1
|
Kim S, Kang SW, Kim SE, Kim HJ, Kim SA, Lee YW, Kim EY, Shin C, Lee HW. Genome-wide identification and functional validation of the WW domain containing oxidoreductase gene associated with sleep duration. Sci Rep 2025; 15:5552. [PMID: 39952983 PMCID: PMC11828923 DOI: 10.1038/s41598-024-81158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/25/2024] [Indexed: 02/17/2025] Open
Abstract
Individual differences in sleep duration have been reported, and genetic components of sleep duration have been identified showing various heritability. To identify genetic variants that contribute to sleep duration, we conducted a human genome-wide identification on sleep duration and performed confirmatory experiments using a Drosophila model. Genome-wide association study in human was analyzed to determine the association of the genetic variants with self-aware sleep duration from two community-based cohort, Ansan (cohort 1, n = 4635) and Ansung (cohort 2, n = 4205), recruited from the Korean Genome and Epidemiology Study. Individual single nucleotide variants (rs16948804 and rs4887991) in the WW domain containing oxidoreductase (WWOX) gene were associated with self-aware sleep duration in human (p-values, 1.11 × 10- 7 and 2.05 × 10- 7, retrospectively). To examine the functional relevance of the WWOX gene identified in the genome-wide association study, we analyzed the sleep duration of Drosophila loss-of-function mutants. The deletion of Wwox in flies reduced sleep duration and quality with average bout length during daytime and increased night-time sleep duration (all of p-values < 0.01). Our findings suggested that WWOX expression is associated with sleep duration in both humans and Drosophila and genetic factors play a role in inter-individual variability in sleep characteristics.
Collapse
Affiliation(s)
- Soriul Kim
- Department of Paramedicine, Seowon University, Cheongju, South Korea
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Song E Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Hyeon Jin Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Department of Neurology, Asan Medical Center, Seoul, South Korea
| | - Sol Ah Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Yae Won Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea.
- Institute of Human Genomic Study, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Hyang Woon Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea.
- Computational Medicine, System Health Science and Engineering, Ewha Womans University, Seoul, South Korea.
- Artificial Intelligence Convergence Graduate Programs, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
2
|
Wani AK, Prakash A, Sena S, Akhtar N, Singh R, Chopra C, Ariyanti EE, Mudiana D, Yulia ND, Rahayu F. Unraveling molecular signatures in rare bone tumors and navigating the cancer pathway landscapes for targeted therapeutics. Crit Rev Oncol Hematol 2024; 196:104291. [PMID: 38346462 DOI: 10.1016/j.critrevonc.2024.104291] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rare cancers (RCs), which account for over 20% of cancer cases, face significant research and treatment challenges due to their limited prevalence. This results in suboptimal outcomes compared to more common malignancies. Rare bone tumors (RBTs) constitute 5-10% of rare cancer cases and pose unique diagnostic complexities. The therapeutic potential of anti-cancer drugs for RBTs remains largely unexplored. Identifying molecular alterations in cancer-related genes and their associated pathways is essential for precision medicine in RBTs. Small molecule inhibitors and monoclonal antibodies targeting specific RBT-associated proteins show promise. Ongoing clinical trials aim to define RBT biomarkers, subtypes, and optimal treatment contexts, including combination therapies and immunotherapeutic agents. This review addresses the challenges in diagnosing, treating, and studying RBTs, shedding light on the current state of RBT biomarkers, potential therapeutic targets, and promising inhibitors. Rare cancers demand attention and innovative solutions to improve clinical outcomes.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Esti Endah Ariyanti
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Deden Mudiana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nina Dwi Yulia
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| |
Collapse
|
3
|
Battaglia L, Scorrano G, Spiaggia R, Basile A, Palmucci S, Foti PV, Spatola C, Iacomino M, Marinangeli F, Francia E, Comisi F, Corsello A, Salpietro V, Vittori A, David E. Neuroimaging features of WOREE syndrome: a mini-review of the literature. Front Pediatr 2023; 11:1301166. [PMID: 38161429 PMCID: PMC10757851 DOI: 10.3389/fped.2023.1301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L’aquila, L’aquila, Italy
| | - Elisa Francia
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
4
|
Cheng HC, Huang PH, Lai FJ, Jan MS, Chen YL, Chen SY, Chen WL, Hsu CK, Huang W, Hsu LJ. Loss of fragile WWOX gene leads to senescence escape and genome instability. Cell Mol Life Sci 2023; 80:338. [PMID: 37897534 PMCID: PMC10613160 DOI: 10.1007/s00018-023-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Abstract
Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, 71004, Taiwan.
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan.
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
Brand CM, Colbran LL, Capra JA. Resurrecting the alternative splicing landscape of archaic hominins using machine learning. Nat Ecol Evol 2023; 7:939-953. [PMID: 37142741 PMCID: PMC11440953 DOI: 10.1038/s41559-023-02053-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Alternative splicing contributes to adaptation and divergence in many species. However, it has not been possible to directly compare splicing between modern and archaic hominins. Here, we unmask the recent evolution of this previously unobservable regulatory mechanism by applying SpliceAI, a machine-learning algorithm that identifies splice-altering variants (SAVs), to high-coverage genomes from three Neanderthals and a Denisovan. We discover 5,950 putative archaic SAVs, of which 2,186 are archaic-specific and 3,607 also occur in modern humans via introgression (244) or shared ancestry (3,520). Archaic-specific SAVs are enriched in genes that contribute to traits potentially relevant to hominin phenotypic divergence, such as the epidermis, respiration and spinal rigidity. Compared to shared SAVs, archaic-specific SAVs occur in sites under weaker selection and are more common in genes with tissue-specific expression. Further underscoring the importance of negative selection on SAVs, Neanderthal lineages with low effective population sizes are enriched for SAVs compared to Denisovan and shared SAVs. Finally, we find that nearly all introgressed SAVs in humans were shared across the three Neanderthals, suggesting that older SAVs were more tolerated in human genomes. Our results reveal the splicing landscape of archaic hominins and identify potential contributions of splicing to phenotypic differences among hominins.
Collapse
Affiliation(s)
- Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Kałuzińska-Kołat Ż, Kośla K, Kołat D, Płuciennik E, Bednarek AK. Antineoplastic Nature of WWOX in Glioblastoma Is Mainly a Consequence of Reduced Cell Viability and Invasion. BIOLOGY 2023; 12:465. [PMID: 36979157 PMCID: PMC10045224 DOI: 10.3390/biology12030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Following the discovery of WWOX, research has moved in many directions, including the role of this putative tumor suppressor in the central nervous system and related diseases. The task of determining the nature of WWOX in glioblastoma (GBM) is still considered to be at the initial stage; however, the influence of this gene on the GBM malignant phenotype has already been reported. Because most of the available in vitro research does not consider several cellular GBM models or a wide range of investigated biological assays, the present study aimed to determine the main processes by which WWOX exhibits anticancer properties in GBM, while taking into account the phenotypic heterogeneity between cell lines. Ectopic WWOX overexpression was studied in T98G, DBTRG-05MG, U251MG, and U87MG cell lines that were compared with the use of assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, three-dimensional and anchorage-independent growth, and invasiveness. Observations presenting the antineoplastic properties of WWOX were consistent for T98G, U251MG, and U87MG. Increased proliferation and tumor growth were noted in WWOX-overexpressing DBTRG-05MG cells. A possible explanation for this, arrived at via bioinformatics tools, was linked to the TARDBP transcription factor and expression differences of USP25 and CPNE2 that regulate EGFR surface abundance. Collectively, and despite various cell line-specific circumstances, WWOX exhibits its anticancer nature mainly via a reduction of cell viability and invasiveness of glioblastoma.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| |
Collapse
|
7
|
Zani ALS, Gouveia MH, Aquino MM, Quevedo R, Menezes RL, Rotimi C, Lwande GO, Ouma C, Mekonnen E, Fagundes NJR. Genetic differentiation in East African ethnicities and its relationship with endurance running success. PLoS One 2022; 17:e0265625. [PMID: 35588128 PMCID: PMC9119534 DOI: 10.1371/journal.pone.0265625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Since the 1960s, East African athletes, mainly from Kenya and Ethiopia, have dominated long-distance running events in both the male and female categories. Further demographic studies have shown that two ethnic groups are overrepresented among elite endurance runners in each of these countries: the Kalenjin, from Kenya, and the Oromo, from Ethiopia, raising the possibility that this dominance results from genetic or/and cultural factors. However, looking at the life history of these athletes or at loci previously associated with endurance athletic performance, no compelling explanation has emerged. Here, we used a population approach to identify peaks of genetic differentiation for these two ethnicities and compared the list of genes close to these regions with a list, manually curated by us, of genes that have been associated with traits possibly relevant to endurance running in GWAS studies, and found a significant enrichment in both populations (Kalenjin, P = 0.048, and Oromo, P = 1.6x10-5). Those traits are mainly related to anthropometry, circulatory and respiratory systems, energy metabolism, and calcium homeostasis. Our results reinforce the notion that endurance running is a systemic activity with a complex genetic architecture, and indicate new candidate genes for future studies. Finally, we argue that a deterministic relationship between genetics and sports must be avoided, as it is both scientifically incorrect and prone to reinforcing population (racial) stereotyping.
Collapse
Affiliation(s)
- André L. S. Zani
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marla M. Aquino
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Quevedo
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo L. Menezes
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerald O. Lwande
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nelson J. R. Fagundes
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Postgraduate Program in Animal Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
8
|
The WWOX/HIF1A Axis Downregulation Alters Glucose Metabolism and Predispose to Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063326. [PMID: 35328751 PMCID: PMC8955937 DOI: 10.3390/ijms23063326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.
Collapse
|
9
|
Pospiech K, Orzechowska M, Nowakowska M, Anusewicz D, Płuciennik E, Kośla K, Bednarek AK. TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet 2022; 63:339-359. [PMID: 35290621 PMCID: PMC8979909 DOI: 10.1007/s13353-022-00690-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
WWOX is a tumor-suppressive steroid dehydrogenase, which relationship with hormone receptors was shown both in animal models and breast cancer patients. Herein, through nAnT-iCAGE high-throughput gene expression profiling, we studied the interplay of estrogen receptors and the WWOX in breast cancer cell lines (MCF7, T47D, MDA-MB-231, BT20) under estrogen stimulation and either introduction of the WWOX gene by retroviral transfection (MDA-MB-231, T47D) or silenced with shRNA (MCF7, BT20). Additionally, we evaluated the consequent biological characteristics by proliferation, apoptosis, invasion, and adhesion assays. TGFα-EGFR signaling was found to be significantly affected in all examined breast cancer cell lines in response to estrogen and strongly associated with the level of WWOX expression, especially in ER-positive MCF7 cells. Under the influence of 17β-estradiol presence, biological characteristics of the cell lines were also delineated. The study revealed modulation of adhesion, invasion, and apoptosis. The obtained results point at a complex role of the WWOX gene in the carcinogenesis of the breast tissue, which seems to be closely related to the presence of estrogen α and/or β receptors.
Collapse
Affiliation(s)
- Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
10
|
Baryła I, Kośla K, Bednarek AK. WWOX and metabolic regulation in normal and pathological conditions. J Mol Med (Berl) 2022; 100:1691-1702. [PMID: 36271927 PMCID: PMC9691486 DOI: 10.1007/s00109-022-02265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
WW domain-containing oxidoreductase (WWOX) spans the common fragile site FRA16D. There is evidence that translocations and deletions affecting WWOX accompanied by loss of expression are frequent in many cancers and often correlate with a worse prognosis. Additionally, WWOX germline mutations were also found to be the cause of pathologies of brain development. Because WWOX binds to some transcription factors, it is a modulator of many cellular processes, including metabolic processes. Recently, studies have linked WWOX to familial dyslipidemias, osteopenia, metabolic syndrome, and gestational diabetes, confirming its role as a regulator of steroid, cholesterol, glucose, and normal bone metabolism. The WW domain of WWOX is directly engaged in the control of the activity of transcription factors such as HIF1α and RUNX2; therefore, WWOX gene alterations are associated with some metabolic abnormalities. Presently, most interest is devoted to the associations between WWOX and glucose and basic energy metabolism disturbances. In particular, its involvement in the initiation of the Warburg effect in cancer or gestational diabetes and type II diabetes is of interest. This review is aimed at systematically and comprehensively presenting the current state of knowledge about the participation of WWOX in the metabolism of healthy and diseased organisms.
Collapse
Affiliation(s)
- Izabela Baryła
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K. Bednarek
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Repudi S, Kustanovich I, Abu‐Swai S, Stern S, Aqeilan RI. Neonatal neuronal WWOX gene therapy rescues Wwox null phenotypes. EMBO Mol Med 2021; 13:e14599. [PMID: 34747138 PMCID: PMC8649866 DOI: 10.15252/emmm.202114599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is an emerging neural gene-regulating homeostasis of the central nervous system. Germline biallelic mutations in WWOX cause WWOX-related epileptic encephalopathy (WOREE) syndrome and spinocerebellar ataxia and autosomal recessive 12 (SCAR12), two devastating neurodevelopmental disorders with highly heterogenous clinical outcomes, the most common being severe epileptic encephalopathy and profound global developmental delay. We recently demonstrated that neuronal ablation of murine Wwox recapitulates phenotypes of Wwox-null mice leading to intractable epilepsy, hypomyelination, and postnatal lethality. Here, we designed and produced an adeno-associated viral vector (AAV9) harboring murine Wwox or human WWOX cDNA and driven by the human neuronal Synapsin I promoter (AAV-SynI-WWOX). Testing the efficacy of AAV-SynI-WWOX delivery in Wwox-null mice demonstrated that specific neuronal restoration of WWOX expression rescued brain hyperexcitability and seizures, hypoglycemia, myelination deficits, and the premature lethality and behavioral deficits of Wwox-null mice. These findings provide a proof-of-concept for WWOX gene therapy as a promising approach to curing children with WOREE and SCAR12.
Collapse
Affiliation(s)
- Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | | | - Sara Abu‐Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
12
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
13
|
Steinberg DJ, Repudi S, Saleem A, Kustanovich I, Viukov S, Abudiab B, Banne E, Mahajnah M, Hanna JH, Stern S, Carlen PL, Aqeilan RI. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol Med 2021; 13:e13610. [PMID: 34268881 PMCID: PMC8350905 DOI: 10.15252/emmm.202013610] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are a group of disorders associated with intractable seizures, brain development, and functional abnormalities, and in some cases, premature death. Pathogenic human germline biallelic mutations in tumor suppressor WW domain-containing oxidoreductase (WWOX) are associated with a relatively mild autosomal recessive spinocerebellar ataxia-12 (SCAR12) and a more severe early infantile WWOX-related epileptic encephalopathy (WOREE). In this study, we generated an in vitro model for DEEs, using the devastating WOREE syndrome as a prototype, by establishing brain organoids from CRISPR-engineered human ES cells and from patient-derived iPSCs. Using these models, we discovered dramatic cellular and molecular CNS abnormalities, including neural population changes, cortical differentiation malfunctions, and Wnt pathway and DNA damage response impairment. Furthermore, we provide a proof of concept that ectopic WWOX expression could potentially rescue these phenotypes. Our findings underscore the utility of modeling childhood epileptic encephalopathies using brain organoids and their use as a unique platform to test possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Daniel J Steinberg
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Srinivasarao Repudi
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Afifa Saleem
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
| | | | - Sergey Viukov
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Baraa Abudiab
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Ehud Banne
- Genetics InstituteKaplan Medical CenterHebrew University‐Hadassah Medical SchoolRehovotIsrael
- The Rina Mor Genetic InstituteWolfson Medical CenterHolonIsrael
| | - Muhammad Mahajnah
- Paediatric Neurology and Child Developmental CenterHillel Yaffe Medical CenterHaderaIsrael
- Rappaport Faculty of MedicineThe TechnionHaifaIsrael
| | - Jacob H Hanna
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Peter L Carlen
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
- Departments of Medicine and PhysiologyUniversity of TorontoTorontoONCanada
| | - Rami I Aqeilan
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
14
|
Chu X, Liu L, Ye J, Wen Y, Li P, Cheng B, Cheng S, Zhang L, Qi X, Ma M, Liang C, Kafle OP, Wu C, Wang S, Wang X, Ning Y, Zhang F. Insomnia affects the levels of plasma bilirubin and protein metabolism: an observational study and GWGEIS in UK Biobank cohort. Sleep Med 2021; 85:184-190. [PMID: 34343768 DOI: 10.1016/j.sleep.2021.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
STUDY OBJECTIVES We aim to explore the mechanism of relationship between insomnia and liver metabolism by examining the gene × insomnia interactions. METHODS Individual level genotypic and phenotypic data were obtained from the UK Biobank cohort. Regression analysis was first conducted to test the association of insomnia with plasma total bilirubin (TBil; n = 186,793), direct bilirubin (DBil; n = 159,854) and total protein (TP; n = 171,574) in UK Biobank cohort. Second, genome-wide gene-environment interaction study (GWGEIS) was conducted by PLINK 2.0, and FUMA platform was used to identify enriched pathway terms. RESULTS In UK Biobank cohort, we found that TP (P < 2.00 × 10-16), DBil (P = 1.72 × 10-3) and TBil (P = 3.38 × 10-5) were significantly associated with insomnia. GWGEIS of both DBil and TBil observed significant G × INSOMNIA effects between insomnia and UDP Glucuronosyltransferase Family 1 (rs6431558, P = 6.26 × 10-11) gene. GWGEIS of TP also detected several significant genes interacting with insomnia, such as KLF15, (rs70940816, P = 6.77 × 10-10) and DOK7, (rs2344205, P = 1.37 × 10-9). Multiple gene ontology (GO) terms were identified for bilirubin, such as GO_URONIC_ACID_METABOLIC_PROCESS (adjusted P = 4.15 × 10-26). CONCLUSION Our study results suggested negative associations between insomnia and DBil and TBil; and a positive association between insomnia and TP.
Collapse
Affiliation(s)
- Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
15
|
Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021; 10:cells10051051. [PMID: 33946771 PMCID: PMC8145924 DOI: 10.3390/cells10051051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The WW domain-containing oxidoreductase gene (WWOX) was cloned 21 years ago as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. The localization of WWOX in a chromosomal region frequently altered in human cancers has initiated multiple current studies to establish its role in this disease. All of this work suggests that WWOX, due to its ability to interact with a large number of partners, exerts its tumor suppressive activity through a wide variety of molecular actions that are mostly cell specific.
Collapse
|
16
|
Repudi S, Steinberg DJ, Elazar N, Breton VL, Aquilino MS, Saleem A, Abu-Swai S, Vainshtein A, Eshed-Eisenbach Y, Vijayaragavan B, Behar O, Hanna JJ, Peles E, Carlen PL, Aqeilan RI. Neuronal deletion of Wwox, associated with WOREE syndrome, causes epilepsy and myelin defects. Brain 2021; 144:3061-3077. [PMID: 33914858 DOI: 10.1093/brain/awab174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
WOREE syndrome caused by human germline biallelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.
Collapse
Affiliation(s)
- Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel J Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nimrod Elazar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vanessa L Breton
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mark S Aquilino
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Afifa Saleem
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bharath Vijayaragavan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Oded Behar
- Department of Developmental Biology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jacob J Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
17
|
Banne E, Abudiab B, Abu-Swai S, Repudi SR, Steinberg DJ, Shatleh D, Alshammery S, Lisowski L, Gold W, Carlen PL, Aqeilan RI. Neurological Disorders Associated with WWOX Germline Mutations-A Comprehensive Overview. Cells 2021; 10:824. [PMID: 33916893 PMCID: PMC8067556 DOI: 10.3390/cells10040824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetic Institute, Kaplan Medical Center, Hebrew University-Hadassah Medical School, Rehovot 76100, Israel;
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon 58100, Israel
| | - Baraa Abudiab
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Srinivasa Rao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Daniel J. Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Diala Shatleh
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sarah Alshammery
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead 2145, NSW, Australia;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Wendy Gold
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead and The Children’s Medical Research Institute, Westmead 2145, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead 2145, NSW, Australia
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network and Department of Medicine, Physiology and BME, University of Toronto, Toronto, ON M5T 1M8, Canada;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| |
Collapse
|
18
|
Kałuzińska Ż, Kołat D, Kośla K, Orzechowska M, Bednarek AK, Płuciennik E. In vitro and in silico assessment of the effect of WWOX expression on invasiveness pathways associated with AP-2 transcription factors in bladder cancer. BMC Urol 2021; 21:36. [PMID: 33691672 PMCID: PMC7944886 DOI: 10.1186/s12894-021-00806-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND WW Domain Containing Oxidoreductase (WWOX) belongs to the unusual tumor suppressors, whose molecular function is not fully understood in bladder cancer, especially regarding interaction with Activator Protein 2 (AP-2) α/γ transcription factors. Thus, using lentiviral systems we created an in vitro model overexpressing or downregulating WWOX in CAL-29 cell line to assess invasiveness pathways. Surprisingly, while WWOX overexpression was accompanied with increased expression of both AP-2 factors, its downregulation only affected AP-2α level but not AP-2γ which remained high. METHODS Using cellular models and unpaired t-test or Wilcoxon test, we investigated significant changes in biological processes: clonogenicity, extracellular matrix adhesion, metalloproteinases activity, 3D culture growth, proliferation, mitochondrial redox potential and invasiveness. Relative gene expression acquired through Real-Time qPCR has been analyzed by Welch's t-test. Additionally, using oncoprint analysis we distinguished groups for bioinformatics analyzes in order to perform a follow-up of in vitro experiments. RESULTS Downregulation of WWOX in bladder cancer cell line intensified ability of single cell to grow into colony, mitochondrial redox potential and proliferation rate. Moreover, these cells shown elevated pro-MMP-2/9 activity but reduced adhesion to collagen I or laminin I, as well as distinct 3D culture growth. Through global in silico profiling we determined that WWOX alters disease-free survival of bladder cancer patients and modulates vital processes through AP-2 downstream effectors. CONCLUSIONS Our research indicates that WWOX possesses tumor suppressor properties in bladder cancer but consecutive examination is required to entirely understand the contribution of AP-2γ or AP-2α.
Collapse
Affiliation(s)
- Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Magdalena Orzechowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
19
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Fragile Gene WWOX Guides TFAP2A/ TFAP2C-Dependent Actions Against Tumor Progression in Grade II Bladder Cancer. Front Oncol 2021; 11:621060. [PMID: 33718178 PMCID: PMC7947623 DOI: 10.3389/fonc.2021.621060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The presence of common fragile sites is associated with no-accidental chromosomal instability which occurs prior to carcinogenesis. The WWOX gene spans the second most active fragile site: FRA16D. Chromosomal breakage at this site is more common in bladder cancer patients who are tobacco smokers which suggests the importance of WWOX gene loss regarding bladder carcinogenesis. Tryptophan domains of WWOX are known to recognize motifs of other proteins such as AP-2α and AP-2γ allowing protein-protein interactions. While the roles of both AP-2 transcription factors are important for bladder carcinogenesis, their nature is different. Based on the literature, AP-2γ appears to be oncogenic, whereas AP-2α mainly exhibits tumor suppressor character. Presumably, the interaction between WWOX and both transcription factors regulates thousands of genes, hence the aim of the present study was to determine WWOX, AP-2α, and AP-2γ function in modulating biological processes of bladder cancer. METHODS RT-112 cell line (grade II bladder cancer) was subjected to two stable lentiviral transductions. Overall, this resulted in six variants to investigate distinct WWOX, AP-2α, or AP-2γ function as well as WWOX in collaboration with a particular transcription factor. Cellular models were examined with immunocytochemical staining and in terms of differences in biological processes using assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, migration, activity of metalloproteinases and 3D culture growth. RESULTS WWOX overexpression increased apoptosis but decreased cell viability, migration and large spatial colonies. AP-2α overexpression decreased tumor cell viability, migratory potential, matrix metalloproteinase-2 activity and clonogenicity. AP-2γ overexpression decreased matrix metalloproteinase-2 activity but increased wound healing, adhesion, clonogenicity and spatial colony formation. WWOX and AP-2α overexpression induced apoptosis but decreased cell viability, adhesion, matrix metalloproteinase-2 activity, overall number of cultured colonies and migration rate. WWOX and AP-2γ overexpression decreased tumor cell viability, proliferation potential, adhesion, clonogenicity and the ability to create spatial structures, but also increased apoptosis or migration rate. CONCLUSION Co-overexpression of WWOX with AP-2α or WWOX with AP-2γ resulted in a net anti-tumor effect. However, considering this research findings and the difference between AP-2α and AP-2γ, we suggest that this similarity is due to a divergent behavior of WWOX.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Łódź, Poland
| | | | | | | |
Collapse
|
20
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
21
|
Baryla I, Pluciennik E, Kośla K, Wojcik M, Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak LA, Bednarek AK. Identification of a novel association for the WWOX/HIF1A axis with gestational diabetes mellitus (GDM). PeerJ 2021; 9:e10604. [PMID: 33520443 PMCID: PMC7811782 DOI: 10.7717/peerj.10604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Although the WW-domain-containing oxidoreductase (WWOX)/Hypoxia-inducible factor 1 (HIF1) pathway is a well-known regulator of cellular glucose and energy metabolism in pathophysiological processes, its role in gestational diabetes mellitus (GDM), remains elusive. We undertook this study to determine the effect of WWOX/HIF1A signaling on the expression of glucose metabolism genes in GDM patients. Methods Leukocytes were obtained from 135 pregnant women with (n = 98) or without (n = 37) GDM and, in turn, 3 months (n = 8) and 1 year (n = 12) postpartum. Quantitative RT-PCR was performed to determine gene expression profiles of the WWOX/HIF1A-related genes, including those involved in glucose transport (SLC2A1, SLC2A4), glycolytic pathway (HK2, PKM2, PFK, LDHA), Wnt pathway (DVL2, CTNNB1), and inflammatory response (NFKB1). Results GDM patients displayed a significant downregulation of WWOX with simultaneous upregulation of HIF1A which resulted in approximately six times reduction in WWOX/HIF1A ratio. As a consequence, HIF1A induced genes (SLC2A1, HK2, PFK, PKM) were found to be overexpressed in GDM compared to normal pregnancy and negative correlate with WWOX/HIF1A ratio. The postpartum WWOX expression was higher than during GDM, but its level was comparable to that observed in normal pregnancy. Conclusions The obtained results suggest a significant contribution of the WWOX gene to glucose metabolism in patients with gestational diabetes. Decreased WWOX expression in GDM compared to normal pregnancy, and in particular reduction of WWOX/HIF1A ratio, indicate that WWOX modulates HIF1α activity in normal tissues as described in the tumor. The effect of HIF1α excessive activation is to increase the expression of genes encoding proteins directly involved in the glycolysis which may lead to pathological changes in glucose metabolism observed in gestational diabetes.
Collapse
Affiliation(s)
- Izabela Baryla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elzbieta Pluciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Zieleniak
- Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Chou YT, Lai FJ, Chang NS, Hsu LJ. Wwox Deficiency Causes Downregulation of Prosurvival ERK Signaling and Abnormal Homeostatic Responses in Mouse Skin. Front Cell Dev Biol 2020; 8:558432. [PMID: 33195192 PMCID: PMC7652735 DOI: 10.3389/fcell.2020.558432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Deficiency of tumor suppressor WW domain-containing oxidoreductase (WWOX) in humans and animals leads to growth retardation and premature death during postnatal developmental stages. Skin integrity is essential for organism survival due to its protection against dehydration and hypothermia. Our previous report demonstrated that human epidermal suprabasal cells express WWOX protein, and the expression is gradually increased toward the superficial differentiated cells prior to cornification. Here, we investigated whether abnormal skin development and homeostasis occur under Wwox deficiency that may correlate with early death. We determined that keratinocyte proliferation and differentiation were decreased, while apoptosis was increased in Wwox–/– mouse epidermis and primary keratinocyte cultures and WWOX-knockdown human HaCaT cells. Without WWOX, progenitor cells in hair follicle junctional zone underwent massive proliferation in early postnatal developmental stages and the stem/progenitor cell pools were depleted at postnatal day 21. These events lead to significantly decreased epidermal thickness, dehydration state, and delayed hair development in Wwox–/– mouse skin, which is associated with downregulation of prosurvival MEK/ERK signaling in Wwox–/– keratinocytes. Moreover, Wwox depletion results in substantial downregulation of dermal collagen contents in mice. Notably, Wwox–/– mice exhibit severe loss of subcutaneous adipose tissue and significant hypothermia. Collectively, our knockout mouse model supports the validity of WWOX in assisting epidermal and adipose homeostasis, and the involvement of prosurvival ERK pathway in the homeostatic responses regulated by WWOX.
Collapse
Affiliation(s)
- Ying-Tsen Chou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chimei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Abstract
Cancer is a genetic disease that involves the gradual accumulation of mutations. Human tumours are genetically unstable. However, the current knowledge about the origins and implications of genomic instability in this disease is limited. Understanding the biology of cancer requires the use of animal models. Here, we review relevant studies addressing the implications of genomic instability in cancer by using the fruit fly, Drosophila melanogaster, as a model system. We discuss how this invertebrate has helped us to expand the current knowledge about the mechanisms involved in genomic instability and how this hallmark of cancer influences disease progression.
Collapse
Affiliation(s)
- Stephan U Gerlach
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Abstract
Shortly after its discovery in 2000, WWOX was hailed as a tumor suppressor gene. In subsequent years of research, this function was confirmed indisputably. Majority of tumors show high rate of loss of heterozygosity and decreased expression of WWOX. Nevertheless, over the years, the range of its known functions, at the cellular, organ and system levels, has expanded to include metabolism and endocrine system control and CNS differentiation and functioning. Despite of its function as a tumor suppressor gene, WWOX genetic alternations were found in a number of metabolic and neural diseases. A lack of WWOX protein as a consequence of germline mutations results in brain development disturbances and malfunctions.
Collapse
Affiliation(s)
- K Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| | - Ż Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| | - A K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| |
Collapse
|
25
|
Cheng YY, Chou YT, Lai FJ, Jan MS, Chang TH, Jou IM, Chen PS, Lo JY, Huang SS, Chang NS, Liou YT, Hsu PC, Cheng HC, Lin YS, Hsu LJ. Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3β-mediated epileptic seizure activity in mice. Acta Neuropathol Commun 2020; 8:6. [PMID: 32000863 PMCID: PMC6990504 DOI: 10.1186/s40478-020-0883-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
Human WWOX gene resides in the chromosomal common fragile site FRA16D and encodes a tumor suppressor WW domain-containing oxidoreductase. Loss-of-function mutations in both alleles of WWOX gene lead to autosomal recessive abnormalities in pediatric patients from consanguineous families, including microcephaly, cerebellar ataxia with epilepsy, mental retardation, retinal degeneration, developmental delay and early death. Here, we report that targeted disruption of Wwox gene in mice causes neurodevelopmental disorders, encompassing abnormal neuronal differentiation and migration in the brain. Cerebral malformations, such as microcephaly and incomplete separation of the hemispheres by a partial interhemispheric fissure, neuronal disorganization and heterotopia, and defective cerebellar midline fusion are observed in Wwox−/− mice. Degenerative alterations including severe hypomyelination in the central nervous system, optic nerve atrophy, Purkinje cell loss and granular cell apoptosis in the cerebellum, and peripheral nerve demyelination due to Schwann cell apoptosis correspond to reduced amplitudes and a latency prolongation of transcranial motor evoked potentials, motor deficits and gait ataxia in Wwox−/− mice. Wwox gene ablation leads to the occurrence of spontaneous epilepsy and increased susceptibility to pilocarpine- and pentylenetetrazol (PTZ)-induced seizures in preweaning mice. We determined that a significantly increased activation of glycogen synthase kinase 3β (GSK3β) occurs in Wwox−/− mouse cerebral cortex, hippocampus and cerebellum. Inhibition of GSK3β by lithium ion significantly abolishes the onset of PTZ-induced seizure in Wwox−/− mice. Together, our findings reveal that the neurodevelopmental and neurodegenerative deficits in Wwox knockout mice strikingly recapitulate the key features of human neuropathies, and that targeting GSK3β with lithium ion ameliorates epilepsy.
Collapse
|
26
|
Abdeen SK, Aqeilan RI. Decoding the link between WWOX and p53 in aggressive breast cancer. Cell Cycle 2019; 18:1177-1186. [PMID: 31075076 PMCID: PMC6592247 DOI: 10.1080/15384101.2019.1616998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022] Open
Abstract
Basal-like breast cancer (BLBC) and triple-negative breast cancer (TNBC) are aggressive forms of human breast cancer with poor prognosis and limited treatment response. Molecular understanding of BLBC and TNBC biology is instrumental to improve detection and management of these deadly diseases. Tumor suppressors WW domain-containing oxidoreductase (WWOX) and TP53 are altered in BLBC and in TNBC. Nevertheless, the functional interplay between WWOX and p53 is poorly understood. In a recent study by Abdeen and colleagues, it has been demonstrated that WWOX loss drives BLBC formation via deregulating p53 functions. In this review, we highlight important signaling pathways regulated by WWOX and p53 that are related to estrogen receptor signaling, epithelial-to-mesenchymal transition, and genomic instability and how they impact BLBC and TNBC development.
Collapse
Affiliation(s)
- Suhaib K. Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Abu-Remaileh M, Abu-Remaileh M, Akkawi R, Knani I, Udi S, Pacold ME, Tam J, Aqeilan RI. WWOX somatic ablation in skeletal muscles alters glucose metabolism. Mol Metab 2019; 22:132-140. [PMID: 30755385 PMCID: PMC6437662 DOI: 10.1016/j.molmet.2019.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE WWOX, a well-established tumor suppressor, is frequently lost in cancer and plays important roles in DNA damage response and cellular metabolism. METHODS We re-analyzed several genome-wide association studies (GWAS) using the Type 2 Diabetes Knowledge Portal website to uncover WWOX's association with metabolic syndrome (MetS). Using several engineered mouse models, we studied the effect of somatic WWOX loss on glucose homeostasis. RESULTS Several WWOX variants were found to be strongly associated with MetS disorders. In mouse models, somatic ablation of Wwox in skeletal muscle (WwoxΔSKM) results in weight gain, glucose intolerance, and insulin resistance. Furthermore, WwoxΔSKM mice display reduced amounts of slow-twitch fibers, decreased mitochondrial quantity and activity, and lower glucose oxidation levels. Mechanistically, we found that WWOX physically interacts with the cellular energy sensor AMP-activated protein kinase (AMPK) and that its loss is associated with impaired activation of AMPK, and with significant accumulation of the hypoxia inducible factor 1 alpha (HIF1α) in SKM. CONCLUSIONS Our studies uncover an unforeseen role of the tumor suppressor WWOX in whole-body glucose homeostasis and highlight the intimate relationship between cancer progression and metabolic disorders, particularly obesity and type-2 diabetes. SUBJECT AREAS Genetics, Metabolic Syndrome, Diabetes.
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Rania Akkawi
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ibrahim Knani
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Micheal E Pacold
- Department of Radiation Oncology, New York University Langone Medical Center, 522 First Avenue, Smilow 907, New York, NY, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel; Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
Teslovich TM, Kim DS, Yin X, Stancáková A, Jackson AU, Wielscher M, Naj A, Perry JRB, Huyghe JR, Stringham HM, Davis JP, Raulerson CK, Welch RP, Fuchsberger C, Locke AE, Sim X, Chines PS, Narisu N, Kangas AJ, Soininen P, Ala-Korpela M, Gudnason V, Musani SK, Jarvelin MR, Schellenberg GD, Speliotes EK, Kuusisto J, Collins FS, Boehnke M, Laakso M, Mohlke KL. Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Hum Mol Genet 2019; 27:1664-1674. [PMID: 29481666 DOI: 10.1093/hmg/ddy067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.
Collapse
Affiliation(s)
- Tanya M Teslovich
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Seung Kim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alena Stancáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Adam Naj
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania, PA 19104, USA.,Departments of Biostatistics, and Epidemiology (DBE) and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, PA 19104, USA
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jeroen R Huyghe
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - James P Davis
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea K Raulerson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ryan P Welch
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter S Chines
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narisu Narisu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, School of Public Health and Preventive Medicine, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Vilmundur Gudnason
- Icelandic Heart Association and the Faculty of Medicine, University of Iceland, Kopavogur, Iceland
| | - Solomon K Musani
- University of Mississippi Medical Center, Jackson, MS 39213, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland.,Biocenter Oulu, University of Oulu, 90014 Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania, PA 19104, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Hussain T, Lee J, Abba MC, Chen J, Aldaz CM. Delineating WWOX Protein Interactome by Tandem Affinity Purification-Mass Spectrometry: Identification of Top Interactors and Key Metabolic Pathways Involved. Front Oncol 2018; 8:591. [PMID: 30619736 PMCID: PMC6300487 DOI: 10.3389/fonc.2018.00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
It has become clear from multiple studies that WWOX (WW domain-containing oxidoreductase) operates as a "non-classical" tumor suppressor of significant relevance in cancer progression. Additionally, WWOX has been recognized for its role in a much wider array of human pathologies including metabolic conditions and central nervous system related syndromes. A myriad of putative functional roles has been attributed to WWOX mostly through the identification of various binding proteins. However, the reality is that much remains to be learned on the key relevant functions of WWOX in the normal cell. Here we employed a Tandem Affinity Purification-Mass Spectrometry (TAP-MS) approach in order to better define direct WWOX protein interactors and by extension interaction with multiprotein complexes under physiological conditions on a proteomic scale. This work led to the identification of both well-known, but more importantly novel high confidence WWOX interactors, suggesting the involvement of WWOX in specific biological and molecular processes while delineating a comprehensive portrait of WWOX protein interactome. Of particular relevance is WWOX interaction with key proteins from the endoplasmic reticulum (ER), Golgi, late endosomes, protein transport, and lysosomes networks such as SEC23IP, SCAMP3, and VOPP1. These binding partners harbor specific PPXY motifs which directly interact with the amino-terminal WW1 domain of WWOX. Pathway analysis of WWOX interactors identified a significant enrichment of metabolic pathways associated with proteins, carbohydrates, and lipids breakdown. Thus, suggesting that WWOX likely plays relevant roles in glycolysis, fatty acid degradation and other pathways that converge primarily in Acetyl-CoA generation, a fundamental molecule not only as the entry point to the tricarboxylic acid (TCA) cycle for energy production, but also as the key building block for de novo synthesis of lipids and amino acids. Our results provide a significant lead on subsets of protein partners and enzymatic complexes with which full-length WWOX protein interacts with in order to carry out its metabolic and other biological functions while also becoming a valuable resource for further mechanistic studies.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata, Argentina
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
30
|
Tanna M, Aqeilan RI. Modeling WWOX Loss of Function in vivo: What Have We Learned? Front Oncol 2018; 8:420. [PMID: 30370248 PMCID: PMC6194312 DOI: 10.3389/fonc.2018.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The WW domain–containing oxidoreductase (WWOX) gene encompasses a common fragile sites (CFS) known as FRA16D, and is implicated in cancer. WWOX encodes a 46kDa adaptor protein, which contains two N-terminal WW–domains and a catalytic domain at its C–terminus homologous to short–chain dehydrogenase/reductase (SDR) family proteins. A high sequence conservation of WWOX orthologues from insects to rodents and ultimately humans suggest its significant role in physiology and homeostasis. Indeed, data obtained from several animal models including flies, fish, and rodents demonstrate WWOX in vivo requirement and that its deregulation results in severe pathological consequences including growth retardation, post–natal lethality, neuropathy, metabolic disorders, and tumorigenesis. Altogether, these findings set WWOX as an essential protein that is necessary to maintain normal cellular/physiological homeostasis. Here, we review and discuss lessons and outcomes learned from modeling loss of WWOX expression in vivo.
Collapse
Affiliation(s)
- Mayur Tanna
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I Aqeilan
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cancer Biology & Genetics, Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
31
|
Abstract
Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene’s expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Department of Biochemistry, College of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Ju-Won Jang
- Department of Biochemistry, College of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
32
|
Pospiech K, Płuciennik E, Bednarek AK. WWOX Tumor Suppressor Gene in Breast Cancer, a Historical Perspective and Future Directions. Front Oncol 2018; 8:345. [PMID: 30211123 PMCID: PMC6121138 DOI: 10.3389/fonc.2018.00345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
The WWOX tumor suppressor gene is located at 16q23. 1–23.2, which covers the region of FRA16D—a common fragile sites. Deletions within the WWOX coding sequence are observed in up to 80% of breast cancer cases, which makes it one of the most common genetic alterations in this tumor type. The WWOX gene is known to play a role in breast cancer: increased expression of WWOX inhibits cell proliferation in suspension, reduces tumor growth rates in xenographic transplants, but also enhances cell migration through the basal membrane and contributes to morphological changes in 3D matrix-based cell cultures. The WWOX protein may act in several ways, as it has three functional domains—two WW domains, responsible for protein-protein interactions and an SDR domain (short dehydrogenase/reductase domain) which catalyzes conversions of low molecular weight ligands, most likely steroids. In epithelial cells, WWOX modulates gene transcription through interaction with p73, AP-2γ, and ERBB4 proteins. In steroid hormone-regulated tissues like mammary gland epithelium, the WWOX SDR domain acts as a steroid dehydrogenase. The relationship between WWOX and hormone receptors was shown in an animal model, where WWOX(C3H)+/–mice exhibited loss of both ER and PR receptors. Moreover, in breast cancer specimens, a positive correlation was observed between WWOX expression and ER status. On the other hand, decreased WWOX expression was associated with worse prognosis, namely higher relapse and mortality rates in BC patients. Recently, it was shown that genomic instability might be driven by the loss of WWOX expression. It was reported that WWOX plays role in DNA damage response (DDR) and DNA repair by regulating ATM activation through physical interaction. A genome caretaker function has also been proposed for WWOX, as it was found that WWOX sufficiency decreases homology directed repair (HDR) and supports non-homologous end-joining (NHEJ) repair as the dominant DSB repair pathway by Brca1-Wwox interaction. In breast cancer cells, WWOX was also found to modulate the expression of glycolysis pathway genes, through hypoxia-inducible transcription factor 1α (HIF1α) regulation. The paper presents the current state of knowledge regarding the WWOX tumor suppressor gene in breast cancer, as well as future research perspectives.
Collapse
Affiliation(s)
- Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elzbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Abu-Remaileh M, Khalaileh A, Pikarsky E, Aqeilan RI. WWOX controls hepatic HIF1α to suppress hepatocyte proliferation and neoplasia. Cell Death Dis 2018; 9:511. [PMID: 29724996 PMCID: PMC5938702 DOI: 10.1038/s41419-018-0510-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
Liver cancer is one of the most lethal malignancies with very poor prognosis once diagnosed. The most common form of liver cancer is hepatocellular carcinoma (HCC). The WW domain-containing oxidoreductase (WWOX) is a large gene that is often perturbed in a wide variety of tumors, including HCC. WWOX has been shown to act as a tumor suppressor modulating cellular metabolism via regulating hypoxia-inducible factor 1α (HIF-1α) levels and function. Given that WWOX is commonly inactivated in HCC, we set to determine whether specific targeted deletion of murine Wwox affects liver biology and HCC development. WWOX liver-specific knockout mice (Wwox ΔHep ) showed more potent liver regeneration potential and enhanced proliferation as compared with their control littermates. Moreover, WWOX deficiency in hepatocytes combined with diethylnitrosamine treatment increased the tumor burden, which was associated with increased HIF1α levels and target gene transactivation. Inhibition of HIF1α by systemic treatment with digoxin significantly delayed HCC formation. Our work suggests that WWOX inactivation has a central role in promoting HCC through rewiring of cellular metabolism and modulating proliferation.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Diet, High-Fat/adverse effects
- Diethylnitrosamine/pharmacology
- Digoxin/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prognosis
- Signal Transduction
- Tumor Burden/drug effects
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- WW Domain-Containing Oxidoreductase/deficiency
- WW Domain-Containing Oxidoreductase/genetics
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Khalaileh
- Department of Surgery, Hebrew University-Hadassah Medical, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
34
|
Zhu X, Stephens M. BAYESIAN LARGE-SCALE MULTIPLE REGRESSION WITH SUMMARY STATISTICS FROM GENOME-WIDE ASSOCIATION STUDIES. Ann Appl Stat 2017; 11:1561-1592. [PMID: 29399241 PMCID: PMC5796536 DOI: 10.1214/17-aoas1046] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a "Regression with Summary Statistics" (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss.
Collapse
|
35
|
Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, Paige AJ, Gabra H. WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response. Cell Death Dis 2017; 8:e2955. [PMID: 28749468 PMCID: PMC5550887 DOI: 10.1038/cddis.2017.346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022]
Abstract
There are clear gaps in our understanding of genes and pathways through which cancer cells facilitate survival strategies as they become chemoresistant. Paclitaxel is used in the treatment of many cancers, but development of drug resistance is common. Along with being an antimitotic agent paclitaxel also activates endoplasmic reticulum (ER) stress. Here, we examine the role of WWOX (WW domain containing oxidoreductase), a gene frequently lost in several cancers, in mediating paclitaxel response. We examine the ER stress-mediated apoptotic response to paclitaxel in WWOX-transfected epithelial ovarian cancer (EOC) cells and following siRNA knockdown of WWOX. We show that WWOX-induced apoptosis following exposure of EOC cells to paclitaxel is related to ER stress and independent of the antimitotic action of taxanes. The apoptotic response to ER stress induced by WWOX re-expression could be reversed by WWOX siRNA in EOC cells. We report that paclitaxel treatment activates both the IRE-1 and PERK kinases and that the increase in paclitaxel-mediated cell death through WWOX is dependent on active ER stress pathway. Log-rank analysis of overall survival (OS) and progression-free survival (PFS) in two prominent EOC microarray data sets (Tothill and The Cancer Genome Atlas), encompassing ~800 patients in total, confirmed clinical relevance to our findings. High WWOX mRNA expression predicted longer OS and PFS in patients treated with paclitaxel, but not in patients who were treated with only cisplatin. The association of WWOX and survival was dependent on the expression level of glucose-related protein 78 (GRP78), a key ER stress marker in paclitaxel-treated patients. We conclude that WWOX sensitises EOC to paclitaxel via ER stress-induced apoptosis, and predicts clinical outcome in patients. Thus, ER stress response mechanisms could be targeted to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Szymon Janczar
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Yi Xiao
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Edward Curry
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Mingjun Sun
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisa Zanini
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Adam Jw Paige
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Department of Life Sciences, University of Bedfordshire, Luton, UK
| | - Hani Gabra
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Clinical Discovery Unit, Early Clinical Development, AstraZeneca, Cambridge, UK
| |
Collapse
|
36
|
High Coexpression of Runt-related Transcription Factor 2 (RUNX2) and p53 Independently Predicts Early Tumor Recurrence in Bladder Urothelial Carcinoma Patients. Appl Immunohistochem Mol Morphol 2017; 24:345-54. [PMID: 25906126 DOI: 10.1097/pai.0000000000000193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conventional prognostic factors for bladder cancer are inadequate to predict tumor recurrence and/or progression successfully; thus, the identification of adjunctive novel prognostic biomarkers is of paramount importance. In this study, the immunohistochemical expression patterns and clinical significance of RUNX2, WWOX, and p53 were investigated in a tissue microarray of 87 primary urothelial carcinomas and 17 control cases. We found that RUNX2, WWOX, and p53 were significantly correlated and overexpressed in urothelial carcinoma cases compared with the control group. RUNX2 and p53 were significantly upregulated in association with high-grade, nonpapillary pattern, and bilharziasis. Muscle-invasive tumors significantly overexpressed RUNX2. WWOX overexpression was significantly associated with high-grade tumors and inversely correlated with age. In a bivariate analysis, the risk of early tumor recurrence and progression was significantly associated with RUNX2 and p53 overexpression and bilharziasis. A multivariate Cox regression analysis proved that RUNX2 and p53 were independent predictors of early tumor recurrence. The ROC curve analysis showed that combined RUNX2 and p53 high expression (scores >3 and >5, respectively) had the highest accuracy (73.6%) for the prediction of early tumor recurrence. We conclude that RUNX2 and p53 might be functionally related and are likely involved in bladder tumor carcinogenesis and aggressiveness, which provides a new perspective for targeted therapy. RUNX2 and p53 independently predict early tumor recurrence in bladder carcinoma patients, with the highest prediction accuracy being achieved on their combined high expression. The role of WWOX in bladder urothelial carcinoma and its relationship with RUNX2 and p53 remains unclear and warrants further investigation.
Collapse
|
37
|
Functions and Epigenetic Regulation of Wwox in Bone Metastasis from Breast Carcinoma: Comparison with Primary Tumors. Int J Mol Sci 2017; 18:ijms18010075. [PMID: 28045433 PMCID: PMC5297710 DOI: 10.3390/ijms18010075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox). The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1α (subunit of Hypoxia inducible Factor-1, HIF-1) affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1α stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif) and HIF-1α co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1α. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF) phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis.
Collapse
|
38
|
Hazan I, Hofmann TG, Aqeilan RI. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 2016; 12:e1006436. [PMID: 27977694 PMCID: PMC5157955 DOI: 10.1371/journal.pgen.1006436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thomas G. Hofmann
- Cellular Senescence Group, Department of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
39
|
Del Mare S, Husanie H, Iancu O, Abu-Odeh M, Evangelou K, Lovat F, Volinia S, Gordon J, Amir G, Stein J, Stein GS, Croce CM, Gorgoulis V, Lian JB, Aqeilan RI. WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma. Cancer Res 2016; 76:6107-6117. [PMID: 27550453 DOI: 10.1158/0008-5472.can-16-0621] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (WwoxΔosx1) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in WwoxΔosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR.
Collapse
Affiliation(s)
- Sara Del Mare
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Hussam Husanie
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ortal Iancu
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Mohammad Abu-Odeh
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Konstantinos Evangelou
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Francesca Lovat
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Jonathan Gordon
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gail Amir
- Department of Pathology, Hadassah University Hospital, Jerusalem
| | - Janet Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Carlo M Croce
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece. Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jane B Lian
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel. Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, Ohio. Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont.
| |
Collapse
|
40
|
Abu-Remaileh M, Joy-Dodson E, Schueler-Furman O, Aqeilan RI. Pleiotropic Functions of Tumor Suppressor WWOX in Normal and Cancer Cells. J Biol Chem 2015; 290:30728-35. [PMID: 26499798 DOI: 10.1074/jbc.r115.676346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.
Collapse
Affiliation(s)
| | - Emma Joy-Dodson
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Ora Schueler-Furman
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Rami I Aqeilan
- From the Departments of Immunology & Cancer Research and
| |
Collapse
|
41
|
Choo A, O'Keefe LV, Lee CS, Gregory SL, Shaukat Z, Colella A, Lee K, Denton D, Richards RI. Tumor suppressor WWOX moderates the mitochondrial respiratory complex. Genes Chromosomes Cancer 2015; 54:745-61. [PMID: 26390919 DOI: 10.1002/gcc.22286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023] Open
Abstract
Fragile site FRA16D exhibits DNA instability in cancer, resulting in diminished levels of protein from the WWOX gene that spans it. WWOX suppresses tumor growth by an undefined mechanism. WWOX participates in pathways involving aerobic metabolism and reactive oxygen species. WWOX comprises two WW domains as well as a short-chain dehydrogenase/reductase enzyme. Herein is described an in vivo genetic analysis in Drosophila melanogaster to identify functional interactions between WWOX and metabolic pathways. Altered WWOX levels modulate variable cellular outgrowths caused by genetic deficiencies of components of the mitochondrial respiratory complexes. This modulation requires the enzyme active site of WWOX, and the defective respiratory complex-induced cellular outgrowths are mediated by reactive oxygen species, dependent upon the Akt pathway and sensitive to levels of autophagy and hypoxia-inducible factor. WWOX is known to contribute to homeostasis by regulating the balance between oxidative phosphorylation and glycolysis. Reduction of WWOX levels results in diminished ability to respond to metabolic perturbation of normal cell growth. Thus, the ability of WWOX to facilitate escape from mitochondrial damage-induced glycolysis (Warburg effect) is, therefore, a plausible mechanism for its tumor suppressor activity.
Collapse
Affiliation(s)
- Amanda Choo
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Louise V O'Keefe
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen L Gregory
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zeeshan Shaukat
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Colella
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kristie Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Donna Denton
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert I Richards
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
42
|
Del Mare S, Aqeilan RI. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function. Sci Rep 2015; 5:12959. [PMID: 26256646 PMCID: PMC4542681 DOI: 10.1038/srep12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis bothin vitroandin vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases’ seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease.
Collapse
Affiliation(s)
- Sara Del Mare
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| | - Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| |
Collapse
|
43
|
Abu-Remaileh M, Seewaldt VL, Aqeilan RI. WWOX loss activates aerobic glycolysis. Mol Cell Oncol 2015; 2:e965640. [PMID: 27308416 PMCID: PMC4904998 DOI: 10.4161/23723548.2014.965640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/13/2014] [Accepted: 08/13/2014] [Indexed: 04/29/2023]
Abstract
Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology; Department of Immunology and Cancer Research-IMRIC; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| | - Victoria L Seewaldt
- Department of Medical Oncology; Duke University Medical Center; Durham, NC USA
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology; Department of Immunology and Cancer Research-IMRIC; Hebrew University-Hadassah Medical School; Jerusalem, Israel
- Human Cancer Genetics Program; Ohio State University Comprehensive Cancer Center; Columbus, OH USA
- Correspondence to: Rami I Aqeilan;
| |
Collapse
|
44
|
Li J, Liu J, Ren Y, Liu P. Roles of the WWOX in pathogenesis and endocrine therapy of breast cancer. Exp Biol Med (Maywood) 2015; 240:324-8. [PMID: 25476151 PMCID: PMC4935229 DOI: 10.1177/1535370214561587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Breast cancer is one of the most common malignancies, often with complicated etiology and poor clinical outcome. In recent years, a critical role has emerged for the WW domain-containing oxidoreductase (WWOX) in breast cancer. WWOX is a tumor suppressor; it is deleted or attenuated in 29-63.2% of breast cancer tissues and is associated with a poor prognosis of breast cancer patients. WWOX heterozygous knockout mice show a higher incidence of mammary tumors and impaired branching morphogenesis. At the molecular level, WWOX interacts with AP2γ, ErbB4, SMAD3, and WBP2 suppressing their transcription activities in breast cancer cell lines. This review provides comprehensive insights into the current knowledge of WWOX activities in the pathogenesis and endocrine therapy of breast cancer.
Collapse
Affiliation(s)
- Juan Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | - Yu Ren
- Department of Surgical Oncology, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
45
|
Hazan I, Abu-Odeh M, Hofmann TG, Aqeilan RI. WWOX guards genome stability by activating ATM. Mol Cell Oncol 2015; 2:e1008288. [PMID: 27308504 PMCID: PMC4905350 DOI: 10.1080/23723556.2015.1008288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/25/2022]
Abstract
Common fragile sites (CFSs) tend to break upon replication stress and have been suggested to be “hot spots” for genomic instability. Recent evidence, however, implies that in the wake of DNA damage, WW domain-containing oxidoreductase (WWOX, the gene product of the FRA16D fragile site), associates with ataxia telangiectasia-mutated (ATM) and regulates its activation to maintain genomic integrity.
Collapse
Affiliation(s)
- Idit Hazan
- The Lautenberg Center for General and Tumor Immunology; Department of Immunology and Cancer Research-IMRIC; Hebrew University-Hadassah Medical School ; Jerusalem, Israel
| | - Mohammad Abu-Odeh
- The Lautenberg Center for General and Tumor Immunology; Department of Immunology and Cancer Research-IMRIC; Hebrew University-Hadassah Medical School ; Jerusalem, Israel
| | - Thomas G Hofmann
- German Cancer Research Center (DKFZ); Cellular Senescence Group; DKFZ-ZMBH Alliance ; Heidelberg, Germany
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology; Department of Immunology and Cancer Research-IMRIC; Hebrew University-Hadassah Medical School ; Jerusalem, Israel
| |
Collapse
|
46
|
Baryła I, Styczeń-Binkowska E, Bednarek AK. Alteration of WWOX in human cancer: a clinical view. Exp Biol Med (Maywood) 2015; 240:305-14. [PMID: 25681467 DOI: 10.1177/1535370214561953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WWOX gene is located in FRA16D, the highly affected chromosomal fragile site. Its tumor suppressor activity has been proposed on a basis of numerous genomic alterations reported in chromosome 16q23.3-24.1 locus. WWOX is affected in many cancers, showing as high as 80% loss of heterozygosity in breast tumors. Unlike most tumor suppressors impairing of both alleles of WWOX is very rare. Despite cellular and animal models information on a WWOX role in cancer tissue is limited and sometimes confusing. This review summarizes information on WWOX in human tumors.
Collapse
Affiliation(s)
- Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
47
|
El-Hage P, Petitalot A, Monsoro-Burq AH, Maczkowiak F, Driouch K, Formstecher E, Camonis J, Sabbah M, Bièche I, Lidereau R, Lallemand F. The Tumor-Suppressor WWOX and HDAC3 Inhibit the Transcriptional Activity of the β-Catenin Coactivator BCL9-2 in Breast Cancer Cells. Mol Cancer Res 2015; 13:902-12. [PMID: 25678599 DOI: 10.1158/1541-7786.mcr-14-0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED The WW domain containing oxidoreductase (WWOX) has recently been shown to inhibit of the Wnt/β-catenin pathway by preventing the nuclear import of disheveled 2 (DVL2) in human breast cancer cells. Here, it is revealed that WWOX also interacts with the BCL9-2, a cofactor of the Wnt/β-catenin pathway, to enhance the activity of the β-catenin-TCF/LEF (T-cell factor/lymphoid enhancer factors family) transcription factor complexes. By using both a luciferase assay in MCF-7 cells and a Xenopus secondary axis induction assay, it was demonstrated that WWOX inhibits the BCL9-2 function in Wnt/β-catenin signaling. WWOX does not affect the BCL9-2-β-catenin association and colocalizes with BCL9-2 and β-catenin in the nucleus of the MCF-7 cells. Moreover, WWOX inhibits the β-catenin-TCF1 interaction. Further examination found that HDAC3 associates with BCL9-2, enhances the inhibitory effect of WWOX on BCL9-2 transcriptional activity, and promotes the WWOX-BCL9-2 interaction, independent of its deacetylase activity. However, WWOX does not influence the HDAC3-BCL9-2 interaction. Altogether, these results strongly indicate that nuclear WWOX interacts with BCL9-2 associated with β-catenin only when BCL9-2 is in complex with HDAC3 and inhibits its transcriptional activity, in part, by inhibiting the β-catenin-TCF1 interaction. The promotion of the WWOX-BCL9-2 interaction by HDAC3, independent of its deacetylase activity, represents a new mechanism by which this HDAC inhibits transcription. IMPLICATIONS The inhibition of the transcriptional activity of BCL9-2 by WWOX and HDAC3 constitutes a new molecular mechanism and provides new insight for a broad range of cancers.
Collapse
Affiliation(s)
- Perla El-Hage
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Ambre Petitalot
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Anne-Hélène Monsoro-Burq
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, Paris, France. Université Paris Sud, Centre Universitaire, Paris, France
| | - Frédérique Maczkowiak
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, Paris, France. Université Paris Sud, Centre Universitaire, Paris, France
| | - Keltouma Driouch
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | | | | | - Michèle Sabbah
- INSERM U938, hôpital Saint-Antoine, Université Pierre et Marie Curie, Paris, France
| | - Ivan Bièche
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Rosette Lidereau
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - François Lallemand
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France.
| |
Collapse
|
48
|
Tsuruwaka Y, Konishi M, Shimada E. Loss of wwox expression in zebrafish embryos causes edema and alters Ca(2+) dynamics. PeerJ 2015; 3:e727. [PMID: 25649963 PMCID: PMC4312067 DOI: 10.7717/peerj.727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of the WW domain-containing oxidoreductase (wwox) gene in the embryonic development of zebrafish, with particular emphasis on intracellular Ca2+ dynamics because Ca2+ is an important intracellular messenger. Comparisons between zebrafish wwox and human WWOX sequences identified highly conserved domain structures. wwox was expressed in developing heart tissues in the zebrafish embryo. Moreover, wwox knockdown induced pericardial edema with similarities to conditions observed in human breast cancer. The wwox knockdown embryos with the edema died within a week. High Ca2+ levels were observed at the boundary between the edema and yolk in wwox knockdown embryos.
Collapse
Affiliation(s)
- Yusuke Tsuruwaka
- Marine Bioresource Exploration Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , Yokosuka , Japan
| | - Masataka Konishi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) , Nomi, Ishikawa , Japan
| | - Eriko Shimada
- Department of Animal Science, University of California , Davis, CA , USA
| |
Collapse
|
49
|
Lo JY, Chou YT, Lai FJ, Hsu LJ. Regulation of cell signaling and apoptosis by tumor suppressor WWOX. Exp Biol Med (Maywood) 2015; 240:383-91. [PMID: 25595191 DOI: 10.1177/1535370214566747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human fragile WWOX gene encodes a tumor suppressor WW domain-containing oxidoreductase (named WWOX, FOR, or WOX1). Functional suppression of WWOX prevents apoptotic cell death induced by a variety of stress stimuli, such as tumor necrosis factor, UV radiation, and chemotherapeutic drug treatment. Loss of WWOX gene expression due to gene deletions, loss of heterozygosity, chromosomal translocations, or epigenetic silencing is frequently observed in human malignant cancer cells. Acquisition of chemoresistance in squamous cell carcinoma, osteosarcoma, and breast cancer cells is associated with WWOX deficiency. WWOX protein physically interacts with many signaling molecules and exerts its regulatory effects on gene transcription and protein stability and subcellular localization to control cell survival, proliferation, differentiation, autophagy, and metabolism. In this review, we provide an overview of the recent advances in understanding the molecular mechanisms by which WWOX regulates cellular functions and stress responses. A potential scenario is that activation of WWOX by anticancer drugs is needed to overcome chemoresistance and trigger cancer cell death, suggesting that WWOX can be regarded as a prognostic marker and a candidate molecule for targeted cancer therapies.
Collapse
Affiliation(s)
- Jui-Yen Lo
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Ying-Tsen Chou
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chimei Medical Center, Tainan 71004, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology Center of Infectious Disease and Signaling Research and Research Center for Medical Laboratory Biotechnology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
50
|
Abstract
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|