1
|
Borar P, Biswas T, Chaudhuri A, Rao T P, Raychaudhuri S, Huxford T, Chakrabarti S, Ghosh G, Polley S. Dual-specific autophosphorylation of kinase IKK2 enables phosphorylation of substrate IκBα through a phosphoenzyme intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546692. [PMID: 37732175 PMCID: PMC10508718 DOI: 10.1101/2023.06.27.546692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα. Surprisingly, auto-phosphorylated IKK2 relayed phosphate group(s) to IκBα without ATP when ADP is present. We also observed that mutation of K44, an ATP-binding lysine conserved in all protein kinases, to methionine renders IKK2 inactive towards specific phosphorylation of S32 or S36 of IκBα, but not non-specific substrates. These observations highlight an unusual evolution of IKK2, in which autophosphorylation of tyrosine(s) in the activation loop and the invariant ATP-binding K44 residue define its signal-responsive substrate specificity ensuring the fidelity of NF-κB activation.
Collapse
Affiliation(s)
- Prateeka Borar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pallavi Rao T
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Tom Huxford
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, USA
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Smarajit Polley
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Lee YJ, Ahn JC, Oh CH. Oxyresveratrol attenuates bone resorption by inhibiting the mitogen-activated protein kinase pathway in ovariectomized rats. Nutr Metab (Lond) 2024; 21:7. [PMID: 38243227 PMCID: PMC10799353 DOI: 10.1186/s12986-024-00781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Bone is continuously produced by osteoblasts and resorbed by osteoclasts to maintain homeostasis. Impaired bone resorption by osteoclasts causes bone diseases such as osteoporosis and arthritis. Most pharmacological treatment of osteoporosis focuses on inhibiting osteoclast differentiation, often to restore osteoclast/osteoclast balance. However, recent osteoporosis treatments have various side effects. According to a recent study, resveratrol, known as a stilbenoid family, is known to increase bone density, and the osteoclast inhibitory effect was confirmed using oxyresveratrol, a stilbenoid family. Here, we investigated the effect of oxyresveratrol on osteoclast differentiation and an ovariectomized mouse model. METHODS Mouse leukemia monocyte/macrophage cell line RAW 264.7 was treated with oxyresveratrol, and cell cytotoxicity was confirmed by measuring MTT assay. Tartrate-resistant acid phosphatase (TRAP), an enzyme marker for osteoclasts, was confirmed by staining. In addition, osteoclast differentiation markers and MAPK-related markers were confirmed at the mRNA level and protein expression. The effect of oxyresveratrol was confirmed using ovariectomized mice. Deoxypyridinoline (DPD) was measured using mouse urine and TRAP activity was observed using serum. Bone mineral density was also measured using Micro-CT. RESULTS The polyphenol oxyresveratrol inhibited receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells. Furthermore, oxyresveratrol inhibited TRAP activity and actin-ring formation. Moreover, oxyresveratrol suppressed the phosphorylation of the RANKL-induced mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK and significantly reduced the expression of bone differentiation markers (NFATc1, cathepsin K, and TRAP). CONCLUSION Oxyresveratrol inhibits osteoclast differentiation via MAPK and increases bone density in ovariectomized rats, suggesting it has therapeutic potential for bone diseases such as osteoporosis. We confirmed the osteoporosis prevention effect of OR in Raw 264.7 cells, and future studies should confirm the effect of OR using rat bone marrow-derived cells.
Collapse
Affiliation(s)
- Yea-Jin Lee
- Department of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea
- Medical Laser Research Center, Graduate School of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea
- Department of Photobiology, College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea
| | - Jin-Chul Ahn
- Department of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
- Medical Laser Research Center, Graduate School of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
- Department of Photobiology, College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Chung-Hun Oh
- Medical Laser Research Center, Graduate School of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
- Department of Oral Physiology, College of Dentistry, Dankook University, Cheonan-si, 31116, Republic of Korea.
| |
Collapse
|
3
|
Kim C. Extracellular Signal-Regulated Kinases Play Essential but Contrasting Roles in Osteoclast Differentiation. Int J Mol Sci 2023; 24:15342. [PMID: 37895023 PMCID: PMC10607827 DOI: 10.3390/ijms242015342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.
Collapse
Affiliation(s)
- Chaekyun Kim
- BK21 Program in Biomedical Science & Engineering, Laboratory for Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Abstract
Osteoclasts are multinucleated cells with the unique ability to resorb bone matrix. Excessive production or activation of osteoclasts leads to skeletal pathologies that affect a significant portion of the population. Although therapies that effectively target osteoclasts have been developed, they are associated with sometimes severe side effects, and a fuller understanding of osteoclast biology may lead to more specific treatments. Along those lines, a rich body of work has defined essential signaling pathways required for osteoclast formation, function, and survival. Nonetheless, recent studies have cast new light on long-held views regarding the origin of these cells during development and homeostasis, their life span, and the cellular sources of factors that drive their production and activity during homeostasis and disease. In this review, we discuss these new findings in the context of existing work and highlight areas of ongoing and future investigation.
Collapse
Affiliation(s)
- Deborah J Veis
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center; and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; .,Shriners Hospitals for Children, St. Louis, Missouri, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, Division of Endocrinology, and Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Wang WJ, He JW, Fu WZ, Wang C, Zhang ZL. Genetic Polymorphisms of Nuclear Factor-κB Family Affect the Bone Mineral Density Response to Zoledronic Acid Therapy in Postmenopausal Chinese Women. Genes (Basel) 2022; 13:genes13081343. [PMID: 36011257 PMCID: PMC9407517 DOI: 10.3390/genes13081343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to explore the allelic association between genetic polymorphisms of the NF-κB pathway and the variance of clinical effects of zoledronic in postmenopausal Chinese women with osteoporosis. In the study, 110 Chinese postmenopausal women with osteoporosis were recruited. Every patient received zoledronic once a year. BMD was measured at baseline and after one year of treatment. The 13 tagger SNPs of five genes in the NF-κB pathway were genotyped. In the study, 101 subjects completed the one-year follow-up. The ITCTG and DTCTG haplotypes, which are constituted of rs28362491, rs3774937, rs230521, rs230510 and rs4648068 of the NF-κB1 gene, were associated with improvement in BMD at L1-4 and femoral neck (p < 0.001, p = 0.008, respectively). The CGC haplotype, which is constituted of rs7119750, rs2306365 and rs11820062 of the RELA gene, was associated with improvement in BMD at total hip (p < 0.001). After Bonferroni correction, haplotypes ITCTG and CGC still showed significant association with the % change of BMD at L1-4 and total hip. Therefore, NF-κB1 and RELA gene were significantly associated with bone response to the treatment of zoledronic in postmenopausal Chinese women with osteoporosis.
Collapse
|
6
|
Sun H, Zhao Y, Wang K, Zhu L, Dong J, Zhao J, Wang Y, Li H, Sun X, Lu Y. Low dose IL-2 suppress osteoclastogenesis in collagen-induced arthritis via JNK dependent pathway. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:727-735. [PMID: 33098626 PMCID: PMC7654429 DOI: 10.1002/iid3.364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
Background Rheumatoid arthritis (RA) is one of the most common chronic immune joint diseases, mainly involving blood vessels and small joints. The complex pathogenesis of RA greatly increases the difficulty of treatment. At present, the common hormone and immunosuppressive therapy are not effective, while low‐dose interleukin‐2 (IL‐2) recently has been found to possess some advantages for immunotherapy. However, its related signal pathway remains to be elucidated. Methods We fabricated the model of arthritis in mice, and then low‐dose IL‐2 was injected at a fixed time point to observe the changes of related vascular and organ pathology, inflammatory factors, and signal pathway proteins, which were verified by statistical analysis. Results Low dose IL‐2 can reduce the severity of vascular and bone lesions in collagen‐induced arthritis immune model, and inhibit osteoclast formation in vitro by phosphorylation of nuclear factor‐κB (NF‐κB), which inhibits the receptor activator of NF‐κB ligand effect through c‐Jun N‐terminal kinase (JNK) pathway, and its immunotherapeutic effect depends on the activation of JNK. Conclusion It is the first time for us to prove that low dose IL‐2 can inhibit osteoclast formation in collagen‐induced arthritis through the JNK dependent pathway, which will provide the angle and theoretical basis for future immunotherapy of IL‐2.
Collapse
Affiliation(s)
- Han Sun
- The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Yong Zhao
- Department of Hepatobiliary Surgery, The people's hospital of Jinsha County, China
| | - Kun Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Li Zhu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jian Dong
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Jie Zhao
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yimin Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huan Li
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoliang Sun
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
7
|
Wei J, Li Y, Liu Q, Lan Y, Wei C, Tian K, Wu L, Lin C, Xu J, Zhao J, Yang Y. Betulinic Acid Protects From Bone Loss in Ovariectomized Mice and Suppresses RANKL-Associated Osteoclastogenesis by Inhibiting the MAPK and NFATc1 Pathways. Front Pharmacol 2020; 11:1025. [PMID: 32733253 PMCID: PMC7358641 DOI: 10.3389/fphar.2020.01025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoclasts with elevated bone resorption are commonly present in postmenopausal osteoporosis, and other osteolytic pathologies. Therefore, suppressing osteoclast generation and function has been the main focus of osteoporosis treatment. Betulinic acid (BA) represents a triterpenoid mainly purified from the bark of Betulaceae. BA shows multiple biological activities, including antitumor and anti-HIV properties, but its effect on osteolytic conditions is unknown. Here, BA suppressed receptor activator of nuclear factor‐κB ligand (RANKL)‐associated osteoclastogenesis and bone resorptive function, as assessed by tartrate‐resistant acid phosphatase (TRAP) staining, fibrous actin ring generation, and hydroxyapatite resorption assays. Mechanistically, BA downregulated the expression of osteoclastic-specific genes. Western blot analysis revealed that BA significantly interrupted ERK, JNK and p38 MAPK activation as well as intracellular reactive oxygen species (ROS) production, thus altering c-Fos and NFATc1 activation. Corroborating the above findings in cell-based assays, BA prevented ovariectomy-associated bone loss in an animal model. In conclusion, these findings suggest that BA can inhibit osteoclast generation and function as well as the RANKL signaling pathway, and might be used for treating osteoclast-related osteoporosis.
Collapse
Affiliation(s)
- Jiyong Wei
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Department of Orthopedics, The First People's Hospital of Nanning, Nanning, China
| | - Yicheng Li
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yanni Lan
- Department of Pharmacy, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chengming Wei
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Kun Tian
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Liwei Wu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Chunbo Lin
- Orthopaedics, Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Yuan Yang
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Orthopaedics, Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Takakura N, Matsuda M, Khan M, Hiura F, Aoki K, Hirohashi Y, Mori K, Yasuda H, Hirata M, Kitamura C, Jimi E. A novel inhibitor of NF-κB-inducing kinase prevents bone loss by inhibiting osteoclastic bone resorption in ovariectomized mice. Bone 2020; 135:115316. [PMID: 32169603 DOI: 10.1016/j.bone.2020.115316] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Musculoskeletal diseases and disorders, including osteoporosis and rheumatoid arthritis are diseases that threaten a healthy life expectancy, and in order to extend the healthy life expectancy of elderly people, it is important to prevent bone and joint diseases and disorders. We previously reported that alymphoplasia (aly/aly) mice, which have a loss-of-function mutation in the Nik gene involved in the processing of p100 to p52 in the alternative NF-κB pathway, show mild osteopetrosis with a decrease in the osteoclast number, suggesting that the alternative NF-κB pathway is a potential drug target for ameliorating bone diseases. Recently, the novel NF-κB-inducing kinase (NIK)-specific inhibitor compound 33 (Cpd33) was developed, and we examined its effect on osteoclastic bone resorption in vitro and in vivo. Cpd33 inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis accompanied by a decrease in the expression of nfatc1, dc-stamp, and cathepsin K, markers of osteoclast differentiation, without affecting the cell viability, in a dose-dependent manner. Cdp33 specifically suppressed the RANKL-induced processing of p100 to p52 but not the phosphorylation of p65 or the degradation or resynthesis of IκBα in osteoclast precursors. Cpd33 also suppressed the bone-resorbing activity in mature osteoclasts. Furthermore, Cdp33 treatment prevented bone loss by suppressing the osteoclast formation without affecting the osteoblastic bone formation in ovariectomized mice. Taken together, NIK inhibitors may be a new option for patients with a reduced response to conventional pharmacotherapy or who have serious side effects.
Collapse
Affiliation(s)
- Nana Takakura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8549, Japan
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yuna Hirohashi
- Department of Basic Oral Health Engineering, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kayo Mori
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., 50 Kano-cho, Nagahama, Shiga 526-0804, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
9
|
Adapala NS, Swarnkar G, Arra M, Shen J, Mbalaviele G, Ke K, Abu-Amer Y. Inflammatory osteolysis is regulated by site-specific ISGylation of the scaffold protein NEMO. eLife 2020; 9:e56095. [PMID: 32202502 PMCID: PMC7145425 DOI: 10.7554/elife.56095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/22/2020] [Indexed: 01/30/2023] Open
Abstract
Inflammatory osteolysis is governed by exacerbated osteoclastogenesis. Ample evidence points to central role of NF-κB in such pathologic responses, yet the precise mechanisms underpinning specificity of these responses remain unclear. We propose that motifs of the scaffold protein IKKγ/NEMO partly facilitate such functions. As proof-of-principle, we used site-specific mutagenesis to examine the role of NEMO in mediating RANKL-induced signaling in mouse bone marrow macrophages, known as osteoclast precursors. We identified lysine (K)270 as a target regulating RANKL signaling as K270A substitution results in exuberant osteoclastogenesis in vitro and murine inflammatory osteolysis in vivo. Mechanistically, we discovered that K270A mutation disrupts autophagy, stabilizes NEMO, and elevates inflammatory burden. Specifically, K270A directly or indirectly hinders binding of NEMO to ISG15, a ubiquitin-like protein, which we show targets the modified proteins to autophagy-mediated lysosomal degradation. Taken together, our findings suggest that NEMO serves as a toolkit to fine-tune specific signals in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Gaurav Swarnkar
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Manoj Arra
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Jie Shen
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Gabriel Mbalaviele
- Bone and Mineral Division, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Ke Ke
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospital for ChildrenSt. LouisUnited States
| |
Collapse
|
10
|
Abraham AC, Shah SA, Golman M, Song L, Li X, Kurtaliaj I, Akbar M, Millar NL, Abu-Amer Y, Galatz LM, Thomopoulos S. Targeting the NF-κB signaling pathway in chronic tendon disease. Sci Transl Med 2020; 11:11/481/eaav4319. [PMID: 30814338 DOI: 10.1126/scitranslmed.aav4319] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/31/2019] [Indexed: 01/20/2023]
Abstract
Tendon disorders represent the most common musculoskeletal complaint for which patients seek medical attention; inflammation drives tendon degeneration before tearing and impairs healing after repair. Clinical evidence has implicated the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway as a correlate of pain-free return to function after surgical repair. However, it is currently unknown whether this response is a reaction to or a driver of pathology. Therefore, we aimed to understand the clinically relevant involvement of the NF-κB pathway in tendinopathy, to determine its potential causative roles in tendon degeneration, and to test its potential as a therapeutic candidate. Transcriptional profiling of early rotator cuff tendinopathy identified increases in NF-κB signaling, including increased expression of the regulatory serine kinase subunit IKKβ, which plays an essential role in inflammation. Using cre-mediated overexpression of IKKβ in tendon fibroblasts, we observed degeneration of mouse rotator cuff tendons and the adjacent humeral head. These changes were associated with increases in proinflammatory cytokines and innate immune cells within the joint. Conversely, genetic deletion of IKKβ in tendon fibroblasts partially protected mice from chronic overuse-induced tendinopathy. Furthermore, conditional knockout of IKKβ improved outcomes after surgical repair, whereas overexpression impaired tendon healing. Accordingly, targeting of the IKKβ/NF-κB pathway in tendon stromal cells may offer previously unidentified therapeutic approaches in the management of human tendon disorders.
Collapse
Affiliation(s)
- Adam C Abraham
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA
| | - Shivam A Shah
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Mikhail Golman
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA
| | - Xiaoning Li
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA
| | - Iden Kurtaliaj
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Moeed Akbar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Ave., Glasgow, Scotland G12 8TA, UK
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Ave., Glasgow, Scotland G12 8TA, UK
| | - Yousef Abu-Amer
- Departments of Orthopedic Surgery and Cell Biology and Physiology, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110, USA.,Shriners Hospital for Children, 4400 Clayton Ave, St. Louis, MO 63110, USA
| | - Leesa M Galatz
- Department of Orthopedic Surgery, Mount Sinai, 5 E 98th St., New York, NY 10029, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA. .,Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| |
Collapse
|
11
|
Jimi E, Takakura N, Hiura F, Nakamura I, Hirata-Tsuchiya S. The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition "Killing Two Birds with One Stone"? Cells 2019; 8:cells8121636. [PMID: 31847314 PMCID: PMC6952937 DOI: 10.3390/cells8121636] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of various genes involved in inflammation and the immune response. The activation of NF-κB occurs via two pathways: inflammatory cytokines, such as TNF-α and IL-1β, activate the "classical pathway", and cytokines involved in lymph node formation, such as CD40L, activate the "alternative pathway". NF-κB1 (p50) and NF-κB2 (p52) double-knockout mice exhibited severe osteopetrosis due to the total lack of osteoclasts, suggesting that NF-κB activation is required for osteoclast differentiation. These results indicate that NF-κB may be a therapeutic target for inflammatory bone diseases, such as rheumatoid arthritis and periodontal disease. On the other hand, mice that express the dominant negative form of IκB kinase (IKK)-β specifically in osteoblasts exhibited increased bone mass, but there was no change in osteoclast numbers. Therefore, inhibition of NF-κB is thought to promote bone formation. Taken together, the inhibition of NF-κB leads to "killing two birds with one stone": it suppresses bone resorption and promotes bone formation. This review describes the role of NF-κB in physiological bone metabolism, pathologic bone destruction, and bone regeneration.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
- Correspondence: ; Tel.: 81-92-642-6332
| | - Nana Takakura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Ichiro Nakamura
- Faculty of Health and Medical Science, Teikyo Heisei University, 2-51-4 Higashi-Ikebukuro, Toshima, Tokyo 170-8445, Japan;
| | - Shizu Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| |
Collapse
|
12
|
Ke K, Chen T(HP, Arra M, Mbalaviele G, Swarnkar G, Abu-Amer Y. Attenuation of NF-κB in Intestinal Epithelial Cells Is Sufficient to Mitigate the Bone Loss Comorbidity of Experimental Mouse Colitis. J Bone Miner Res 2019; 34:1880-1893. [PMID: 31107556 PMCID: PMC6813857 DOI: 10.1002/jbmr.3759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/26/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Skeletal abnormalities are common comorbidities of inflammatory bowel disease (IBD). Patients suffering from IBD, including ulcerative colitis and Crohn's disease, present with skeletal complications. However, the mechanism underpinning IBD-associated bone loss remains vague. Intestinal inflammation generates an inflammatory milieu at the intestinal epithelium that leads to dysregulation of mucosal immunity through gut-residing innate lymphoid cells (ILCs) and other cell types. ILCs are recently identified mucosal cells considered as the gatekeeper of gut immunity and their function is regulated by intestinal epithelial cell (IEC)-secreted cytokines in response to the inflammatory microenvironment. We first demonstrate that serum as well as IECs collected from the intestine of dextran sulfate sodium (DSS)-induced colitis mice contain high levels of inflammatory and osteoclastogenic cytokines. Mechanistically, heightened inflammatory response of IECs was associated with significant intrinsic activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in IECs and increased frequency of ILC1, ILC3, and myeloid osteoclast progenitors. Validating the central role of IEC-specific NF-κB activation in this phenomenon, conditional expression of constitutively active inhibitor kappa B kinase 2 (IKK2) in IECs in mice recapitulates the majority of the cellular, inflammatory, and osteolytic phenotypes observed in the chemically induced colitis. Furthermore, conditional deletion of IKK2 from IECs significantly attenuated inflammation and bone loss in DSS-induced colitis. Finally, using the DSS-induced colitis model, pharmacologic inhibition of IKK2 was effective in reducing frequency of ILC1 and ILC3 cells, attenuated circulating levels of inflammatory cytokines, and halted colitis-associated bone loss. Our findings identify IKK2 in IECs as viable therapeutic target for colitis-associated osteopenia.
Collapse
Affiliation(s)
- Ke Ke
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis MO 63110
| | - Tim (Hung-Po) Chen
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis MO 63110
| | - Manoj Arra
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis MO 63110
| | - Gabriel Mbalaviele
- Bone and Mineral Division, Department of Medicine, Washington University School of Medicine, St. Louis MO 63110
| | - Gaurav Swarnkar
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis MO 63110
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis MO 63110
- Shriners Hospital for Children, St. Louis MO 63110
| |
Collapse
|
13
|
Chin KY, Ima-Nirwana S. The Role of Tocotrienol in Preventing Male Osteoporosis-A Review of Current Evidence. Int J Mol Sci 2019; 20:E1355. [PMID: 30889819 PMCID: PMC6471446 DOI: 10.3390/ijms20061355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Male osteoporosis is a significant but undetermined healthcare problem. Men suffer from a higher mortality rate post-fracture than women and they are marginalized in osteoporosis treatment. The current prophylactic agents for osteoporosis are limited. Functional food components such as tocotrienol may be an alternative option for osteoporosis prevention in men. This paper aims to review the current evidence regarding the skeletal effects of tocotrienol in animal models of male osteoporosis and its potential antiosteoporotic mechanism. The efficacy of tocotrienol of various sources (single isoform, palm and annatto vitamin E mixture) had been tested in animal models of bone loss induced by testosterone deficiency (orchidectomy and buserelin), metabolic syndrome, nicotine, alcoholism, and glucocorticoid. The treated animals showed improvements ranging from bone microstructural indices, histomorphometric indices, calcium content, and mechanical strength. The bone-sparing effects of tocotrienol may be exerted through its antioxidant, anti-inflammatory, and mevalonate-suppressive pathways. However, information pertaining to its mechanism of actions is superficial and warrants further studies. As a conclusion, tocotrienol could serve as a functional food component to prevent male osteoporosis, but its application requires validation from a clinical trial in men.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| |
Collapse
|
14
|
Lee K, Seo I, Choi MH, Jeong D. Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology. Int J Mol Sci 2018; 19:ijms19103004. [PMID: 30275408 PMCID: PMC6213329 DOI: 10.3390/ijms19103004] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
Bone undergoes continuous remodeling, which is homeostatically regulated by concerted communication between bone-forming osteoblasts and bone-degrading osteoclasts. Multinucleated giant osteoclasts are the only specialized cells that degrade or resorb the organic and inorganic bone components. They secrete proteases (e.g., cathepsin K) that degrade the organic collagenous matrix and establish localized acidosis at the bone-resorbing site through proton-pumping to facilitate the dissolution of inorganic mineral. Osteoporosis, the most common bone disease, is caused by excessive bone resorption, highlighting the crucial role of osteoclasts in intact bone remodeling. Signaling mediated by mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, has been recognized to be critical for normal osteoclast differentiation and activation. Various exogenous (e.g., toll-like receptor agonists) and endogenous (e.g., growth factors and inflammatory cytokines) stimuli contribute to determining whether MAPKs positively or negatively regulate osteoclast adhesion, migration, fusion and survival, and osteoclastic bone resorption. In this review, we delineate the unique roles of MAPKs in osteoclast metabolism and provide an overview of the upstream regulators that activate or inhibit MAPKs and their downstream targets. Furthermore, we discuss the current knowledge about the differential kinetics of ERK, JNK, and p38, and the crosstalk between MAPKs in osteoclast metabolism.
Collapse
Affiliation(s)
- Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Incheol Seo
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Mun Hwan Choi
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| |
Collapse
|
15
|
Frederiksen AL, Larsen MJ, Brusgaard K, Novack DV, Knudsen PJT, Schrøder HD, Qiu W, Eckhardt C, McAlister WH, Kassem M, Mumm S, Frost M, Whyte MP. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65). J Bone Miner Res 2016; 31:163-72. [PMID: 26178921 PMCID: PMC5310715 DOI: 10.1002/jbmr.2590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022]
Abstract
Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human skeletal homeostasis and represent a new genetic cause of HBM.
Collapse
Affiliation(s)
- Anja L Frederiksen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | | | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | | | - William H McAlister
- Department of Pediatric Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO, USA
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Steven Mumm
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.,Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA
| | - Morten Frost
- Endocrine Research Unit, Odense University Hospital, Odense, Denmark
| | - Michael P Whyte
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.,Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA
| |
Collapse
|
16
|
Abstract
Osteoclasts are multinucleated cells formed mainly on bone surfaces in response to cytokines by fusion of bone marrow-derived myeloid lineage precursors that circulate in the blood. Major advances in understanding of the molecular mechanisms regulating osteoclast formation and functions have been made in the past 20 years since the discovery that their formation requires nuclear factor-κB (NF-κB) signaling and that this is activated in response to the essential osteoclastogenic cytokine, receptor activator of NF-κB ligand (RANKL), which also controls osteoclast activation to resorb (degrade) bone. These studies have revealed that RANKL and some pro-inflammatory cytokines, including tumor necrosis factor, activate NF-κB and downstream signaling, including c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and inhibition of repressors of NFATc1 signaling, to positively regulate osteoclast formation and functions. However, these cytokines also activate NF-κB signaling that can limit osteoclast formation through the NF-κB signaling proteins, TRAF3 and p100, and the suppressors of c-Fos/NFATc1 signaling, IRF8, and RBP-J. This paper reviews current understanding of how NF-κB signaling is involved in the positive and negative regulation of cytokine-mediated osteoclast formation and activation.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Yan Xiu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Yang T, Zhang J, Cao Y, Zhang M, Jing L, Jiao K, Yu S, Chang W, Chen D, Wang M. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling. J Dent Res 2015; 94:803-12. [PMID: 25749876 DOI: 10.1177/0022034515576051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Increased subchondral trabecular bone turnover due to imbalanced bone-resorbing and bone-forming activities is a hallmark of osteoarthritis (OA). Wnt5a/Ror2 signaling, which can derive from bone marrow stromal cells (BMSCs), takes a role in modulating osteoblast and osteoclast formation. We showed previously that experimentally unilateral anterior crossbites (UACs) elicited OA-like lesions in mice temporomandibular joints (TMJs), displaying as subchondral trabecular bone loss. Herein, we tested the role of BMSC-derived Wnt5a/Ror2 signaling in regulating osteoclast precursor migration and differentiation in this process. The data confirmed the decreased bone mass, increased tartrate-resistant acid phosphatase (TRAP)-positive cell number, and enhanced osteoclast activity in TMJ subchondral trabecular bone of UAC-treated rats. Interestingly, the osteoblast activity in the tissue of TMJ subchondral trabecular bone of these UAC-treated rats was also enhanced, displaying as upregulated expressions of osteoblast markers and increased proliferation, migration, and differentiation capabilities of the locally isolated BMSCs. These BMSCs showed an increased CXCL12 protein expression level and upregulated messenger RNA expressions of Rankl, Wnt5a, and Ror2. Ex vivo data showed that their capacities of inducing migration and differentiation of osteoclast precursors were enhanced, and these enhanced capabilities were restrained after blocking their Ror2 signaling using small interfering RNA (siRNA) assays. Reducing Ror2 expression in the BMSC cell line by siRNA or blocking the downstream signalings with specific inhibitors also demonstrated a suppression of the capacity of the BMSC cell line to promote Wnt5a-dependent migration (including SP600125 and cyclosporine A) and differentiation (cyclosporine A only) of osteoclast precursors. These findings support the idea that Wnt5a/Ror2 signaling in TMJ subchondral BMSCs enhanced by UAC promoted BMSCs to increase Cxcl12 and Rankl expression, in which JNK and/or Ca(2+)/NFAT pathways were involved and therefore were engaged in enhancing the migration and differentiation of osteoclast precursors, leading to increased osteoclast activity and an overall TMJ subchondral trabecular bone loss in the UAC-treated rats.
Collapse
Affiliation(s)
- T Yang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - J Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y Cao
- Department of Cardiac Surgery, Air Force General Hospital, PLA, Beijing, China
| | - M Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Jing
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - K Jiao
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - S Yu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - W Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - D Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - M Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Osteopetrosis in TAK1-deficient mice owing to defective NF-κB and NOTCH signaling. Proc Natl Acad Sci U S A 2014; 112:154-9. [PMID: 25535389 DOI: 10.1073/pnas.1415213112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The MAP kinase TGFβ-activated kinase (TAK1) plays a crucial role in physiologic and pathologic cellular functions including cell survival, differentiation, apoptosis, inflammation, and oncogenesis. However, the entire repertoire of its mechanism of action has not been elucidated. Here, we found that ablation of Tak1 in myeloid cells causes osteopetrosis in mice as a result of defective osteoclastogenesis. Mechanistically, Tak1 deficiency correlated with increased NUMB-like (NUMBL) levels. Accordingly, forced expression of Numbl abrogated osteoclastogenesis whereas its deletion partially restored osteoclastogenesis and reversed the phenotype of Tak1 deficiency. Tak1 deletion also down-regulated Notch intracellular domain (NICD), but increased the levels of the transcription factor recombinant recognition sequence binding protein at Jκ site (RBPJ), consistent with NUMBL regulating notch signaling through degradation of NICD, a modulator of RBPJ. Accordingly, deletion of Rbpj partially corrected osteopetrosis in Tak1-deficient mice. Furthermore, expression of active IKK2 in RBPJ/TAK1-deficient cells significantly restored osteoclastogenesis, indicating that activation of NF-κB is essential for complete rescue of the pathway. Thus, we propose that TAK1 regulates osteoclastogenesis by integrating activation of NF-κB and derepression of NOTCH/RBPJ in myeloid cells through inhibition of NUMBL.
Collapse
|
19
|
Refaey ME, Zhong Q, Ding KH, Shi XM, Xu J, Bollag WB, Hill WD, Chutkan N, Robbins R, Nadeau H, Johnson M, Hamrick MW, Isales CM. Impact of dietary aromatic amino acids on osteoclastic activity. Calcif Tissue Int 2014; 95:174-82. [PMID: 25000990 PMCID: PMC4104004 DOI: 10.1007/s00223-014-9878-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/20/2014] [Indexed: 01/28/2023]
Abstract
We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.
Collapse
Affiliation(s)
- Mona El Refaey
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Qing Zhong
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Ke-Hong Ding
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Xing-ming Shi
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Jianrui Xu
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Wendy B. Bollag
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Charlie Norwood VA Medical Center, Augusta, GA 30912 USA
| | - William D. Hill
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Charlie Norwood VA Medical Center, Augusta, GA 30912 USA
| | - Norman Chutkan
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Richard Robbins
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Hugh Nadeau
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Maribeth Johnson
- Departments of Biostatistics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Mark W. Hamrick
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Carlos M. Isales
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| |
Collapse
|
20
|
|
21
|
Abstract
The transcription factor NF-κB is a family of proteins involved in signaling pathways essential for normal cellular functions and development. Deletion of various components of this pathway resulted with abnormal skeletal development. Research in the last decade has established that NF-κB signaling mediates RANK ligand-induced osteoclastogenesis. Consistently, it was shown that inhibition of NF-κB was an effective approach to inhibit osteoclast formation and bone resorptive activity. Identification of the molecular machinery underlying NF-κB activation permitted osteoclast-specific deletion of the major components of this pathway. As a result, it was clear that deletion of members of the proximal IKK kinase complex and the distal NF-κB subunits and downstream regulators affected skeletal development. These studies provided several targets of therapeutic intervention in osteolytic diseases. NF-κB activity has been also described as the centerpiece of inflammatory responses and is considered a potent mediator of inflammatory osteolysis. Indeed, inflammatory insults exacerbate physiologic RANKL-induced NF-κB signals leading to exaggerated responses and to inflammatory osteolysis. These superimposed NF-κB activities appear to underlie several bone pathologies. This review will describe the individual roles of NF-κB molecules in bone resorption and inflammatory osteolysis.
Collapse
Affiliation(s)
- Y Abu-Amer
- Department of Orthopedic Surgery, Department of Cell Biology & Physiology, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
22
|
Zhang Y, Otero JE, Abu-Amer Y. Ubiquitin-like domain of IKKβ regulates osteoclastogenesis and osteolysis. Calcif Tissue Int 2013; 93:78-85. [PMID: 23686246 PMCID: PMC3706195 DOI: 10.1007/s00223-013-9735-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/19/2013] [Indexed: 01/01/2023]
Abstract
The transcription factor NF-κB family is central for osteoclastogenesis and inflammatory osteolysis. Activation of NF-κB dimers is regulated by a kinase complex predominantly containing IKKα (IKK1), IKKβ (IKK2), and a regulatory subunit, IKKγ/NEMO. IKKα and IKKβ catalyze the cytoplasmic liberation and nuclear translocation of various NF-κB subunits. The requirement of IKKα and IKKβ for normal bone homeostasis has been established. Congruently, mice devoid of IKKα or IKKβ exhibit in vitro and in vivo defects in osteoclastogenesis, and IKKβ-null mice are refractory to inflammatory arthritis and osteolysis. To better understand the molecular mechanism underlying IKKβ function in bone homeostasis and bone pathologies, we conducted structure-function analysis to determine IKKβ functional domains in osteoclasts. IKKβ encompasses several domains, of which the ubiquitination-like domain (ULD) has been shown essential for IKKβ activation. In this study, we examined the role of ULD in IKKβ-mediated NF-κB activation in osteoclast precursors and its contribution to osteoclastogenesis and osteolysis. We generated and virally introduced IKKβ in which the ULD domain has been deleted (IKKβ∆ULD) into osteoclast progenitors. The results show that deletion of ULD diminishes IKKβ activity and that IKKβ∆ULD strongly inhibits osteoclastogenesis. In addition, unlike wild type (WT)-IKKβ, IKKβ∆ULD fail to restore RANKL-induced osteoclastogenesis by IKKβ-null precursors. Finally, we provide evidence that IKKβ∆ULD blocks inflammatory osteolysis in a model of murine calvarial osteolysis. Thus, we identified the ULD as crucial for IKKβ activity and osteoclastogenesis and found that ULD-deficient IKKβ is a potent inhibitor of osteoclastogenesis and osteolysis.
Collapse
Affiliation(s)
- Yanhong Zhang
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Medicine, Raritan Bay Medical Center, 530 New Brunswick Ave, Perth Amboy, NJ 08861
| | - Jesse E. Otero
- University of Iowa Hospitals and Clinics, Department of Orthopaedic Surgery, Iowa City, Iowa 52242
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
23
|
TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol 2012; 33:582-95. [PMID: 23166301 DOI: 10.1128/mcb.01225-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1), a mitogen-activated protein 3 (MAP3) kinase, plays an essential role in inflammation by activating the IκB kinase (IKK)/nuclear factor κB (NF-κB) and stress kinase (p38 and c-Jun N-terminal kinase [JNK]) pathways in response to many stimuli. The tumor necrosis factor (TNF) superfamily member receptor activator of NF-κB ligand (RANKL) regulates osteoclastogenesis through its receptor, RANK, and the signaling adaptor TRAF6. Because TAK1 activation is mediated through TRAF6 in the interleukin 1 receptor (IL-1R) and toll-like receptor (TLR) pathways, we sought to investigate the consequence of TAK1 deletion in RANKL-mediated osteoclastogenesis. We generated macrophage colony-stimulating factor (M-CSF)-derived monocytes from the bone marrow of mice with TAK1 deletion in the myeloid lineage. Unexpectedly, TAK1-deficient monocytes in culture died rapidly but could be rescued by retroviral expression of TAK1, inhibition of receptor-interacting protein 1 (RIP1) kinase activity with necrostatin-1, or simultaneous genetic deletion of TNF receptor 1 (TNFR1). Further investigation using TAK1-deficient mouse embryonic fibroblasts revealed that TNF-α-induced cell death was abrogated by the simultaneous inhibition of caspases and knockdown of RIP3, suggesting that TAK1 is an important modulator of both apoptosis and necroptosis. Moreover, TAK1-deficient monocytes rescued from programmed cell death did not form mature osteoclasts in response to RANKL, indicating that TAK1 is indispensable to RANKL-induced osteoclastogenesis. To our knowledge, we are the first to report that mice in which TAK1 has been conditionally deleted in osteoclasts develop osteopetrosis.
Collapse
|
24
|
Yamamoto T, Hinoi E, Fujita H, Iezaki T, Takahata Y, Takamori M, Yoneda Y. The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice. Br J Pharmacol 2012; 166:1084-96. [PMID: 22250848 DOI: 10.1111/j.1476-5381.2012.01856.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Although naturally occurring polyamines are indispensable for a variety of cellular events in eukaryotic cells, little attention has been paid to their physiological and pathological significance in bone remodelling to date. In this study, we evaluated the pharmacological properties of several natural polyamines on the functionality and integrity of bone in both in vitro and in vivo experiments. EXPERIMENTAL APPROACH Mice were subjected to ovariectomy (OVX) and subsequent oral supplementation with either spermidine or spermine for determination of the bone volume together with different parameters regarding bone formation and resorption by histomorphometric analyses in vivo. Pre-osteoclasts were cultured with receptor activator of NF-κB ligand (RANKL), with or without spermidine and spermine to determine cellular maturation by tartrate-resistant acid phosphatase (TRAP) staining and cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide reduction in vitro. KEY RESULTS Spermidine or spermine, given in drinking water for 28 days, significantly prevented the increased osteoclast surface/bone surface ratio and the reduced bone volume following OVX in mice. Either spermidine or spermine significantly inhibited the increased number of multinucleated TRAP-positive cells in osteoclasts cultured with RANKL in a concentration-dependent manner without affecting cell survival. CONCLUSIONS AND IMPLICATIONS The natural polyamines spermidine and spermine prevented OVX-induced bone loss through the disruption of differentiation and maturation of osteoclasts, rather than affecting osteoblasts. The supplementation with these natural polyamines could be beneficial for the prophylaxis as well as therapy of metabolic bone diseases such as post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Tomomi Yamamoto
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Grainger DW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 2012; 64:1341-57. [PMID: 21945356 DOI: 10.1016/j.addr.2011.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 01/13/2023]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders.
Collapse
|
26
|
Otero JE, Chen T, Zhang K, Abu-Amer Y. Constitutively active canonical NF-κB pathway induces severe bone loss in mice. PLoS One 2012; 7:e38694. [PMID: 22685599 PMCID: PMC3369901 DOI: 10.1371/journal.pone.0038694] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] Open
Abstract
Physiologic osteoclastogenesis entails activation of multiple signal transduction pathways distal to the cell membrane receptor RANK. However, atypical osteoclastogenesis driven by pro-inflammatory stimuli has been described. We have reported recently a novel mechanism whereby endogenous mutational activation of the classical NF-κB pathway is sufficient to induce RANKL/RANK-independent osteoclastogenesis. Here we investigate the physiologic relevance of this phenomenon in vivo. Using a knock-in approach, the active form of IKK2, namely IKK2SSEE, was introduced into the myeloid lineage with the aid of CD11b-cre mice. Phenotypic assessment revealed that expression of IKK2SSEE in the myeloid compartment induced significant bone loss in vivo. This observation was supported by a dramatic increase in the number and size of osteoclasts in trabecular regions, elevated levels of circulating TRACP-5b, and reduced bone volume. Mechanistically, we observed that IKK2SSEE induced high expression of not only p65 but also p52 and RelB; the latter two molecules are considered exclusive members of the alternative NF-κB pathway. Intriguingly, RelB and P52 were both required to mediate the osteoclastogenic effect of IKK2SSEE and co-expression of these two proteins was sufficient to recapitulate osteoclastogenesis in the absence of RANKL or IKK2SSEE. Furthermore, we found that NF-κB2/p100 is a potent inhibitor of IKK2SSEE-induced osteoclastogenesis. Deletion of p52 enabled more robust osteoclast formation by the active kinase. In summary, molecular activation of IKK2 may play a role in conditions of pathologic bone destruction, which may be refractory to therapeutic interventions targeting the proximal RANKL/RANK signal.
Collapse
Affiliation(s)
- Jesse E. Otero
- Department of Orthopedic Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Tim Chen
- Department of Orthopedic Surgery and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kaihua Zhang
- Department of Orthopedic Surgery and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
Elefteriou F, Yang X. Genetic mouse models for bone studies--strengths and limitations. Bone 2011; 49:1242-54. [PMID: 21907838 PMCID: PMC3331798 DOI: 10.1016/j.bone.2011.08.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/15/2011] [Accepted: 08/18/2011] [Indexed: 11/25/2022]
Abstract
Mice have become a preferred model system for bone research because of their genetic and pathophysiological similarities to humans: a relatively short reproductive period, leading to relatively low cost of maintenance and the availability of the entire mouse genome sequence information. The success in producing the first transgenic mouse line that expressed rabbit β-globin protein in mouse erythrocytes three decades ago marked the beginning of the use of genetically engineered mice as model system to study human diseases. Soon afterward the development of cultured pluripotent embryonic stem cells provided the possibility of gene replacement or gene deletion in mice. These technologies have been critical to identify new genes involved in bone development, growth, remodeling, repair, and diseases, but like many other approaches, they have limitations. This review will introduce the approaches that allow the generation of transgenic mice and global or conditional (tissue-specific and inducible) mutant mice. A list of the various promoters used to achieve bone-specific gene deletion or overexpression is included. The limitations of these approaches are discussed, and general guidelines related to the analysis of genetic mouse models are provided.
Collapse
Affiliation(s)
- Florent Elefteriou
- Vanderbilt University Medical Center, Department of Medicine, Vanderbilt Center for Bone Biology, 1235H Light Hall, Nashville, TN 37232-0575, USA
| | - Xiangli Yang
- Vanderbilt University Medical Center, Department of Medicine, Vanderbilt Center for Bone Biology, 1235H Light Hall, Nashville, TN 37232-0575, USA
| |
Collapse
|
28
|
Dai S, Abu-Amer W, Karuppaiah K, Abu-Amer Y. Evidence that the kinase-truncated c-Src regulates NF-κB signaling by targeting NEMO. J Cell Biochem 2011; 112:2463-70. [PMID: 21538482 PMCID: PMC3315184 DOI: 10.1002/jcb.23170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tyrosine kinase c-Src and transcription factor NF-κB are considered crucial components required for normal osteoclastogenesis. Genetic ablation of either pathway leads to detrimental osteopetrotic phenotypes in mice. Similarly, obstruction of either pathway halts osteoclastogenesis and lessens various forms of bone loss. It has been shown previously that mice expressing a kinase domain-truncated c-Src, termed Src251, develop severe osteopetrosis owing to increased osteoclast apoptosis. It was further suggested that this phenomenon is associated with reduced Akt kinase activity. However, the precise mechanism underlying the osteoclast inhibitory effect of Src251 remains obscure. C-Src associates with TRAF6-p62 interacting with receptor activator of NF-κB (RANK) distal region and the complex facilitate activation of RANK down stream signal transduction cascades including NF-κB. Given this proximity between c-Src and NF-κB signaling in osteoclasts, we surmised that inhibition of osteoclastogenesis by Src251 may be achieved through inhibition of NF-κB signaling. We have demonstrated recently that NEMO, the regulatory subunit of the IKK complex, is crucial for osteoclastogenesis and interacts with c-Src in osteoclast progenitors. Transfection studies, in which we employed various forms of c-Src and NEMO, revealed that the dominant negative form of c-Src, namely Src251, mediates degradation of NEMO thus halting NF-κB signaling. Furthermore, degradation of NEMO requires its intact zinc finger domain which is located at the ubiquitination domain. This process also requires appropriate cellular localization of Src251, since deletion of its myristoylation domain ablates its degradation capacity. Buttressing these findings, the expression of NEMO and NF-κB signaling were significantly reduced in monocytes collected from Src251 transgenic mice.
Collapse
Affiliation(s)
- S. Dai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
| | - W. Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
| | - K. Karuppaiah
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Y. Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
29
|
Abstract
Since the discovery that deletion of the NF-κB subunits p50 and p52 causes osteopetrosis in mice, there has been considerable interest in the role of NF-κB signaling in bone. NF-κB controls the differentiation or activity of the major skeletal cell types - osteoclasts, osteoblasts, osteocytes and chondrocytes. However, with five NF-κB subunits and two distinct activation pathways, not all NF-κB signals lead to the same physiologic responses. In this review, we will describe the roles of various NF-κB proteins in basal bone homeostasis and disease states, and explore how NF-κB inhibition might be utilized therapeutically.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
30
|
Yang C, McCoy K, Davis JL, Schmidt-Supprian M, Sasaki Y, Faccio R, Novack DV. NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS One 2010; 5:e15383. [PMID: 21151480 PMCID: PMC2975662 DOI: 10.1371/journal.pone.0015383] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-κB inducing kinase (NIK) controls activation of the alternative NF-κB pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-κB pathway. METHODOLOGY/PRINCIPAL FINDINGS Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-κB activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis. CONCLUSIONS Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Chang Yang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kathleen McCoy
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer L. Davis
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Deborah Veis Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
31
|
Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y. Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 2010; 285:25522-30. [PMID: 20534585 DOI: 10.1074/jbc.m110.121533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transcription factor NF-kappaB is crucial for numerous cellular functions such as survival, differentiation, immunity, and inflammation. A key function of this family of transcription factors is regulation of osteoclast differentiation and function, which in turn controls skeletal homeostasis. The IkappaB kinase (IKK) complex, which contains IKKalpha, IKKbeta, and IKKgamma, is required for activation of NF-kappaB, and deletion of either IKKalpha or IKKbeta resulted with defective osteoclast differentiation and survival. We have recently investigated the details of the mechanisms governing the role of IKKbeta in osteoclastogenesis and found that constitutively active IKKbeta in which serine residues 177/181 were mutated into negatively charged glutamic acids instigates spontaneous bona fide receptor activator of NF-kappaB ligand (RANKL)-independent osteoclastogenesis. To better understand and define the functional role of IKKbeta domains capable of regulating the osteoclastogenic activity of IKK, we investigated key motifs in the activation T loop of IKKbeta, which are potentially capable of modulating its osteoclastogenic activity. We discovered that dual serine (traditional serine residues 177/181) and tyrosine (188/199) phosphorylation events are crucial for IKKbeta activation. Mutation of the latter tyrosine residues blunted the NF-kappaB activity of wild type and constitutively active IKKbeta, and tyrosine 188/199-deficient IKKbeta inhibited osteoclastogenesis. Thus, tyrosines 188/199 are a novel target for regulating IKKbeta activity, at least in osteoclasts.
Collapse
Affiliation(s)
- Isra Darwech
- Department of Orthopedics, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
32
|
Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y. IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 2010; 25:1282-94. [PMID: 20200955 PMCID: PMC3153134 DOI: 10.1002/jbmr.4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monocytes differentiate into osteoclasts through stimulation of receptor activator of NF-kappaB (RANK). Many downstream effectors of RANK play a positive role in osteoclastogenesis, but their relative importance in osteoclast differentiation is unclear. We report the discovery that activation of a single pathway downstream of RANK is sufficient for osteoclast differentiation. In this regard, introduction of constitutively activated IKKbeta (IKKbeta(SSEE)) but not wild-type IKKbeta into monocytes stimulates differentiation of bona fide osteoclasts in the absence of RANK ligand (RANKL). This phenomenon is independent of upstream signals because IKKbeta(SSEE) induced the development of bone-resorbing osteoclasts from RANK and IKKalpha knockout monocytes and in conditions in which NEMO-IKKbeta association was inhibited. NF-kappaB p100 and p105, but not RelB, were critical mediators of this effect. Inflammatory autocrine signaling by tumor necrosis factor alpha (TNF-alpha) and interleukin 1 (IL-1) were dispensable for the spontaneous osteoclastogenesis driven by IKKbeta(SSEE). More important, adenoviral gene transfer of IKKbeta(SSEE) induced osteoclasts and osteolysis in calvariae and knees of mice. Our data establish the sufficiency of IKKbeta activation for osteolysis and suggest that IKKbeta hyperactivation may play a role in conditions of pathologic bone destruction refractory to RANK/RANKL proximal therapeutic interventions.
Collapse
Affiliation(s)
- Jesse E Otero
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Nuclear factor kappaB (NF-kappaB) is a set of multifunctional transcription factors that regulate expression of genes involved in numerous normal cellular activities. They also are activated in many inflammatory and neoplastic conditions in which their expression may be stimulated by proinflammatory cytokines. NF-kappaB, in turn, regulates the expression of cytokines and so can mediate autocrine self-amplifying cycles of cytokine release and NF-kappaB activation, leading to maintenance of inflammatory reactions beyond the initial stimulus, as seen in rheumatoid arthritis and asthma. Since discovery of the requirement of NF-kappaB for basal and cytokine-induced osteoclast formation in the mid-1990s, much has been learned about the role of NF-kappaB in bone. NF-kappaB has roles in skeletal development, endochondral ossification, osteoclast and osteoblast functions, and common bone diseases. NF-kappaB inhibitors have been developed, but none have made it to clinical trials for the treatment of common bone diseases. Here we review the roles for NF-kappaB in bone and in common bone diseases.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA.
| | | | | |
Collapse
|
34
|
Darwech I, Otero J, Alhawagri M, Dai S, Abu-Amer Y. Impediment of NEMO oligomerization inhibits osteoclastogenesis and osteolysis. J Cell Biochem 2010; 108:1337-45. [PMID: 19830703 DOI: 10.1002/jcb.22364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcription factor NF-kappaB is essential for osteoclastogenesis and is considered an immune-modulator of rheumatoid arthritis and inflammatory osteolysis. Activation of NF-kappaB subunits is regulated by the upstream IkappaB kinase (IKK) complex which contains IKKalpha, IKKbeta, and IKKgamma; the latter also known as NF-kappaB essential modulator (NEMO). The role of IKKalpha and IKKbeta in the skeletal development and inflammatory osteolysis has been described, whereas little is known regarding the role of NEMO in this setting. Typically, signals induced by RANK ligand (RANKL) or TNF prompt oligomerization of NEMO monomers through the coiled-coil-2 (CC2) and leucine zipper (LZ) motifs. This step facilitates binding to IKKs and further relaying signal transduction. Given the central role of NF-kappaB in osteoclastogenesis, we asked whether NEMO is essential for osteoclastogenesis and whether interruption of NEMO oligomerization impedes osteoclast differentiation in vitro and in vivo. Using cell-permeable short peptides overlapping the CC2 and LZ motifs we show that these peptides specifically bind to NEMO monomers, prevent trimer formation, and render NEMO monomers susceptible for ubiquitin-mediated degradation. Further, CC2 and LZ peptides attenuate RANKL- and TNF-induced NF-kappaB signaling in bone marrow-derived osteoclast precursors (OCPs). More importantly, these peptides potently inhibit osteoclastogenesis, in vitro, and arrest RANKL-induced osteolysis, in mice. To further ascertain its role in osteoclastogenesis, we were able to block osteoclastogenesis using NEMO siRNA knockdown approach. Collectively, our data establish that obstruction of NEMO oligomerization destabilizes NEMO monomers, inhibits NF-kappaB activation, impedes osteoclastogenesis and arrests inflammatory osteolysis. Thus, NEMO presents itself as a promising target for anti-osteolytic intervention.
Collapse
Affiliation(s)
- Isra Darwech
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
35
|
Abu-Amer Y. Inflammation, cancer, and bone loss. Curr Opin Pharmacol 2009; 9:427-33. [PMID: 19577517 DOI: 10.1016/j.coph.2009.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 12/25/2022]
Abstract
Skeletal distortions impose grave health disparities with potentially devastating consequences, including bone pain, immobility, and morbidity. Bone erosion is chiefly caused by hyperactive osteoclasts summoned to bone in response to circulating factors produced by tumor and inflammatory cells. Intense research in the past two decades has identified crucial elements and intricate circulatory systems that maintain and exacerbate inflammatory osteolysis. This progress led to better understanding of the mechanisms underlying this response and to developing advanced therapeutic interventions. Nevertheless, the multifactorial causes of inflammatory osteolysis continue to impose a great challenge for these therapies. This article provides an overview of some of the prominent facets contributing to this process.
Collapse
Affiliation(s)
- Yousef Abu-Amer
- Department of Orthopedics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States.
| |
Collapse
|
36
|
Abstract
As the cellular component of articular cartilage, chondrocytes are responsible for maintaining in a low-turnover state the unique composition and organization of the matrix that was determined during embryonic and postnatal development. In joint diseases, cartilage homeostasis is disrupted by mechanisms that are driven by combinations of biological mediators that vary according to the disease process, including contributions from other joint tissues. In osteoarthritis (OA), biomechanical stimuli predominate with up-regulation of both catabolic and anabolic cytokines and recapitulation of developmental phenotypes, whereas in rheumatoid arthritis (RA), inflammation and catabolism drive cartilage loss. In vitro studies in chondrocytes have elucidated signaling pathways and transcription factors that orchestrate specific functions that promote cartilage damage in both OA and RA. Thus, understanding how the adult articular chondrocyte functions within its unique environment will aid in the development of rational strategies to protect cartilage from damage resulting from joint disease. This review will cover current knowledge about the specific cellular and biochemical mechanisms that regulate cartilage homeostasis and pathology.
Collapse
Affiliation(s)
- Mary B Goldring
- Research Division, Hospital for Special Surgery, Affiliated with Weill College of Medicine of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|