1
|
Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Semin Thromb Hemost 2022; 48:277-287. [PMID: 35052009 DOI: 10.1055/s-0041-1741569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitai Weinberg
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
2
|
Kim HN, Triplet EM, Radulovic M, Bouchal S, Kleppe LS, Simon WL, Yoon H, Scarisbrick IA. The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury. Glia 2021; 69:2111-2132. [PMID: 33887067 PMCID: PMC8672305 DOI: 10.1002/glia.24012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Erin M. Triplet
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Samantha Bouchal
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| |
Collapse
|
3
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Shavit-Stein E, Mindel E, Gofrit SG, Chapman J, Maggio N. Ischemic stroke in PAR1 KO mice: Decreased brain plasmin and thrombin activity along with decreased infarct volume. PLoS One 2021; 16:e0248431. [PMID: 33720950 PMCID: PMC7959388 DOI: 10.1371/journal.pone.0248431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Background Ischemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia. Methods A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices. Results Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respectively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05). Conclusions PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- * E-mail:
| | - Ekaterina Mindel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Price R, Mercuri NB, Ledonne A. Emerging Roles of Protease-Activated Receptors (PARs) in the Modulation of Synaptic Transmission and Plasticity. Int J Mol Sci 2021; 22:E869. [PMID: 33467143 PMCID: PMC7830300 DOI: 10.3390/ijms22020869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Protease-activated receptors (PARs) are a class of G protein-coupled receptors (GPCRs) with a unique mechanism of activation, prompted by a proteolytic cleavage in their N-terminal domain that uncovers a tethered ligand, which binds and stimulates the same receptor. PARs subtypes (PAR1-4) have well-documented roles in coagulation, hemostasis, and inflammation, and have been deeply investigated for their function in cellular survival/degeneration, while their roles in the brain in physiological conditions remain less appreciated. Here, we describe PARs' effects in the modulation of neurotransmission and synaptic plasticity. Available evidence, mainly concerning PAR1-mediated and PAR2-mediated regulation of glutamatergic and GABAergic transmission, supports that PARs are important modulators of synaptic efficacy and plasticity in normal conditions.
Collapse
Affiliation(s)
- Rachel Price
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
- Department of Systems Medicine, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
| |
Collapse
|
6
|
Price R, Ferrari E, Gardoni F, Mercuri NB, Ledonne A. Protease-activated receptor 1 (PAR1) inhibits synaptic NMDARs in mouse nigral dopaminergic neurons. Pharmacol Res 2020; 160:105185. [PMID: 32891865 DOI: 10.1016/j.phrs.2020.105185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR), whose activation requires a proteolytic cleavage in the extracellular domain exposing a tethered ligand, which binds to the same receptor thus stimulating Gαq/11-, Gαi/o- and Gα12-13 proteins. PAR1, activated by serine proteases and matrix metalloproteases, plays multifaceted roles in neuroinflammation and neurodegeneration, in stroke, brain trauma, Alzheimer's diseases, and Parkinson's disease (PD). Substantia nigra pars compacta (SNpc) is among areas with highest PAR1 expression, but current evidence on its roles herein is restricted to mechanisms controlling dopaminergic (DAergic) neurons survival, with controversial data showing PAR1 either fostering or counteracting degeneration in PD models. Since PAR1 functions on SNpc DAergic neurons activity are unknown, we investigated if PAR1 affects glutamatergic transmission in this neuronal population. We analyzed PAR1's effects on NMDARs and AMPARs by patch-clamp recordings from DAergic neurons from mouse midbrain slices. Then, we explored subunit composition of PAR1-sensitive NMDARs, with selective antagonists, and mechanisms underlying PAR1-induced NMDARs modulation, by quantifying NMDARs surface expression. PAR1 activation inhibits synaptic NMDARs in SNpc DAergic neurons, without affecting AMPARs. PAR1-sensitive NMDARs contain GluN2B/GluN2D subunits. Moreover, PAR1-mediated NMDARs hypofunction is reliant on NMDARs internalization, as PAR1 stimulation increases NMDARs intracellular levels and pharmacological limitation of NMDARs endocytosis prevents PAR1-induced NMDARs inhibition. We reveal that PAR1 regulates glutamatergic transmission in midbrain DAergic cells. This might have implications in brain's DA-dependent functions and in neurological/psychiatric diseases linked to DAergic dysfunctions.
Collapse
Affiliation(s)
- Rachel Price
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
7
|
Zhao R, Ali G, Nie HG, Chang Y, Bhattarai D, Su X, Zhao X, Matthay MA, Ji HL. Plasmin improves blood-gas barrier function in oedematous lungs by cleaving epithelial sodium channels. Br J Pharmacol 2020; 177:3091-3106. [PMID: 32133621 DOI: 10.1111/bph.15038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Lung oedema in association with suppressed fibrinolysis is a hallmark of lung injury. Here, we have tested whether plasmin cleaves epithelial sodium channels (ENaC) to resolve lung oedema fluid. EXPERIMENTAL APPROACH Human lungs and airway acid-instilled mice were used for analysing fluid resolution. In silico prediction, mutagenesis, Xenopus oocytes, immunoblotting, voltage clamp, mass spectrometry, and protein docking were combined for identifying plasmin cleavage sites. KEY RESULTS Plasmin improved lung fluid resolution in both human lungs ex vivo and injured mice. Plasmin activated αβγENaC channels in oocytes in a time-dependent manner. Deletion of four consensus proteolysis tracts (αΔ432-444, γΔ131-138, γΔ178-193, and γΔ410-422) eliminated plasmin-induced activation significantly. Further, immunoblotting assays identified 7 cleavage sites (K126, R135, K136, R153, K168, R178, K179) for plasmin to trim both furin-cleaved C-terminal fragments and full-length human γENaC proteins. In addition, 9 new sites (R122, R137, R138, K150, K170, R172, R180, K181, K189) in synthesized peptides were found to be cleaved by plasmin. These cleavage sites were located in the finger and the thumb, particularly the GRIP domain of human ENaC 3D model composed of two proteolytic centres for plasmin. Novel uncleaved sites beyond the GRIP domain in both α and γ subunits were identified to interrupt the plasmin cleavage-induced conformational change in ENaC channel complexes. Additionally, plasmin could regulate ENaC activity via the G protein signal. CONCLUSION AND IMPLICATIONS Plasmin can cleave ENaC to improve blood-gas exchange by resolving oedema fluid and could be a potent therapy for oedematous lungs.
Collapse
Affiliation(s)
- Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Gibran Ali
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Hong-Guang Nie
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas.,College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Deepa Bhattarai
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Xuefeng Su
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Michael A Matthay
- Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas.,Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas
| |
Collapse
|
8
|
Brzdak P, Wójcicka O, Zareba-Koziol M, Minge D, Henneberger C, Wlodarczyk J, Mozrzymas JW, Wójtowicz T. Synaptic Potentiation at Basal and Apical Dendrites of Hippocampal Pyramidal Neurons Involves Activation of a Distinct Set of Extracellular and Intracellular Molecular Cues. Cereb Cortex 2020; 29:283-304. [PMID: 29228131 DOI: 10.1093/cercor/bhx324] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
In the central nervous system, several forms of experience-dependent plasticity, learning and memory require the activity-dependent control of synaptic efficacy. Despite substantial progress in describing synaptic plasticity, mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Here we studied the functional and molecular aspects of hippocampal circuit plasticity by analyzing excitatory synapses at basal and apical dendrites of mouse hippocampal pyramidal cells (CA1 region) in acute brain slices. In the past decade, activity of metalloproteinases (MMPs) has been implicated as a widespread and critical factor in plasticity mechanisms at various projections in the CNS. However, in the present study we discovered that in striking contrast to apical dendrites, synapses located within basal dendrites undergo MMP-independent synaptic potentiation. We demonstrate that synapse-specific molecular pathway allowing MMPs to rapidly upregulate function of NMDARs in stratum radiatum involved protease activated receptor 1 and intracellular kinases and GTPases activity. In contrast, MMP-independent scaling of synaptic strength in stratum oriens involved dopamine D1/D5 receptors and Src kinases. Results of this study reveal that 2 neighboring synaptic systems differ significantly in extracellular and intracellular cascades that control synaptic gain and provide long-searched transduction pathways relevant for MMP-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland.,Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Olga Wójcicka
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Zareba-Koziol
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Minge
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, UK
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland.,Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
9
|
Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. J Neural Transm (Vienna) 2019; 126:1259-1271. [DOI: 10.1007/s00702-019-02075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
|
10
|
Diaz A, Jeanneret V, Merino P, McCann P, Yepes M. Tissue-type plasminogen activator regulates p35-mediated Cdk5 activation in the postsynaptic terminal. J Cell Sci 2019; 132:jcs224196. [PMID: 30709918 PMCID: PMC6432712 DOI: 10.1242/jcs.224196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/19/2019] [Indexed: 11/20/2022] Open
Abstract
Neuronal depolarization induces the synaptic release of tissue-type plasminogen activator (tPA). Cyclin-dependent kinase-5 (Cdk5) is a member of the family of cyclin-dependent kinases that regulates cell migration and synaptic function in postmitotic neurons. Cdk5 is activated by its binding to p35 (also known as Cdk5r1), a membrane-anchored protein that is rapidly degraded by the proteasome. Here, we show that tPA prevents the degradation of p35 in the synapse by a plasminogen-dependent mechanism that requires open synaptic N-methyl-D-aspartate (NMDA) receptors. We show that tPA treatment increases the abundance of p35 and its binding to Cdk5 in the postsynaptic density (PSD). Furthermore, our data indicate that tPA-induced p35-mediated Cdk5 activation does not induce cell death, but instead prevents NMDA-induced ubiquitylation of postsynaptic density protein-95 (PSD-95; also known as Dlg4) and the removal of GluR1 (also known as Gria1)-containing α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors from the PSD. These results show that the interaction between tPA and synaptic NMDA receptors regulates the expression of AMPA receptor subunits in the PSD via p35-mediated Cdk5 activation. This is a novel role for tPA as a regulator of Cdk5 activation in cerebral cortical neurons.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Valerie Jeanneret
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Patrick McCann
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
11
|
Zalfa C, Azmoon P, Mantuano E, Gonias SL. Tissue-type plasminogen activator neutralizes LPS but not protease-activated receptor-mediated inflammatory responses to plasmin. J Leukoc Biol 2019; 105:729-740. [PMID: 30690783 DOI: 10.1002/jlb.3a0818-329rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) activates fibrinolysis and also suppresses innate immune system responses to LPS in bone marrow-derived macrophages (BMDMs) and in vivo in mice. The objective of this study was to assess the activity of tPA as a regulator of macrophage physiology in the presence of plasmin. Enzymatically active and enzymatically inactive (EI) tPA appeared to comprehensively block the response to LPS in BMDMs, including expression of proinflammatory cytokines such as TNF-α and IL-1β and anti-inflammatory cytokines such as IL-10 and IL-1 receptor antagonist. The activity of EI-tPA as an LPS response modifier was conserved in the presence of plasminogen. By contrast, in BMDMs treated with tPA and plasminogen or preactivated plasmin, in the presence or absence of LPS, increased proinflammatory cytokine expression was observed and tPA failed to reverse the response. Plasmin independently activated NF-κB, ERK1/2, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase in BMDMs, which is characteristic of proinflammatory stimuli. Plasmin-induced cytokine expression was blocked by ε-aminocaproic acid, aprotinin, and inhibitors of the known plasmin substrate, Protease-activated receptor-1 (PAR-1), but not by N-methyl-d-aspartate receptor inhibitor, which blocks the effects of tPA on macrophages. Cytokine expression by BMDMs treated with the PAR-1 agonist, TFLLR, was not inhibited by EI-tPA, possibly explaining why EI-tPA does not inhibit macrophage responses to plasmin and providing evidence for specificity in the ability of tPA to oppose proinflammatory stimuli. Regulation of innate immunity by the fibrinolysis system may reflect the nature of the stimulus and a balance between the potentially opposing activities of tPA and plasmin.
Collapse
Affiliation(s)
- Cristina Zalfa
- The Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Pardis Azmoon
- The Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Elisabetta Mantuano
- The Department of Pathology, University of California San Diego, La Jolla, California, USA.,The Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Steven L Gonias
- The Department of Pathology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Scimemi A. Astrocytes and the Warning Signs of Intracerebral Hemorrhagic Stroke. Neural Plast 2018; 2018:7301623. [PMID: 29531526 PMCID: PMC5817320 DOI: 10.1155/2018/7301623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Two decades into the two thousands, intracerebral hemorrhagic stroke (ICH) continues to reap lives across the globe. In the US, nearly 12,000 people suffer from ICH every year. Half of them survive, but many are left with permanent physical and cognitive disabilities, the severity of which depends on the location and broadness of the brain region affected by the hemorrhage. The ongoing efforts to identify risk factors for hemorrhagic stroke have been instrumental for the development of new medical practices to prevent, aid the recovery and reduce the risk of recurring ICH. Recent efforts approach the study of ICH from a different angle, providing information on how we can limit brain damage by manipulating astrocyte receptors. These results provide a novel understanding of how astrocytes contribute to brain injury and recovery from small ICH. Here, we discuss current knowledge on the risk factors and molecular pathology of ICH and the functional properties of astrocytes and their role in ICH. Last, we discuss candidate astrocyte receptors that may prove to be valuable therapeutic targets to treat ICH. Together, these findings provide basic and clinical scientists useful information for the future development of strategies to improve the detection of small ICH, limit brain damage, and prevent the onset of more severe episodes of brain hemorrhage.
Collapse
Affiliation(s)
- Annalisa Scimemi
- SUNY Albany, Department of Biology, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
13
|
Hyperfibrinolysis increases blood–brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood 2016; 128:2423-2434. [DOI: 10.1182/blood-2016-03-705384] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/06/2016] [Indexed: 11/20/2022] Open
Abstract
Key Points
Hydrodynamic transfection of plasmids encoding for plasminogen activators leads to a hyperfibrinolytic state in mice. Hyperfibrinolysis increases BBB permeability via a plasmin- and bradykinin-dependent mechanism.
Collapse
|
14
|
Duan ZZ, Zhang F, Li FY, Luan YF, Guo P, Li YH, Liu Y, Qi SH. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH). Sci Rep 2016; 6:29246. [PMID: 27385592 PMCID: PMC4935874 DOI: 10.1038/srep29246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Duan
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Feng Zhang
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Feng-Ying Li
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yi-Fei Luan
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yi-Hang Li
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yong Liu
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Su-Hua Qi
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| |
Collapse
|
15
|
Köles L, Kató E, Hanuska A, Zádori ZS, Al-Khrasani M, Zelles T, Rubini P, Illes P. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal 2015; 12:1-24. [PMID: 26542977 DOI: 10.1007/s11302-015-9480-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Adrienn Hanuska
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
16
|
Robinson SD, Lee TW, Christie DL, Birch NP. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons. Front Cell Neurosci 2015; 9:404. [PMID: 26500501 PMCID: PMC4598481 DOI: 10.3389/fncel.2015.00404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.
Collapse
Affiliation(s)
- Samuel D Robinson
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - David L Christie
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand ; Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand ; Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland Auckland, New Zealand
| |
Collapse
|
17
|
Kitabatake TT, Marini LDC, Gonçalves RB, Bertolino G, de Souza HCD, de Araujo JE. Behavioral effects and neural changes induced by continuous and not continuous treadmill training, post bilateral cerebral ischemia in gerbils. Behav Brain Res 2015; 291:20-25. [DOI: 10.1016/j.bbr.2015.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 02/04/2023]
|
18
|
Wójtowicz T, Brzdąk P, Mozrzymas JW. Diverse impact of acute and long-term extracellular proteolytic activity on plasticity of neuronal excitability. Front Cell Neurosci 2015; 9:313. [PMID: 26321914 PMCID: PMC4530619 DOI: 10.3389/fncel.2015.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Learning and memory require alteration in number and strength of existing synaptic connections. Extracellular proteolysis within the synapses has been shown to play a pivotal role in synaptic plasticity by determining synapse structure, function, and number. Although synaptic plasticity of excitatory synapses is generally acknowledged to play a crucial role in formation of memory traces, some components of neural plasticity are reflected by nonsynaptic changes. Since information in neural networks is ultimately conveyed with action potentials, scaling of neuronal excitability could significantly enhance or dampen the outcome of dendritic integration, boost neuronal information storage capacity and ultimately learning. However, the underlying mechanism is poorly understood. With this regard, several lines of evidence and our most recent study support a view that activity of extracellular proteases might affect information processing in neuronal networks by affecting targets beyond synapses. Here, we review the most recent studies addressing the impact of extracellular proteolysis on plasticity of neuronal excitability and discuss how enzymatic activity may alter input-output/transfer function of neurons, supporting cognitive processes. Interestingly, extracellular proteolysis may alter intrinsic neuronal excitability and excitation/inhibition balance both rapidly (time of minutes to hours) and in long-term window. Moreover, it appears that by cleavage of extracellular matrix (ECM) constituents, proteases may modulate function of ion channels or alter inhibitory drive and hence facilitate active participation of dendrites and axon initial segments (AISs) in adjusting neuronal input/output function. Altogether, a picture emerges whereby both rapid and long-term extracellular proteolysis may influence some aspects of information processing in neurons, such as initiation of action potential, spike frequency adaptation, properties of action potential and dendritic backpropagation.
Collapse
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Patrycja Brzdąk
- Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland ; Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| |
Collapse
|
19
|
Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, Tanne D, Pick CG, Blatt I, Neufeld M, Vlachos A, Maggio N. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci 2015; 9:151. [PMID: 25954157 PMCID: PMC4404867 DOI: 10.3389/fncel.2015.00151] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Maximilian Lenz
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Benno Ikenberg
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Efrat Shavit Stein
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Joab Chapman
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - David Tanne
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Ilan Blatt
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Miri Neufeld
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel ; Department of Neurology and Epilepsy Unit, The Tel Aviv Sourasky Medical Center Tel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center Tel HaShomer, Israel
| |
Collapse
|
20
|
PAR1-activated astrocytes in the nucleus of the solitary tract stimulate adjacent neurons via NMDA receptors. J Neurosci 2015; 35:776-85. [PMID: 25589770 DOI: 10.1523/jneurosci.3105-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Severe autonomic dysfunction, including the loss of control of the cardiovascular, respiratory, and gastrointestinal systems, is a common comorbidity of stroke and other bleeding head injuries. Previous studies suggest that this collapse of autonomic control may be caused by thrombin acting on astrocytic protease-activated receptors (PAR1) in the hindbrain. Using calcium imaging and electrophysiological techniques, we evaluated the mechanisms by which astrocytic PAR1s modulate the activity of presynaptic vagal afferent terminals and postsynaptic neurons in the rat nucleus of the solitary tract (NST). Our calcium-imaging data show that astrocytic and neuronal calcium levels increase after brain slices are treated with the PAR1 agonist SFLLRN-NH2. This increase in activity is blocked by pretreating the slices with the glial metabolic blocker fluorocitrate. In addition, PAR1-activated astrocytes communicate directly with NST neurons by releasing glutamate. Calcium responses to SFLLRN-NH2 in the astrocytes and neurons significantly increase after bath application of the excitatory amino acid transporter blocker DL-threo-β-benzyloxyaspartic acid (TBOA) and significantly decrease after bath application of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (DL-AP5). Furthermore, astrocytic glutamate activates neuronal GluN2B-containing NMDA receptors. Voltage-clamp recordings of miniature EPSCs (mEPSCs) from NST neurons show that astrocytes control presynaptic vagal afferent excitability directly under resting and activated conditions. Fluorocitrate significantly decreases mEPSC frequency and SFLLRN-NH2 significantly increases mEPSC frequency. These data show that astrocytes act within a tripartite synapse in the NST, controlling the excitability of both postsynaptic NST neurons and presynaptic vagal afferent terminals.
Collapse
|
21
|
Mao X, Del Bigio MR. Interference with protease-activated receptor 1 does not reduce damage to subventricular zone cells of immature rodent brain following exposure to blood or blood plasma. J Negat Results Biomed 2015; 14:3. [PMID: 25649264 PMCID: PMC4327806 DOI: 10.1186/s12952-014-0022-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prior work showed that whole blood, plasma, and serum injections are damaging to the neonatal rodent brain in a model of intracerebral/periventricular hemorrhage. Thrombin alone is also damaging. In adult animal models of hemorrhagic stroke, the protease-activated (thrombin) receptor PAR1 mediates some of the brain damage. We hypothesized that PAR1 interference will reduce the adverse effects of blood products on immature rodent brain and cells. RESULTS Cultured oligodendrocyte precursor cells from rats and mice were exposed to blood plasma with and without the PAR1 antagonists SCH-79797 or BMS-200261. In concentrations previously shown to have activity on brain cells, neither drug showed evidence of protection against the toxicity of blood plasma. Newborn mice (wild type, heterozygous, and PAR1 knockout) were subjected to intracerebral injection of autologous whole blood into the periventricular region of the frontal lobe. Cell proliferation, measured by Ki67 immunoreactivity in the subventricular zone, was suppressed at 1 and 2 days, and was not normalized in the knockout mice. Cell apoptosis, measured by activated caspase 3 immunoreactivity, was not apparent in the subventricular zone. Increased apoptosis in periventricular striatal cells was not normalized in the knockout mice. CONCLUSION Interference with the thrombin-PAR1 system does not reduce the adverse effects of blood on germinal cells of the immature rodent brain. PAR1 interference is unlikely to be a useful treatment for reducing the brain damage that accompanies periventricular (germinal matrix) hemorrhage, a common complication of premature birth.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Department of Pathology, University of Manitoba, and Children's Hospital Research Institute of Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, and Children's Hospital Research Institute of Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| |
Collapse
|
22
|
Park H, Han KS, Seo J, Lee J, Dravid SM, Woo J, Chun H, Cho S, Bae JY, An H, Koh W, Yoon BE, Berlinguer-Palmini R, Mannaioni G, Traynelis SF, Bae YC, Choi SY, Lee CJ. Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Mol Brain 2015; 8:7. [PMID: 25645137 PMCID: PMC4320468 DOI: 10.1186/s13041-015-0097-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Activation of G protein coupled receptor (GPCR) in astrocytes leads to Ca2+-dependent glutamate release via Bestrophin 1 (Best1) channel. Whether receptor-mediated glutamate release from astrocytes can regulate synaptic plasticity remains to be fully understood. Results We show here that Best1-mediated astrocytic glutamate activates the synaptic N-methyl-D-aspartate receptor (NMDAR) and modulates NMDAR-dependent synaptic plasticity. Our data show that activation of the protease-activated receptor 1 (PAR1) in hippocampal CA1 astrocytes elevates the glutamate concentration at Schaffer collateral-CA1 (SC-CA1) synapses, resulting in activation of GluN2A-containing NMDARs and NMDAR-dependent potentiation of synaptic responses. Furthermore, the threshold for inducing NMDAR-dependent long-term potentiation (LTP) is lowered when astrocytic glutamate release accompanied LTP induction, suggesting that astrocytic glutamate is significant in modulating synaptic plasticity. Conclusions Our results provide direct evidence for the physiological importance of channel-mediated astrocytic glutamate in modulating neural circuit functions.
Collapse
|
23
|
Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Front Cell Neurosci 2014; 8:283. [PMID: 25309325 PMCID: PMC4162362 DOI: 10.3389/fncel.2014.00283] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022] Open
Abstract
Sphingolipids are a fascinating class of signaling molecules derived from the membrane lipid sphingomyelin. They show abundant expression in the brain. Complex sphingolipids such as glycosphingolipids (gangliosides and cerebrosides) regulate vesicular transport and lysosomal degradation and their dysregulation can lead to storage diseases with a neurological phenotype. More recently, simple sphingolipids such ceramide, sphingosine and sphingosine 1-phosphate (S1P) were discovered to signal in response to many extracellular stimuli. Forming an intricate signaling network, the balance of these readily interchangeable mediators is decisive for cell fate under stressful conditions. The immunomodulator fingolimod is the prodrug of an S1P receptor agonist. Following receptor activation, the drug leads to downregulation of the S1P1 receptor inducing functional antagonism. As the first drug to modulate the sphingolipid signaling pathway, it was marketed in 2010 for the treatment of multiple sclerosis (MS). At that time, immunomodulation was widely accepted as the key mechanism of fingolimod’s efficacy in MS. But given the excellent passage of this lipophilic compound into the brain and its massive brain accumulation as well as the abundant expression of S1P receptors on brain cells, it is conceivable that fingolimod also affects brain cells directly. Indeed, a seminal study showed that the protective effect of fingolimod in experimental autoimmune encephalitis (EAE), a murine MS model, is lost in mice lacking the S1P1 receptor on astrocytes, arguing for a specific role of astrocytic S1P signaling in MS. In this review, we discuss the role of sphingolipid mediators and their metabolizing enzymes in neurologic diseases and putative therapeutic strategies arising thereof.
Collapse
Affiliation(s)
- Robert Brunkhorst
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, pharmazentrum frankfurt, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| |
Collapse
|
24
|
Lee CJ, Yoon BE. Protease-activated receptor 1-induced GABA release in cultured cortical astrocytes pretreated with GABA is mediated by the Bestrophin-1 channel. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.944211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 2014; 34:1283-96. [PMID: 24896566 PMCID: PMC4126105 DOI: 10.1038/jcbfm.2014.99] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023]
Abstract
Plasmin, the principal downstream product of tissue-type plasminogen activator (tPA), is known for its potent fibrin-degrading capacity but is also recognized for many non-fibrinolytic activities. Curiously, plasmin has not been conclusively linked to blood-brain barrier (BBB) disruption during recombinant tPA (rtPA)-induced thrombolysis in ischemic stroke. This is surprising given the substantial involvement of tPA in the modulation of BBB permeability and the co-existence of tPA and plasminogen in both blood and brain throughout the ischemic event. Here, we review the work that argues a role for plasmin together with endogenous tPA or rtPA in BBB alteration, presenting the overall controversy around the topic yet creating a rational case for an involvement of plasmin in this process.
Collapse
|
26
|
Deguchi K, Liu N, Liu W, Omote Y, Kono S, Yunoki T, Deguchi S, Yamashita T, Ikeda Y, Abe K. Pericyte protection by edaravone after tissue plasminogen activator treatment in rat cerebral ischemia. J Neurosci Res 2014; 92:1509-19. [PMID: 24938625 PMCID: PMC4263311 DOI: 10.1002/jnr.23420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/16/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
Abstract
Pericytes play a pivotal role in contraction, mediating inflammation and regulation of blood flow in the brain. In this study, changes of pericytes in the neurovascular unit (NVU) were examined in relation to the effects of exogenous tissue plasminogen activator (tPA) and a free radical scavenger, edaravone. Immunohistochemistry and Western blot analyses showed that the overlap between platelet-derived growth factor receptor β-positive pericytes and N-acetylglucosamine oligomers (NAGO)-positive endothelial cells increased significantly at 4 days after 90 min of transient middle cerebral artery occlusion (tMCAO). The number of pericytes and the overlap with NAGO decreased with tPA but recovered with edaravone 4 days after tMCAO with proliferation. Thus, tPA treatment damaged pericytes, resulting in the detachment from astrocytes and a decrease in glial cell line-derived neurotrophic factor secretion. However, treatment with edaravone greatly improved tPA-induced damage to pericytes. The present study demonstrates that exogenous tPA strongly damages pericytes and destroys the integrity of the NVU, but edaravone treatment can greatly ameliorate such damage after acute cerebral ischemia in rats.
Collapse
Affiliation(s)
- Kentaro Deguchi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kawashita E, Kanno Y, Ikeda K, Kuretake H, Matsuo O, Matsuno H. Altered behavior in mice with deletion of the alpha2-antiplasmin gene. PLoS One 2014; 9:e97947. [PMID: 24874880 PMCID: PMC4038522 DOI: 10.1371/journal.pone.0097947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/27/2014] [Indexed: 01/16/2023] Open
Abstract
Background The α2-antiplasmin (α2AP) protein is known to be a principal physiological inhibitor of plasmin, and is expressed in various part of the brain, including the hippocampus, cortex, hypothalamus and cerebellum, thus suggesting a potential role for α2AP in brain functions. However, the involvement of α2AP in brain functions is currently unclear. Objectives The goal of this study was to investigate the effects of the deletion of the α2AP gene on the behavior of mice. Methods The motor function was examined by the wire hang test and rotarod test. To evaluate the cognitive function, a repeated rotarod test, Y-maze test, Morris water maze test, passive or shuttle avoidance test and fear conditioning test were performed. An open field test, dark/light transition test or tail suspension test was performed to determine the involvement of α2AP in anxiety or depression-like behavior. Results and Conclusions The α2AP knockout (α2AP−/−) mice exhibited impaired motor function compared with α2AP+/+ mice. The α2AP−/− mice also exhibited impairments in motor learning, working memory, spatial memory and fear conditioning memory. Furthermore, the deletion of α2AP induced anxiety-like behavior, and caused an anti-depression-like effect in tail suspension. Therefore, our findings suggest that α2AP is a crucial mediator of motor function, cognitive function, anxiety-like behavior and depression-like behavior, providing new insights into the role of α2AP in the brain functions.
Collapse
Affiliation(s)
- Eri Kawashita
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
- * E-mail:
| | - Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| | - Kanako Ikeda
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| | - Hiromi Kuretake
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| | - Osamu Matsuo
- Department of Physiology II. Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Hiroyuki Matsuno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| |
Collapse
|
28
|
Maggio N, Itsekson Z, Ikenberg B, Strehl A, Vlachos A, Blatt I, Tanne D, Chapman J. The anticoagulant activated protein C (aPC) promotes metaplasticity in the hippocampus through an EPCR-PAR1-S1P1 receptors dependent mechanism. Hippocampus 2014; 24:1030-8. [PMID: 24753100 DOI: 10.1002/hipo.22288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/23/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Abstract
Thrombin and other clotting factors regulate long-term potentiation (LTP) in the hippocampus through the activation of the protease activated receptor 1 (PAR1) and consequent potentiation of N-methyl-d-aspartate receptor (NMDAR) functions. We have recently shown that the activation of PAR1 either by thrombin or the anticoagulant factor activated protein C (aPC) has differential effects on LTP. While thrombin activation of PAR1 induces an NMDAR-mediated slow onset LTP, which saturates the ability to induce further LTP in the exposed network, aPC stimulation of PAR1 enhances tetanus induced LTP through a voltage-gated calcium channels mediated mechanism. In this study, we addressed the mechanisms by which aPC enhances LTP in hippocampal slices. Using extracellular recordings, we show that a short tetanic stimulation, which does not induce LTP, is able to enhance plasticity in the presence of aPC through a mechanism that requires the activation of sphingosine-1 phosphate receptor 1 and intracellular Ca(2+) stores. These data identify aPC as a "metaplastic molecule", capable of shifting the threshold of LTP towards further potentiation. Our findings propose novel strategies to enhance plasticity in neurological diseases associated with the breakdown of the blood brain barrier and alterations in synaptic plasticity.
Collapse
Affiliation(s)
- Nicola Maggio
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
30
|
Cottrell GS. Roles of proteolysis in regulation of GPCR function. Br J Pharmacol 2013; 168:576-90. [PMID: 23043558 DOI: 10.1111/j.1476-5381.2012.02234.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/03/2012] [Accepted: 09/24/2012] [Indexed: 12/18/2022] Open
Abstract
The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects on biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors, or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating GPCRs. At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevent signalling. Conversely, cell-surface peptidases can also generate bioactive peptides, which directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signalling. Certain peptidases can signal directly to cells, by cleaving GPCR to initiate intracellular signalling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signalling and mediate down-regulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signalling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signalling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signalling in disease.
Collapse
Affiliation(s)
- G S Cottrell
- Reading School of Pharmacy, University of Reading, Reading, UK.
| |
Collapse
|
31
|
Maggio N, Itsekson Z, Dominissini D, Blatt I, Amariglio N, Rechavi G, Tanne D, Chapman J. Thrombin regulation of synaptic plasticity: implications for physiology and pathology. Exp Neurol 2013; 247:595-604. [PMID: 23454608 DOI: 10.1016/j.expneurol.2013.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Thrombin, a serine protease involved in the coagulation cascade has been recently shown to affect neuronal function following blood-brain barrier breakdown. Several lines of evidence have shown that thrombin may exist in the brain parenchyma under normal physiological conditions, yet its role in normal brain functions and synaptic transmission has not been established. In an attempt to shed light on the physiological functions of thrombin and Protease Activated Receptor 1 (PAR1) in the brain, we studied the effects of thrombin and a PAR1 agonist on long term potentiation (LTP) in mice hippocampal slices. Surprisingly, different concentrations of thrombin affect LTP through different molecular routes converging on PAR1. High thrombin concentrations induced an NMDA dependent, slow onset LTP, whereas low concentrations of thrombin promoted a VGCCs, mGluR-5 dependent LTP through activated Protein C (aPC). Remarkably, aPC facilitated LTP by activating PAR1 through an Endothelial Protein C Receptor (EPCR)-mediated mechanism which involves intracellular calcium stores. These findings reveal a novel mechanism by which PAR1 may regulate the threshold for synaptic plasticity in the hippocampus and provide additional insights into the role of this receptor in normal and pathological conditions.
Collapse
Affiliation(s)
- Nicola Maggio
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Plasmin Activation of Glial Cells through Protease-Activated Receptor 1. PATHOLOGY RESEARCH INTERNATIONAL 2013; 2013:314709. [PMID: 23431500 PMCID: PMC3568866 DOI: 10.1155/2013/314709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P = 0.02). After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P = 0.03). Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN) promoted analogous glial cell detachment (P = 0.03), proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury.
Collapse
|
33
|
Chen H, Kui C, Chan HC. Ca2+ mobilization in cumulus cells: Role in oocyte maturation and acrosome reaction. Cell Calcium 2013; 53:68-75. [DOI: 10.1016/j.ceca.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
34
|
Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 2012; 124:109-22. [PMID: 23113835 DOI: 10.1111/jnc.12075] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
Abstract
Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Oh SJ, Han KS, Park H, Woo DH, Kim HY, Traynelis SF, Lee CJ. Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol Brain 2012; 5:38. [PMID: 23062602 PMCID: PMC3539998 DOI: 10.1186/1756-6606-5-38] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 11/27/2022] Open
Abstract
Background Glutamate is the major transmitter that mediates the principal form of excitatory synaptic transmission in the brain. It has been well established that glutamate is released via Ca2+-dependent exocytosis of glutamate-containing vesicles in neurons. However, whether astrocytes exocytose to release glutamate under physiological condition is still unclear. Findings We report a novel form of glutamate release in astrocytes via the recently characterized Ca2+-activated anion channel, Bestrophin-1 (Best1) by Ca2+ dependent mechanism through the channel pore. We demonstrate that upon activation of protease activated receptor 1 (PAR1), an increase in intracellular Ca2+ concentration leads to an opening of Best1 channels and subsequent release of glutamate in cultured astrocytes. Conclusions These results provide strong molecular evidence for potential astrocyte-neuron interaction via Best1-mediated glutamate release.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Korea Institute of Science and Technology, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu N, Deguchi K, Yamashita T, Liu W, Ikeda Y, Abe K. Intracerebral transplantation of bone marrow stromal cells ameliorates tissue plasminogen activator-induced brain damage after cerebral ischemia in mice detected by in vivo and ex vivo optical imaging. J Neurosci Res 2012; 90:2086-93. [DOI: 10.1002/jnr.23104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/04/2012] [Accepted: 05/24/2012] [Indexed: 01/28/2023]
|
37
|
Parcq J, Bertrand T, Montagne A, Baron AF, Macrez R, Billard JM, Briens A, Hommet Y, Wu J, Yepes M, Lijnen HR, Dutar P, Anglés-Cano E, Vivien D. Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ 2012; 19:1983-91. [PMID: 22743997 DOI: 10.1038/cdd.2012.86] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Unlike other serine proteases that are zymogens, the single-chain form of tissue plasminogen activator (sc-tPA) exhibits an intrinsic activity similar to that of its cleaved two-chain form (tc-tPA), especially in the presence of fibrin. In the central nervous system tPA controls brain functions and dysfunctions through its proteolytic activity. We demonstrated here, both in vitro and in vivo, that the intrinsic activity of sc-tPA selectively modulates N-methyl-D-aspartate receptor (NMDAR) signaling as compared with tc-tPA. Thus, sc-tPA enhances NMDAR-mediated calcium influx, Erk(½) activation and neurotoxicity in cultured cortical neurons, excitotoxicity in the striatum and NMDAR-dependent long-term potentiation in the hippocampal CA-1 network. As the first demonstration of a differential function for sc-tPA and tc-tPA, this finding opens a new area of investigations on tPA functions in the absence of its allosteric regulator, fibrin.
Collapse
Affiliation(s)
- J Parcq
- Inserm U919, Serine Proteases and Pathophysiology of the neurovascular Unit, Université de Caen Basse-Normandie, GIP Cyceron, Caen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Nature has provided a vast array of bioactive compounds that have been exploited for either diagnostic or therapeutic use. The field of thrombosis and haemostasis in particular has enjoyed much benefit from compounds derived from nature, notably from snakes and blood-feeding animals. Indeed, the likelihood that blood-feeding animals would harbour reagents with relevant pharmacology and with potential pharmaceutical benefit in haemostasis was not too far-fetched. Blood-feeding animals including leeches and ticks have evolved a means to keep blood from clotting or to at least maintain the liquid state, and some of these have been the subject of clinical development. A more recent example of this has been the saliva of the common vampire bat Desmodus rotundus, which has proven to harbour a veritable treasure trove of novel regulatory molecules. Among the bioactive compounds present is a fibrinolytic compound that was shown over 40 years ago to be a potent plasminogen activator. Studies of this vampire bat-derived plasminogen activator, more recently referred to as desmoteplase, revealed that this protease shared a number of structural and functional similarities to the human fibrinolytic protease, tissue-type plasminogen activator (t-PA) yet harboured critically important differences that have rendered this molecule attractive for clinical development for patients with ischaemic stroke.
Collapse
Affiliation(s)
- Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, 89 Commercial Road, Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Olson ES, Whitney MA, Friedman B, Aguilera TA, Crisp JL, Baik FM, Jiang T, Baird SM, Tsimikas S, Tsien RY, Nguyen QT. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity. Integr Biol (Camb) 2012; 4:595-605. [PMID: 22534729 PMCID: PMC3689578 DOI: 10.1039/c2ib00161f] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.
Collapse
Affiliation(s)
- Emilia S. Olson
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0647, USA
- Medical Scientist Training Program, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Michael A. Whitney
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Beth Friedman
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Todd A. Aguilera
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0647, USA
- Medical Scientist Training Program, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Jessica L. Crisp
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Fred M. Baik
- UCSD School of Medicine, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Tao Jiang
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Stephen M. Baird
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Sotirios Tsimikas
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0682, USA
| | - Roger Y. Tsien
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0647, USA
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093-0647, USA
| | - Quyen T. Nguyen
- Division of Otolaryngology-Head and Neck Surgery, University of California at San Diego, La Jolla, CA 92093-0647, USA; Fax: +1 858 534-5270; Tel: +1 858 822-3965
| |
Collapse
|
40
|
|
41
|
McCoy KL, Gyoneva S, Vellano CP, Smrcka AV, Traynelis SF, Hepler JR. Protease-activated receptor 1 (PAR1) coupling to G(q/11) but not to G(i/o) or G(12/13) is mediated by discrete amino acids within the receptor second intracellular loop. Cell Signal 2012; 24:1351-60. [PMID: 22306780 DOI: 10.1016/j.cellsig.2012.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 12/27/2011] [Accepted: 01/19/2012] [Indexed: 12/29/2022]
Abstract
Protease-activated receptor 1 (PAR1) is an unusual GPCR that interacts with multiple G protein subfamilies (G(q/11), G(i/o), and G(12/13)) and their linked signaling pathways to regulate a broad range of pathophysiological processes. However, the molecular mechanisms whereby PAR1 interacts with multiple G proteins are not well understood. Whether PAR1 interacts with various G proteins at the same, different, or overlapping binding sites is not known. Here we investigated the functional and specific binding interactions between PAR1 and representative members of the G(q/11), G(i/o), and G(12/13) subfamilies. We report that G(q/11) physically and functionally interacts with specific amino acids within the second intracellular (i2) loop of PAR1. We identified five amino acids within the PAR1 i2 loop that, when mutated individually, each markedly reduced PAR1 activation of linked inositol phosphate formation in transfected COS-7 cells (functional PAR1-null cells). Among these mutations, only R205A completely abolished direct G(q/11) binding to PAR1 and also PAR1-directed inositol phosphate and calcium mobilization in COS-7 cells and PAR1-/- primary astrocytes. In stark contrast, none of the PAR1 i2 loop mutations disrupted direct PAR1 binding to either G(o) or G(12), or their functional coupling to linked pertussis toxin-sensitive ERK phosphorylation and C3 toxin-sensitive Rho activation, respectively. In astrocytes, our findings suggest that PAR1-directed calcium signaling involves a newly appreciated G(q/11)-PLCε pathway. In summary, we have identified key molecular determinants for PAR1 interactions with G(q/11), and our findings support a model where G(q/11), G(i/o) or G(12/13) each bind to distinct sites within the cytoplasmic regions of PAR1.
Collapse
Affiliation(s)
- Kelly L McCoy
- Department of Pharmacology, O. Wayne Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
42
|
Modifying neurorepair and neuroregenerative factors with tPA and edaravone after transient middle cerebral artery occlusion in rat brain. Brain Res 2011; 1436:168-77. [PMID: 22221736 DOI: 10.1016/j.brainres.2011.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 11/20/2022]
Abstract
Changes in expression of neurorepair and neuroregenerative factors were examined after transient cerebral ischemia in relation to the effects of tissue plasminogen activator (tPA) and the free radical scavenger edaravone. Physiological saline or edaravone was injected twice during 90 min of transient middle cerebral artery occlusion (tMCAO) in rats, followed by the same saline or tPA at reperfusion. Sizes of the infarct and protein factors relating to neurorepair and neuroregeneration were examined at 4d after tMCAO. The protein factors examined were: a chondroitin sulfate proteoglycan neurocan, semaphorin type 3A (Sema3A), a myelin-associated glycoprotein receptor (Nogo receptor, Nogo-R), a synaptic regenerative factor (growth associated protein-43, GAP43), and a chemotropic factor netrin receptor (deleted in colorectal cancer, DCC). Two groups treated by edaravone only or edaravone plus tPA showed a reduction in infarct volume compared to the two groups treated by vehicle only or vehicle plus tPA. Immunohistochemistry and western blot analyses indicated that protein expression of neurocan, Sema3A, Nogo-R, GAP43, and DCC was decreased with tPA, but recovered with edaravone. Additive edaravone prevented the reductions of these five proteins induced by tPA. The present study demonstrates for the first time that exogenous tPA reduced protein factors involved in inhibiting and promoting axonal growth, but that edaravone ameliorated such damage in brain repair after acute ischemia.
Collapse
|
43
|
Shavit E, Michaelson DM, Chapman J. Anatomical localization of protease-activated receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet. J Neurochem 2011; 119:460-73. [PMID: 21854391 DOI: 10.1111/j.1471-4159.2011.07436.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the localization, activation and function of protease-activated receptor 1 (PAR-1) at the CNS synapse utilizing rat brain synaptosomes and slices. Confocal immunofluoresence and transmission electron microscopy in brain slices with pre-embedding diaminobenzidine (DAB) immunostaining found PAR-1 predominantly localized to the peri-synaptic astrocytic endfeet. Structural confocal immunofluorescence microscopy studies of isolated synaptosomes revealed spherical structures stained with anti-PAR-1 antibody which co-stained mainly for glial-filament acidic protein compared with the neuronal markers synaptophysin and PSD-95. Immunoblot studies of synaptosomes demonstrated an appropriate major band corresponding to PAR-1 and activation of the receptor by a specific agonist peptide (SFLLRN) significantly modulated phosphorylated extracellular signal-regulated kinase. A significant membrane potential depolarization was produced by thrombin (1 U/mL) and the PAR-1 agonist (100 μM) and depolarization by high K(+) elevated extracellular thrombin-like activity in the synaptosomes preparation. The results indicate PAR-1 localized to the peri-synaptic astrocytic endfeet is most likely activated by synaptic proteases and induces cellular signaling and modulation of synaptic electrophysiology. A protease mediated neuron-glia pathway may be important in both physiological and pathological regulation of the synapse.
Collapse
Affiliation(s)
- Efrat Shavit
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
44
|
Han KS, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF. Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 2011; 4:32. [PMID: 21827709 PMCID: PMC3170262 DOI: 10.1186/1756-6606-4-32] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
Protease activated receptor-1 (PAR1) is expressed in multiple cell types in the CNS, with the most prominent expression in glial cells. PAR1 activation enhances excitatory synaptic transmission secondary to the release of glutamate from astrocytes following activation of astrocytically-expressed PAR1. In addition, PAR1 activation exacerbates neuronal damage in multiple in vivo models of brain injury in a manner that is dependent on NMDA receptors. In the hippocampal formation, PAR1 mRNA appears to be expressed by a subset of neurons, including granule cells in the dentate gyrus. In this study we investigate the role of PAR activation in controlling neuronal excitability of dentate granule cells. We confirm that PAR1 protein is expressed in neurons of the dentate cell body layer as well as in astrocytes throughout the dentate. Activation of PAR1 receptors by the selective peptide agonist TFLLR increased the intracellular Ca2+ concentration in a subset of acutely dissociated dentate neurons as well as non-neuronal cells. Bath application of TFLLR in acute hippocampal slices depolarized the dentate gyrus, including the hilar region in wild type but not in the PAR1-/- mice. PAR1 activation increased the frequency of action potential generation in a subset of dentate granule neurons; cells in which PAR1 activation triggered action potentials showed a significant depolarization. The activation of PAR1 by thrombin increased the amplitude of NMDA receptor-mediated component of EPSPs. These data suggest that activation of PAR1 during normal function or pathological conditions, such as during ischemia or hemorrhage, can increase the excitability of dentate granule cells.
Collapse
Affiliation(s)
- Kyung-Seok Han
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Almonte AG, Sweatt JD. Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. Brain Res 2011; 1407:107-22. [PMID: 21782155 DOI: 10.1016/j.brainres.2011.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/03/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022]
Abstract
Serine proteases, serine protease inhibitors, and protease-activated receptors have been intensively investigated in the periphery and their roles in a wide range of processes-coagulation, inflammation, and digestion, for example-have been well characterized (see Coughlin, 2000; Macfarlane et al., 2001; Molinari et al., 2003; Wang et al., 2008; Di Cera, 2009 for reviews). A growing number of studies demonstrate that these protein systems are widely expressed in many cell types and regions in mammalian brains. Accumulating lines of evidence suggest that the brain has co-opted the activities of these interesting proteins to regulate various processes underlying synaptic activity and behavior. In this review, we discuss emerging roles for serine proteases in the regulation of mechanisms underlying synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
46
|
Neuronal protease-activated receptor 1 drives synaptic retrograde signaling mediated by the endocannabinoid 2-arachidonoylglycerol. J Neurosci 2011; 31:3104-9. [PMID: 21414931 DOI: 10.1523/jneurosci.6000-10.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protease-activated receptor 1 (PAR1) is a member of the G-protein coupled receptors that are proteolytically activated by serine proteases. Recent studies suggest a definite contribution of PAR1 to brain functions, including learning and memory. However, cellular mechanisms by which PAR1 activation influences neuronal activity are not well understood. Here we show that PAR1 activation drives retrograde endocannabinoid signaling and thereby regulates synaptic transmission. In cultured hippocampal neurons from rat, PAR1 activation by thrombin or PAR1-specific peptide agonists transiently suppressed inhibitory transmission at cannabinoid-sensitive, but not cannabinoid-insensitive, synapses. The PAR1-induced suppression of synaptic transmission was accompanied by an increase in paired-pulse ratio, and was blocked by a cannabinoid CB(1) receptor antagonist. The PAR1-induced suppression was blocked by pharmacological inhibition of postsynaptic diacylglycerol lipase (DGL), a key enzyme for biosynthesis of the major endocannabinoid 2-arachidonoylglycerol (2-AG), and was absent in knock-out mice lacking the α isoform of DGL. The PAR1-induced IPSC suppression remained intact under the blockade of metabotropic glutamate receptors and was largely resistant to the treatment that blocked Ca(2+) elevation in glial cells following PAR1 activation, which excludes the major contribution of glial PAR1 in IPSC suppression. We conclude that activation of neuronal PAR1 triggers retrograde signaling mediated by 2-AG, which activates presynaptic CB(1) receptors and suppresses transmitter release at hippocampal inhibitory synapses.
Collapse
|
47
|
Wu J, Echeverry R, Guzman J, Yepes M. Neuroserpin protects neurons from ischemia-induced plasmin-mediated cell death independently of tissue-type plasminogen activator inhibition. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2576-84. [PMID: 20864675 PMCID: PMC2966813 DOI: 10.2353/ajpath.2010.100466] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2010] [Indexed: 11/20/2022]
Abstract
The serine proteinase tissue-type plasminogen activator (tPA) and the serine proteinase inhibitor neuroserpin are both expressed in areas of the brain with the highest vulnerability to hypoxia/ischemia. In vitro studies show that neuroserpin inhibits tPA and, to a lesser extent, urokinase-type plasminogen activator and plasmin. Experimental middle cerebral artery occlusion (MCAO) increases tPA activity and neuroserpin expression in ischemic tissue, and genetic deficiency of tPA or either treatment with or overexpression of neuroserpin decreases the volume of the ischemic lesion following MCAO. These findings have led to the hypothesis that neuroserpin's neuroprotection is mediated by inhibition of tPA's alleged neurotoxic effect. Ischemic preconditioning is a natural adaptive process whereby exposure to a sublethal insult induces tolerance against a subsequent lethal ischemic injury. Here we demonstrate that exposure to sublethal hypoxia/ischemia increases the neuroserpin expression in the hippocampal CA1 layer and cerebral cortex, and that neuroserpin induces ischemic tolerance and decreases the volume of the ischemic lesion following MCAO in wild-type and tPA-deficient (tPA-/-) neurons and mice. Plasmin induces neuronal death, and this effect is abrogated by either neuroserpin or the NMDA receptor antagonist MK-801. Neuroserpin also attenuated kainic acid-induced neuronal death. Our data indicate that the neuroprotective effect of neuroserpin is due to inhibition of plasmin-mediated excitotoxin-induced cell death and is independent of neuroserpin's ability to inhibit tPA activity.
Collapse
Affiliation(s)
- Jialing Wu
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael St, Suite 505J, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis.
Collapse
|
49
|
Soh UJK, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated receptors. Br J Pharmacol 2010; 160:191-203. [PMID: 20423334 DOI: 10.1111/j.1476-5381.2010.00705.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The family of G protein-coupled receptors (GPCRs) constitutes the largest class of signalling receptors in the human genome, controlling vast physiological responses and are the target of many drugs. After activation, GPCRs are rapidly desensitized by phosphorylation and beta-arrestin binding. Most classic GPCRs are internalized through a clathrin, dynamin and beta-arrestin-dependent pathway and then recycled back to the cell surface or sorted to lysosomes for degradation. Given the vast number and diversity of GPCRs, different mechanisms are likely to exist to precisely regulate the magnitude, duration and spatial aspects of receptor signalling. The G protein-coupled protease-activated receptors (PARs) provide elegant examples of GPCRs that are regulated by distinct desensitization and endocytic sorting mechanisms, processes that are critically important for the spatial and temporal fidelity of PAR signalling. PARs are irreversibly activated through proteolytic cleavage and transmit cellular responses to extracellular proteases. Activated PAR(1) internalizes through a clathrin- and dynamin-dependent pathway independent of beta-arrestins. Interestingly, PAR(1) is basally ubiquitinated and deubiquitinated after activation and traffics from endosomes to lysosomes independent of ubiquitination. In contrast, beta-arrestins mediate activated PAR(2) internalization and function as scaffolds that promote signalling from endocytic vesicles. Moreover, activated PAR(2) is modified with ubiquitin, which facilitates lysosomal degradation. Activated PARs also adopt distinct active conformations that signal to diverse effectors and are likely regulated by different mechanisms. Thus, the identification of the molecular machinery important for PAR signal regulation will enable the development of new strategies to manipulate receptor signalling and will provide novel targets for the development of drugs.
Collapse
Affiliation(s)
- Unice J K Soh
- Department of Pharmacology, University of California, San Diego, 92093-0636, USA
| | | | | | | |
Collapse
|
50
|
McCoy KL, Traynelis SF, Hepler JR. PAR1 and PAR2 couple to overlapping and distinct sets of G proteins and linked signaling pathways to differentially regulate cell physiology. Mol Pharmacol 2010; 77:1005-15. [PMID: 20215560 PMCID: PMC2879918 DOI: 10.1124/mol.109.062018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/09/2010] [Indexed: 01/02/2023] Open
Abstract
The protease-activated receptors (PAR1 and PAR2) are unusual G protein-coupled receptors that are activated by distinct serine proteases and are coexpressed in many different cell types. Limited recent evidence suggests these closely related receptors regulate different physiological outputs in the same cell, although little is known about the comparative signaling pathways used by these receptors. Here we report that PAR1 and PAR2 couple to overlapping and distinct sets of G proteins to regulate receptor-specific signaling pathways involved in cell migration. In functionally PAR-null COS-7 cells, ectopically expressed PAR1 and PAR2 both form stable complexes with G alpha(q), G alpha(11), G alpha(14), G alpha(12), and G alpha(13). It is surprising that PAR1 but not PAR2 coupled to G alpha(o), G alpha(i1), and G alpha(i2). Consistent with these observations, PAR1 and PAR2 stimulation of inositol phosphate production and RhoA activation was blocked by specific inhibitors of G(q/11) and G(12/13) signaling, respectively. Both receptors stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, but only PAR1 inhibited adenylyl cyclase activity, and pertussis toxin blocked PAR1 effects on both adenylyl cyclase and ERK1/2 signaling. Neu7 astrocytes express native PAR1 and PAR2 receptors that activate inositol phosphate, RhoA, and ERK1/2 signaling. However, only PAR1 inhibited adenylyl cyclase activity. PAR1 and PAR2 also stimulate Neu7 cell migration. PAR1 effects on ERK1/2 phosphorylation and cell migration were blocked both by pertussis toxin and by the mitogen-activated protein kinase kinase/ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126)], whereas PAR2 effects were only blocked by U0126. These studies demonstrate that PAR1 and PAR2 physically and functionally link to overlapping and distinct profiles of G proteins to differentially regulate downstream signaling pathways and cell physiology.
Collapse
Affiliation(s)
- Kelly L McCoy
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|