with external factors: Are there more efficient approaches to utilize their regenerative potential? Life Sci 2024; 346:122647. [PMID: 38614298 DOI: 10.1016/j.lfs.2024.122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Mesenchymal/medicinal stem/signaling cells (MSCs) have emerged as a promising treatment option for various disorders. However, the donor's age, advanced stage of disease, and prolonged in vitro expansion often diminish the innate regenerative potential of MSCs. Besides that, the absence of MSCs' comprehensive "pre-admission testing" can result in the injection of cells with reduced viability and function, which may negatively affect the overall outcome of MSC-based therapies. It is, therefore, essential to develop effective strategies to improve the impaired biological performance of MSCs. This review focuses on the comprehensive characterization of various methods of external MSCs stimulation (hypoxia, heat shock, caloric restriction, acidosis, 3D culture, and application of extracellular matrix) that augment their medicinal potential. To emphasize the significance of MSCs priming, we summarize the effects of individual and combined preconditioning approaches, highlighting their impact on MSCs' response to either physiological or pathological conditions. We further investigate the synergic action of exogenous factors to maximize MSCs' therapeutic potential. Not to omit the field of tissue engineering, the application of pretreated MSCs seeded on scaffolds is discussed as well.
Collapse
Affiliation(s)
- Magdalena Strecanska
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Tatiana Sekelova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Michaela Cehakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| |
Collapse
|
3
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
4
|
López-Fernández A, Garcia-Gragera V, Lecina M, Vives J. Identification of critical process parameters for expansion of clinical grade human Wharton's jelly-derived mesenchymal stromal cells in stirred-tank bioreactors. Biotechnol J 2024; 19:e2300381. [PMID: 38403461 DOI: 10.1002/biot.202300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Cell therapies based on multipotent mesenchymal stromal cells (MSCs) are traditionally produced using 2D culture systems and platelet lysate- or serum-containing media (SCM). Although cost-effective for single-dose autologous treatments, this approach is not suitable for larger scale manufacturing (e.g., multiple-dose autologous or allogeneic therapies with banked MSCs); automated, scalable and Good Manufacturing Practices (GMP)-compliant platforms are urgently needed. The feasibility of transitioning was evaluated from an established Wharton's jelly MSCs (WJ-MSCs) 2D production strategy to a new one with stirred-tank bioreactors (STRs). Experimental conditions included four GMP-compliant xeno- and serum-free media (XSFM) screened in 2D conditions and two GMP-grade microcarriers assessed in 0.25 L-STRs using SCM. From the screening, a XSFM was selected and compared against SCM using the best-performing microcarrier. It was observed that SCM outperformed the 2D-selected medium in STRs, reinforcing the importance of 2D-to-3D transition studies before translation into clinical production settings. It was also found that attachment efficiency and microcarrier colonization were essential to attain higher fold expansions, and were therefore defined as critical process parameters. Nevertheless, WJ-MSCs were readily expanded in STRs with both media, preserving critical quality attributes in terms of identity, viability and differentiation potency, and yielding up to 1.47 × 109 cells in a real-scale 2.4-L batch.
Collapse
Affiliation(s)
- Alba López-Fernández
- Servei de Teràpia Cel·lular i Avançada, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
| | - Víctor Garcia-Gragera
- Servei de Teràpia Cel·lular i Avançada, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Engineering Materials Group (GEMAT), Bioprocessing Lab, IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Martí Lecina
- Engineering Materials Group (GEMAT), Bioprocessing Lab, IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular i Avançada, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Bumroongthai K, Kavanagh DPJ, Genever P, Kalia N. Improving vasculoprotective effects of MSCs in coronary microvessels - benefits of 3D culture, sub-populations and heparin. Front Immunol 2023; 14:1257497. [PMID: 37954606 PMCID: PMC10635425 DOI: 10.3389/fimmu.2023.1257497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Opening occluded coronary arteries in patients with myocardial infarction (MI) damages the delicate coronary microvessels through a process called myocardial ischaemia-reperfusion injury. Although mesenchymal stromal cells (MSCs) have the potential to limit this injury, clinical success remains limited. This may be due to (i) poor MSC homing to the heart (ii) infused MSCs, even if derived from the same site, being a heterogeneous population with varying therapeutic efficacy and (iii) conventional 2D culture of MSCs decreasing their homing and beneficial properties. This study investigated whether 3D culture of two distinctly different bone marrow (BM)-derived MSC sub-populations could improve their homing and coronary vasculoprotective efficacy. Methods Intravital imaging of the anaesthetised mouse beating heart was used to investigate the trafficking and microvascular protective effects of two clonally-derived BM-derived MSC lines, namely CD317neg MSCs-Y201 and CD317pos MSCs-Y202, cultured using conventional monolayer and 3D hanging drop methods. Results 3D culture consistently improved the adhesive behaviour of MSCs-Y201 to various substrates in vitro. However, it was their differential ability to reduce neutrophil events within the coronary capillaries and improve ventricular perfusion in vivo that was most remarkable. Moreover, dual therapy combined with heparin further improved the vasculoprotection afforded by 3D cultured MSCs-Y201 by also modifying platelet as well as neutrophil recruitment, which subsequently led to the greatest salvage of viable myocardium. Therapeutic benefit could mechanistically be explained by reductions in coronary endothelial oxidative stress and intercellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1 (VCAM-1) expression. However, since this was noted by both 2D and 3D cultured MSCs-Y201, therapeutic benefit is likely explained by the fact that 3D cultured MSCs-Y201 were the most potent sub-population at reducing serum levels of several pro-inflammatory cytokines. Conclusion This novel study highlights the importance of not only 3D culture, but also of a specific CD317neg MSC sub-population, as being critical to realising their full coronary vasculoprotective potential in the injured heart. Since the smallest coronary blood vessels are increasingly recognised as a primary target of reperfusion injury, therapeutic interventions must be able to protect these delicate structures from inflammatory cells and maintain perfusion in the heart. We propose that relatively feasible technical modifications in a specific BM-derived MSC sub-population could achieve this.
Collapse
Affiliation(s)
- Kobkaew Bumroongthai
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean P. J. Kavanagh
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, York, United Kingdom
| | - Neena Kalia
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Andreone L, dos Santos A, Wailemann R, Terra L, Gomes V, Macedo da Silva J, Rosa-Fernandes L, Sogayar M, Palmisano G, Labriola L, Perone M. Cotransplantation of marginal mass allogeneic islets with 3D culture-derived adult human skin cells improves glycemia in diabetic mice. Braz J Med Biol Res 2023; 56:e12611. [PMID: 37792778 PMCID: PMC10515501 DOI: 10.1590/1414-431x2023e12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 10/06/2023] Open
Abstract
Islet transplantation represents a therapeutic option for type 1 diabetes (T1D). Long-term viability of transplanted islets requires improvement. Mesenchymal stromal cells (MSCs) have been proposed as adjuvants for islet transplantation facilitating grafting and functionality. Stem cell aggregation provides physiological interactions between cells and enhances the in situ concentration of modulators of inflammation and immunity. We established a hanging-drop culture of adult human skin fibroblast-like cells as spheroids, and skin spheroid-derived cells (SphCs) were characterized. We assessed the potential of SphCs in improving islet functionality by cotransplantation with a marginal mass of allogeneic islets in an experimental diabetic mouse model and characterized the secretome of SphCs by mass spectrometry-based proteomics. SphCs were characterized as multipotent progenitors and their coculture with anti-CD3 stimulated mouse splenocytes decreased CD4+ T cell proliferation with skewed cytokine secretion through an increase in the Th2/Th1 ratio profile. SphCs-conditioned media attenuated apoptosis of islets induced by cytokine challenge in vitro and importantly, intratesticular SphCs administration did not show tumorigenicity in immune-deficient mice. Moreover, SphCs improved glycemic control when cotransplanted with a marginal mass of allogeneic islets in a diabetic mouse model without pharmacological immunosuppression. SphCs' protein secretome differed from its paired skin fibroblast-like counterpart in containing 70% of up- and downregulated proteins and biological processes that overall positively influenced islets such as cytoprotection, cellular stress, metabolism, and survival. In summary, SphCs improved the performance of transplanted allogeneic islets in an experimental T1D model, without pharmacological immunosuppression. Future research is warranted to identify SphCs-secreted factors responsible for islets' endurance.
Collapse
Affiliation(s)
- L. Andreone
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| | - A.F. dos Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R.A.M. Wailemann
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L.F. Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V.M. Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - J. Macedo da Silva
- Departamento de Parasitologia, Instituto de Biosciências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L. Rosa-Fernandes
- Departamento de Parasitologia, Instituto de Biosciências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.C. Sogayar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G. Palmisano
- Departamento de Parasitologia, Instituto de Biosciências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L. Labriola
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.J. Perone
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| |
Collapse
|
7
|
Yen BL, Hsieh CC, Hsu PJ, Chang CC, Wang LT, Yen ML. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl Med 2023; 12:235-244. [PMID: 37184894 PMCID: PMC10184701 DOI: 10.1093/stcltm/szad011] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
As invaluable as the standard 2-dimensional (2D) monolayer in vitro cell culture system has been, there is increasing evidence that 3-dimensional (3D) non-adherent conditions are more relevant to the in vivo condition. While one of the criteria for human mesenchymal stem cells (MSCs) has been in vitro plastic adherence, such 2D culture conditions are not representative of in vivo cell-cell and cell-extracellular matrix (ECM) interactions, which may be especially important for this progenitor/stem cell of skeletal and connective tissues. The 3D spheroid, a multicellular aggregate formed under non-adherent 3D in vitro conditions, may be particularly suited as an in vitro method to better understand MSC physiological processes, since expression of ECM and other adhesion proteins are upregulated in such a cell culture system. First used in embryonic stem cell in vitro culture to recapitulate in vivo developmental processes, 3D spheroid culture has grown in popularity as an in vitro method to mimic the 3-dimensionality of the native niche for MSCs within tissues/organs. In this review, we discuss the relevance of the 3D spheroid culture for understanding MSC biology, summarize the biological outcomes reported in the literature based on such this culture condition, as well as contemplate limitations and future considerations in this rapidly evolving and exciting area.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chen-Chan Hsieh
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| |
Collapse
|
8
|
Goel R, Gulwani D, Upadhyay P, Sarangthem V, Singh TD. Unsung versatility of elastin-like polypeptide inspired spheroid fabrication: A review. Int J Biol Macromol 2023; 234:123664. [PMID: 36791934 DOI: 10.1016/j.ijbiomac.2023.123664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Lately, 3D cell culture technique has gained a lot of appreciation as a research model. Augmented with technological advancements, the area of 3D cell culture is growing rapidly with a diverse array of scaffolds being tested. This is especially the case for spheroid cultures. The culture of cells as spheroids provides opportunities for unanticipated vision into biological phenomena with its application to drug discovery, metabolic profiling, stem cell research as well as tumor, and disease biology. Spheroid fabrication techniques are broadly categorised into matrix-dependent and matrix-independent techniques. While there is a profusion of spheroid fabrication substrates with substantial biological relevance, an economical, modular, and bio-compatible substrate for high throughput production of spheroids is lacking. In this review, we posit the prospects of elastin-like polypeptides (ELPs) as a broad-spectrum spheroid fabrication platform. Elastin-like polypeptides are nature inspired, size-tunable genetically engineered polymers with wide applicability in various arena of biological considerations, has been employed for spheroid culture with profound utility. The technology offers a cheap, high-throughput, reproducible alternative for spheroid culture with exquisite adaptability. Here, we will brief the applicability of 3D cultures as compared to 2D cultures with spheroids being the focal point of the review. Common approaches to spheroid fabrication are discussed with existential limitations. Finally, the versatility of elastin-like polypeptide inspired substrates for spheroid culture has been discussed.
Collapse
Affiliation(s)
- Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
9
|
McLaughlin RM, Top I, Laguna A, Hernandez C, Katz H, Livi LL, Kramer L, Zambuto SG, Hoffman-Kim D. Cortical Spheroid Model for Studying the Effects of Ischemic Brain Injury. IN VITRO MODELS 2023; 2:25-41. [PMID: 39872876 PMCID: PMC11756444 DOI: 10.1007/s44164-023-00046-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 01/30/2025]
Abstract
Purpose Ischemic brain injury occurs when there is reduced or complete disruption of blood flow to a brain region, such as in stroke or severe traumatic brain injury. Even short interruptions can lead to devastating effects including excitotoxicity and widespread cell death. Despite many decades of research, there are still very few therapeutic options for patients suffering from brain ischemia. Methods We developed an in vitro brain ischemia model using our previously established 3D spheroids derived from primary postnatal rat cortex. These spheroids provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. This model is cost-effective, highly reproducible, and can be produced in a high-throughput manner, making it an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 h. Results Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of ischemic brain injury, including a decrease in metabolism, an increase in neural dysfunction, breakdown in the neurovascular unit, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP after oxygen-glucose deprivation, was partially neuroprotective, and enhanced the expression of laminin. Conclusion This 3D cortical spheroid model provides a platform for studying ischemic injury and has the potential for screening therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00046-z.
Collapse
Affiliation(s)
- Rachel M. McLaughlin
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
| | - Ilayda Top
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Amanda Laguna
- Division of Biology and Medicine, Brown University, Providence, RI 02912 USA
| | | | - Harrison Katz
- Division of Biology and Medicine, Brown University, Providence, RI 02912 USA
| | - Liane L. Livi
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Liana Kramer
- Division of Biology and Medicine, Brown University, Providence, RI 02912 USA
| | - Samantha G. Zambuto
- Center for Biomedical Engineering, Brown University, Providence, RI 02912 USA
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
- Center for Biomedical Engineering, Brown University, Providence, RI 02912 USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI 02912 USA
| |
Collapse
|
10
|
Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
A novel feature for monitoring the enzymatic harvesting process of adherent cell cultures based on lens-free imaging. Sci Rep 2022; 12:22202. [PMID: 36564377 PMCID: PMC9789138 DOI: 10.1038/s41598-022-22561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
Adherent cell cultures are often dissociated from their culture vessel (and each other) through enzymatic harvesting, where the detachment response is monitored by an operator. However, this approach is lacking standardisation and reproducibility, and prolonged exposure or too high concentrations can affect the cell's viability and differentiation potential. Quantitative monitoring systems are required to characterise the cell detachment response and objectively determine the optimal time-point to inhibit the enzymatic reaction. State-of-the-art methodologies rely on bulky imaging systems and/or features (e.g. circularity) that lack robustness. In this study, lens-free imaging (LFI) technology was used to develop a novel cell detachment feature. Seven different donors were cultured and subsequently harvested with a (diluted) enzymatic harvesting solution after 3, 5 and 7 days of culture. Cell detachment was captured with the LFI set-up over a period of 20 min (every 20 s) and by optimising the reconstruction of the LFI intensity images, a new feature could be identified. Bright regions in the intensity image were identified as detaching cells and using image analysis, a method was developed to automatically extract this feature, defined as the percentage of detached cell regions. Next, the method was quantitatively and qualitatively validated on a diverse set of images. Average absolute error values of 1.49%, 1.34% and 1.97% were obtained for medium to high density and overconfluent cultures, respectively. The detachment response was quantified for all conditions and the optimal time for enzyme inhibition was reached when approximately 92.5% of the cells were detached. On average, inhibition times of 9.6-11.1 and 16.2-17.2 min were obtained for medium to high density and overconfluent cultures, respectively. In general, overconfluent cultures detached much slower, while their detachment rate was also decreased by the diluted harvesting solution. Moreover, several donors exhibited similar trends in cell detachment behaviour, with two clear outliers. Using the novel feature, measurements can be performed with an increased robustness, while the compact LFI design could pave the way for in situ monitoring in a variety of culture vessels, including bioreactors.
Collapse
|
12
|
Jeske R, Chen X, Mulderrig L, Liu C, Cheng W, Zeng OZ, Zeng C, Guan J, Hallinan D, Yuan X, Li Y. Engineering Human Mesenchymal Bodies in a Novel 3D-Printed Microchannel Bioreactor for Extracellular Vesicle Biogenesis. Bioengineering (Basel) 2022; 9:795. [PMID: 36551001 PMCID: PMC9774207 DOI: 10.3390/bioengineering9120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) and their derived products hold potential in tissue engineering and as therapeutics in a wide range of diseases. hMSCs possess the ability to aggregate into "spheroids", which has been used as a preconditioning technique to enhance their therapeutic potential by upregulating stemness, immunomodulatory capacity, and anti-inflammatory and pro-angiogenic secretome. Few studies have investigated the impact on hMSC aggregate properties stemming from dynamic and static aggregation techniques. hMSCs' main mechanistic mode of action occur through their secretome, including extracellular vesicles (EVs)/exosomes, which contain therapeutically relevant proteins and nucleic acids. In this study, a 3D printed microchannel bioreactor was developed to dynamically form hMSC spheroids and promote hMSC condensation. In particular, the manner in which dynamic microenvironment conditions alter hMSC properties and EV biogenesis in relation to static cultures was assessed. Dynamic aggregation was found to promote autophagy activity, alter metabolism toward glycolysis, and promote exosome/EV production. This study advances our knowledge on a commonly used preconditioning technique that could be beneficial in wound healing, tissue regeneration, and autoimmune disorders.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Logan Mulderrig
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Aero-Propulsion, Mechatronics and Energy Center, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Wenhao Cheng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Olivia Z. Zeng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Changchun Zeng
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Daniel Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
13
|
Paracrine and Autocrine Effects of VEGF Are Enhanced in Human eMSC Spheroids. Int J Mol Sci 2022; 23:ijms232214324. [PMID: 36430800 PMCID: PMC9695450 DOI: 10.3390/ijms232214324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the therapeutic potential of MSCs are the focus of intense research. We studied human MSCs isolated from desquamated endometrium (eMSCs), which, as previously shown, have high regenerative potential in various disease models. The aim was to evaluate the role of secreted VEGF in stimulating angiogenesis and maintaining eMSC viability and migration, which is important for improving the therapeutic properties of MSCs. We compared three eMSC cultures differing in the level of VEGF secretion: 3D spheroids, monolayer eMSCs, and monolayer eMSCs with VEGF knockdown. Spheroid eMSCs produced higher amounts of VEGF and had the strongest paracrine effect on HUVEC. eMSCs with VEGF knockdown did not stimulate angiogenesis. Monolayered eMSCs expressed VEGFR1, while spheroid eMSCs expressed both VEGFR1 and VEGFR2 receptors. The knockdown of VEGF caused a significant decrease in the viability and migration of eMSCs. eMSCs from 3D spheroids enhanced proliferation and migration in response to exogenous VEGF, in contrast to monolayered eMSCs. Our results suggest that the VEGF-VEGFR1 loop appears to be autocrine-involved in maintaining the viability of eMSCs, and VEGFR2 expression enhances their response to exogenous VEGF, so the angiogenic potential of eMSC can be up- or downregulated by intrinsic VEGF signals.
Collapse
|
14
|
Sun Y, Zhou Q, Du Y, Sun J, Bi W, Liu W, Li R, Wu X, Yang F, Song L, Li N, Cui W, Yu Y. Dual Biosignal-Functional Injectable Microspheres for Remodeling Osteogenic Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201656. [PMID: 35419952 DOI: 10.1002/smll.202201656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Bone defect regeneration depends on the population and lifespan of M2 macrophages, which are regulated by dual signals generated by the "physical" spatial configuration of biological tissues and "molecular" chemokines. Herein, inspired by the reprogramming of macrophages, immunoengineered porous microspheres are constructed to accelerate bone repair through the regulation of both "physical" and "molecular" signals. The porous structure of injectable poly (l-lactic acid) (PLLA) microspheres prepared by the microfluidic technique provides a "physical signal" for osteogenic differentiation. Additionally, interleukin (IL)-4-loaded liposomes (Ls) are modified on PLLA microspheres through amide bonds to produce IL-4/Ls/PLLA microspheres, providing a "molecular signal" in stimulating the differentiation of macrophages to M2 type. It is confirmed that IL-4/Ls/PLLA microspheres could induce M2-macrophages polarization and potentiate osteoblast proliferation and differentiation while coculturing with macrophages and osteoblasts in vitro. Besides, IL-4/Ls/PLLA microspheres are proved to promote bone defect regeneration by inducing the conversion of M1 macrophages to M2 through dual biosignal-functional regulation in both the calvaria defect and maxillary sinus defect models. Overall, the immuno-reprogrammed IL-4/Ls/PLLA microspheres achieve the precise immuno-reprogramming of macrophages by dual biosignal-functional regulation. This immune reengineering strategy paves a way for clinical bone defect treatment.
Collapse
Affiliation(s)
- Yang Sun
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jian Sun
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Wei Bi
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Wenjuan Liu
- Department of Stomatology, Xuhui Central Hospital, 996 Huaihaizhong Road, Shanghai, 200031, P. R. China
| | - Ruixue Li
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Xingwen Wu
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Fei Yang
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Liang Song
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Ni Li
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| |
Collapse
|
15
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
16
|
Camões SP, Bulut O, Yazar V, Gaspar M, Simões S, Ferreira R, Vitorino R, Santos JM, Gursel I, Miranda JP. 3D-MSCs A151 ODN-Loaded Exosomes Are Immunomodulatory And Reveal A Proteomic Cargo That Sustains Wound Resolution. J Adv Res 2022; 41:113-128. [PMID: 36328741 PMCID: PMC9637564 DOI: 10.1016/j.jare.2022.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
The MSC-derived secretome from 3D cultures enhances fibroblast and keratinocyte mitogenic and motogenic capacity in vitro, respectively. The cargo of the 3D MSC-derived exosomes (Exo3D) reveals wound healing-related proteins and promotes wound resolution in a wound healing in vivo model. Loading MSC-derived exosomes with A151 ODN further reduces the systemic levels of IL-6 and TNF-α pro-inflammatory cytokines at the late stage of wound healing in vivo, crucial for a full regenerated tissue. A151-loaded Exo3D have a great potential as a noncellular off-the-shelf therapy for non-healing wound treatment.
Introduction Non-healing wounds remain a major burden due to the lack of effective treatments. Mesenchymal stem cell-derived exosomes (MSC-Exo) have emerged as therapeutic options given their pro-regenerative and immunomodulatory features. Still, little is known on the exact mechanisms mediated by MSC-Exo. Importantly, modulation of their efficacy through 3D-physiologic cultures together with loading strategies continues underexplored. Objectives To uncover the MSC-Exo-mediated mechanism via proteomic analyses, and to use 3D-culture and loading technologies to expand MSC-Exo efficacy for cutaneous wound healing. Methods MSC-Exo were produced in either 3D or 2D cultures (Exo3D/Exo2D) and loaded with an exogenous immunosuppressive oligodeoxynucleotide (A151 ODN). Both, loaded and naïve exosomes were characterised regarding size, morphology and the presence of specific protein markers; while IPA analyses enabled to correlate their protein content with the effects observed in vitro and in vivo. The Exo3D/Exo2D regenerative potential was evaluated in vitro by assessing keratinocyte and fibroblast mitogenicity, motogenicity, and cytokine secretion as well as using an in vivo wound splinting model. Accordingly, the modulation of inflammatory and immune responses by A151-loaded Exo3D/Exo2D was also assessed. Results Exo3D stimulated mitogenically and motogenically keratinocytes and fibroblasts in vitro, with upregulation of IL-1α and VEGF-α or increased secretion of TGF-β, TNF-α and IL-10. In vivo, Exo3D reduced the granulation tissue area and promoted complete re-epithelization of the wound. These observations were sustained by the proteomic profiling of the Exo3D cargo that identified wound healing-related proteins, such as TGF-β, ITGA1-3/5, IL-6, CDC151, S100A10 and Wnt5α. Moreover, when loaded with A151 ODN, Exo3D differentially mediated wound healing-related trophic factors reducing the systemic levels of IL-6 and TNF-α at the late stage of wound healing in vivo. Conclusion Our results support the potential of A151-loaded Exo3D for the treatment of chronic wounds by promoting skin regeneration, while modulating the systemic levels of the pro-inflammatory cytokines.
Collapse
|
17
|
Li Y, Dong Y, Ran Y, Zhang Y, Wu B, Xie J, Cao Y, Mo M, Li S, Deng H, Hao W, Yu S, Wu Y. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res Ther 2021; 12:358. [PMID: 34154653 PMCID: PMC8218508 DOI: 10.1186/s13287-021-02416-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We show previously that three-dimensional (3D) spheroid cultured mesenchymal stem cells (MSCs) exhibit reduced cell size thus devoid of lung entrapment following intravenous (IV) infusion. In this study, we determined the therapeutic effect of 3D-cultured MSCs on ischemic stroke and investigated the mechanisms involved. METHODS Rats underwent middle cerebral artery occlusion (MCAO) and reperfusion. 1 × 106 of 3D- or 2D-cultured MSCs, which were pre-labeled with GFP, were injected through the tail vain three and seven days after MCAO. Two days after infusion, MSC engraftment into the ischemic brain tissues was assessed by histological analysis for GFP-expressing cells, and infarct volume was determined by MRI. Microglia in the lesion were sorted and subjected to gene expressional analysis by RNA-seq. RESULTS We found that infusion of 3D-cultured MSCs significantly reduced the infarct volume of the brain with increased engraftment of the cells into the ischemic tissue, compared to 2D-cultured MSCs. Accordingly, in the brain lesion of 3D MSC-treated animals, there were significantly reduced numbers of amoeboid microglia and decreased levels of proinflammatory cytokines, indicating attenuated activation of the microglia. RNA-seq of microglia derived from the lesions suggested that 3D-cultured MSCs decreased the response of microglia to the ischemic insult. Interestingly, we observed a decreased expression of mincle, a damage-associated molecular patterns (DAMPs) receptor, which induces the production of proinflammatory cytokines, suggestive of a potential mechanism in 3D MSC-mediated enhanced repair to ischemic stroke. CONCLUSIONS Our data indicate that 3D-cultured MSCs exhibit enhanced repair to ischemic stroke, probably through a suppression to ischemia-induced microglial activation.
Collapse
Affiliation(s)
- Yuejiao Li
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye Ran
- Department of Neurology, The Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Yanan Zhang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Boyao Wu
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Yanpei Cao
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Miaohua Mo
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Sen Li
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Deng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shengyuan Yu
- Department of Neurology, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. .,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2021; 16:853-875. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia.,IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, D-97070, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Germany
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Kostadinova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Snejana Kestendjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilní trh 11, 602 00, Brno, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00, Suchdol, Praha 6, Czech Republic
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria.
| |
Collapse
|
19
|
Van Beylen K, Papantoniou I, Aerts JM. Microcarrier Screening and Evaluation for Dynamic Expansion of Human Periosteum-Derived Progenitor Cells in a Xenogeneic Free Medium. Front Bioeng Biotechnol 2021; 9:624890. [PMID: 34109163 PMCID: PMC8181150 DOI: 10.3389/fbioe.2021.624890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
An increasing need toward a more efficient expansion of adherent progenitor cell types arises with the advancements of cell therapy. The use of a dynamic expansion instead of a static planar expansion could be one way to tackle the challenges of expanding adherent cells at a large scale. Microcarriers are often reported as a biomaterial for culturing cells in suspension. However, the type of microcarrier has an effect on the cell expansion. In order to find an efficient expansion process for a specific adherent progenitor cell type, it is important to investigate the effect of the type of microcarrier on the cell expansion. Human periosteum-derived progenitor cells are extensively used in skeletal tissue engineering for the regeneration of bone defects. Therefore, we evaluated the use of different microcarriers on human periosteum-derived progenitor cells. In order to assess the potency, identity and viability of these cells after being cultured in the spinner flasks, this study performed several in vitro and in vivo analyses. The novelty of this work lies in the combination of screening different microcarriers for human periosteum-derived progenitor cells with in vivo assessments of the cells’ potency using the microcarrier that was selected as the most promising one. The results showed that expanding human periosteum-derived progenitor cells in spinner flasks using xeno-free medium and Star-Plus microcarriers, does not affect the potency, identity or viability of the cells. The potency of the cells was assured with an in vivo evaluation, where bone formation was achieved. In summary, this expansion method has the potential to be used for large scale cell expansion with clinical relevance.
Collapse
Affiliation(s)
- Kathleen Van Beylen
- M3-BIORES: Measure, Model, and Manage Bioresponses, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Leuven, Belgium.,Foundation for Research and Technology - Hellas (FORTH), Institute of Chemical Engineering Sciences, Patras, Greece
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model, and Manage Bioresponses, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Crippa S, Santi L, Berti M, De Ponti G, Bernardo ME. Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 2021; 9:663316. [PMID: 34017834 PMCID: PMC8129582 DOI: 10.3389/fcell.2021.663316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
21
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
22
|
Kouroupis D, Correa D. Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Front Bioeng Biotechnol 2021; 9:621748. [PMID: 33644016 PMCID: PMC7907607 DOI: 10.3389/fbioe.2021.621748] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC) exist within their in vivo niches as part of heterogeneous cell populations, exhibiting variable stemness potential and supportive functionalities. Conventional extensive 2D in vitro MSC expansion, aimed at obtaining clinically relevant therapeutic cell numbers, results in detrimental effects on both cellular characteristics (e.g., phenotypic changes and senescence) and functions (e.g., differentiation capacity and immunomodulatory effects). These deleterious effects, added to the inherent inter-donor variability, negatively affect the standardization and reproducibility of MSC therapeutic potential. The resulting manufacturing challenges that drive the qualitative variability of MSC-based products is evident in various clinical trials where MSC therapeutic efficacy is moderate or, in some cases, totally insufficient. To circumvent these limitations, various in vitro/ex vivo techniques have been applied to manufacturing protocols to induce specific features, attributes, and functions in expanding cells. Exposure to inflammatory cues (cell priming) is one of them, however, with untoward effects such as transient expression of HLA-DR preventing allogeneic therapeutic schemes. MSC functionalization can be also achieved by in vitro 3D culturing techniques, in an effort to more closely recapitulate the in vivo MSC niche. The resulting spheroid structures provide spatial cell organization with increased cell–cell interactions, stable, or even enhanced phenotypic profiles, and increased trophic and immunomodulatory functionalities. In that context, MSC 3D spheroids have shown enhanced “medicinal signaling” activities and increased homing and survival capacities upon transplantation in vivo. Importantly, MSC spheroids have been applied in various preclinical animal models including wound healing, bone and osteochondral defects, and cardiovascular diseases showing safety and efficacy in vivo. Therefore, the incorporation of 3D MSC culturing approach into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved without requiring ex vivo stimulatory regimes. In the present review, we discuss the MSC functionalization in 3D settings and how this strategy can contribute to an improved MSC-based product for safer and more effective therapeutic applications.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
23
|
Costa MHG, Serra J, McDevitt TC, Cabral JMS, da Silva CL, Ferreira FC. Dimethyloxalylglycine, a small molecule, synergistically increases the homing and angiogenic properties of human mesenchymal stromal cells when cultured as 3D spheroids. Biotechnol J 2021; 16:e2000389. [PMID: 33471965 DOI: 10.1002/biot.202000389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Strategies aiming at increasing the survival and paracrine activity of human mesenchymal stromal cells (MSCs) are of utmost importance to achieve the full therapeutic potential of these cells. Herein, we propose both physical and biochemical strategies to enhance the survival, homing, angiogenic, and immunomodulatory properties of MSCs in vitro. To that purpose, we compared the effect of exposing either 2D monolayer or 3D spheroids of MSCs to (i) hypoxia (2% O2 ) or to (ii) a hypoxic-mimetic small molecule, dimethyloxalylglycine (DMOG), with cells cultured at 21% O2 . 3D-cultured MSC spheroids evidenced higher survival upon exposure to oxidative stress and expressed higher levels of factors involved in tissue repair processes, namely tumor necrosis factor-stimulated gene-6, matrix metalloproteinase-2, and vascular endothelial growth factor. MSCs cultured as 3D spheroids and further exposed to hypoxia or hypoxic-mimetic conditions provided by DMOG synergistically favored the expression of the cell surface marker C-X-C chemokine receptor type-4, involved in homing processes to injured tissues, and adhesion to extracellular matrix components as fibronectin. These results highlight the role of ex vivo preconditioning approaches, presenting a novel strategy that combine biochemical stimuli with 3D spheroid organization of MSCs to maximize their tissue regeneration potential.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Serra
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, California, USA.,Department of Bioengineering & Therapeutic Sciences, University of California - San Francisco, San Francisco, California, USA
| | - Joaquim M S Cabral
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Schäfer R, Schwab M, Siegel G, von Ameln-Mayerhofer A, Buadze M, Lourhmati A, Wendel HP, Kluba T, Krueger MA, Calaminus C, Scheer E, Dominici M, Grisendi G, Doeppner TR, Schlechter J, Finzel AK, Gross D, Klaffschenkel R, Gehring FK, Spohn G, Kretschmer A, Bieback K, Krämer-Albers EM, Barth K, Eckert A, Elser S, Schmehl J, Claussen CD, Seifried E, Hermann DM, Northoff H, Danielyan L. Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine 2020; 60:102987. [PMID: 32942121 PMCID: PMC7498853 DOI: 10.1016/j.ebiom.2020.102987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Limited knowledge of stem cell therapies` mechanisms of action hampers their sustainable implementation into the clinic. Specifically, the interactions of transplanted stem cells with the host vasculature and its implications for their therapeutic efficacy are not elucidated. We tested whether adhesion receptors and chemokine receptors on stem cells can be functionally modulated, and consequently if such modulation may substantially affect therapeutically relevant stem cell interactions with the host endothelium. METHODS We investigated the effects of cationic molecule polyethylenimine (PEI) treatment with or without nanoparticles on the functions of adhesion receptors and chemokine receptors of human bone marrow-derived Mesenchymal Stem Cells (MSC). Analyses included MSC functions in vitro, as well as homing and therapeutic efficacy in rodent models of central nervous system´s pathologies in vivo. FINDINGS PEI treatment did not affect viability, immunomodulation or differentiation potential of MSC, but increased the CCR4 expression and functionally blocked their adhesion receptors, thus decreasing their adhesion capacity in vitro. Intravenously applied in a rat model of brain injury, the homing rate of PEI-MSC in the brain was highly increased with decreased numbers of adherent PEI-MSC in the lung vasculature. Moreover, in comparison to untreated MSC, PEI-MSC featured increased tumour directed migration in a mouse glioblastoma model, and superior therapeutic efficacy in a murine model of stroke. INTERPRETATION Balanced stem cell adhesion and migration in different parts of the vasculature and tissues together with the local microenvironment impacts their therapeutic efficacy. FUNDING Robert Bosch Stiftung, IZEPHA grant, EU grant 7 FP Health.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany; Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia
| | - Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | - Marine Buadze
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Peter Wendel
- Departments of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Torsten Kluba
- Departments of Orthopaedic Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Carsten Calaminus
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Eva Scheer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen, Essen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Schlechter
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Anne Kathrin Finzel
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Dominic Gross
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Roland Klaffschenkel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Frank K Gehring
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany; 3T GmbH & Co. KG, Tuttlingen, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Anja Kretschmer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Eva-Maria Krämer-Albers
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Stefanie Elser
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Joerg Schmehl
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Claus D Claussen
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 2020; 78:447-467. [PMID: 32699947 PMCID: PMC7375036 DOI: 10.1007/s00018-020-03600-0] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche.
Collapse
Affiliation(s)
- Luis A Costa
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - María Fraile
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Luis O Gonzalez
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.,Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge Saá
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Pablo Garcia-Portabella
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Belén Vega
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - José Schneider
- Department of Obstetrics and Gynecology, University of Valladolid, Valladolid, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
26
|
Lembong J, Kirian R, Takacs JD, Olsen TR, Lock LT, Rowley JA, Ahsan T. Bioreactor Parameters for Microcarrier-Based Human MSC Expansion under Xeno-Free Conditions in a Vertical-Wheel System. Bioengineering (Basel) 2020; 7:E73. [PMID: 32650422 PMCID: PMC7552727 DOI: 10.3390/bioengineering7030073] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have been investigated and proven to be a well-tolerated, safe therapy for a variety of indications, as shown by over 900 registered hMSC-based clinical trials. To meet the commercial demand for clinical manufacturing of hMSCs, production requires a scale that can achieve a lot size of ~100B cells, which requires innovative manufacturing technologies such as 3D bioreactors. A robust suspension bioreactor process that can be scaled-up to the relevant scale is therefore crucial. In this study, we developed a fed-batch, microcarrier-based bioreactor process, which enhances media productivity and drives a cost-effective and less labor-intensive hMSC expansion process. We determined parameter settings for various stages of the culture: inoculation, bioreactor culture, and harvest. Addition of a bioreactor feed, using a fed-batch approach, was necessary to replenish the mitogenic factors that were depleted from the media within the first 3 days of culture. Our study resulted in an optimized hMSC culture protocol that consistently achieved hMSC densities between 2 × 105-6 × 105 cells/mL within 5 days with no media exchange, maintaining the final cell population doubling level (PDL) at 16-20. Using multiple hMSC donors, we showed that this process was robust and yielded hMSCs that maintained expansion, phenotypic characteristic, and functional properties. The developed process in a vertical-wheel suspension bioreactor can be scaled to the levels needed to meet commercial demand of hMSCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tabassum Ahsan
- RoosterBio, Inc., 5295 Westview Drive, Suite 275, Frederick, MD 21703, USA; (J.L.); (R.K.); (J.D.T.); (T.R.O.); (L.T.L.); (J.A.R.)
| |
Collapse
|
27
|
Cherian DS, Bhuvan T, Meagher L, Heng TSP. Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Front Pharmacol 2020; 11:654. [PMID: 32528277 PMCID: PMC7247829 DOI: 10.3389/fphar.2020.00654] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.
Collapse
Affiliation(s)
- Darshana S Cherian
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Teo JY, Ko E, Leong J, Hong J, Jeon JS, Yang YY, Kong H. Surface tethering of stromal cell-derived factor-1α carriers to stem cells enhances cell homing to ischemic muscle. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102215. [PMID: 32438106 DOI: 10.1016/j.nano.2020.102215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells are promising medicine for treating diseases and tissue defects because of their innate ability to secrete therapeutic factors. Intravenous delivery of stem cells, although favored for its minimal invasiveness, is often plagued by low cellular engraftment in the target tissue. To this end, this study hypothesizes that in situ activation of cellular expression of CXC chemokine 4 (CXCR4) would significantly improve cellular migration to injured tissue. This hypothesis was examined by tethering the surface of stem cells with poly(D,L-lactide-co-glycolide)-block-hyaluronic acid (HA) particles containing stromal cell-derived factor-1α, a model chemokine to sensitize CXCR4. The HA blocks in the particles enhanced the association rate constant to stem cells by 3.3-fold, and in turn, increased the number of cells expressing CXCR4 receptors. Consequently, these cells displayed 1.2-fold higher transendothelial migration in vitro and 1.7-fold greater trafficking to the ischemic hindlimb of a mouse than that of the untethered cells.
Collapse
Affiliation(s)
- Jye Yng Teo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Jiman Hong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jessie S Jeon
- KAIST Institute for Health Science and Technology, Daejeon, South Korea
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
29
|
Gong X, Sun D, Li Z, Shi Q, Li D, Ju X. Three-Dimensional Culture of Umbilical Cord Mesenchymal Stem Cells Effectively Promotes Platelet Recovery in Immune Thrombocytopenia. Biol Pharm Bull 2020; 43:1052-1060. [PMID: 32321879 DOI: 10.1248/bpb.b19-01069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cells (MSCs) can effectively regulate immune cell functions and therefore are promising for the treatment of autoimmune disorders, such as immune thrombocytopenia (ITP). Recent research has shown that three-dimensional (3D) culture method have many advantages over conventional culture with respect to MSC secretion and immunogenicity. In this study, 2D and 3D cultured MSCs were used to evaluate cytokine secretion, extracellular matrix (ECM) gene expression, immune regulatory activity, and therapeutic effects in a mouse model of ITP. MSCs cultured on scaffolds had higher expression levels of immune regulatory genes, such as IDO1, HLA-G, and PTGS2, and greater inhibitory activity against lymphocyte activation that those of 2D-MSCs. In addition, 3D-MSCs exhibited higher ECM expression and greater protection against interferon-γ (IFN-γ)-induced apoptosis. In a mouse study, ITP was induced by guinea pig anti-mouse platelet serum injections. Based on enzyme-linked immunosorbent assays, serum levels of the suppressive cytokine interleukin (IL)-10 were higher and IFN-γ levels were lower after intravenous injection with 3D-MSCs and with 2D-MSCs. Additionally, 3D-MSCs improved the body weight, spleen index, and platelet index relative to those for 2D-MSCs. Bone marrow homing was also significantly enhanced in the 3D group. Therefore, the 3D culture of MSCs is an effective technique for the treatment of ITP.
Collapse
Affiliation(s)
- Xiangcui Gong
- Department of Pediatrics, Qilu Hospital of Shandong University.,Department of Pediatrics, Qingdao Women and Children's Hospital
| | - Di Sun
- Yantai Central Blood Station
| | - Zhenghao Li
- Department of Pediatrics, Yidu Central Hospital of Weifang
| | - Qing Shi
- Department of Pediatrics, Qilu Hospital of Shandong University
| | - Dong Li
- Department of Pediatrics, Qilu Hospital of Shandong University
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University
| |
Collapse
|
30
|
Safarova Y, Umbayev B, Hortelano G, Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med 2020; 15:1579-1594. [PMID: 32297546 DOI: 10.2217/rme-2019-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.
Collapse
Affiliation(s)
- Yuliya Safarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- School of Sciences & Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
31
|
Intracavernous injection of size-specific stem cell spheroids for neurogenic erectile dysfunction: Efficacy and risk versus single cells. EBioMedicine 2020; 52:102656. [PMID: 32062355 PMCID: PMC7016386 DOI: 10.1016/j.ebiom.2020.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intracavernous injection (ICI) of adipose-derived stem cells (ADSCs) has been demonstrated promising for neurogenic erectile dysfunction (ED). However, due to the sponge-like structure of corpus cavernosum (CC) with abundant vessels, ICI was indeed like intravenous injection. Thus, the cell escaping may be a concern of safety and limited therapy, but the issue has not been clearly demonstrated yet. METHODS Suspensions of free ADSCs (FAs) and ADSCs-based spheroids (ASs) with suitable size were intracavernously injected at doses of 0.5, 1, 2, or 4 million cells. The cell loss and safety after ICI, erectile function and histopathologic change, etc. were analyzed with multimodality of methods. FINDINGS Most FAs escaped from sponge-like CC after ICI due to their small size, weakening stem-cell therapeutic efficacy. Worse still, the escaped cells were shown to cause widespread pulmonary embolism (PE), and even death in some animals. Further, it was founded that the therapeutic effect of FAs may be ascribed to the larger cell clusters which spontaneously aggregated before ICI and were trapped within CC after ICI. In comparison, cell loss and PE were significantly avoided by transplanting ASs. Importantly, better therapeutic outcomes were detected after ICI of ASs when compared to FAs with the same cell number. INTERPRETATION Transplantation of size-specific ASs instead of single-cell suspension of FAs for neurogenic ED may be a wiser choice to achieve steady therapeutic outcome and to reduce risks for the future clinical application. FUND: This work was supported by the National Natural Science Foundation of China (81701432) (to Y. Xu). Youth Training Project for Medical science (16QNP129) and Beijing Nova Program of science and technology (Z171100001117115) (to Z. Liu).
Collapse
|
32
|
Three-dimensional spheroids of mesenchymal stem/stromal cells promote osteogenesis by activating stemness and Wnt/β-catenin. Biochem Biophys Res Commun 2019; 523:458-464. [PMID: 31882121 DOI: 10.1016/j.bbrc.2019.12.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewal cells that are widely used in regenerative medicine. The culture of three-dimensional (3D) spheroid MSCs more accurately mimics the biological microenvironment. However, it is unclear which key molecules are responsible for the cell fate control of MSCs during 3D spheroid formation and their impact on the functional characteristics of these stem cells. Furthermore, it remains unclear what effects 3D spheroid MSC transplantation has on new bone formation compared with that of 2D monolayer MSCs. We assessed whether the osteogenerative potential of 3D spheroid MSCs is greater than that of 2D monolayer MSCs in vitro. In addition, to elucidate the ability of 3D spheroid MSCs to regenerate bone, we examined the effects of transplanting wild-type (WT) or knockout (KO) spheroid MSCs on new bone formation in mice calvarial defect model in vitro. The 3D spheroid MSC culture dramatically upregulated into stemness markers compared with the 2D monolayer MSC culture. In contrast, BMP-2 significantly increased the osteogenesis-related molecules in the 3D spheroid MSCs but, in turn, downregulated the stemness markers. BMP-2 activated Smad1/5 together with Wnt/β-catenin in 3D spheroid MSCs. Transplantation of these MSCs into aged mice with calvarial defects promoted new bone formation compared with that of 2D monolayer MSCs. In contrast, transplantation of 3D or 2D β-catenin knockout MSCs induced little new bone formation. The 3D spheroid MSC culture had higher stemness compared with the 2D monolayer MSC culture. The culture of 3D spheroid MSCs rapidly promoted osteoblastogenesis and bone formation through synergistic activation of the Wnt/β-catenin pathway in vitro. The transformation of 3D spheroid, but not 2D monolayer, MSCs promoted new bone regeneration in vivo. These results indicate that transplantation of 3D spheroid MSCs in regeneration therapy contributes to a shorter regenerative healing process, including new bone formation.
Collapse
|
33
|
Xia J, Tsai AC, Cheng W, Yuan X, Ma T, Guan J. Development of a microdevice-based human mesenchymal stem cell-mediated drug delivery system. Biomater Sci 2019; 7:2348-2357. [PMID: 30916669 DOI: 10.1039/c8bm01634h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-mediated drug delivery systems utilize living cells as vehicles to achieve controlled delivery of drugs. One of the systems features integrating cells with disk-shaped microparticles termed microdevices into cell-microdevice complexes that possess some unique advantages over their counterparts. Human mesenchymal stem cells (hMSCs) have been extensively studied as therapeutic cells and used as carrier cells for drug-loaded nanoparticles or other functional nanoparticles. This article presents the development of a microdevice-based hMSC-mediated drug delivery system for the first time. This study revealed that the microdevices could be attached to the hMSCs in a controlled and versatile manner; the produced hMSC-microdevice complexes were stable over cultivation and trypsinization, and the microdevice attachment did not affect the viability and proliferation of the hMSCs. Moreover, cultured microdevice-bound hMSCs retained their abilities to migrate on a flat surface, form a spheroid, and actively dissociate from the spheroid. These results indicate that this microdevice-based hMSC-mediated system promises to be further developed into a clinically viable drug delivery system.
Collapse
Affiliation(s)
- Junfei Xia
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA.
| | | | | | | | | | | |
Collapse
|
34
|
García-Sánchez D, Fernández D, Rodríguez-Rey JC, Pérez-Campo FM. Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells 2019; 11:748-763. [PMID: 31692976 PMCID: PMC6828596 DOI: 10.4252/wjsc.v11.i10.748] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing. MSC-based treatments are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and osteogenic differentiation. Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells. Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation. These strategies could range from a simple modification of the culture conditions, known as cell-preconditioning, to the genetic modification of the cells to avoid cellular senescence. Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation, mainly by the use of bioactive or biomimetic scaffolds, although alternative approaches will also be discussed. This review aims to summarize several of the most recent approaches, providing an up-to-date view of the main developments in MSC-based regenerative techniques.
Collapse
Affiliation(s)
- Daniel García-Sánchez
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain
| | - Darío Fernández
- Laboratorio de Biología Celular y Molecular, Facultad de Odontología, Universidad Nacional del Nordeste, Corrientes W3400, Argentina
| | - José C Rodríguez-Rey
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain.
| |
Collapse
|
35
|
Regmi S, Pathak S, Thanh TP, Nguyen TT, Sung JH, Yook S, Kim JO, Yong CS, Choi I, Doh KO, Park PH, Park JB, Seo Y, Kim BK, Lee DM, Moon IJ, Kim HS, Jeong JH. Intraportally delivered stem cell spheroids localize in the liver and protect hepatocytes against GalN/LPS-induced fulminant hepatic toxicity. Stem Cell Res Ther 2019; 10:230. [PMID: 31615539 PMCID: PMC6794806 DOI: 10.1186/s13287-019-1337-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Systemic inflammatory response syndrome (SIRS) is common in severe fulminant hepatic failure (FHF) and has a high mortality rate (20-50%) due to irreversible cerebral edema or sepsis. Stem cell-based treatment has emerged as a promising alternative therapeutic strategy to prolong the survival of patients suffering from FHF via the inhibition of SIRS due to their immunomodulatory effects. METHODS 3D spheroids of adipose-derived mesenchymal stem cells (3D-ADSC) were prepared by the hanging drop method. The efficacy of the 3D-ADSC to rescue FHF was evaluated in a D-galactosamine/lipopolysaccharide (GalN/LPS)-induced mouse model of FHF via intraportal transplantation of the spheroids. RESULTS Intraportally delivered 3D-ADSC better engrafted and localized into the damaged livers compared to 2D-cultured adipose-derived mesenchymal stem cells (2D-ADSC). Transplantation of 3D-ADSC rescued 50% of mice from FHF-induced lethality, whereas only 20% of mice survived when 2D-ADSC were transplanted. The improved transplantation outcomes correlated with the enhanced immunomodulatory effect of 3D-ADSC in the liver microenvironment. CONCLUSION The study shows that the transplantation of optimized 3D-ADSC can efficiently ameliorate GalN/LPS-induced FHF due to improved viability, resistance to exogenous ROS, and enhanced immunomodulatory effects of 3D-ADSC.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| | - Tung Pham Thanh
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42415 Republic of Korea
| | - Jong Oh. Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541 Republic of Korea
| | - Kyoung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415 Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Yoojin Seo
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612 Republic of Korea
- Institute for Translational Dental Sciences, Pusan National University, Yangsan, 50612 Republic of Korea
| | - Bieong-Kil Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415 Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Gyeongbuk, 38822 Republic of Korea
| | - Ik-Jae Moon
- WELGENE Inc., Gyeongsan, 38695 Republic of Korea
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612 Republic of Korea
- Institute for Translational Dental Sciences, Pusan National University, Yangsan, 50612 Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541 Republic of Korea
| |
Collapse
|
36
|
Dong G, Wang S, Ge Y, Deng Q, Cao Q, Wang Q, Shang Z, OuYang W, Li J, Liu C, Tang J, Zhao W, Gu Y. Serum-Free Culture System for Spontaneous Human Mesenchymal Stem Cell Spheroid Formation. Stem Cells Int 2019; 2019:6041816. [PMID: 31737076 PMCID: PMC6815607 DOI: 10.1155/2019/6041816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are widely used in clinical research because of their multipotential, immunomodulatory, and reparative properties. Previous studies determined that hMSC spheroids from a three-dimensional (3D) culture possess higher therapeutic efficacy than conventional hMSCs from a monolayer (2D) culture. To date, various 3D culture methods have been developed to form hMSC spheroids but most of them used culture medium containing fetal bovine serum (FBS), which is not suitable for further clinical use. Here, we demonstrate that dissociated single MSCs seeded in induced pluripotent stem medium (MiPS) adhere loosely to the dish and spontaneously migrate to form spheroids during day 3 to day 6. Through component deletion screening and complementation experiments, the knockout serum replacement (KSR) was identified as necessary and sufficient for hMSC spheroid formation. Transcriptome analysis showed that the overall expression profiles were highly similar between 2D culture with FBS and KSR-derived spheroids. Interestingly, genes related to inflammatory response, immune response, and angiogenesis were upregulated in spheroids at day 6 and qPCR results further validated the increased expression level of related genes, including STC1, CCL7, HGF, IL24, and TGFB3. When spheroids were replated in normal FBS medium, cells formed a typical spindle-shaped morphology and FACS results showed that the recovered cells retained MSC-specific surface markers, such as CD73, CD90, and CD105. In summary, we developed a practical and convenient method to generate hMSC spheroids for clinical research and therapy.
Collapse
Affiliation(s)
- Guoyi Dong
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shengpeng Wang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yuping Ge
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qiuting Deng
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qi Cao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Zhouchun Shang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Wenjie OuYang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jing Li
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Chao Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jie Tang
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong, China
| | - Weihua Zhao
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
37
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
38
|
Huang W, Wang C, Xie L, Wang X, Zhang L, Chen C, Jiang B. Traditional two-dimensional mesenchymal stem cells (MSCs) are better than spheroid MSCs on promoting retinal ganglion cells survival and axon regeneration. Exp Eye Res 2019; 185:107699. [DOI: 10.1016/j.exer.2019.107699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
39
|
Masterson CH, Curley GF, Laffey JG. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med Exp 2019; 7:41. [PMID: 31346794 PMCID: PMC6658643 DOI: 10.1186/s40635-019-0235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undergoing intensive translational research for several debilitating conditions, including critical illnesses such as ARDS and sepsis. MSCs exert diverse biologic effects via their interaction with host tissues, via mechanisms that require the MSC to be in close proximity to the area of injury. Fully harnessing the therapeutic potential of advanced medicinal therapeutic products such as MSCs and their successful translation to clinical use requires a detailed understanding of MSC distribution and persistence in the injured tissues. Key aspects include understanding MSC distribution within the body, the response of the host to MSC administration, and the ultimate fate of exogenously administered MSCs within the host. Factors affecting this interaction include the MSC tissue source, the in vitro MSC culture conditions, the route of MSC administration and the specific issues relating to the target disease state, each of which remains to be fully characterised. Understanding these factors may generate strategies to modify MSC distribution and fate that may enhance their therapeutic effect. This review will examine our understanding of the mechanisms of action of MSCs, the early and late phase distribution kinetics of MSCs following in vivo administration, the ultimate fate of MSCs following administration and the potential importance of these MSC properties to their therapeutic effects. We will critique current cellular imaging and tracking methodologies used to track exogenous MSCs and their suitability for use in patients, discuss the insights they provide into the distribution and fate of MSCs after administration, and suggest strategies by which MSC biodistribution and fate may be modulated for therapeutic effect and clinical use. In conclusion, a better understanding of patterns of biodistribution and of the fate of MSCs will add important additional safety data regarding MSCs, address regulatory requirements, and may uncover strategies to increase the distribution and/or persistence of MSC at the sites of injury, potentially increasing their therapeutic potential for multiple disorders.
Collapse
Affiliation(s)
- Claire H Masterson
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland Education and Research Centre Smurfit Building, Beaumont Hospital, Dublin, 9, Ireland
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland. .,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA Hospital Group, Galway, Ireland.
| |
Collapse
|
40
|
Tietze S, Kräter M, Jacobi A, Taubenberger A, Herbig M, Wehner R, Schmitz M, Otto O, List C, Kaya B, Wobus M, Bornhäuser M, Guck J. Spheroid Culture of Mesenchymal Stromal Cells Results in Morphorheological Properties Appropriate for Improved Microcirculation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802104. [PMID: 31016116 PMCID: PMC6469243 DOI: 10.1002/advs.201802104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Indexed: 05/10/2023]
Abstract
Human bone marrow mesenchymal stromal cells (MSCs) are used in clinical trials for the treatment of systemic inflammatory diseases due to their regenerative and immunomodulatory properties. However, intravenous administration of MSCs is hampered by cell trapping within the pulmonary capillary networks. Here, it is hypothesized that traditional 2D plastic-adherent cell expansion fails to result in appropriate morphorheological properties required for successful cell circulation. To address this issue, a method to culture MSCs in nonadherent 3D spheroids (mesenspheres) is adapted. The biological properties of mesensphere-cultured MSCs remain identical to conventional 2D cultures. However, morphorheological analyses reveal a smaller size and lower stiffness of mesensphere-derived MSCs compared to plastic-adherent MSCs, measured using real-time deformability cytometry and atomic force microscopy. These properties result in an increased ability to pass through microconstrictions in an ex vivo microcirculation assay. This ability is confirmed in vivo by comparison of cell accumulation in various organ capillary networks after intravenous injection of both types of MSCs in mouse. The findings generally identify cellular morphorheological properties as attractive targets for improving microcirculation and specifically suggest mesensphere culture as a promising approach for optimized MSC-based therapies.
Collapse
Affiliation(s)
- Stefanie Tietze
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Martin Kräter
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
- Max Planck Institute for the Science of Light & Max‐Planck‐Zentrum für Physik und MedizinStaudtstraße 291058ErlangenGermany
| | - Angela Jacobi
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Anna Taubenberger
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Maik Herbig
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Rebekka Wehner
- Institute of ImmunologyMedical Faculty Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Marc Schmitz
- Institute of ImmunologyMedical Faculty Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Oliver Otto
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Catrin List
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Berna Kaya
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Manja Wobus
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Martin Bornhäuser
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Jochen Guck
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
- Max Planck Institute for the Science of Light & Max‐Planck‐Zentrum für Physik und MedizinStaudtstraße 291058ErlangenGermany
| |
Collapse
|
41
|
Bieback K, Kuçi S, Schäfer R. Production and quality testing of multipotent mesenchymal stromal cell therapeutics for clinical use. Transfusion 2019; 59:2164-2173. [DOI: 10.1111/trf.15252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty MannheimGerman Red Cross Blood Donor Service Baden‐Württemberg‐Hessen gGmbH, Heidelberg University Mannheim Germany
- FlowCore Mannheim, Medical Faculty MannheimHeidelberg University Germany
| | - Selim Kuçi
- Department for Children and Adolescents, Division for Stem Cell Transplantation and ImmunologyUniversity Hospital Frankfurt Frankfurt am Main Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden‐Württemberg‐Hessen gGmbHGoethe University Hospital Frankfurt am Main Germany
| |
Collapse
|
42
|
Suryaprakash S, Lao YH, Cho HY, Li M, Ji HY, Shao D, Hu H, Quek CH, Huang D, Mintz RL, Bagó JR, Hingtgen SD, Lee KB, Leong KW. Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. NANO LETTERS 2019; 19:1701-1705. [PMID: 30773888 DOI: 10.1021/acs.nanolett.8b04697] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.
Collapse
Affiliation(s)
- Smruthi Suryaprakash
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Mingqiang Li
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Ha Yeun Ji
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Dan Shao
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hanze Hu
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Chai Hoon Quek
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Dantong Huang
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Rachel L Mintz
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Kam W Leong
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Systems Biology , Columbia University Medical Center , New York , New York 10032 , United States
| |
Collapse
|
43
|
Alternating electric field application induced non-contact and enzyme-free cell detachment. Cytotechnology 2019; 71:583-597. [PMID: 30783819 DOI: 10.1007/s10616-019-00307-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Low intensity (< 2 Vpp/cm (peak to peak voltage/cm)), high frequency (10-30 MHz), and 10 min alternating electric fields (sine wave with no DC component) induce non-contact and enzyme-free cell detachment of anchorage-dependent cells directly from commercially available cell culture flasks and stack plates. 0.25 Vpp/cm, 20 MHz alternating electric field for 10 min at room temperature (RT) induced maximum detachment and separated 99.5 ± 0.1% (mean ± SEM, n = 6) of CHO-K1 and 99.8 ± 0.2% of BALB/3T3 cells from the culture flasks. Both vertical and lateral alternating electric field applications for 10 min at RT detach the CHO-K1 cells from 25 cm2 culture flasks. The alternating electric field application induced cell detachment is almost noncytotoxic, and over 90% of the detached cells remained alive. The alternating electric field applied CHO-K1 cells for 90 min showed little or no lag phase and immediately enter exponential phase in cell growth. Combination of the 20 MHz alternating electric field and enzymatic treatment for 4 min at 37 °C showed synergetic effect and quickly detached human induced pluripotent stem cells from a laminin-coated culture flask compared with the only enzymatic treatment. These results indicate that the rapid cell detachment with both the electric field application and the enzymatic treatment could be applied to subcultures of cells that are susceptible to prolonged enzymatic digestion damage for mass culture of sustainable clinical use.
Collapse
|
44
|
Iwasaki K, Nagata M, Akazawa K, Watabe T, Morita I. Changes in characteristics of periodontal ligament stem cells in spheroid culture. J Periodontal Res 2018; 54:364-373. [PMID: 30597545 DOI: 10.1111/jre.12637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The periodontal ligament (PDL) has important roles in maintaining homeostasis, wound healing, and regeneration of periodontal tissues by supplying stem/progenitor cells. Periodontal ligament stem cells (PDLSCs) have mesenchymal stem cell (MSC)-like characteristics and can be isolated from periodontal tissues. The aim of this study was to examine the effect of three-dimensional spheroid culture on the characteristics of PDLSCs. MATERIAL AND METHODS Periodontal ligament stem cells were isolated and cultured from healthy teeth, and PDLSC spheroids were formed by pellet culture in polypropylene tubes. The proliferation of PDLSCs in spheroids and conventional two-dimensional (2D) cultures were examined by immunostaining for Ki67. Cell death and cell size were analyzed using flow cytometry. Gene expression changes were investigated by quantitative real time PCR. RESULTS Periodontal ligament stem cells spontaneously formed spheroid masses in pellet culture. The size of PDLSC spheroids was inversely proportional to the culture period. Fewer Ki67-positive cells were detected in PDLSC spheroids compared to those in 2D culture. Flow cytometry revealed an increase in dead cells and a decrease in cell size in PDLSC spheroids. The expression levels of genes related to anti-inflammation (TSG6, COX2, MnSOD) and angiogenesis (VEGF, bFGF, HGF) were drastically increased by spheroid culture compared to 2D culture. TSG6 gene expression was inhibited in PDLSC spheroids in the presence of the apoptosis signal inhibitor, Z-VAD-FMK. Additionally, PDLSC spheroid transplantation into rat periodontal defects did not induce the regeneration of periodontal tissues. CONCLUSIONS We found that spheroid culture of PDLSCs affected several characteristics of PDLSCs, including the expression of genes related to anti-inflammation and angiogenesis; apoptosis signaling may be involved in these changes. Our results revealed the characteristics of PDLSCs in spheroid culture and have provided new information to the field of stem cell research.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Osaka, Japan.,Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuki Nagata
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiko Akazawa
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Watabe
- Biochemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
45
|
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol 2018; 9:2837. [PMID: 30564236 PMCID: PMC6288292 DOI: 10.3389/fimmu.2018.02837] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.
Collapse
Affiliation(s)
- Joana R Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graciosa Q Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Raquel M Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
46
|
Zhao L, Hu C, Zhang P, Jiang H, Chen J. Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. J Cell Mol Med 2018; 23:720-730. [PMID: 30484934 PMCID: PMC6349184 DOI: 10.1111/jcmm.14035] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common, severe emergency case in clinics, with high incidence, significant mortality and increased costs. Despite development in the understanding of its pathophysiology, the therapeutic choices are still confined to dialysis and renal transplantation. Considering their antiapoptotic, immunomodulatory, antioxidative and pro‐angiogenic effects, mesenchymal stem cells (MSCs) may be a promising candidate for AKI management. Based on these findings, some clinical trials have been performed, but the results are contradictory (NCT00733876, NCT01602328). The low engraftment, poor survival rate, impaired paracrine ability and delayed administration of MSCs are the four main reasons for the limited clinical efficacy. Investigators have developed a series of preconditioning strategies to improve MSC survival rates and paracrine ability. In this review, by summarizing these encouraging studies, we intend to provide a comprehensive understanding of various preconditioning strategies on AKI therapy and improve the prognosis of AKI patients by regenerative medicine.
Collapse
Affiliation(s)
- Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Zhang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hua Jiang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jianghua Chen
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
47
|
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:55-77. [PMID: 30165783 DOI: 10.1089/ten.teb.2018.0118] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Culture expansion of MSCs has detrimental effects on various cell characteristics and attributes (e.g., phenotypic changes and senescence), which, in addition to inherent interdonor variability, negatively impact the standardization and reproducibility of their therapeutic potential. The identification of innate distinct functional MSC subpopulations, as well as the description of ex vivo protocols aimed at maintaining phenotypes and enhancing specific functions have the potential to overcome these limitations. The incorporation of those approaches into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara Sanjurjo-Rodriguez
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom.,4 Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Elena Jones
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Diego Correa
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
48
|
Induction of Expression of CD271 and CD34 in Mesenchymal Stromal Cells Cultured as Spheroids. Stem Cells Int 2018; 2018:7357213. [PMID: 30154865 PMCID: PMC6091361 DOI: 10.1155/2018/7357213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cultured mesenchymal stromal cells (MSCs) are cells that can be used for tissue engineering or cell therapies owing to their multipotency and ability to secrete immunomodulatory and trophic molecules. Several studies suggest that MSCs can become pericytes when cocultured with endothelial cells (ECs) but failed to use pericyte markers not already expressed by MSCs. We hypothesized ECs could instruct MSCs to express the molecules CD271 or CD34, which are expressed by pericytes in situ but not by MSCs. CD271 is a marker of especial interest because it is associated with multipotency, a characteristic that wanes in MSCs as they are culture expanded. Consequently, surface expression of CD271 and CD34 was detected in roughly half of the MSCs cocultured with ECs as spheroids in the presence of insulin-like growth factor 1 (IGF-1). Conversely, expression of CD271 and CD34 was detected in a similar proportion of MSCs cultured under these conditions without ECs, and expression of these markers was low or absent when no IGF-1 was added. These findings indicate that specific culture conditions including IGF-1 can endow cultured MSCs with expression of CD271 and CD34, which may enhance the multipotency of these cells when they are used for therapeutic purposes.
Collapse
|
49
|
Yanagihara K, Uchida S, Ohba S, Kataoka K, Itaka K. Treatment of Bone Defects by Transplantation of Genetically Modified Mesenchymal Stem Cell Spheroids. Mol Ther Methods Clin Dev 2018; 9:358-366. [PMID: 30038939 PMCID: PMC6054700 DOI: 10.1016/j.omtm.2018.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/11/2018] [Indexed: 11/18/2022]
Abstract
Cell transplantation is promising for regenerative medicine. A combination of a three-dimensional spheroid culture system with gene transfection was developed to enhance the therapeutic effects of mesenchymal stem cell (MSC) transplantation. The spheroid cell culture system is based on micropatterned substrates composed of a regular array of 100-μm-diameter cell-adhesion areas coated with a temperature-responsive polymer, poly (N-isopropylacrylamide-co-methacrylic acid), which allows for spheroid detachment by simply cooling the plates. In this study, MSC spheroids were transfected with plasmid DNA encoding runt-related transcription factor 2 (Runx2) and tested for their ability to enhance bone regeneration. In vitro analyses revealed that osteogenic differentiation of the MSCs was enhanced by forming spheroids and was further promoted by Runx2 expression. The enhanced osteogenic differentiation was maintained under pathological conditions, such as hypoxia and inflammation. Transplanting Runx2-transfected MSC spheroids into bone defects on rat femurs induced significantly faster bone regeneration compared with nontransfected MSC spheroids or genetically modified MSCs from conventional monolayer culture. MSC migration into the bone defect area was enhanced by upregulation of cell-migration-related genes. In conclusion, genetically modified MSC spheroids are effective for enhancing bone regeneration, providing a promising option for cell transplantation therapy in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Kayoko Yanagihara
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Shinsuke Ohba
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
50
|
Sun Y, Wang Y, Zhou L, Zou Y, Huang G, Gao G, Ting S, Lei X, Ding X. Spheroid-cultured human umbilical cord-derived mesenchymal stem cells attenuate hepatic ischemia-reperfusion injury in rats. Sci Rep 2018; 8:2518. [PMID: 29410537 PMCID: PMC5802716 DOI: 10.1038/s41598-018-20975-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising treatment for ischemia-reperfusion injury (IRI). However, its effects on hepatic IRI were not consistent in the previous studies. 3D spheroid-cultured MSCs enhance their production of trophic and anti-inflammatory properties, but their effects on hepatic IRI remain unclear. In this study, we compared the 3D spheroid-cultured human umbilical derived MSCs (3D UC-MSCs) with 2D-cultured UC-MSCs (2D UC-MSCs) on treating hepatic IRI. The RNA sequencing data showed that suppression of cell mitosis, response to hypoxia, inflammation, and angiogenesis were the top genetic changes in 3D UC-MSCs compared with 2D UC-MSCs. Although both pro-inflammatory and anti-inflammatory genes were upregulated in the 3D UC-MSCs, the mRNA and protein of an RNase (ZC3H12A), which turnovers the mRNA of pro-inflammatory genes at the post-transcript level, were significantly upregulated in 3D UC-MSCs. 3D UC-MSCs reduced the secretion of many chemokines and growth factors, but increased the secretion of vascular endothelial growth factor. Compared with the vehicle and 2D UC-MSCs, 3D UC-MSCs significantly reduced hepatic IRI in rats, based on the plasma aminotransferase levels, liver damage scores, neutrophil infiltration, hepatocyte apoptosis and expression of inflammation-associated genes. These findings suggest that 3D UC-MSCs therapy is a promising treatment for hepatic IRI.
Collapse
Affiliation(s)
- Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,National Engineering and Research Center of Human Stem Cell, Central South University, Changsha, 410250, China.,Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410250, China
| | - Yang Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,National Engineering and Research Center of Human Stem Cell, Central South University, Changsha, 410250, China.,Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410250, China
| | - Liang Zhou
- Department of Ophthalmology, Second Xiangya Hospital, Central South Univerisity, Changsha, 410011, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Gengwen Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Ge Gao
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shi Ting
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xiong Lei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|