1
|
Li Q, Wu J, Zhu M, Tang Y, Jin L, Chen Y, Jin M, Peng Z. A novel risk signature based on autophagy-related genes to evaluate tumor immune microenvironment and predict prognosis in hepatocellular carcinoma. Comput Biol Med 2022. [DOI: 10.1016/j.compbiomed.2022.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
3
|
Panzitt K, Fickert P, Wagner M. Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166017. [PMID: 33242590 DOI: 10.1016/j.bbadis.2020.166017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is a lysosomal degradation pathway in which the cell self-digests its own components to provide nutrients in harsh environmental conditions. It also represents an opportunity to rid the cell of superfluous and damaged organelles, misfolded proteins or invaded microorganisms. Liver autophagy contributes to basic hepatic functions such as lipid, glycogen and protein turnover. Deregulated hepatic autophagy has been linked to many liver diseases including alpha-1-antitrypsin deficiency, alcoholic and non-alcoholic fatty liver diseases, hepatitis B and C infections, liver fibrosis as well as liver cancer. Recently, bile acids and the bile acid receptor FXR have been implicated in the regulation of hepatic autophagy, which implies a role of autophagy also for cholestatic liver diseases. This review summarizes the current evidence of bile acid mediated effects on autophagy and how this affects cholestatic liver diseases. Although detailed studies are lacking, we suggest a concept that the activity of autophagy in cholestasis depends on the disease stage, where autophagy may be induced at early stages ("cholestophagy") but may be impaired in prolonged cholestatic states ("cholestopagy").
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Peter Fickert
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Tsai MS, Lee HM, Huang SC, Sun CK, Chiu TC, Chen PH, Lin YC, Hung TM, Lee PH, Kao YH. Nerve growth factor induced farnesoid X receptor upregulation modulates autophagy flux and protects hepatocytes in cholestatic livers. Arch Biochem Biophys 2020; 682:108281. [PMID: 32001246 DOI: 10.1016/j.abb.2020.108281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Upregulation of nerve growth factor (NGF) in parenchymal hepatocytes has been shown to exert hepatoprotective function during cholestatic liver injury. However, the modulatory role of NGF in regulation of liver autophagy remains unclear. This study aimed to scrutinize the regulatory role of NGF in hepatic expression of farnesoid X receptor (FXR), a bile acid (BA)-activated nuclear receptor, and to determine its cytoprotective effect on BA-induced autophagy and cytotoxicity. Livers of human hepatolithiasis and bile duct ligation (BDL)-induced mouse cholestasis were used for histopathological and molecular detection. The regulatory roles of NGF in autophagy flux and FXR expression, as well as its hepatoprotection against BA cytotoxicity were examined in cultured hepatocytes. FXR downregulation in human hepatolithiasis livers showed positive correlation with hepatic NGF levels. NGF administration upregulated hepatic FXR levels, while neutralization of NGF decreased FXR expression in BDL-induced cholestatic mouse livers. In vitro studies demonstrated that NGF upregulated FXR expression, increased cellular LC3 levels, and exerted hepatoprotective effect in cultured primary rat hepatocytes. Conversely, autophagy inhibition abrogated NGF-driven cytoprotection under BA exposure, suggesting involvement of NGF-modulated auophagy flux. Although FXR agonistic GW4064 stimulation did not affect auophagic LC3 levels, FXR activity inhibition significantly potentiated BA-induced cytotoxicity and increased cellular p62/SQSTM1 and Rab7 protein in SK-Hep1 hepatocytes. Moreover, FXR gene silencing abolished the protective effect of NGF under BA exposure. These findings support that NGF modulates autophagy flux via FXR upregulation and protects hepatocytes against BA-induced cytotoxicity. NGF/FXR axis is a novel therapeutic target for treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Body Health and Beauty Center, Jiann-Ren Hospital, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Shih-Che Huang
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | | | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Tzu-Min Hung
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Zheng K, He Z, Kitazato K, Wang Y. Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics 2019; 9:104-125. [PMID: 30662557 PMCID: PMC6332805 DOI: 10.7150/thno.30308] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Aberrant function of cell cycle regulators results in uncontrolled cell proliferation, making them attractive therapeutic targets in cancer treatment. Indeed, survival of many cancers exclusively relies on these proteins, and several specific inhibitors are in clinical use. Although the ubiquitin-proteasome system is responsible for the periodic quality control of cell cycle proteins during cell cycle progression, increasing evidence clearly demonstrates the intimate interaction between cell cycle regulation and selective autophagy, important homeostasis maintenance machinery. However, these studies have often led to divergent rather than unifying explanations due to complexity of the autophagy signaling network, the inconsistent functions between general autophagy and selective autophagy, and the different characteristics of autophagic substrates. In this review, we highlight current data illustrating the contradictory and important role of cell cycle proteins in regulating autophagy. We also focus on how selective autophagy acts as a central mechanism to maintain orderly DNA repair and genome integrity by degrading specific cell cycle proteins, regulating cell division, and promoting DNA damage repair. We further discuss the ways in which selective autophagy may impact the cell cycle regulators, since failure to appropriately remove these can interfere with cell death-related processes, including senescence and autophagy-related cell death. Imbalanced cell proliferation is typically utilized by cancer cells to acquire resistance. Finally, we discuss the possibility of a potent anticancer therapeutic strategy that targets selective autophagy or autophagy and cell cycle together.
Collapse
|
6
|
Poklepovic A, Gordon S, Shafer DA, Roberts JD, Bose P, Geyer CE, McGuire WP, Tombes MB, Shrader E, Strickler K, Quigley M, Wan W, Kmieciak M, Massey HD, Booth L, Moran RG, Dent P. Phase I study of pemetrexed with sorafenib in advanced solid tumors. Oncotarget 2018; 7:42625-42638. [PMID: 27213589 PMCID: PMC5173162 DOI: 10.18632/oncotarget.9434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/16/2016] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine if combination treatment with pemetrexed and sorafenib is safe and tolerable in patients with advanced solid tumors. Results Thirty-seven patients were enrolled and 36 patients were treated (24 in cohort A; 12 in cohort B). The cohort A dose schedule resulted in problematic cumulative toxicity, while the cohort B dose schedule was found to be more tolerable. The maximum tolerated dose (MTD) was pemetrexed 750 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Because dosing delays and modifications were associated with the MTD, the recommended phase II dose was declared to be pemetrexed 500 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Thirty-three patients were evaluated for antitumor activity. One complete response and 4 partial responses were observed (15% overall response rate). Stable disease was seen in 15 patients (45%). Four patients had a continued response at 6 months, including 2 of 5 patients with triple-negative breast cancer. Experimental Design A phase I trial employing a standard 3 + 3 design was conducted in patients with advanced solid tumors. Cohort A involved a novel dose escalation schema exploring doses of pemetrexed every 14 days with continuous sorafenib. Cohort B involved a modified schedule of sorafenib dosing on days 1–5 of each 14-day pemetrexed cycle. Radiographic assessments were conducted every 8 weeks. Conclusions Pemetrexed and intermittent sorafenib therapy is a safe and tolerable combination for patients, with promising activity seen in patients with breast cancer.
Collapse
Affiliation(s)
- Andrew Poklepovic
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah Gordon
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Danielle A Shafer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John D Roberts
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Prithviraj Bose
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles E Geyer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William P McGuire
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Beth Tombes
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ellen Shrader
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Katie Strickler
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maria Quigley
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Wen Wan
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - H Davis Massey
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Richard G Moran
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul Dent
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Aoki H, Aoki M, Yang J, Katsuta E, Mukhopadhyay P, Ramanathan R, Woelfel IA, Wang X, Spiegel S, Zhou H, Takabe K. Murine model of long-term obstructive jaundice. J Surg Res 2016; 206:118-125. [PMID: 27916350 PMCID: PMC5142243 DOI: 10.1016/j.jss.2016.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/16/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND With the recent emergence of conjugated bile acids as signaling molecules in cancer, a murine model of obstructive jaundice by cholestasis with long-term survival is in need. Here, we investigated the characteristics of three murine models of obstructive jaundice. METHODS C57BL/6J mice were used for total ligation of the common bile duct (tCL), partial common bile duct ligation (pCL), and ligation of left and median hepatic bile duct with gallbladder removal (LMHL) models. Survival was assessed by Kaplan-Meier method. Fibrotic change was determined by Masson-Trichrome staining and Collagen expression. RESULTS Overall, 70% (7 of 10) of tCL mice died by day 7, whereas majority 67% (10 of 15) of pCL mice survived with loss of jaundice. A total of 19% (3 of 16) of LMHL mice died; however, jaundice continued beyond day 14, with survival of more than a month. Compensatory enlargement of the right lobe was observed in both pCL and LMHL models. The pCL model demonstrated acute inflammation due to obstructive jaundice 3 d after ligation but jaundice rapidly decreased by day 7. The LHML group developed portal hypertension and severe fibrosis by day 14 in addition to prolonged jaundice. CONCLUSIONS The standard tCL model is too unstable with high mortality for long-term studies. pCL may be an appropriate model for acute inflammation with obstructive jaundice, but long-term survivors are no longer jaundiced. The LHML model was identified to be the most feasible model to study the effect of long-term obstructive jaundice.
Collapse
Affiliation(s)
- Hiroaki Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Masayo Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jing Yang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Eriko Katsuta
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Partha Mukhopadhyay
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ingrid A Woelfel
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xuan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
8
|
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5:158-67. [PMID: 26579442 PMCID: PMC4629219 DOI: 10.1016/j.apsb.2014.12.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.
Collapse
Key Words
- 6ECDCA, 6α-ethyl-chenodeoxycholic acid
- ADH, alcohol dehydrogenase
- AF, activation function
- AKT, protein kinase B
- ALD, alcoholic liver disease
- ALT, alanine aminotransferase
- ASBT, apical sodium dependent bile acid transporter
- Alcoholic liver disease
- Atg, autophagy-related
- Autophagy
- BAAT, bile acid CoA:amino acid N-acyltransferase
- BACS, bile acid CoA synthetase
- BSEP, bile salt export pump
- Bile acids
- CA, cholic acid
- CB1R, cannabinoid receptor type 1
- CDCA, chenodeoxycholic acid
- CREB, cAMP response element-binding protein
- CREBH, cAMP response element-binding protein, hepatocyte specific
- CRTC2, CREB regulated transcription coactivator 2
- CYP, cytochrome P450
- DCA, deoxycholic acid
- DR1, direct repeat 1
- FGF15/19, fibroblast growth factor 15/19
- FGFR4, fibroblast growth factor receptor 4
- FXR, farnesoid X receptor
- Farnesoid X receptor
- FoxO3
- FoxO3a, forkhead box-containing protein class O3a
- GGT, gamma-glutamyltranspeptidase
- HCC, hepatocellular carcinoma
- IR-1, inverted repeat-1
- KO, knockout
- LC3, light chain 3
- LRH-1, liver receptor homolog 1
- LXR, liver X receptor
- MRP4, multidrug resistance protein 4
- NAD+, nicotinamide adenine dinucleotide
- NTCP, sodium taurocholate cotransporting polypeptide
- OSTα/β, organic solute transporter α/β
- PE, phosphatidylethanolamine
- PPARα, peroxisome proliferator-activated receptor alpha
- ROS, reactive oxygen species
- RXRα, retinoid X receptor-alpha
- SHP, small heterodimer partner
- SQSTM, sequestome-1
- SREBP1, sterol regulatory element-binding protein 1
- Sirt1, sirtuin 1
- TCA, taurocholic acid
- TFEB, transcription factor EB
- TLR4, toll-like receptor 4
- TUDCA, tauro-ursodeoxycholic acid
- UDCA, ursodeoxycholic acid
- WAY, WAY-362450
- WT, wild type
Collapse
Affiliation(s)
| | - Wenxing Ding
- Corresponding author. Tel.: +1 913 5889813; fax: +1 913 5887501.
| |
Collapse
|
9
|
Zou J, Li W, Misra A, Yue F, Song K, Chen Q, Guo G, Yi J, Kimata JT, Liu L. The viral restriction factor tetherin prevents leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) from association with beclin 1 and B-cell CLL/lymphoma 2 (Bcl-2) and enhances autophagy and mitophagy. J Biol Chem 2015; 290:7269-79. [PMID: 25631043 DOI: 10.1074/jbc.m114.627679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetherin has been characterized as a key factor that restricts viral particles such as HIV and hepatitis C virus on plasma membranes, acts as a ligand of the immunoglobulin-like transcript 7 (ILT7) receptor in tumor cells, and suppresses antiviral innate immune responses mediated by human plasmacytoid dendritic cells. However, the normal cellular function of Tetherin without viral infection is unknown. Here we show that Tetherin not only serves as a substrate of autophagy but itself regulates the initiation of autophagy. Tetherin interacts with the autophagy/mitophagy suppressor LRPPRC and prevents LRPPRC from forming a ternary complex with Beclin 1 and Bcl-2 so that Beclin 1 is released to bind with PI3KCIII (class III PI3K) to activate the initiation of autophagy. Suppression of Tetherin leads to impairment of autophagy, whereas overexpression of Tetherin causes activation of autophagy. Under mitophagic stress, Tetherin is concentrated on mitochondria engulfed in autophagosomes. Tetherin plays a general role in the degradation of autophagosomes containing not only the symbiotic mitochondria but also, possibly, the infected virus. Therefore, Tetherin may enhance autophagy and mitophagy to suppress tumorigenesis, enhance innate immune responses, or prevent T cell apoptosis or pyroptosis.
Collapse
Affiliation(s)
- Jing Zou
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, 77030, the Jiangxi Research Institute of Ophthalmology and Visual Sciences, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330006, China
| | - Wenjiao Li
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, 77030
| | - Anisha Misra
- the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Fei Yue
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, 77030
| | - Kun Song
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, 77030
| | - Qi Chen
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, 77030
| | - Guanghua Guo
- the Jiangxi Research Institute of Ophthalmology and Visual Sciences, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330006, China
| | - Jinglin Yi
- the Jiangxi Research Institute of Ophthalmology and Visual Sciences, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330006, China
| | - Jason T Kimata
- the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Leyuan Liu
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, 77030, the Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| |
Collapse
|
10
|
Zhu W, Wang X, Zhou Y, Wang H. C2-ceramide induces cell death and protective autophagy in head and neck squamous cell carcinoma cells. Int J Mol Sci 2014; 15:3336-55. [PMID: 24566153 PMCID: PMC3958915 DOI: 10.3390/ijms15023336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/20/2014] [Accepted: 02/11/2014] [Indexed: 12/19/2022] Open
Abstract
Ceramides are second messengers involved in several intracellular processes in cancer cells, amongst others. The aim of this study was to evaluate the anti-tumor efficacy of C2-ceramide (C2-Cer; N-acetyl-d-sphingosine) by investigating cell death and autophagy in head and neck squamous cell carcinoma (HNSCC) cells. C2-Cer showed concentration-dependent cytotoxicity in HN4 and HN30 cell lines. It simultaneously induced caspase-3-independent apoptosis and programmed necrosis. C2-Cer markedly increased the expression level of microtubule-associated protein 1 light chain 3B (LC3B) type II associated with protective autophagy. An autophagy inhibitor enhanced C2-Cer-mediated cytotoxicity, while a programmed-necrosis inhibitor produced the opposite effect. Furthermore, C2-Cer up-regulated the phosphorylation of extracellular signal-regulated kinase 1/2, but down-regulated its downstream substrate phospho-mammalian target of rapamycin (p-mTOR) during the autophagy process. These results suggested that C2-Cer exerts anti-tumor effects by inducing programmed apoptosis and necrosis in HNSCC, and these cytotoxic effects are enhanced by an autophagy inhibitor.
Collapse
Affiliation(s)
- Wenyuan Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Xinhua Wang
- Department of Oral Implantology, the Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yi Zhou
- Department of Oral Implantology, the Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
11
|
Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells. PLoS One 2014; 9:e85771. [PMID: 24465696 PMCID: PMC3897495 DOI: 10.1371/journal.pone.0085771] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023] Open
Abstract
(-)-Epigallocatechin-3-O-gallate(EGCG), the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX) in hepatocellular carcinoma (HCC) treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3) expressions was consistent with thus combined usage in vitro. Taken together, the current study suggested that EGCG emerges as a chemotherapeutic augmenter and synergistically enhances DOX anticancer effects involving autophagy inhibition in HCC.
Collapse
|
12
|
Manley S, Ni HM, Kong B, Apte U, Guo G, Ding WX. Suppression of autophagic flux by bile acids in hepatocytes. Toxicol Sci 2013; 137:478-90. [PMID: 24189133 DOI: 10.1093/toxsci/kft246] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retention of bile acids (BAs) in the liver during cholestasis plays an important role in the development of cholestatic liver injury. Several studies have reported that high concentrations of certain BAs induce cell death and inflammatory response in the liver, and BAs may promote liver tumorigenesis. Macroautophagy (hereafter referred to as autophagy) is a lysosomal degradation process that regulates organelle and protein homeostasis and serves as a cell survival mechanism under a variety of stress conditions. However, it is not known if BAs modulate autophagy in hepatocytes. In the present study, we determined autophagic flux in livers of farnesoid X receptor (FXR) knockout (KO) mice that have increased concentrations of hepatic BAs and in primary cultured mouse hepatocytes treated with BAs. The results showed that autophagic flux was impaired in livers of FXR KO mice and in BA-treated primary mouse hepatocytes. Mechanistically, BAs did not affect the activities of cathepsin or the proteasome, but impaired autophagosomal-lysosomal fusion likely due to reduction of Rab7 protein expression and targeting to autophagosomes. In conclusion, BAs suppress autophagic flux in hepatocytes by impairing autophagosomal-lysosomal fusion, which may be implicated in bile acid-induced liver tumor promotion observed in FXR KO mice.
Collapse
Affiliation(s)
- Sharon Manley
- * Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160
| | | | | | | | | | | |
Collapse
|
13
|
Mitochondrion-associated protein LRPPRC suppresses the initiation of basal levels of autophagy via enhancing Bcl-2 stability. Biochem J 2013; 454:447-57. [PMID: 23822101 PMCID: PMC3778712 DOI: 10.1042/bj20130306] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitochondrion-associated protein LRPPRC (leucine-rich pentatricopeptide repeat-containing) interacts with one of the microtubule-associated protein family members MAP1S (microtubule-associated protein 1 small form), originally named C19ORF5 (chromosome 19 open reading frame 5), to form a complex. MAP1S interacts with LC3 (light chain 3), the mammalian homologue of yeast autophagy marker ATG8 and one of the most important autophagy markers in mammalian cells, and helps the attachment of autophagosomes with microtubules for trafficking and recruitment of substrate mitochondria into autophagosomes for degradation. MAP1S activates autophagosomal biogenesis and degradation to remove misfolded/aggregated proteins and dysfunctional organelles such as mitochondria and suppress oxidative stress-induced genomic instability and tumorigenesis. Previously, various studies have attributed LRPPRC nucleic acid-associated functions. Instead, in the present study, we show that LRPPRC associates with mitochondria, interacts with Beclin 1 and Bcl-2 and forms a ternary complex to maintain the stability of Bcl-2. Suppression of LRPPRC leads to reduction in mitochondrial potential and reduction in Bcl-2. Lower levels of Bcl-2 lead to release of more Beclin 1 to form the Beclin 1–PI3KCIII (class III phosphoinositide 3-kinase) complex to activate autophagy and accelerate the turnover of dysfunctional mitochondria through the PI3K (phosphoinositide 3-kinase)/Akt/mTOR (mammalian target of rapamycin) pathway. The activation of autophagy induced by LRPPRC suppression occurs upstream of the ATG5–ATG12 conjugate-mediated conversion of LC3-I into LC3-II and has been confirmed in multiple mammalian cell lines with multiple autophagy markers including the size of GFP–LC3 punctate foci, the intensity of LC3-II and p62 protein and the size of the vacuolar structure. The activated autophagy enhances the removal of mitochondria through lysosomes. LRPPRC therefore acts to suppress the initiation of basal levels of autophagy to clean up dysfunctional mitochondria and other cellular debris during the normal cell cycle. Mitochondrial protein LRPPRC interacts with LC3-interactive microtubule-associated MAP1S and regulates autophagy. It interacts with Beclin 1 and Bcl-2 to form a ternary complex to maintain Bcl-2 stability. LRPPRC suppression enriches the Beclin 1-PI3KCIII complex to activate autophagy and mitophagy.
Collapse
|
14
|
Jiang W, Ogretmen B. Autophagy paradox and ceramide. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:783-92. [PMID: 24055889 DOI: 10.1016/j.bbalip.2013.09.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 12/30/2022]
Abstract
Sphingolipid molecules act as bioactive lipid messengers and exert their actions on the regulation of various cellular signaling pathways. Sphingolipids play essential roles in numerous cellular functions, including controlling cell inflammation, proliferation, death, migration, senescence, tumor metastasis and/or autophagy. Dysregulated sphingolipid metabolism has been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) "self-eating" is characterized by nonselective sequestering of cytosolic materials by an isolation membrane, which can be either protective or lethal for cells. Ceramide (Cer), a central molecule of sphingolipid metabolism, has been extensively implicated in the control of autophagy. The increasing evidence suggests that Cer is highly involved in mediating two opposing autophagic pathways, which regulate either cell survival or death, which is referred here as autophagy paradox. However, the underlying mechanism that regulates the autophagy paradox remains unclear. Therefore, this review focuses on recent studies with regard to the regulation of autophagy by Cer and elucidates the roles and mechanisms of action of Cer in controlling autophagy paradox. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Wenhui Jiang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA.
| |
Collapse
|
15
|
Booth L, Cruickshanks N, Ridder T, Chen CS, Grant S, Dent P. OSU-03012 interacts with lapatinib to kill brain cancer cells. Cancer Biol Ther 2012; 13:1501-11. [PMID: 22990204 DOI: 10.4161/cbt.22275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have further defined mechanism(s) by which the drug OSU-03012 (OSU) kills brain cancer cells. OSU toxicity was enhanced by the HSP90 inhibitor 17-N-Allylamino-17-demethoxygeldanamycin (17AAG) that correlated with reduced expression of ERBB1 and ERBB2. Inhibition of the extrinsic apoptosis pathway blocked the interaction between 17AAG and OSU. OSU toxicity was enhanced by the inhibitor of ERBB1/2/4, lapatinib. Knock down of ERBB1/2/4 in a cell line specific fashion promoted OSU toxicity. Combined exposure of cells to lapatinib and OSU resulted in reduced AKT and ERK1/2 activity; expression of activated forms of AKT and to a lesser extent MEK1 protected cells from the lethal effects of the drug combination. Knock down of PTEN suppressed, and expression of PTEN enhanced, the lethal interaction between OSU and lapatinib. Downstream of PTEN, inhibition of mTOR recapitulated the effects of lapatinib. Knock down of CD95, NOXA, PUMA, BIK or AIF, suppressed lapatinib and OSU toxicity. Knock down of MCL-1 enhanced, and overexpression of MCL-1 suppressed, drug combination lethality. Lapatinib and OSU interacted in vivo to suppress the growth of established tumors. Collectively our data argue that the inhibition of ERBB receptor function represents a useful way to enhance OSU lethality in brain tumor cells.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Roesly HB, Khan MR, Chen HDR, Hill KA, Narendran N, Watts GS, Chen X, Dvorak K. The decreased expression of Beclin-1 correlates with progression to esophageal adenocarcinoma: the role of deoxycholic acid. Am J Physiol Gastrointest Liver Physiol 2012; 302:G864-G872. [PMID: 22301112 PMCID: PMC3355563 DOI: 10.1152/ajpgi.00340.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/19/2012] [Indexed: 01/31/2023]
Abstract
Beclin-1 has a central role in the regulation of autophagy. Barrett's esophagus (BE) is associated with a significantly increased risk for the development of esophageal adenocarcinoma (EAC). In the current study, we evaluated the role of Beclin-1 and autophagy in the EAC. Biopsies obtained from patients with BE and EAC, tissues from a rat model of BE and EAC, and esophageal cell lines were evaluated for the expression of Beclin-1 by immunohistochemistry, immunoblotting, or RT-PCR. Since reflux of bile acids is important in EAC, we also evaluated the effect of exposure to deoxycholic acid (DCA) on autophagy and Beclin-1 expression. Beclin-1 expression was high in squamous epithelium and nondysplastic BE, whereas its expression was low in dysplastic BE and EAC. The same pattern of expression was observed in rat tissues and in esophageal cell lines. Normal esophageal epithelium and HET-1A cells (derived from normal squamous epithelium) show high levels of Beclin-1, but lower levels of Beclin-1 were found in BE and EAC cell lines (CP-A, CP-C, and OE33). Acute exposure to DCA led to increased Beclin-1 expression and increased autophagy as evaluated by electron microscopy and counting percentage of GFP-LC3-positive BE cells with punctate pattern. In contrast, chronic exposure to DCA did not result in the alteration of Beclin-1 levels or autophagy. In summary, these data suggest that autophagy is initially activated in response to bile acids, but chronic exposure to bile acids leads to decreased Beclin-1 expression and autophagy resistance.
Collapse
Affiliation(s)
- Heather B Roesly
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang Y, Hamed HA, Cruickshanks N, Fisher PB, Grant S, Dent P. Obatoclax and lapatinib interact to induce toxic autophagy through NOXA. Mol Pharmacol 2012; 81:527-40. [PMID: 22219388 PMCID: PMC3310419 DOI: 10.1124/mol.111.076851] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/04/2012] [Indexed: 12/11/2022] Open
Abstract
Prior studies demonstrated that resistance to the ERBB1/2 inhibitor lapatinib could be overcome by the B cell CLL/lymphoma-2 (BCL-2) family antagonist obatoclax (GX15-070). Coadministration of lapatinib with obatoclax caused synergistic cell killing by eliciting autophagic cell death that was dependent upstream on mitochondrial reactive oxygen species generation and increased p62 levels and downstream on activation of p38 mitogen-activated protein kinase and inactivation of mammalian target of rapamycin. By immunohistochemical analysis, in drug combination-treated cells, microtubule-associated protein light chain 3 (LC3) associated with mitochondrial (cytochrome c oxidase), autophagosome (p62), and autolysosome (lysosomal associated membrane protein 2) proteins. Treatment of cells with 3-methyladenine or knockdown of beclin 1 was protective, whereas chloroquine treatment had no protective effect. Expression of myeloid cell leukemia-1 (MCL-1), compared with that of BCL-2 or BCL-2-related gene long isoform, protected against drug combination lethality. Lapatinib and obatoclax-initiated autophagy depended on NOXA-mediated displacement of the prosurvival BCL-2 family member, MCL-1, from beclin 1, which was essential for the initiation of autophagy. Taken together, our data argue that lapatinib and obatoclax-induced toxic autophagy is due to impaired autophagic degradation, and this disturbance of autophagic flux leads to an accumulation of toxic proteins and loss of mitochondrial function.
Collapse
Affiliation(s)
- Yong Tang
- Department of Neurosurgery, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | |
Collapse
|
18
|
Johnston A, Ponzetti K, Anwer MS, Webster CRL. cAMP-guanine exchange factor protection from bile acid-induced hepatocyte apoptosis involves glycogen synthase kinase regulation of c-Jun NH2-terminal kinase. Am J Physiol Gastrointest Liver Physiol 2011; 301:G385-400. [PMID: 21546580 PMCID: PMC3280825 DOI: 10.1152/ajpgi.00430.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 05/01/2011] [Indexed: 01/31/2023]
Abstract
Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3'-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH(2)-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.
Collapse
Affiliation(s)
| | | | - M. S. Anwer
- Biomedical Science, Tufts Cummings School of Veterinary Medicine, Grafton, Massachusetts
| | | |
Collapse
|
19
|
Xie R, Nguyen S, McKeehan K, Wang F, McKeehan WL, Liu L. Microtubule-associated protein 1S (MAP1S) bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. J Biol Chem 2011; 286:10367-77. [PMID: 21262964 PMCID: PMC3060490 DOI: 10.1074/jbc.m110.206532] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/18/2011] [Indexed: 11/06/2022] Open
Abstract
The ubiquitously distributed MAP1S is a homologue of the exclusively neuronal distributed microtubule-associated protein 1A and 1B (MAP1A/B). They give rise to multiple isoforms through similar post-translational modification. Isoforms of MAP1S have been implicated in microtubule dynamics and mitotic abnormalities and mitotic cell death. Here we show that ablation of the Map1s gene in mice caused reduction in the B-cell CLL/lymphoma 2 or xL (Bcl-2/xL) and cyclin-dependent kinase inhibitor 1B (P27) protein levels, accumulation of defective mitochondria, and severe defects in response to nutritive stress, suggesting defects in autophagosomal biogenesis and clearance. Furthermore, MAP1S isoforms interacted with the autophagosome-associated light chain 3 of MAP1A/B (LC3), a homologue of yeast autophagy-related gene 8 (ATG8), and recruited it to stable microtubules in a MAP1S and LC3 isoform-dependent mode. In addition, MAP1S interacted with mitochondrion-associated leucine-rich PPR-motif containing protein (LRPPRC) that interacts with the mitophagy initiator and Parkinson disease-related protein Parkin. The three-way interactions of MAP1S isoforms with LC3 and microtubules as well as the interaction of MAP1S with LRPPRC suggest that MAP1S isoforms may play positive roles in integration of autophagic components with microtubules and mitochondria in both autophagosomal biogenesis and degradation. For the first time, our results clarify roles of MAP1S in bridging microtubules and mitochondria with autophagic and mitophagic initiation, maturation, trafficking, and lysosomal clearance. Defects in the MAP1S-regulated autophagy may impact heart disease, cancers, neurodegenerative diseases, and a wide range of other diseases.
Collapse
Affiliation(s)
- Rui Xie
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Susan Nguyen
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Kerstin McKeehan
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Fen Wang
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Wallace L. McKeehan
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Leyuan Liu
- From the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| |
Collapse
|
20
|
Li X, Wu WKK, Sun B, Cui M, Liu S, Gao J, Lou H. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells. Toxicol Appl Pharmacol 2010; 251:146-54. [PMID: 21185854 DOI: 10.1016/j.taap.2010.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 01/07/2023]
Abstract
Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G₂/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-mediated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21(Waf1/Cip1). In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B₁, a cyclin required for progression through the G₂/M phase. Taken together, DHA induces G₂/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Eulitt PJ, Park MA, Hossein H, Cruikshanks N, Yang C, Dmitriev IP, Yacoub A, Curiel DT, Fisher PB, Dent P. Enhancing mda-7/IL-24 therapy in renal carcinoma cells by inhibiting multiple protective signaling pathways using sorafenib and by Ad.5/3 gene delivery. Cancer Biol Ther 2010; 10:1290-305. [PMID: 20948318 DOI: 10.4161/cbt.10.12.13497] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have determined whether an adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7, more effectively infects and kills renal carcinoma cells (RCCs) compared to a serotype 5 virus, Ad.5-mda-7. RCCs are a tumor cell type that generally does not express the receptor for the type 5 adenovirus; the coxsackie and adenovirus receptor (CAR). Ad.5/3-mda-7 infected RCCs to a much greater degree than Ad.5-mda-7. MDA-7/IL-24 protein secreted from Ad.5/3-mda-7-infected RCCs induced MDA-7/IL-24 expression and promoted apoptosis in uninfected "bystander" RCCs. MDA-7/IL-24 killed both infected and bystander RCCs via CD95 activation. Knockdown of intracellular MDA-7/IL-24 in uninfected RCCs blocked the lethal effects of conditioned media. Infection of RCC tumors in one flank, with Ad.5/3-mda-7, suppressed growth of infected tumors and reduced the growth rate of uninfected tumors implanted on the opposite flank. The toxicity of the serotype 5/3 recombinant adenovirus to express MDA-7/IL-24 was enhanced by combined molecular or small molecule inhibition of MEK1/2 and PI3K; inhibition of mTOR, PI3K and MEK1/2; or use of the multi-kinase inhibitor sorafenib. In RCCs, combined inhibition of cytoprotective cell signaling pathways enhanced the MDA-7/IL-24-induction of CD95 activation, with greater mitochondrial dysfunction due to loss of MCL-1 and BCL-XL expression, and tumor cell death. Treatment of RCC tumors in vivo with sorafenib also enhanced Ad.5/3-mda-7 toxicity and prolonged animal survival. Future combinations of these approaches hold promise for developing a more effective therapy for kidney cancer.
Collapse
Affiliation(s)
- Patrick J Eulitt
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, 401 College St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mitchell C, Yacoub A, Hossein H, Martin AP, Bareford MD, Eulitt P, Yang C, Nephew KP, Dent P. Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. Cancer Biol Ther 2010; 10:903-17. [PMID: 20855960 DOI: 10.4161/cbt.10.9.13273] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present studies have examined approaches to suppress MCL-1 function in breast cancer cells, as a means to promote tumor cell death. Treatment of breast cancer cells with CDK inhibitors (flavopiridol; roscovitine) enhanced the lethality of the ERBB1 inhibitor lapatinib in a synergistic fashion. CDK inhibitors interacted with lapatinib to reduce MCL-1 expression and over-expression of MCL-1 or knock down of BAX and BAK suppressed drug combination lethality. Lapatinib-mediated inhibition of ERK1/2 and to a lesser extent AKT facilitated CDK inhibitor -induced suppression of MCL-1 levels. Treatment of cells with the BH3 domain / MCL-1 inhibitor obatoclax enhanced the lethality of lapatinib in a synergistic fashion. Knock out of MCL-1 and BCL-XL enhanced lapatinib toxicity to a similar extent as obatoclax and suppressed the ability of obatoclax to promote lapatinib lethality. Pre-treatment of cells with lapatinib or with obatoclax enhanced basal levels of BAX and BAK activity and further enhanced drug combination toxicity. In vivo tumor growth data in xenograft and syngeneic model systems confirmed our in vitro findings. Treatment of cells with CDK inhibitors enhanced the lethality of obatoclax in a synergistic fashion. Over-expression of MCL-1 or knock down of BAX and BAK suppressed the toxic interaction between CDK inhibitors and obatoclax. Obatoclax and lapatinib treatment or obatoclax and CDK inhibitor treatment or lapatinib and CDK inhibitor treatment radiosensitized breast cancer cells. Lapatinib and obatoclax interacted to suppress mammary tumor growth in vivo. Collectively our data demonstrate that manipulation of MCL-1 protein expression by CDK inhibition or inhibition of sequestering function MCL-1 by Obatoclax renders breast cancer cells more susceptible to BAX/BAK-dependent mitochondrial dysfunction and tumor cell death.
Collapse
Affiliation(s)
- Clint Mitchell
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Inhibition of Autophagy Enhances Anticancer Effects of Atorvastatin in Digestive Malignancies. Cancer Res 2010; 70:7699-709. [DOI: 10.1158/0008-5472.can-10-1626] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Park MA, Reinehr R, Häussinger D, Voelkel-Johnson C, Ogretmen B, Yacoub A, Grant S, Dent P. Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells. Mol Cancer Ther 2010; 9:2220-31. [PMID: 20682655 PMCID: PMC2933415 DOI: 10.1158/1535-7163.mct-10-0274] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95; the present studies have determined how sorafenib and vorinostat individually contribute to CD95 activation. Sorafenib (3-6 micromol/L) promoted a dose-dependent increase in Src Y416, ERBB1 Y845 and CD95 Y232/Y291 phosphorylation, and Src Y527 dephosphorylation. Low levels of sorafenib-induced (3 micromol/L) CD95 tyrosine phosphorylation did not promote surface localization whereas sorafenib (6 micromol/L), or sorafenib (3 micromol/L) and vorinostat (500 nmol/L) treatment promoted higher levels of CD95 phosphorylation which correlated with DISC formation, receptor surface localization, and autophagy. CD95 (Y232F, Y291F) was not tyrosine phosphorylated and was unable to localize plasma membrane or induce autophagy. Knockdown/knockout of Src family kinases abolished sorafenib-induced CD95 tyrosine phosphorylation, DISC formation, and the induction of cell death and autophagy. Knockdown of platelet-ived growth factor receptor-beta enhanced Src Y416 and CD95 tyrosine phosphorylation, which correlated with elevated CD95 plasma membrane levels and autophagy, and with a reduced ability of sorafenib to promote CD95 membrane localization. Vorinostat increased reactive oxygen species levels, and in a delayed NF kappa B-dependent fashion, those of FAS ligand and CD95. Neutralization of FAS-L did not alter the initial rapid drug-induced activation of CD95; however, neutralization of FAS-L reduced sorafenib + vorinostat toxicity by approximately 50%. Thus, sorafenib contributes to CD95 activation by promoting receptor tyrosine phosphorylation, whereas vorinostat contributes to CD95 activation via the initial facilitation of reactive oxygen species generation and subsequently of FAS-L expression.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Besim Ogretmen
- Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Adly Yacoub
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- Department of Neurosurgery, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Steven Grant
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- Department of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- Institute for Molecular Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Paul Dent
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- Institute for Molecular Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- Department of Neurosurgery, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| |
Collapse
|
25
|
Park MA, Mitchell C, Zhang G, Yacoub A, Allegood J, Häussinger D, Reinehr R, Larner A, Spiegel S, Fisher PB, Voelkel-Johnson C, Ogretmen B, Grant S, Dent P. Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2A-reactive oxygen species-dependent signaling pathway. Cancer Res 2010; 70:6313-24. [PMID: 20631069 PMCID: PMC2918282 DOI: 10.1158/0008-5472.can-10-0999] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The targeted therapeutics sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I evaluation. In this study, we determined how CD95 is activated by treatment with this drug combination. Low doses of sorafenib and vorinostat, but not the individual drugs, rapidly increased reactive oxygen species (ROS), Ca(2+), and ceramide levels in gastrointestinal tumor cells. The production of ROS was reduced in Rho zero cells. Quenching ROS blocked drug-induced CD95 surface localization and apoptosis. ROS generation, CD95 activation, and cell killing was also blocked by quenching of induced Ca(2+) levels or by inhibition of PP2A. Inhibition of acidic sphingomyelinase or de novo ceramide generation blocked the induction of ROS; however, combined inhibition of both acidic sphingomyelinase and de novo ceramide generation was required to block the induction of Ca(2+). Quenching of ROS did not affect drug-induced ceramide/dihydro-ceramide levels, whereas quenching of Ca(2+) reduced the ceramide increase. Sorafenib and vorinostat treatment radiosensitized liver and pancreatic cancer cells, an effect that was suppressed by quenching ROS or knockdown of LASS6. Further, sorafenib and vorinostat treatment suppressed the growth of pancreatic tumors in vivo. Our findings show that induction of cytosolic Ca(2+) by sorafenib and vorinostat is a primary event that elevates dihydroceramide levels, each essential steps in ROS generation that promotes CD95 activation.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Clint Mitchell
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Guo Zhang
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Adly Yacoub
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andrew Larner
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Paul B. Fisher
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- Human and Molecular Genetics, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | | | - Besim Ogretmen
- Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Steven Grant
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- Department of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Paul Dent
- Department of Biochemistry, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| |
Collapse
|
26
|
Hamed HA, Yacoub A, Park MA, Eulitt PJ, Dash R, Sarkar D, Dmitriev IP, Lesniak MS, Shah K, Grant S, Curiel DT, Fisher PB, Dent P. Inhibition of multiple protective signaling pathways and Ad.5/3 delivery enhances mda-7/IL-24 therapy of malignant glioma. Mol Ther 2010; 18:1130-1142. [PMID: 20179672 PMCID: PMC2889737 DOI: 10.1038/mt.2010.29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/30/2010] [Indexed: 11/09/2022] Open
Abstract
We have explored the mechanism by which inhibition of multiple cytoprotective cell-signaling pathways enhance melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) toxicity toward invasive primary human glioblastoma multiforme (GBM) cells, and whether improving adenoviral infectivity/delivery of mda-7/IL-24 enhances therapeutic outcome in animals containing orthotopic xenografted GBM cells. The toxicity of a serotype 5 recombinant adenovirus to express MDA-7/IL-24 (Ad.5-mda-7) was enhanced by combined molecular or small molecule inhibition of mitogen-activated extracellular regulated kinase (MEK)1/2 and phosphatidyl inositol 3-kinase (PI3K) or AKT; inhibition of mammalian target of rapamycin (mTOR) and MEK1/2; and the HSP90 inhibitor 17AAG. Molecular inhibition of mTOR/PI3K/MEK1 signaling in vivo also enhanced Ad.5-mda-7 toxicity. In GBM cells of diverse genetic backgrounds, inhibition of cytoprotective cell-signaling pathways enhanced MDA-7/IL-24-induced autophagy, mitochondrial dysfunction and tumor cell death. Due partly to insufficient adenovirus serotype 5 gene delivery this therapeutic approach has shown limited success in GBM. To address this problem, we employed a recombinant adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7. Ad.5/3-mda-7 more effectively infected and killed GBM cells in vitro and in vivo than Ad.5-mda-7. Future combinations of these approaches hold promise for developing an effective therapy for GBM.
Collapse
Affiliation(s)
- Hossein A Hamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Adly Yacoub
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Margaret A Park
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Patrick J Eulitt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rupesh Dash
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Igor P Dmitriev
- Division of Human Gene Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Khalid Shah
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Grant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; Department of Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - David T Curiel
- Division of Human Gene Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
27
|
Hamed HA, Yacoub A, Park MA, Eulitt P, Sarkar D, Dimitrie IP, Chen CS, Grant S, Curiel DT, Fisher PB, Dent P. OSU-03012 enhances Ad.7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biol Ther 2010; 9:526-36. [PMID: 20107314 DOI: 10.4161/cbt.9.7.11116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The present studies focused on determining whether the autophagy-inducing drug OSU-03012 (AR-12) could enhance the toxicity of recombinant adenoviral delivery of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) in glioblastoma multiforme (GBM) cells. The toxicity of a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7) was enhanced by OSU-03012 in a diverse panel of primary human GBM cells. The enhanced toxicity correlated with reduced ERK1/2 phosphorylation and expression of MCL-1 and BCL-XL, and was blocked by molecular activation of ERK1/2 and by inhibition of the intrinsic, but not the extrinsic, apoptosis pathway. Both OSU-03012 and expression of MDA-7/IL-24 increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) that correlated with increased levels of autophagy and expression of dominant negative PERK blocked autophagy induction and tumor cell death. Knockdown of ATG5 or Beclin1 suppressed OSU-03012 enhanced MDA-7/IL-24-induced autophagy and blocked the lethal interaction between the two agents. Ad.mda-7-infected GBM cells secreted MDA-7/IL-24 into the growth media and this conditioned media induced expression of MDA-7/IL-24 in uninfected GBM cells. OSU-03012 interacted with conditioned media to kill GBM cells and knockdown of MDA-7/IL-24 in these cells suppressed tumor cell killing. Collectively, our data demonstrate that the induction of autophagy and mitochondrial dysfunction by a combinatorial treatment approach represents a potentially viable strategy to kill primary human GBM cells.
Collapse
Affiliation(s)
- Hossein A Hamed
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 401 College St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yacoub A, Liu R, Park MA, Hamed HA, Dash R, Schramm DN, Sarkar D, Dimitriev IP, Bell JK, Grant S, Farrell NP, Curiel DT, Fisher PB, Dent P. Cisplatin enhances protein kinase R-like endoplasmic reticulum kinase- and CD95-dependent melanoma differentiation-associated gene-7/interleukin-24-induced killing in ovarian carcinoma cells. Mol Pharmacol 2010; 77:298-310. [PMID: 19910452 PMCID: PMC2812067 DOI: 10.1124/mol.109.061820] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/11/2009] [Indexed: 12/22/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a unique interleukin (IL)-10 family cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which recombinant adenoviral delivery of MDA-7/IL-24 inhibits cell survival of human ovarian carcinoma cells. Expression of MDA-7/IL-24 induced phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor2alpha (eIF2alpha). In a PERK-dependent fashion, MDA-7/IL-24 reduced ERK1/2 and AKT phosphorylation and activated c-Jun NH(2)-terminal kinase (JNK) 1/2 and p38 mitogen-activated protein kinase (MAPK). MDA-7/IL-24 reduced MCL-1 and BCL-XL and increased BAX levels via PERK signaling; cell-killing was mediated via the intrinsic pathway, and cell killing was primarily necrotic as judged using Annexin V/propidium iodide staining. Inhibition of p38 MAPK and JNK1/2 abolished MDA-7/IL-24 toxicity and blocked BAX and BAK activation, whereas activation of mitogen-activated extracellular-regulated kinase (MEK) 1/2 or AKT suppressed enhanced killing and JNK1/2 activation. MEK1/2 signaling increased expression of the MDA-7/IL-24 and PERK chaperone BiP/78-kDa glucose regulated protein (GRP78), and overexpression of BiP/GRP78 suppressed MDA-7/IL-24 toxicity. MDA-7/IL-24-induced LC3-green fluorescent protein vesicularization and processing of LC3; and knockdown of ATG5 suppressed MDA-7/IL-24-mediated toxicity. MDA-7/IL-24 and cisplatin interacted in a greater than additive fashion to kill tumor cells that was dependent on a further elevation of JNK1/2 activity and recruitment of the extrinsic CD95 pathway. MDA-7/IL-24 toxicity was enhanced in a weak additive fashion by paclitaxel; paclitaxel enhanced MDA-7/IL-24 + cisplatin lethality in a greater than additive fashion via BAX. Collectively, our data demonstrate that MDA-7/IL-24 induces an endoplasmic reticulum stress response that activates multiple proapoptotic pathways, culminating in decreased ovarian tumor cell survival.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yacoub A, Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, Ogretmen B, Dash R, Sarkar D, Broaddus WC, Grant S, Curiel DT, Fisher PB, Dent P. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res 2010; 70:1120-9. [PMID: 20103619 DOI: 10.1158/0008-5472.can-09-4043] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R-like endoplasmic reticulum kinase (PERK), Ca(++) elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca(++) induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7-killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca(2+), and ROS, which in turn promote glioma cell autophagy and cell death.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry and Molecular Biology, VCU Institute of Molecular Medicine, Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martin AP, Mitchell C, Rahmani M, Nephew KP, Grant S, Dent P. Inhibition of MCL-1 enhances lapatinib toxicity and overcomes lapatinib resistance via BAK-dependent autophagy. Cancer Biol Ther 2009; 8:2084-96. [PMID: 19823038 DOI: 10.4161/cbt.8.21.9895] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prior studies demonstrated that resistance to the ERBB1/2 inhibitor Lapatinib in HCT116 cells was mediated by increased MCL-1 expression. We examined whether inhibition of BCL-2 family function could restore Lapatinib toxicity in Lapatinib adapted tumor cells and enhance Lapatinib toxicity in naive cells. The BCL-2 family antagonist Obatoclax (GX15-070), that inhibits BCL-2/BCL-X(L)/MCL-1 function, enhanced Lapatinib toxicity in parental HCT116 and Lapatinib adapted HCT116 cells. In breast cancer lines, regardless of elevated ERBB1/2 expression, GX15-070 enhanced Lapatinib toxicity within 3-12 h. The promotion of Lapatinib toxicity neither correlated with cleavage of caspase 3 nor was blocked by inhibition caspases; and was not associated with changes in the activities of ERK1/2, JNK1/2 or p38 MAPK but with reduced AKT, mTOR and S6K1 phosphorylation. The promotion of Lapatinib toxicity by GX15-070 correlated with increased cytosolic levels of apoptosis inducing factor (AIF) and expression of ATG8 (LC3), and the formation of large vesicles that intensely stained for a transfected LC3-GFP construct. Knock down of the autophagy regulatory proteins ATG5 or Beclin1 suppressed the induction of LC3-GFP vesicularization and significantly reduced cell killing, whereas knock down of MCL-1 and BCL-X(L) enhanced the induction of LC3-GFP vesicularization and significantly enhanced cell killing. Knockdown of Beclin1 and AIF abolished cell killing. Collectively, our data demonstrate that Obatoclax mediated inhibition of MCL-1 rapidly enhances Lapatinib toxicity in tumor cells via a toxic form of autophagy and via AIF release from the mitochondrion.
Collapse
Affiliation(s)
- Aditi Pandya Martin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Amaral JD, Castro RE, Steer CJ, Rodrigues CMP. p53 and the regulation of hepatocyte apoptosis: implications for disease pathogenesis. Trends Mol Med 2009; 15:531-41. [PMID: 19822456 DOI: 10.1016/j.molmed.2009.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 01/06/2023]
Abstract
The interplay between p53 and apoptosis in diseases such as cancer, neurodegeneration, ischemia and atherosclerosis underscores the need to understand the complexity of p53 networks. Here, we highlight recent studies of p53-induced apoptosis in human diseases, with a focus on the modulation of liver cell apoptosis. In addition, recent work has provided new insights into mechanisms underlying the antiapoptotic functions of the endogenous bile acid ursodeoxycholic acid (UDCA), suggesting that the finely tuned, complex control of p53 by Mdm2 is a key step in the UDCA modulation of deregulated, p53-triggered apoptosis. The effect of targeting cell death signaling proteins has been established in preclinical models of human diseases. Finally, we review recent therapeutic strategies and clinical applications of targeted agents, with a particular emphasis on the potential use of UDCA.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|
32
|
Arsham AM, Neufeld TP. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 2009; 4:e6068. [PMID: 19562034 PMCID: PMC2698153 DOI: 10.1371/journal.pone.0006068] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/28/2009] [Indexed: 11/18/2022] Open
Abstract
The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha), and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1). We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.
Collapse
Affiliation(s)
- Andrew M. Arsham
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Thomas P. Neufeld
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Oh JH, Yoon HJ, Lim JS, Park HJ, Cho JW, Kwon MS, Yoon S. Analysis of Gene Expression in 4,4'-Methylenedianiline-induced Acute Hepatotoxicity. Toxicol Res 2009; 25:85-92. [PMID: 32038824 PMCID: PMC7006339 DOI: 10.5487/tr.2009.25.2.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 01/06/2023] Open
Abstract
4,4′-Methylenedianiline (MDA) is an aromatic amine that is widely used in the industrial synthetic process. Genotoxic MDA forms DNA adducts in the liver and is known to induce liver damage in human and rats. To elucidate the molecular mechanisms associated with MDA-induced hepatotoxicity, we have identified genes differentially expressed by microarray approach. BALB/c male mice were treated once daily with MDA (20 mg/kg) up to 7 days via intraperitoneal injection (i.p.) and hepatic damages were revealed by histopathological observation and elevation of serum marker enzymes such as AST, ALT, ALP, cholesterol, DBIL, and TBIL. Microarray analysis showed that 952 genes were differentially expressed in the liver of MDA-treated mice and their biological functions and canonical pathways were further analyzed using Ingenuity Pathways Analysis (IPA). Toxicological functional analysis showed that genes related to hepatotoxicity such hyperplasia/hyperproliferation (Timpl), necrosis/cell death (Cd14, Mt1f, Timpl, and Pmaipl), hemorrhaging (Mt1f), cholestasis (Akr1c3, Hpx, and Slc10a2), and inflammation (Cd14 and Hpx) were differentially expressed in MDA-treated group. This gene expression profiling should be useful for elucidating the genetic events associated with aromatic amine-induced hepatotoxicity and for discovering the potential biomarkers for hepatotoxicity.
Collapse
Affiliation(s)
- Jung-Hwa Oh
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Hea-Jin Yoon
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Jung-Sun Lim
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Han-Jin Park
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Jae-Woo Cho
- 24Clinical Pathology Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| | - Myung-Sang Kwon
- 34Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea.,44School of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 Korea
| | - Seokjoo Yoon
- 14Toxicogenomics Team, Korea Institute of Toxicology, 19 Shinsung-ro, Yuseoung, Daejeon, 305-343 Korea
| |
Collapse
|
34
|
Pattingre S, Bauvy C, Levade T, Levine B, Codogno P. Ceramide-induced autophagy: to junk or to protect cells? Autophagy 2009; 5:558-60. [PMID: 19337026 DOI: 10.4161/auto.5.4.8390] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ceramide is a sphingolipid bioactive molecule that induces apoptosis and other forms of cell death, and triggers macroautophagy (referred to below as autophagy). Like amino acid starvation, ceramide triggers autophagy by interfering with the mTOR-signaling pathway, and by dissociating the Beclin 1:Bcl-2 complex in a c-Jun N-terminal kinase 1 (JNK1)-mediated Bcl-2 phosphorylation-dependent manner. Dissociation of the Beclin 1:Bcl-2 complex, and the subsequent stimulation of autophagy have been observed in various contexts in which the cellular level of long-chain ceramides was increased. It is notable that the conversion of short-chain ceramides (C(2)-ceramide and C(6)-ceramide) into long-chain ceramide via the activity of ceramide synthase is required to trigger autophagy. The dissociation of the Beclin 1:Bcl-2 complex has also been observed in response to tamoxifen and PDMP (an inhibitor of the enzyme that converts ceramide to glucosylceramide), drugs that increase the intracellular level of long-chain ceramides. However, and in contrast to starvation, overexpression of Bcl-2 does not blunt ceramide-induced autophagy. Whether this autophagy that is unchecked by forced dissociation of the Beclin 1:Bcl-2 complex is related to the ability of ceramide to trigger cell death remains an open question. More generally, the question of whether ceramide-induced autophagy is a dedicated cell death mechanism deserves closer scrutiny.
Collapse
Affiliation(s)
- Sophie Pattingre
- INSERM U756 and Université Paris Sud 11, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
35
|
Amaral JD, Viana RJS, Ramalho RM, Steer CJ, Rodrigues CMP. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 2009; 50:1721-34. [PMID: 19417220 DOI: 10.1194/jlr.r900011-jlr200] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
36
|
Park MA, Walker T, Martin AP, Allegood J, Vozhilla N, Emdad L, Sarkar D, Rahmani M, Graf M, Yacoub A, Koumenis C, Spiegel S, Curiel DT, Voelkel-Johnson C, Grant S, Fisher PB, Dent P. MDA-7/IL-24-induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK-dependent mechanism. Mol Cancer Ther 2009; 8:1280-91. [PMID: 19417161 PMCID: PMC2889018 DOI: 10.1158/1535-7163.mct-09-0073] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7-induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal-regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH(2)-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7-induced phosphorylation of protein kinase R-like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R-like endoplasmic reticulum kinase that correlated with reduced c-jun NH(2)-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal-regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Teneille Walker
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Aditi Pandya Martin
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Nicollaq Vozhilla
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Mohammed Rahmani
- Department of Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Martin Graf
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Adly Yacoub
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Costas Koumenis
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Grant
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
Park MA, Zhang G, Martin AP, Hamed H, Mitchell C, Hylemon PB, Graf M, Rahmani M, Ryan K, Liu X, Spiegel S, Norris J, Fisher PB, Grant S, Dent P. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther 2008; 7:1648-62. [PMID: 18787411 PMCID: PMC2674577 DOI: 10.4161/cbt.7.10.6623] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We recently noted that low doses of sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I trials. The present studies mechanistically extended our initial observations. Low doses of sorafenib and vorinostat, but not the individual agents, caused an acidic sphingomyelinase and fumonisin B1-dependent increase in CD95 surface levels and CD95 association with caspase 8. Knock down of CD95 or FADD expression reduced sorafenib/vorinostat lethality. Signaling by CD95 caused PERK activation that was responsible for both promoting caspase 8 association with CD95 and for increased eIF2alpha phosphorylation; suppression of eIF2alpha function abolished drug combination lethality. Cell killing was paralleled by PERK-and eIF2alpha-dependent lowering of c-FLIP-s protein levels and overexpression of c-FLIP-s maintained cell viability. In a CD95-, FADD- and PERK-dependent fashion, sorafenib and vorinostat increased expression of ATG5 that was responsible for enhanced autophagy. Expression of PDGFRbeta and FLT3 were essential for high dose single agent sorafenib treatment to promote autophagy. Suppression of PERK function reduced sorafenib and vorinostat lethality whereas suppression of ATG5 levels elevated sorafenib and vorinostat lethality. Overexpression of c-FLIP-s blocked apoptosis and enhanced drug-induced autophagy. Thus sorafenib and vorinostat promote ceramide-dependent CD95 activation followed by induction of multiple downstream survival regulatory signals: ceramide-CD95-PERK-FADD-pro-caspase 8 (death); ceramide-CD95-PERK-eIF2alpha- downward arrowc-FLIP-s (death); ceramide-CD95-PERK-ATG5-autophagy (survival).
Collapse
Affiliation(s)
- Margaret A Park
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Park MA, Zhang G, Norris J, Hylemon PB, Fisher PB, Grant S, Dent P. Regulation of autophagy by ceramide-CD95-PERK signaling. Autophagy 2008; 4:929-31. [PMID: 18719356 PMCID: PMC3292039 DOI: 10.4161/auto.6732] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The manuscripts by Park et al. and Zhang et al. were initially planned as studies to understand the regulation of cell survival in transformed cells treated with sorafenib and vorinostat, and in primary hepatocytes treated with a bile acid+MEK1/2 inhibitor. In both cell systems we discovered that the toxicity of sorafenib and vorinostat or bile acid+MEK1/2 inhibitor exposure depended on the generation of ceramide and the ligand-independent activation of the CD95 death receptor, with subsequent activation of pro-caspase 8. We noted, however, in these systems that, in parallel with death receptor-induced activation of the extrinsic pathway, CD95 signaling also promoted increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) and eIF2alpha, increased expression of ATG5, and increased processing of LC3 and vesicularization of a GFP-LC3 construct. The knockdown of ATG5 expression blocked GFP-LC3 vesicularization and enhanced cell killing. Thus ceramide-CD95 signaling promoted cell death via activation of pro-caspase 8 and cell survival via autophagy. PERK was shown to signal in a switch-hitting fashion; PERK promoted CD95-DISC formation and an eIF2alpha-dependent reduction in c-FLIP-s levels that were essential for cell killing to proceed, but in parallel it also promoted autophagy that was protective. The death receptor-induced apoptosis and autophagy occur proximal to the receptor rather than the mitochondrion, and the relative flow of death receptor signaling into either pathway may determine cell fate. Finally, death receptor induced apoptosis and autophagy could be potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - Guo Zhang
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - James Norris
- Department of Microbiology and Immunology; Medical University of South Carolina; Charleston, South Carolina USA
| | - Philip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia USA
| | - Paul B. Fisher
- Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia USA
- Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia USA
| | - Steven Grant
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia USA
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia USA
- Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia USA
| | - Paul Dent
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia USA
- Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia USA
| |
Collapse
|