1
|
Busch RJ, Doty C, Mills CA, Latifi F, Herring LE, Konjufca V, Vargas-Muñiz JM. Deletion of core septin gene aspB in Aspergillus fumigatus results in fungicidal activity of caspofungin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640155. [PMID: 40060473 PMCID: PMC11888321 DOI: 10.1101/2025.02.25.640155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Septins are a family of GTP-binding proteins found in many eukaryotic lineages. Although highly conserved throughout many eukaryotes, their functions vary across species. In Aspergillus fumigatus, the etiological agent of invasive aspergillosis, septins participate in a variety of processes such as cell wall organization of conidia, septation, and response to cell wall stress. Previous studies determined that the ΔaspB strain had a greater sensitivity to anti-cell wall drugs, especially the echinocandin caspofungin, yet mechanisms behind this augmented sensitivity are unknown. We performed cell viability staining of the deletion strains post-caspofungin exposure and found that the ΔaspA, ΔaspB, and ΔaspC strains have significantly lower cell viability. Concomitant with the reduced viability, deletion strains are more susceptible to caspofungin on solid media. These results indicate that the septin cytoskeleton is important for A. fumigatus survival in the presence of caspofungin. Due to the potential of improved therapeutic outcome, we followed up using a neutropenic murine model of invasive aspergillosis. Animals infected with the ΔaspB strain and treated with caspofungin showed improved survival compared to the animals infected with akuB KU80 wild-type or complemented strains. Additionally, histological analysis showed reduced fungal burden and inflammation in the ΔaspB infected, caspofungin-treated group. Affinity purification coupled with quantitative proteomics identified proteins involved in the septin-dependent response to caspofungin, includng four candidate interactors involved in cell wall stress response. Deletion of these candidate genes resulted in increased susceptibility to caspofungin and moderately reduced viability post-drug exposure. Taken together, these data suggest that septin AspB contributes to the fungistatic response to caspofungin.
Collapse
Affiliation(s)
- Rebecca Jean Busch
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Carson Doty
- School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States
| | - C. Allie Mills
- Michael Hooker Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Flutur Latifi
- Microbiology Program, Southern Illinois University-Carbondale, Carbondale, Illinois, United States
| | - Laura E. Herring
- Michael Hooker Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Vjollca Konjufca
- Microbiology Program, Southern Illinois University-Carbondale, Carbondale, Illinois, United States
| | - José M Vargas-Muñiz
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA
| |
Collapse
|
2
|
Das A, Kunwar A. Septins: Structural Insights, Functional Dynamics, and Implications in Health and Disease. J Cell Biochem 2025; 126:e30660. [PMID: 39324363 DOI: 10.1002/jcb.30660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility. Functionally, septins are essential to cell division, playing essential roles in cytokinetic furrow formation and maintaining the structural integrity of the contractile ring. They also regulate membrane trafficking and help organize intracellular organelles. In terms of physiology, septins facilitate cell migration, phagocytosis, and immune responses by maintaining membrane integrity and influencing cytoskeletal dynamics. Septin dysfunction is associated with pathophysiological conditions. Mutations in septin genes have been linked to neurodegenerative diseases, such as hereditary spastic paraplegias, underscoring their significance in neuronal function. Septins also play a role in cancer and infectious diseases, making them potential targets for therapeutic interventions. Septins serve as pivotal components of intracellular signaling networks, engaging with diverse proteins like kinases and phosphatases. By modulating the activity of these molecules, septins regulate vital cellular pathways. This integral role in signaling makes septins central to orchestrating cellular responses to environmental stimuli. This review mainly focuses on the human septins, their structural composition, regulatory functions, and implication in pathophysiological conditions underscores their importance in fundamental cellular biology. Moreover, their potential as therapeutic targets across various diseases further emphasizes their significance.
Collapse
Affiliation(s)
- Aurosikha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Lai HY, Yu KH, Tsai KC, Lee CC, Wang HY, Hsieh YP, Chiang KY, Kuo PL, Huang TT, Hung HY. The first attempt in synthesis, identification, and evaluation of SEPT9 inhibitors on human oral squamous carcinomas. Bioorg Chem 2025; 154:108068. [PMID: 39705938 DOI: 10.1016/j.bioorg.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Septin 9 (SEPT9), a GTPase, known as the fourth cytoskeleton, is widely expressed in various cells and tissues. The functions of SEPT9 are partly similar to other cytoskeletons as a structure protein. Further, SEPT9 can interact with other cytoskeletons, participating in actin dynamics and microtubule regulation. SEPT9 is associated with various diseases, such as cancers. Thus, it could be a potential drug target. However, there are no small molecule SEPT9 inhibitors and the only reported septin inhibitor, forchlorfenuron, has no effects on SEPT9 inhibition from our study results. Therefore, the derivatives of forchlorfenuron were synthesized, and their activities were evaluated by a direct SEPT9 inhibition screening platform, followed by localized surface plasmon resonance (LSPR) and cell-based assays. The screening results conveyed that 6b, 8a, and 8b are SEPT9 inhibitors with IC50 values of 91, 99, and 95 μM, respectively. Also, their binding affinities were 4, 18, and 22 μM, respectively, validated through LSPR. Eventually, the SAR concludes that at the para position, small substituents are tolerated, while at the ortho position, a bulky benzene ring substituent can be the best candidate. In cell-based assays, the IC50 of 6a, 8a, and 8b of human oral squamous carcinomas cytotoxicity were 122, 20, and 21 µM, respectively. Additionally, significant suppression of the cell migration and invasion ability was observed with the 8b treatment. The co-localization study revealed that 8b effectively disrupted the structural organization of SEPT9, microtubules, and actins. This is the first article to systematically study SEPT9 inhibitors and their biological properties, hoping to shed some light on septin research.
Collapse
Affiliation(s)
- Hsuan-Yu Lai
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ko-Hua Yu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Keng-Chang Tsai
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Chao-Chang Lee
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Han-Yu Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ping Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Yi Chiang
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Tze-Ta Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
4
|
Maddala R, Gorijavolu P, Lankford LK, Skiba NP, Challa P, Singh RK, Nair KS, Choquet H, Rao PV. Dysregulation of septin cytoskeletal organization in the trabecular meshwork contributes to ocular hypertension. JCI Insight 2024; 9:e179468. [PMID: 39641270 PMCID: PMC11623952 DOI: 10.1172/jci.insight.179468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Ocular hypertension, believed to result partly from increased contractile activity, cell adhesive interactions, and stiffness within the trabecular meshwork (TM), is a major risk factor for glaucoma, a leading cause of blindness. However, the identity of molecular mechanisms governing organization of actomyosin and cell adhesive interactions in the TM remains limited. Based on our previous findings, in which proteomics analyses revealed elevated levels of septins, including septin-9 in human TM cells treated with the ocular hypertensive agent dexamethasone, here, we evaluated the effects of septin-9 overexpression, deficiency, and pharmacological targeting in TM cells. These studies demonstrated a profound impact on actomyosin organization, cell adhesion, contraction, and phagocytosis. Overexpression raised intraocular pressure (IOP) in mice, while inhibition increased cell permeability. In addition, we replicated a significant association between a common variant (rs9038) in SEPT9 with IOP in the Genetic Epidemiology Research on Adult Healthy and Aging (GERA) cohort. Collectively, these data reveal a link between dysregulated septin cytoskeletal organization in the TM and increased IOP, likely due to enhanced cell contraction, adhesive interactions, and fibrotic activity. This suggests that targeting the septin cytoskeleton could offer a novel approach for lowering IOP in patients with glaucoma.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pallavi Gorijavolu
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Levi K. Lankford
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rakesh K. Singh
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - K. Saidas Nair
- Department of Ophthalmology, UCSF, San Francisco, California, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, California, USA
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Kim J, Kim D, Kim DK, Lee SH, Jang W, Lim DS. Formation of a giant unilocular vacuole via macropinocytosis-like process confers anoikis resistance. eLife 2024; 13:RP96178. [PMID: 39508547 PMCID: PMC11542918 DOI: 10.7554/elife.96178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Cell survival in metazoans depends on cell attachment to the extracellular matrix (ECM) or to neighboring cells. Loss of such attachment triggers a type of programmed cell death known as anoikis, the acquisition of resistance to which is a key step in cancer development. The mechanisms underlying anoikis resistance remain unclear, however. The intracellular F-actin cytoskeleton plays a key role in sensing the loss of cell-ECM attachment, but how its disruption affects cell fate during such stress is not well understood. Here, we reveal a cell survival strategy characterized by the formation of a giant unilocular vacuole (GUVac) in the cytoplasm of the cells whose actin cytoskeleton is disrupted during loss of matrix attachment. Time-lapse imaging and electron microscopy showed that large vacuoles with a diameter of >500 nm accumulated early after inhibition of actin polymerization in cells in suspension culture, and that these vacuoles subsequently coalesced to form a GUVac. GUVac formation was found to result from a variation of a macropinocytosis-like process, characterized by the presence of inwardly curved membrane invaginations. This phenomenon relies on both F-actin depolymerization and the recruitment of septin proteins for micron-sized plasma membrane invagination. The vacuole fusion step during GUVac formation requires PI(3)P produced by VPS34 and PI3K-C2α on the surface of vacuoles. Furthermore, its induction after loss of matrix attachment conferred anoikis resistance. Our results thus show that the formation of a previously unrecognized organelle promotes cell survival in the face of altered actin and matrix environments.
Collapse
Affiliation(s)
- Jeongsik Kim
- Department of Biological Sciences, KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Dahyun Kim
- Department of Biological Sciences, KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Dong-Kyun Kim
- Department of Biological Sciences, KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, OchangCheongjuRepublic of Korea
| | - Wonyul Jang
- Department of Biological Sciences, KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Dae-Sik Lim
- Department of Biological Sciences, KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| |
Collapse
|
6
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
7
|
Prislusky MI, Lam JGT, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The septin cytoskeleton is required for plasma membrane repair. EMBO Rep 2024; 25:3870-3895. [PMID: 38969946 PMCID: PMC11387490 DOI: 10.1038/s44319-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
Collapse
Affiliation(s)
- M Isabella Prislusky
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jonathan G T Lam
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Viviana Ruiz Contreras
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Marilynn Ng
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madeline Chamberlain
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sarika Pathak-Sharma
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madalyn Fields
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Léger T, Alilat S, Ferron PJ, Dec L, Bouceba T, Lanceleur R, Huet S, Devriendt-Renault Y, Parinet J, Clément B, Fessard V, Le Hégarat L. Chlordecone-induced hepatotoxicity and fibrosis are mediated by the proteasomal degradation of septins. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135177. [PMID: 39018595 DOI: 10.1016/j.jhazmat.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Chlordecone (CLD) is a pesticide persisting in soils and contaminating food webs. CLD is sequestered in the liver and poorly metabolized into chlordecol (CLDOH). In vitro liver cell models were used to investigate the fate and mechanistic effects of CLD and CLDOH using multiomics. A 3D-cell model was used to investigate whether CLD and CLDOH can affect susceptibility to the metabolic dysfunction-associated steatotic liver disease (MASLD). Hepatocytes were more sensitive to CLD than CLDOH. CLDOH was intensively metabolized into a glucuronide conjugate, whereas CLD was sequestered. CLD but not CLDOH induced a depletion of Septin-2,- 7,- 9,- 10,- 11 due to proteasomal degradation. Septin binding with CLD and CLDOH was confirmed by surface plasmon resonance. CLD disrupted lipid droplet size and increased saturated long-chain dicarboxylic acid production by inhibiting stearoyl-CoA desaturase (SCD) abundance. Neither CLD nor CLDOH induced steatosis, but CLD induced fibrosis in the 3D model of MASLD. To conclude, CLD hepatoxicity is specifically driven by the degradation of septins. CLDOH, was too rapidly metabolized to induce septin degradation. We show that the conversion of CLD to CLDOH reduced hepatotoxicity and fibrosis in liver organoids. This suggests that protective strategies could be explored to reduce the hepatotoxicity of CLD.
Collapse
Affiliation(s)
- Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France.
| | - Sarah Alilat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Pierre-Jean Ferron
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Léonie Dec
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Tahar Bouceba
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, Paris, France
| | - Rachelle Lanceleur
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Yoann Devriendt-Renault
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Bruno Clément
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| |
Collapse
|
9
|
Princen K, Van Dooren T, van Gorsel M, Louros N, Yang X, Dumbacher M, Bastiaens I, Coupet K, Dupont S, Cuveliers E, Lauwers A, Laghmouchi M, Vanwelden T, Carmans S, Van Damme N, Duhamel H, Vansteenkiste S, Prerad J, Pipeleers K, Rodiers O, De Ridder L, Claes S, Busschots Y, Pringels L, Verhelst V, Debroux E, Brouwer M, Lievens S, Tavernier J, Farinelli M, Hughes-Asceri S, Voets M, Winderickx J, Wera S, de Wit J, Schymkowitz J, Rousseau F, Zetterberg H, Cummings JL, Annaert W, Cornelissen T, De Winter H, De Witte K, Fivaz M, Griffioen G. Pharmacological modulation of septins restores calcium homeostasis and is neuroprotective in models of Alzheimer's disease. Science 2024; 384:eadd6260. [PMID: 38815015 PMCID: PMC11827694 DOI: 10.1126/science.add6260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-β and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-β and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Xiaojuan Yang
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | | | | | - Shana Dupont
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Eva Cuveliers
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Carmans
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Hein Duhamel
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Jovan Prerad
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Claes
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | | | - Marinka Brouwer
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sam Lievens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | | | - Marieke Voets
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Joris Winderickx
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- Functional Biology, Department of Biology, KU Leuven, 3001 Leuven-Heverlee, Belgium
| | - Stefaan Wera
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- ViroVet NV, 3001 Leuven-Heverlee, Belgium
| | - Joris de Wit
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Koen De Witte
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Marc Fivaz
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | |
Collapse
|
10
|
Holley CL, Emming S, Monteleone MM, Mellacheruvu M, Kenney KM, Lawrence GMEP, Coombs JR, Burgener SS, Schroder K. The septin modifier, forchlorfenuron, activates NLRP3 via a potassium-independent mitochondrial axis. Cell Chem Biol 2024; 31:962-972.e4. [PMID: 38759620 DOI: 10.1016/j.chembiol.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
The Nod-like receptor protein 3 (NLRP3) inflammasome is activated by stimuli that induce perturbations in cell homeostasis, which commonly converge on cellular potassium efflux. NLRP3 has thus emerged as a sensor for ionic flux. Here, we identify forchlorfenuron (FCF) as an inflammasome activator that triggers NLRP3 signaling independently of potassium efflux. FCF triggers the rearrangement of septins, key cytoskeletal proteins that regulate mitochondrial function. We report that FCF triggered the rearrangement of SEPT2 into tubular aggregates and stimulated SEPT2-independent NLRP3 inflammasome signaling. Similar to imiquimod, FCF induced the collapse of the mitochondrial membrane potential and mitochondrial respiration. FCF thereby joins the imidazoquinolines as a structurally distinct class of molecules that triggers NLRP3 inflammasome signaling independent of potassium efflux, likely by inducing mitochondrial damage.
Collapse
Affiliation(s)
- Caroline L Holley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Stefan Emming
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mercedes M Monteleone
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Manasa Mellacheruvu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kirsten M Kenney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace M E P Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jared R Coombs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
11
|
Kim K, Khazan N, Rowswell-Turner RB, Singh RK, Moore T, Strawderman MS, Miller JP, Snyder CWA, Awada A, Moore RG. Forchlorfenuron-Induced Mitochondrial Respiration Inhibition and Metabolic Shifts in Endometrial Cancer. Cancers (Basel) 2024; 16:976. [PMID: 38473335 DOI: 10.3390/cancers16050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Forchlorfenuron (FCF) is a widely used plant cytokinin that enhances fruit quality and size in agriculture. It also serves as a crucial pharmacological tool for the inhibition of septins. However, the precise target of FCF has not yet been fully determined. This study reveals a novel target of FCF and elucidates its downstream signaling events. FCF significantly impairs mitochondrial respiration and mediates metabolic shift toward glycolysis, thus making cells more vulnerable to glycolysis inhibition. Interestingly, FCF's impact on mitochondrial function persists, even in cells lacking septins. Furthermore, the impaired mitochondrial function leads to the degradation of HIF-1α, facilitated by increased cellular oxygen. FCF also induces AMPK activation, suppresses Erk1/2 phosphorylation, and reduces the expression of HER2, β-catenin, and PD-L1. Endometrial cancer is characterized by metabolic disorders such as diabetes and aberrant HER2/Ras-Erk1/2/β-catenin signaling. Thus, FCF may hold promise as a potential therapeutic in endometrial cancer.
Collapse
Affiliation(s)
- Kyukwang Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Negar Khazan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Rachael B Rowswell-Turner
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Rakesh K Singh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Taylor Moore
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Myla S Strawderman
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John P Miller
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Cameron W A Snyder
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Ahmad Awada
- Department of Gynecologic Oncology, Adventhealth, Orlando, FL 32804, USA
| | - Richard G Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| |
Collapse
|
12
|
Prislusky MI, Lam JG, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The Septin Cytoskeleton is Required for Plasma Membrane Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548547. [PMID: 37503091 PMCID: PMC10369955 DOI: 10.1101/2023.07.12.548547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mammalian cells are frequently exposed to mechanical and biochemical stressors resulting in plasma membrane injuries. Repair mechanisms reseal the plasma membrane to restore homeostasis and prevent cell death. In the present work, a silencing RNA screen was performed to uncover plasma membrane repair mechanisms of cells exposed to a pore-forming toxin (listeriolysin O). This screen identified molecules previously known to repair the injured plasma membrane such as annexin A2 (ANXA2) as well as novel plasma membrane repair candidate proteins. Of the novel candidates, we focused on septin 7 (SEPT7) because the septins are an important family of conserved eukaryotic cytoskeletal proteins. Using diverse experimental approaches, we established for the first time that SEPT7 plays a general role in plasma membrane repair of cells perforated by pore-forming toxins and mechanical wounding. Remarkably, upon cell injury, the septin cytoskeleton is extensively redistributed in a Ca 2+ -dependent fashion, a hallmark of plasma membrane repair machineries. The septins reorganize into subplasmalemmal domains arranged as knob and loop (or ring) structures containing F-actin, myosin II, and annexin A2 (ANXA2) and protrude from the cell surface. Importantly, the formation of these domains correlates with the plasma membrane repair efficiency. Super-resolution microscopy shows that septins and actin are arranged in intertwined filaments associated with ANXA2. Silencing SEPT7 expression prevented the formation of the F-actin/myosin II/ANXA2 domains, however, silencing expression of ANXA2 had no observable effect on their formation. These results highlight the key structural role of the septins in remodeling the plasma membrane and in the recruitment of the repair molecule ANXA2. Collectively, our data support a novel model in which the septin cytoskeleton acts as a scaffold to promote the formation of plasma membrane repair domains containing contractile F-actin and annexin A2.
Collapse
|
13
|
Zhovmer AS, Manning A, Smith C, Nguyen A, Prince O, Sáez PJ, Ma X, Tsygankov D, Cartagena-Rivera AX, Singh NA, Singh RK, Tabdanov ED. Septins provide microenvironment sensing and cortical actomyosin partitioning in motile amoeboid T lymphocytes. SCIENCE ADVANCES 2024; 10:eadi1788. [PMID: 38170778 DOI: 10.1126/sciadv.adi1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The all-terrain motility of lymphocytes in tissues and tissue-like gels is best described as amoeboid motility. For amoeboid motility, lymphocytes do not require specific biochemical or structural modifications to the surrounding extracellular matrix. Instead, they rely on changing shape and steric interactions with the microenvironment. However, the exact mechanism of amoeboid motility remains elusive. Here, we report that septins participate in amoeboid motility of T cells, enabling the formation of F-actin and α-actinin-rich cortical rings at the sites of cell cortex-indenting collisions with the extracellular matrix. Cortical rings compartmentalize cells into chains of spherical segments that are spatially conformed to the available lumens, forming transient "hourglass"-shaped steric locks onto the surrounding collagen fibers. The steric lock facilitates pressure-driven peristaltic propulsion of cytosolic content by individually contracting cell segments. Our results suggest that septins provide microenvironment-guided partitioning of actomyosin contractility and steric pivots required for amoeboid motility of T cells in tissue-like microenvironments.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Olivia Prince
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, and Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xuefei Ma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Niloy A Singh
- Department of Hematology Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rakesh K Singh
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey-Hummelstown, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
14
|
Li P, Sun H, Han X, Long F, Shen S, Li Z, Zeng F, Hao Z, Dong J. The Septin Gene StSep4 Contributes to the Pathogenicity of Setosphaeria turcica by Regulating the Morphology, Cell Wall Integrity, and Pathogenic Factor Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19568-19580. [PMID: 38019936 DOI: 10.1021/acs.jafc.3c06635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Septins are a conserved group of GTP-binding proteins found in all eukaryotes and are the fourth-most abundant cytoskeletal proteins. Septins of some pathogenic fungi are involved in morphological changes related to infection. Our previous studies have identified four core septins (StSep1-4) in Setosphaeria turcica, the causal agent of northern corn leaf blight, while only StSep4 is significantly upregulated during the invasive process. We therefore used forchlorfenuron (FCF), the specific inhibitor of septin, and ΔStSep4 knockout mutants to further clarify the role of septins in S. turcica pathogenicity. FCF treatment caused a dose-dependent reduction in S. turcica colony growth, delayed the formation of infection structures, and reduced the penetration ability. ΔStSep4 knockout mutants displayed abnormal mycelium morphology, slow mycelial growth, conidiation deficiency, delayed appressorium development, and weakened pathogenicity. StSep4 deletion also broke cell wall integrity, altered chitin distribution, decreased the melanin content, and disrupted normal nuclear localization. A transcriptomic comparison revealed that genes differentially expressed between ΔStSep4 and WT were enriched in terms of ribosomes, protein translation, membrane components, and transmembrane transport activities. Our results demonstrate that StSep4 is required for morphology and pathogenicity in S. turcica, making it a promising target for the development of novel fungicides.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hehe Sun
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xinpeng Han
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Feng Long
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Shen Shen
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhiyong Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050035, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
15
|
Jespersen JH, Harazin A, Bohn AB, Christensen A, Lorentzen E, Lorentzen A. Analysis of cortical cell polarity by imaging flow cytometry. J Cell Biochem 2023; 124:1685-1694. [PMID: 37721096 DOI: 10.1002/jcb.30476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Metastasis is the main cause of cancer-related death and therapies specifically targeting metastasis are highly needed. Cortical cell polarity (CCP) is a prometastatic property of circulating tumor cells affecting their ability to exit blood vessels and form new metastases that constitute a promising point of attack to prevent metastasis. However, conventional fluorescence microscopy on single cells and manual quantification of CCP are time-consuming and unsuitable for screening regulators. In this study, we developed an imaging flow cytometry-based method for high-throughput screening of factors affecting CCP in melanoma cells. The artificial intelligence-supported analysis method we developed is highly reproducible, accurate, and orders of magnitude faster than manual quantification. Additionally, this method is flexible and can be adapted to include additional cellular parameters. In a small-scale pilot experiment using polarity-, cytoskeleton-, or membrane-affecting drugs, we demonstrate that our workflow provides a straightforward and efficient approach for screening factors affecting CCP in cells in suspension and provide insights into the specific function of these drugs in this cellular system. The method and workflow presented here will facilitate large-scale studies to reveal novel cell-intrinsic as well as systemic factors controlling CCP during metastasis.
Collapse
Affiliation(s)
- Jesper H Jespersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andras Harazin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anja B Bohn
- Department of Biomedicine, FACS Core Facility, Aarhus University, Aarhus, Denmark
| | - Anni Christensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Health Bioimaging Core Facility, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Gonthier A, Botvinick EL, Grosberg A, Mohraz A. Effect of Porous Substrate Topographies on Cell Dynamics: A Computational Study. ACS Biomater Sci Eng 2023; 9:5666-5678. [PMID: 37713253 PMCID: PMC10565724 DOI: 10.1021/acsbiomaterials.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Controlling cell-substrate interactions via the microstructural characteristics of biomaterials offers an advantageous path for modulating cell dynamics, mechanosensing, and migration, as well as for designing immune-modulating implants, all without the drawbacks of chemical-based triggers. Specifically, recent in vivo studies have suggested that a porous implant's microscale curvature landscape can significantly impact cell behavior and ultimately the immune response. To investigate such cell-substrate interactions, we utilized a 3D computational model incorporating the minimum necessary physics of cell migration and cell-substrate interactions needed to replicate known in vitro behaviors. This model specifically incorporates the effect of membrane tension, which was found to be necessary to replicate in vitro cell behavior on curved surfaces. Our simulated substrates represent two classes of porous materials recently used in implant studies, which have markedly different microscale curvature distributions and pore geometries. We found distinct differences between the overall migration behaviors, shapes, and actin polymerization dynamics of cells interacting with the two substrates. These differences were correlated to the shape energy of the cells as they interacted with the porous substrates, in effect interpreting substrate topography as an energetic landscape interrogated by cells. Our results demonstrate that microscale curvature directly influences cell shape and migration and, therefore, is likely to influence cell behavior. This supports further investigation of the relationship between the surface topography of implanted materials and the characteristic immune response, a complete understanding of which would broadly advance principles of biomaterial design.
Collapse
Affiliation(s)
- Alyse
R. Gonthier
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Elliot L. Botvinick
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Beckman
Laser Institute and Medical Clinic, University
of California, Irvine, Irvine, California 92697, United States
- Department
of Surgery,University of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Anna Grosberg
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- The
NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ali Mohraz
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
17
|
Zhovmer AS, Manning A, Smith C, Wang J, Ma X, Tsygankov D, Dokholyan NV, Cartagena-Rivera AX, Singh RK, Tabdanov ED. Septins Enable T Cell Contact Guidance via Amoeboid-Mesenchymal Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559597. [PMID: 37808814 PMCID: PMC10557721 DOI: 10.1101/2023.09.26.559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lymphocytes exit circulation and enter in-tissue guided migration toward sites of tissue pathologies, damage, infection, or inflammation. By continuously sensing and adapting to the guiding chemo-mechano-structural properties of the tissues, lymphocytes dynamically alternate and combine their amoeboid (non-adhesive) and mesenchymal (adhesive) migration modes. However, which mechanisms guide and balance different migration modes are largely unclear. Here we report that suppression of septins GTPase activity induces an abrupt amoeboid-to-mesenchymal transition of T cell migration mode, characterized by a distinct, highly deformable integrin-dependent immune cell contact guidance. Surprisingly, the T cell actomyosin cortex contractility becomes diminished, dispensable and antagonistic to mesenchymal-like migration mode. Instead, mesenchymal-like T cells rely on microtubule stabilization and their non-canonical dynein motor activity for high fidelity contact guidance. Our results establish septin's GTPase activity as an important on/off switch for integrin-dependent migration of T lymphocytes, enabling their dynein-driven fluid-like mesenchymal propulsion along the complex adhesion cues.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jian Wang
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuefei Ma
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, The Pennsylvania State University Hershey-Hummelstown, PA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rakesh K Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
18
|
Ráduly Z, Szabó L, Dienes B, Szentesi P, Bana ÁV, Hajdú T, Kókai E, Hegedűs C, Csernoch L, Gönczi M. Migration of Myogenic Cells Is Highly Influenced by Cytoskeletal Septin7. Cells 2023; 12:1825. [PMID: 37508490 PMCID: PMC10378681 DOI: 10.3390/cells12141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Viktória Bana
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Lee AR, Park CY. Orai1 is an Entotic Ca 2+ Channel for Non-Apoptotic Cell Death, Entosis in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205913. [PMID: 36960682 DOI: 10.1002/advs.202205913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Entosis is a non-apoptotic cell death process that forms characteristic cell-in-cell structures in cancers, killing invading cells. Intracellular Ca2+ dynamics are essential for cellular processes, including actomyosin contractility, migration, and autophagy. However, the significance of Ca2+ and Ca2+ channels participating in entosis is unclear. Here, it is shown that intracellular Ca2+ signaling regulates entosis via SEPTIN-Orai1-Ca2+ /CaM-MLCK-actomyosin axis. Intracellular Ca2+ oscillations in entotic cells show spatiotemporal variations during engulfment, mediated by Orai1 Ca2+ channels in plasma membranes. SEPTIN controlled polarized distribution of Orai1 for local MLCK activation, resulting in MLC phosphorylation and actomyosin contraction, leads to internalization of invasive cells. Ca2+ chelators and SEPTIN, Orai1, and MLCK inhibitors suppress entosis. This study identifies potential targets for treating entosis-associated tumors, showing that Orai1 is an entotic Ca2+ channel that provides essential Ca2+ signaling and sheds light on the molecular mechanism underlying entosis that involves SEPTIN filaments, Orai1, and MLCK.
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chan Young Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
20
|
Fu L, Wang X, Yang Y, Chen M, Kuerban A, Liu H, Dong Y, Cai Q, Ma M, Wu X. Septin11 promotes hepatocellular carcinoma cell motility by activating RhoA to regulate cytoskeleton and cell adhesion. Cell Death Dis 2023; 14:280. [PMID: 37080972 PMCID: PMC10119145 DOI: 10.1038/s41419-023-05726-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
Septins as GTPases in the cytoskeleton, are linked to a broad spectrum of cellular functions, including cell migration and the progression of hepatocellular carcinoma (HCC). However, roles of SEPT11, the new member of septin, have been hardly understood in HCC. In the study, the clinical significance and biological function of SEPT11 in HCC was explored. SEPT11 was screened out by combining ATAC-seq with mRNA-seq. Role of SEPT11 in HCC was further investigated by using overexpression, shRNA and CRISPR/Cas9-mediated SEPT11-knockout cells or in vivo models. We found RNA-seq and ATAC-seq highlights LncRNA AY927503 (AY) induced SEPT11 transcription, resulting in Rho GTPase activation and cytoskeleton actin aggregation. The GTP-binding protein SEPT11 is thus considered, as a downstream factor of AY, highly expressed in various tumors, including HCC, and associated with poor prognosis of the patients. In vitro, SEPT11 overexpression promotes the migration and invasion of HCC cells, while SEPT11-knockout inhibits migration and invasion. In vivo, SEPT11-overexpressed HCC cells show high metastasis incidents but don't significantly affect proliferation. Meanwhile, we found SEPT11 targets RhoA, thereby regulating cytoskeleton rearrangement and abnormal cell adhesion through ROCK1/cofilin and FAK/paxillin signaling pathways, promoting invasion and migration of HCC. Further, we found SEPT11 facilitates the binding of GEF-H1 to RhoA, which enhances the activity of RhoA. Overall, our study confirmed function of SEPT11 in promoting metastasis in HCC, and preliminarily explored its related molecular mechanism. SEPT11 acts as an oncogene in HCC, also draws further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Lisheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - Xiaoyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Ying Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - MeiHua Chen
- NHC Key Laboratory of Glycoconjugates, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, People's Republic of China
| | - Adilijiang Kuerban
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Fudan University, 200040, Shanghai, People's Republic of China
| | - Haojie Liu
- NHC Key Laboratory of Glycoconjugates, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, People's Republic of China
| | - Yiwei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - QianQian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China.
| | - Mingzhe Ma
- Department of Gastric Surgery, Shanghai Cancer Center of Fudan University, 200032, Shanghai, People's Republic of China.
| | - XingZhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Weems AD, Welf ES, Driscoll MK, Zhou FY, Mazloom-Farsibaf H, Chang BJ, Murali VS, Gihana GM, Weiss BG, Chi J, Rajendran D, Dean KM, Fiolka R, Danuser G. Blebs promote cell survival by assembling oncogenic signalling hubs. Nature 2023; 615:517-525. [PMID: 36859545 PMCID: PMC10881276 DOI: 10.1038/s41586-023-05758-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.
Collapse
Affiliation(s)
- Andrew D Weems
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Felix Y Zhou
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gabriel M Gihana
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Byron G Weiss
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Chi
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Kho M, Hladyshau S, Tsygankov D, Nie S. Coordinated regulation of Cdc42ep1, actin, and septin filaments during neural crest cell migration. Front Cell Dev Biol 2023; 11:1106595. [PMID: 36923257 PMCID: PMC10009165 DOI: 10.3389/fcell.2023.1106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
The septin cytoskeleton has been demonstrated to interact with other cytoskeletal components to regulate various cellular processes, including cell migration. However, the mechanisms of how septin regulates cell migration are not fully understood. In this study, we use the highly migratory neural crest cells of frog embryos to examine the role of septin filaments in cell migration. We found that septin filaments are required for the proper migration of neural crest cells by controlling both the speed and the direction of cell migration. We further determined that septin filaments regulate these features of cell migration by interacting with actin stress fibers. In neural crest cells, septin filaments co-align with actin stress fibers, and the loss of septin filaments leads to impaired stability and contractility of actin stress fibers. In addition, we showed that a partial loss of septin filaments leads to drastic changes in the orientations of newly formed actin stress fibers, suggesting that septin filaments help maintain the persistent orientation of actin stress fibers during directed cell migration. Lastly, our study revealed that these activities of septin filaments depend on Cdc42ep1, which colocalizes with septin filaments in the center of neural crest cells. Cdc42ep1 interacts with septin filaments in a reciprocal manner, with septin filaments recruiting Cdc42ep1 to the cell center and Cdc42ep1 supporting the formation of septin filaments.
Collapse
Affiliation(s)
- Mary Kho
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Siarhei Hladyshau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Shuyi Nie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
23
|
El-Mansi S, Robinson CL, Kostelnik KB, McCormack JJ, Mitchell TP, Lobato-Márquez D, Rajeeve V, Cutillas P, Cutler DF, Mostowy S, Nightingale TD. Proximity proteomics identifies septins and PAK2 as decisive regulators of actomyosin-mediated expulsion of von Willebrand factor. Blood 2023; 141:930-944. [PMID: 36564030 PMCID: PMC10023740 DOI: 10.1182/blood.2022017419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/25/2022] Open
Abstract
In response to tissue injury, within seconds the ultra-large glycoprotein von Willebrand factor (VWF) is released from endothelial storage organelles (Weibel-Palade bodies) into the lumen of the blood vasculature, where it leads to the recruitment of platelets. The marked size of VWF multimers represents an unprecedented burden on the secretory machinery of endothelial cells (ECs). ECs have evolved mechanisms to overcome this, most notably an actomyosin ring that forms, contracts, and squeezes out its unwieldy cargo. Inhibiting the formation or function of these structures represents a novel therapeutic target for thrombotic pathologies, although characterizing proteins associated with such a dynamic process has been challenging. We have combined APEX2 proximity labeling with an innovative dual loss-of-function screen to identify proteins associated with actomyosin ring function. We show that p21 activated kinase 2 (PAK2) recruits septin hetero-oligomers, a molecular interaction that forms a ring around exocytic sites. This cascade of events controls actomyosin ring function, aiding efficient exocytic release. Genetic or pharmacological inhibition of PAK2 or septins led to inefficient release of VWF and a failure to form platelet-catching strings. This new molecular mechanism offers additional therapeutic targets for the control of thrombotic disease and is highly relevant to other secretory systems that employ exocytic actomyosin machinery.
Collapse
Affiliation(s)
- Sammy El-Mansi
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christopher L. Robinson
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Katja B. Kostelnik
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jessica J. McCormack
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Damián Lobato-Márquez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vinothini Rajeeve
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Kim OV, Litvinov RI, Mordakhanova ER, Bi E, Vagin O, Weisel JW. Contribution of septins to human platelet structure and function. iScience 2022; 25:104654. [PMID: 35832887 PMCID: PMC9272382 DOI: 10.1016/j.isci.2022.104654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although septins have been well-studied in nucleated cells, their role in anucleate blood platelets remains obscure. Here, we elucidate the contribution of septins to human platelet structure and functionality. We show that Septin-2 and Septin-9 are predominantly distributed at the periphery of resting platelets and co-localize strongly with microtubules. Activation of platelets by thrombin causes clustering of septins and impairs their association with microtubules. Inhibition of septin dynamics with forchlorfenuron (FCF) reduces thrombin-induced densification of septins and lessens their colocalization with microtubules in resting and activated platelets. Exposure to FCF alters platelet shape, suggesting that septins stabilize platelet cytoskeleton. FCF suppresses platelet integrin αIIbβ3 activation, promotes phosphatidylserine exposure on activated platelets, and induces P-selectin expression on resting platelets, suggesting septin involvement in these processes. Inhibition of septin dynamics substantially reduces platelet contractility and abrogates their spreading on fibrinogen-coated surfaces. Overall, septins strongly contribute to platelet structure, activation and biomechanics.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elmira R. Mordakhanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Vagin
- Department of Pediatrics, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Forchlorfenuron and Novel Analogs Cause Cytotoxic Effects in Untreated and Cisplatin-Resistant Malignant Mesothelioma-Derived Cells. Int J Mol Sci 2022; 23:ijms23073963. [PMID: 35409322 PMCID: PMC8999537 DOI: 10.3390/ijms23073963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant mesothelioma (MM) is a currently incurable, aggressive cancer derived from mesothelial cells, most often resulting from asbestos exposure. The current first-line treatment in unresectable MM is cisplatin/pemetrexed, which shows very little long-term effectiveness, necessitating research for novel therapeutic interventions. The existing chemotherapies often act on the cytoskeleton, including actin filaments and microtubules, but recent advances indicate the ‘fourth’ form consisting of the family of septins, representing a novel target. The septin inhibitor forchlorfenuron (FCF) and FCF analogs inhibit MM cell growth in vitro, but at concentrations which are too high for clinical applications. Based on the reported requirement of the chloride group in the 2-position of the pyridine ring of FCF for MM cell growth inhibition and cytotoxicity, we systematically investigated the importance (cell growth-inhibiting capacity) of the halogen atoms fluorine, chlorine, bromine and iodine in the 2- or 3-position of the pyridine ring. The MM cell lines ZL55, MSTO-211H, and SPC212, and—as a control—immortalized Met-5A mesothelial cells were used. The potency of the various halogen substitutions in FCF was mostly correlated with the atom size (covalent radius); the small fluoride analogs showed the least effect, while the largest one (iodide) most strongly decreased the MTT signals, in particular in MM cells derived from epithelioid MM. In the latter, the strongest effects in vitro were exerted by the 2-iodo and, unexpectedly, the 2-trifluoromethyl (2-CF3) FCF analogs, which were further tested in vivo in mice. However, FCF-2-I and, more strongly, FCF-2-CF3 caused rapidly occurring strong symptoms of systemic toxicity at doses lower than those previously obtained with FCF. Thus, we investigated the effectiveness of FCF (and selected analogs) in vitro in MM cells which were first exposed to cisplatin. The slowly appearing population of cisplatin-resistant cells was still susceptible to the growth-inhibiting/cytotoxic effect of FCF and its analogs, indicating that cisplatin and FCF target non-converging pathways in MM cells. Thus, a combination therapy of cisplatin and FCF (analogs) might represent a new avenue for the treatment of repopulating chemo-resistant MM cells in this currently untreatable cancer.
Collapse
|
26
|
Zhang Q, Zheng J, Liu L. Down-regulation of lncRNA LUADT1 suppresses cervical cancer cell growth by sequestering microRNA-1207-5p. Acta Biochim Biophys Sin (Shanghai) 2022; 54:321-331. [PMID: 35538030 PMCID: PMC9828286 DOI: 10.3724/abbs.2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence has proved the essential roles of long non-coding RNAs (lncRNAs) in cervical carcinoma (CC). LncRNA lung adenocarcinoma-associated transcript 1 (LUADT1) is overexpressed and plays an oncogenic role in various cancers; however, the function and clinical values of LUADT1 in CC remain unclear. In this study we found that LUADT1 is highly expressed in CC tissues and cells. Up-regulated LUADT1 is significantly correlated with the more aggressive status and poorer survival of CC patients. studies show that LUADT1 depletion suppresses CC proliferation, and leads to cell apoptosis and cell cycle arrest. Furthermore, the xenograft mouse assay demonstrates that LUADT1 knockdown remarkably suppresses tumor growth. Mechanistically, LUADT1 binds to miR-1207-5p and inhibits miR-1207-5p expression in CC cells. Septin 9 (SEPT9) is identified as a miR-1207-5p target which is negatively regulated by LUADT1. Overexpression of SEPT9 abrogates the suppressed proliferation of CC cells induced by LUADT1 knockdown. These results demonstrate that LUADT1 sponges miR-1207-5p and consequently modulates SEPT9 expression in CC. Our study suggests the possible application of LUADT1 as a prognostic and therapeutic target to inhibit CC.
Collapse
Affiliation(s)
| | | | - Lili Liu
- Correspondence address. Tel: +86-416-4197634; E-mail:
| |
Collapse
|
27
|
Zhovmer AS, Manning A, Smith C, Hayes JB, Burnette DT, Wang J, Cartagena-Rivera AX, Dokholyan NV, Singh RK, Tabdanov ED. Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing. ACS NANO 2021; 15:17528-17548. [PMID: 34677937 PMCID: PMC9291236 DOI: 10.1021/acsnano.1c04435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-to-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexander S. Zhovmer
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Alexis Manning
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Chynna Smith
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - James B. Hayes
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Dylan T. Burnette
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Jian Wang
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| | - Alexander X. Cartagena-Rivera
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
- Department
of Biochemistry & Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Rakesh K. Singh
- Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester, New York 14620, United States
| | - Erdem D. Tabdanov
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| |
Collapse
|
28
|
Yao L, Zhang L, Chen L, Gong X, Zhong J, Wang B, Fei Y, Mi L, Ma J. Dynamic Structure of Yeast Septin by Fast Fluctuation-Enhanced Structured Illumination Microscopy. Microorganisms 2021; 9:microorganisms9112255. [PMID: 34835381 PMCID: PMC8620077 DOI: 10.3390/microorganisms9112255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/05/2022] Open
Abstract
When Saccharomyces cerevisiae divides, a structure composed of different septin proteins arranged according to a certain rule is formed at the cell division site. The structure undergoes multiple remodeling stages during the cell cycle, thus guiding the yeast cells to complete the entire division process. Although the higher-order structure of septins can be determined using electron microscopy, the septin’s dynamic processes are poorly understood because of limitations in living cell super-resolution imaging technology. Herein, we describe a high lateral resolution and temporal resolution technique, known as fast fluctuation-enhanced structured illumination microscopy (fFE-SIM), which more than doubles the SIM resolution at a frame rate of 38 Hz in living cells. This allows a highly dynamic and sparse septin structure to be observed in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Longfang Yao
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; (L.Y.); (L.C.); (X.G.); (Y.F.)
| | - Li Zhang
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China;
| | - Liwen Chen
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; (L.Y.); (L.C.); (X.G.); (Y.F.)
| | - Xingyu Gong
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; (L.Y.); (L.C.); (X.G.); (Y.F.)
| | - Jiahui Zhong
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China;
| | - Baoju Wang
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China;
| | - Yiyan Fei
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; (L.Y.); (L.C.); (X.G.); (Y.F.)
| | - Lan Mi
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; (L.Y.); (L.C.); (X.G.); (Y.F.)
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China;
- Correspondence: (L.M.); (J.M.)
| | - Jiong Ma
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; (L.Y.); (L.C.); (X.G.); (Y.F.)
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China;
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China;
- Correspondence: (L.M.); (J.M.)
| |
Collapse
|
29
|
de Souza LB, Ong HL, Liu X, Ambudkar IS. PIP 2 and septin control STIM1/Orai1 assembly by regulating cytoskeletal remodeling via a CDC42-WASP/WAVE-ARP2/3 protein complex. Cell Calcium 2021; 99:102475. [PMID: 34601312 DOI: 10.1016/j.ceca.2021.102475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
Store-operated calcium entry (SOCE) is triggered by assembly of Orai1 with STIM proteins in ER-PM junctions. Plasma membrane PIP2 as well as PIP2-binding protein, SEPT4, significantly impact Orai1-STIM1 interaction. While septins and PIP2 can organize the actin cytoskeleton, it is unclear whether the status of actin within the junctions contributes to SOCE. We report herein that actin remodeling modulates STIM1 clustering. Our findings show that a PIP2- and SEPT4-dependent mechanism involving CDC42, WASP/WAVE, and ARP2 regulates actin remodeling into a ring-like structure around STIM1 puncta. CDC42 localization in the ER-plasma membrane region is enhanced following ER-Ca2+ store depletion. PIP2 depletion or knockdown of SEPT4 attenuate the recruitment of CDC42 to the ER-PM region. Importantly, knockdown of SEPT4, or CDC42+ARP2, disrupts the organization of actin as well as STIM1 clustering. Consequently, Orai1 recruitment to STIM1 puncta, SOCE, and NFAT translocation to the nucleus are all attenuated. Ca2+ influx induced by STIM1-C terminus is not affected by CDC42 knockdown. In aggregate, our findings reveal that PIP2 and SEPT4 affect Orai1/STIM1 clustering by coordinating actin remodeling within ER-PM junctions. This dynamic reorganization of actin has an important role in regulation of SOCE and downstream Ca2+-dependent effector functions.
Collapse
Affiliation(s)
- Lorena Brito de Souza
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA
| | - Hwei Ling Ong
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA.
| | - Xibao Liu
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Spiliotis ET, Kesisova IA. Spatial regulation of microtubule-dependent transport by septin GTPases. Trends Cell Biol 2021; 31:979-993. [PMID: 34253430 DOI: 10.1016/j.tcb.2021.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
The intracellular long-range transport of membrane vesicles and organelles is mediated by microtubule motors (kinesins, dynein) which move cargo with spatiotemporal accuracy and efficiency. How motors navigate the microtubule network and coordinate their activity on membrane cargo are fundamental but poorly understood questions. New studies show that microtubule-dependent membrane traffic is spatially controlled by septins - a unique family of multimerizing GTPases that associate with microtubules and membrane organelles. We review how septins selectively regulate motor interactions with microtubules and membrane cargo. We posit that septins provide a novel traffic code that specifies the movement and directionality of select motor-cargo complexes on distinct microtubule tracks.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | - Ilona A Kesisova
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Wang X, Wang W, Wang X, Wang M, Zhu L, Garba F, Fu C, Zieger B, Liu X, Liu X, Yao X. The septin complex links the catenin complex to the actin cytoskeleton for establishing epithelial cell polarity. J Mol Cell Biol 2021; 13:395-408. [PMID: 34143183 PMCID: PMC8436676 DOI: 10.1093/jmcb/mjab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is essential for spatially regulating of physiological processes in metazoans by which hormonal stimulation‒secretion coupling is precisely coupled for tissue homeostasis and organ communications. However, the molecular mechanisms underlying epithelial cell polarity establishment remain elusive. Here, we show that septin cytoskeleton interacts with catenin complex to organize a functional domain to separate apical from basal membranes in polarized epithelial cells. Using polarized epithelial cell monolayer as a model system with transepithelial electrical resistance as functional readout, our studies show that septins are essential for epithelial cell polarization. Our proteomic analyses discovered a novel septin‒catenin complex during epithelial cell polarization. The functional relevance of septin‒catenin complex was then examined in three-dimensional (3D) culture in which suppression of septins resulted in deformation of apical lumen in cysts, a hallmark seen in polarity-deficient 3D cultures and animals. Mechanistically, septin cytoskeleton stabilizes the association of adherens catenin complex with actin cytoskeleton, and depletion or disruption of septin cytoskeleton liberates adherens junction and polarity complexes into the cytoplasm. Together, these findings reveal a previously unrecognized role for septin cytoskeleton in the polarization of the apical‒basal axis and lumen formation in polarized epithelial cells.
Collapse
Affiliation(s)
- Xueying Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Wenwen Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xiwei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Ming Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Lijuan Zhu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Fatima Garba
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| |
Collapse
|
32
|
Spiliotis ET, McMurray MA. Masters of asymmetry - lessons and perspectives from 50 years of septins. Mol Biol Cell 2021; 31:2289-2297. [PMID: 32991244 PMCID: PMC7851956 DOI: 10.1091/mbc.e19-11-0648] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Septins are a unique family of GTPases, which were discovered 50 years ago as essential genes for the asymmetric cell shape and division of budding yeast. Septins assemble into filamentous nonpolar polymers, which associate with distinct membrane macrodomains and subpopulations of actin filaments and microtubules. While structurally a cytoskeleton-like element, septins function predominantly as spatial regulators of protein localization and interactions. Septin scaffolds and barriers have provided a long-standing paradigm for the generation and maintenance of asymmetry in cell membranes. Septins also promote asymmetry by regulating the spatial organization of the actin and microtubule cytoskeleton, and biasing the directionality of membrane traffic. In this 50th anniversary perspective, we highlight how septins have conserved and adapted their roles as effectors of membrane and cytoplasmic asymmetry across fungi and animals. We conclude by outlining principles of septin function as a module of symmetry breaking, which alongside the monomeric small GTPases provides a core mechanism for the biogenesis of molecular asymmetry and cell polarity.
Collapse
Affiliation(s)
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
33
|
Abstract
Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a 'septin code' for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function.
Collapse
|
34
|
Phatarpekar PV, Overlee BL, Leehan A, Wilton KM, Ham H, Billadeau DD. The septin cytoskeleton regulates natural killer cell lytic granule release. J Cell Biol 2021; 219:152040. [PMID: 32841357 PMCID: PMC7594501 DOI: 10.1083/jcb.202002145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Natural killer (NK) cell–mediated killing involves the membrane fusion of preformed lytic granules. While the roles of actin and microtubules are well accepted during this process, the function of septins, another cytoskeletal component that associates with actin and microtubules, has not been investigated. Here we show that genetic depletion or pharmacologic stabilization of the septin cytoskeleton significantly inhibited NK cell cytotoxicity. Although the stabilization of septin filaments impaired conjugate formation, depletion of septin proteins had no impact on conjugate formation, lytic granule convergence, or MTOC polarization to the cytotoxic synapse (CS). Interestingly, septins copurify and accumulate near the polarized lytic granules at the CS, where they regulate lytic granule release. Mechanistically, we find that septin 7 interacts with the SNARE protein syntaxin 11 and facilitates its interaction with syntaxin binding protein 2 to promote lytic granule fusion. Altogether, our data identify a critical role for septins in regulating the release of lytic granule contents during NK cell–mediated killing.
Collapse
Affiliation(s)
| | - Brittany L Overlee
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Alexander Leehan
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Katelynn M Wilton
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
35
|
Septins in Infections: Focus on Viruses. Pathogens 2021; 10:pathogens10030278. [PMID: 33801245 PMCID: PMC8001386 DOI: 10.3390/pathogens10030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
Human septins comprise a family of 13 genes that encode conserved GTP-binding proteins. They form nonpolar complexes, which assemble into higher-order structures, such as bundles, scaffolding structures, or rings. Septins are counted among the cytoskeletal elements. They interact with the actin and microtubule networks and can bind to membranes. Many cellular functions with septin participation have been described in the literature, including cytokinesis, motility, forming of scaffolding platforms or lateral diffusion barriers, vesicle transport, exocytosis, and recognition of micron-scale curvature. Septin dysfunction has been implicated in diverse human pathologies, including neurodegeneration and tumorigenesis. Moreover, septins are thought to affect the outcome of host–microbe interactions. Implication of septins has been demonstrated in fungal, bacterial, and viral infections. Knowledge on the precise function of a particular septin in the different steps of the virus infection and replication cycle is still limited. Published data for vaccinia virus (VACV), hepatitis C virus (HCV), influenza A virus (H1N1 and H5N1), human herpesvirus 8 (HHV-8), and Zika virus (ZIKV), all of major concern for public health, will be discussed here.
Collapse
|
36
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
37
|
Novel Functions of the Septin Cytoskeleton: Shaping Up Tissue Inflammation and Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:40-51. [PMID: 33039354 DOI: 10.1016/j.ajpath.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory diseases cause profound alterations in tissue homeostasis, including unchecked activation of immune and nonimmune cells leading to disease complications such as aberrant tissue repair and fibrosis. Current anti-inflammatory therapies are often insufficient in preventing or reversing these complications. Remodeling of the intracellular cytoskeleton is critical for cell activation in inflamed and fibrotic tissues; however, the cytoskeleton has not been adequately explored as a therapeutic target in inflammation. Septins are GTP-binding proteins that self-assemble into higher order cytoskeletal structures. The septin cytoskeleton exhibits a number of critical cellular functions, including regulation of cell shape and polarity, cytokinesis, cell migration, vesicle trafficking, and receptor signaling. Surprisingly, little is known about the role of the septin cytoskeleton in inflammation. This article reviews emerging evidence implicating different septins in the regulation of host-pathogen interactions, immune cell functions, and tissue fibrosis. Targeting of the septin cytoskeleton as a potential future therapeutic intervention in human inflammatory and fibrotic diseases is also discussed.
Collapse
|
38
|
Zhu D, Ping L, Shen X, Hong Y, Weng Q, He Q, Wang J, Wang J. Effects of prepubertal exposure to forchlorfenuron through prenatal and postnatal gavage administration in developing Sprague-Dawley rats. Reprod Toxicol 2020; 98:157-164. [PMID: 32998050 DOI: 10.1016/j.reprotox.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Forchlorfenuron (CPPU), a plant growth regulator, is widely used in agriculture. However, its long-term exposure effects on humans, especially neonates, remain unclear. Therefore, we investigated the developmental toxicity of prenatal and postnatal gavage administration of CPPU in rats. Pregnant Sprague-Dawley rats were administered 300 mg/kg/day CPPU by gavage from day 6 of gestation to the cessation of nursing. During weaning, rat offspring were administered 0, 30, 100, or 300 mg/kg/day CPPU for 4 weeks, followed by a 4-week CPPU-free recovery period. There were no significant differences in clinical symptoms, body weight, development indicators, serum biochemical parameters, sex hormone levels, sperm motility, relative organ weights, and histopathological changes among the 0-100 mg/kg/day CPPU groups. In the 300 mg/kg/day CPPU group, female rats exhibited decreased body weight, earlier time of vaginal opening (VO) and first estrus time (FE), elevated estradiol and blood urea nitrogen (BUN) levels, and upregulation of estrogen receptor 1 gene expression, whereas male rats only exhibited increases in serum BUN, creatinine, and glucose levels. Most changes were reversed after the recovery period. Furthermore, the endometrial epithelial height was significantly increased in female rats despite the absence of significant changes in uterine wall thickness and endometrial glands. Thus, CPPU may promote estradiol secretion, resulting in altered VO and FE and adverse effects in prepubertal female rats. These findings may be applied for risk assessment following CPPU exposure in humans.
Collapse
Affiliation(s)
- Difeng Zhu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofei Shen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yawen Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Risinger AL, Du L. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products. Nat Prod Rep 2020; 37:634-652. [PMID: 31764930 PMCID: PMC7797185 DOI: 10.1039/c9np00053d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2014-2019We review recent progress on natural products that target cytoskeletal components, including microtubules, actin, intermediate filaments, and septins and highlight their demonstrated and potential utility in the treatment of human disease. The anticancer efficacy of microtubule targeted agents identified from plants, microbes, and marine organisms is well documented. We highlight new microtubule targeted agents currently in clinical evaluations for the treatment of drug resistant cancers and the accumulating evidence that the anticancer efficacy of these agents is not solely due to their antimitotic effects. Indeed, the effects of microtubule targeted agents on interphase microtubules are leading to their potential for more mechanistically guided use in cancers as well as neurological disease. The discussion of these agents as more targeted drugs also prompts a reevaluation of our thinking about natural products that target other components of the cytoskeleton. For instance, actin active natural products are largely considered chemical probes and non-selective toxins. However, studies utilizing these probes have uncovered aspects of actin biology that can be more specifically targeted to potentially treat cancer, neurological disorders, and infectious disease. Compounds that target intermediate filaments and septins are understudied, but their continued discovery and mechanistic evaluations have implications for numerous therapeutic indications.
Collapse
Affiliation(s)
- April L Risinger
- The University of Texas Health Science Center at San Antonio, Department of Pharmacology, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
40
|
Cao J, Li R, Liang S, Li J, Xu Q, Wang C. Simultaneous extraction of four plant growth regulators residues in vegetable samples using solid phase extraction based on thiol-functionalized nanofibers mat. Food Chem 2020; 310:125859. [DOI: 10.1016/j.foodchem.2019.125859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 01/05/2023]
|
41
|
Wiedemann C, Amann B, Degroote RL, Witte T, Deeg CA. Aberrant Migratory Behavior of Immune Cells in Recurrent Autoimmune Uveitis in Horses. Front Cell Dev Biol 2020; 8:101. [PMID: 32211402 PMCID: PMC7076317 DOI: 10.3389/fcell.2020.00101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
The participating signals and structures that enable primary immune cells migrating within dense tissues are not completely revealed until now. Especially in autoimmune diseases, mostly unknown mechanisms facilitate autoreactive immune cells to migrate to endogenous tissues, infiltrating and harming organ-specific structures. In order to gain deeper insights into the migratory behavior of primary autoreactive immune cells, we examined peripheral blood-derived lymphocytes (PBLs) of horses with equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis in humans. In this study, we used a three-dimensional collagen I hydrogel matrix and monitored live-cell migration of primary lymphocytes as a reaction to different chemoattractants such as fetal calf serum (FCS), cytokines interleukin-4 (IL-4), and interferon-γ (IFN-γ), and a specific uveitis autoantigen, cellular retinaldehyde binding protein (CRALBP). Through these experiments, we uncovered distinct differences between PBLs from ERU cases and PBLs from healthy animals, with significantly higher cell motility, cell speed, and straightness during migration of PBLs from ERU horses. Furthermore, we emphasized the significance of expression levels and cellular localization of septin 7, a membrane-interacting protein with decreased abundance in PBLs of autoimmune cases. To underline the importance of septin 7 expression changes and the possible contribution to migratory behavior in autoreactive immune cells, we used forchlorfenuron (FCF) as a reversible inhibitor of septin structures. FCF-treated cells showed more directed migration through dense tissue and revealed aberrant septin 7 and F-actin structures along with different protein distribution and translocalization of the latter, uncovered by immunochemistry. Hence, we propose that septin 7 and interacting molecules play a pivotal role in the organization and regulation of cell shaping and migration. With our findings, we contribute to gaining deeper insights into the migratory behavior and septin 7-dependent cytoskeletal reorganization of immune cells in organ-specific autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Wiedemann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Amann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Tanja Witte
- Faculty of Veterinary Medicine, Equine Hospital, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
42
|
Development of Potent Forchlorfenuron Analogs and Their Cytotoxic Effect in Cancer Cell Lines. Sci Rep 2020; 10:3241. [PMID: 32094384 PMCID: PMC7039965 DOI: 10.1038/s41598-020-59824-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Forchlorfenuron (FCF) is a synthetic plant cytokinin widely used in agriculture to promote fruit size, that paradoxically inhibits proliferation, migration, and invasion in human cancer cell lines. FCF has also been shown to affect HIF-1α and HER2, which are both known to play a crucial role in cancer cell survival. In this study, we have developed potent FCF analogs through structural modification of FCF, coined UR214-1, UR214-7, and UR214-9. Compared to parental FCF, these analogs are more effective in decreasing viability and proliferation in both ovarian and endometrial cancer cell lines. These FCF analogs also suppress HER2 expression at a concentration lower than that of FCF. In addition, we found that treatment with either FCF or its analogs decreases the expression of human epididymis protein 4 (HE4), which is commonly upregulated in ovarian and endometrial cancers. Given the association between cancer behavior and HE4 production in gynecologic cancers, our findings may provide insight useful in the development of new treatment strategies for gynecologic cancers.
Collapse
|
43
|
Gönczi M, Dienes B, Dobrosi N, Fodor J, Balogh N, Oláh T, Csernoch L. Septins, a cytoskeletal protein family, with emerging role in striated muscle. J Muscle Res Cell Motil 2020; 42:251-265. [PMID: 31955380 PMCID: PMC8332580 DOI: 10.1007/s10974-020-09573-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Appropriate organization of cytoskeletal components are required for normal distribution and intracellular localization of different ion channels and proteins involved in calcium homeostasis, signal transduction, and contractile function of striated muscle. Proteins of the contractile system are in direct or indirect connection with the extrasarcomeric cytoskeleton. A number of other molecules which have essential role in regulating stretch-, voltage-, and chemical signal transduction from the surface into the cytoplasm or other intracellular compartments are already well characterized. Sarcomere, the basic contractile unit, is comprised of a precisely organized system of thin (actin), and thick (myosin) filaments. Intermediate filaments connect the sarcomeres and other organelles (mitochondria and nucleus), and are responsible for the cellular integrity. Interacting proteins have a very diverse function in coupling of the intracellular assembly components and regulating the normal physiological function. Despite the more and more intense investigations of a new cytoskeletal protein family, the septins, only limited information is available regarding their expression and role in striated, especially in skeletal muscles. In this review we collected basic and specified knowledge regarding this protein group and emphasize the importance of this emerging field in skeletal muscle biology.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421, Homburg, Saar, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.
| |
Collapse
|
44
|
Sun L, Cao X, Lechuga S, Feygin A, Naydenov NG, Ivanov AI. A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits Epithelial Migration via Septin-Independent Perturbation of Cellular Signaling. Cells 2019; 9:cells9010084. [PMID: 31905721 PMCID: PMC7016606 DOI: 10.3390/cells9010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Septins are GTP-binding proteins that self-assemble into high-order cytoskeletal structures, filaments, and rings. The septin cytoskeleton has a number of cellular functions, including regulation of cytokinesis, cell migration, vesicle trafficking, and receptor signaling. A plant cytokinin, forchlorfenuron (FCF), interacts with septin subunits, resulting in the altered organization of the septin cytoskeleton. Although FCF has been extensively used to examine the roles of septins in various cellular processes, its specificity, and possible off-target effects in vertebrate systems, has not been investigated. In the present study, we demonstrate that FCF inhibits spontaneous, as well as hepatocyte growth factor-induced, migration of HT-29 and DU145 human epithelial cells. Additionally, FCF increases paracellular permeability of HT-29 cell monolayers. These inhibitory effects of FCF persist in epithelial cells where the septin cytoskeleton has been disassembled by either CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of septin 7, insinuating off-target effects of FCF. Biochemical analysis reveals that FCF-dependent inhibition of the motility of control and septin-depleted cells is accompanied by decreased expression of the c-Jun transcription factor and inhibited ERK activity. The described off-target effects of FCF strongly suggests that caution is warranted while using this compound to examine the biological functions of septins in cellular systems and model organisms.
Collapse
Affiliation(s)
- Lei Sun
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Xuelei Cao
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA 23298, USA;
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
- Correspondence: ; Tel.: +1-216-444-5620
| |
Collapse
|
45
|
Blum W, Henzi T, Pecze L, Diep KL, Bochet CG, Schwaller B. The phytohormone forchlorfenuron decreases viability and proliferation of malignant mesothelioma cells in vitro and in vivo. Oncotarget 2019; 10:6944-6956. [PMID: 31857849 PMCID: PMC6916748 DOI: 10.18632/oncotarget.27341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is one of the most aggressive cancer types with a patient’s life expectancy of typically less than one year upon diagnosis. The urgency of finding novel therapeutic approaches to treat mesothelioma is evident. Here we tested the effect of the plant-growth regulator forchlorfenuron (FCF), an inhibitor of septin function(s) in mammalian cells, on the viability and proliferation of MM cell lines, as well as other tumor cell lines derived from lung, prostate, colon, ovary, cervix and breast. Exposure to FCF strongly inhibited proliferation of human and mouse (most efficiently epithelioid) MM cells and all other tumor cells in a concentration-dependent manner and led to cell cycle arrest and cell death. The role of septin 7 (SEPT7), a presumably essential target of FCF in MM cells was confirmed by an shRNA strategy. FCF was robustly inhibiting tumor cell growth in vitro at low micromolar (IC50: ≈20-60µM) concentrations and more promisingly also in vivo. Initial experiments with FCF analogous revealed the importance of FCF’s chloride group for efficient cell growth inhibition. FCF’s rather low systemic toxicity might warrant for an extended search for other related and possibly more potent FCF analogues to target MM and putatively other septin-dependent tumors.
Collapse
Affiliation(s)
- Walter Blum
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Thomas Henzi
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - László Pecze
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Kim-Long Diep
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Christian G Bochet
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Beat Schwaller
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
46
|
Gong G, Kam H, Tse Y, Lee SM. Cardiotoxicity of forchlorfenuron (CPPU) in zebrafish (Danio rerio) and H9c2 cardiomyocytes. CHEMOSPHERE 2019; 235:153-162. [PMID: 31255755 DOI: 10.1016/j.chemosphere.2019.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Forchlorfenuron (CPPU), as a plant growth regulator or herbicide/pesticide, is widely used in agriculture worldwide. It is adopted by most farmers due to its high efficacy for boosting size and improving the quality of fruit. However, CPPU was implicated in, and gained notoriety due to an incident of exploding watermelon that occurred in 2011. Subsequently, the wider community became aware of the potential risks it posed to living organisms and the ecosystem. In this study, we evaluated the effects of CPPU on the survival, cardiac morphology and function, as well as hematopoietic system, of zebrafish (Danio rerio). Notably, CPPU (2.5-12.5 μg/ml) induced cardiac morphology deformation, cardiac contractile dysfunction and erythrocyte reduction in zebrafish. Consistently, the mRNA expression levels of several cardiac and hematopoietic gene markers (myl7, gata4, mef2c, amhc, vmhc and gata1) were altered by CPPU treatment. In addition, CPPU caused cytotoxicity, cytoskeleton destruction and reduced corresponding proteins (Myl7, Gata4 and Mef2c) expression in H9c2 cardiomyocytes in vitro. Taken together, this study has identified the cardiotoxicity of CPPU in different experimental models and enhanced our understanding on the mechanism underlying the toxicity of CPPU to living organisms.
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuchung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Simon Mingyuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
47
|
He H, Li J, Xu M, Kan Z, Gao Y, Yuan C. Expression of septin 2 and association with clinicopathological parameters in colorectal cancer. Oncol Lett 2019; 18:2376-2383. [PMID: 31402940 PMCID: PMC6676678 DOI: 10.3892/ol.2019.10528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Septin 2 (SEPT2) is a tumor-related gene belonging to the SEPT family that affects the cellular processes of hepatoma carcinoma cells, glioblastoma cells and mesangial cells and is highly expressed in breast cancer, biliary tract cancer and acute myeloid leukemia. Colorectal cancer (CRC) is the third most common type of malignancy in humans. In the present study, Oncomine database was used to compare the expression pattern of SEPT2 mRNA between CRC and normal tissues. Additionally, protein expression in 90 pairs of CRC and paracancerous tissues was analyzed by western blotting and immunohistochemistry (IHC). The results showed that SEPT2 was highly expressed in CRC tissues at the mRNA and protein levels. SEPT2 expression quantified by IHC was associated with lymph node metastasis, the degree of differentiation and TNM staging. Increased SEPT2 wass associated with reduced overall survival (OS) according to Kaplan-Meier analysis. COX proportional hazard analysis indicated that SEPT2 was an independent factor that influenced the OS of patients with CRC. Therefore, SEPT2 was associated with the occurrence, progression and prognosis of CRC and thus, may be a marker and prognostic indicator of CRC.
Collapse
Affiliation(s)
- Haoyu He
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Junjun Li
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ziliang Kan
- Graduate School, Singapore Management University, Singapore 178903, Republic of Singapore
| | - Yang Gao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Caijun Yuan
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
48
|
Grigoryev PN, Khisamieva GA, Zefirov AL. Septin Polymerization Slows Synaptic Vesicle Recycling in Motor Nerve Endings. Acta Naturae 2019; 11:54-62. [PMID: 31413880 PMCID: PMC6643342 DOI: 10.32607/20758251-2019-11-2-54-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
Septins are GTP-binding proteins recognized as a component of the cytoskeleton. Despite the fact that septins are highly expressed by neurons and can interact with the proteins that participate in synaptic vesicle exocytosis and endocytosis, the role of septins in synaptic transmission and the synaptic vesicle recycling mechanisms is poorly understood. In this study, neurotransmitter release and synaptic vesicle exocytosis and endocytosis were investigated by microelectrode intracellular recording of end-plate potentials and fluorescent confocal microscopy in mouse diaphragm motor nerve endings during septin polymerization induced by forchlorfenuron application. It was shown that forchlorfenuron application reduces neurotransmission during prolonged high-frequency (20 and 50 pulses/s) stimulation. Application of pairs of short high-frequency stimulation trains showed that forchlorfenuron slows the replenishment of the readily releasable pool. Forchlorfenuron enhanced FM 1-43 fluorescent dye loading by synaptic vesicle endocytosis but decreased dye unloading from the preliminarily stained nerve endings by synaptic vesicle exocytosis. It was concluded that the septin polymerization induced by forchlorfenuron application slows the rate of synaptic vesicle recycling in motor nerve endings due to the impairment of synaptic vesicle transport.
Collapse
Affiliation(s)
- P. N. Grigoryev
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| | - G. A. Khisamieva
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| | - A. L. Zefirov
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| |
Collapse
|
49
|
Ge SQ, Wu YL, Zhu JL, Tian Y, Wang SS, Gao ZQ. Preliminary investigation of the effects of an FCF inhibitor interference with Septin in the early stage embryos in mice. Mol Med Rep 2019; 19:4401-4406. [PMID: 30896847 DOI: 10.3892/mmr.2019.10072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 09/06/2018] [Indexed: 11/05/2022] Open
Abstract
The objective of the present study was to investigate the effects of for chlorfenuron (FCF) interference with the septin protein on early stage embryos in mice. The 1‑cell embryos were collected and divided into an FCF interference group and a control group. The FCF interference group was cultured in FCF media and the control group was cultured in dimethyl sulphoxide media at 37˚C with 5% CO2 until the desired phase was achieved. Septin2 protein expression was detected using immunofluorescence and western blot analysis. Blastocyst α‑tubulin was stained by immunofluorescence to observe the alterations in spindles and microtubules. The rate of early embryo development into blastocysts was significantly reduced following FCF treatment (P<0.05). In the control group, septin2 was observed with a confocal microscope; septin2 was expressed in embryos at all stages and mainly in the blastomeres from the 2‑cell stage onwards, with the expression concentrated in the nuclei of the blastomeres as identified by strong fluorescence. In the FCF interference group, septin2 was weakly expressed in the nuclei of blastomeres at the 2‑ and 4‑cell stages, and in the granulated blastomeres at the 4‑ and 8‑cell stages. Expression was barely observed in and following the morula. Granulation was observed starting from the 4‑ and 8‑cell stages. Compared with the control group, the FCF interference group exhibited irregular microtubules, abnormal spindle morphology and disordered chromosome arrangement in the blastocysts. The septin2 protein was expressed throughout the early stage embryo from the 2‑cell stage to the blastocyst and localized in the nuclei of blastomeres. When the septin protein experienced interference by the FCF inhibitor, septin2 protein expression was reduced, which simultaneously resulted in abnormal embryonic development, uneven cytoplasmic division, various sizes and a reduced number of blastomeres, granulation in the blastomeres, disordered blastocyst microtubule distribution, spindle shape alterations and an abnormality of chromosome arrangement.
Collapse
Affiliation(s)
- Shao-Qin Ge
- The Institute of Traditional Chinese Medicine of Hebei University Health Science Centre, Baoding, Hebei 071002, P.R. China
| | - Yin-Ling Wu
- The Medical Comprehensive Laboratory Center of Hebei University Health Science Centre, Baoding, Hebei 071002, P.R. China
| | - Jin-Liang Zhu
- The Centre for Reproductive Medicine of Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yuan Tian
- The Medical Comprehensive Laboratory Center of Hebei University Health Science Centre, Baoding, Hebei 071002, P.R. China
| | - Shu-Song Wang
- Key Laboratory of Family Planning and Healthy Birth, National Health and Family Planning Commission Hebei Research Institute for Family Planning, Shijiazhuang, Hebei 050071, P.R. China
| | - Zhang-Quan Gao
- Key Laboratory of Family Planning and Healthy Birth, National Health and Family Planning Commission Hebei Research Institute for Family Planning, Shijiazhuang, Hebei 050071, P.R. China
| |
Collapse
|
50
|
In Vitro Analyses Reveal the Effect of Synthetic Cytokinin Forchlorfenuron (FCF) on a Septin-Like Protein of Taeniid Cysticerci. J Parasitol Res 2019; 2019:8578936. [PMID: 30941206 PMCID: PMC6420996 DOI: 10.1155/2019/8578936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
Cytokinin forchlorfenuron (FCF), a synthetic cytokinin, has been used specifically for the characterization of septins. In spite of genomic evidence of their existence, nothing is known about septin filaments in taeniid cestodes. The aim of this work was to determine the presence of a septin-like protein in cysticerci of Taenia crassiceps and Taenia solium using the deduced amino acid sequence of T. solium septin 4 (SEPT4_Tsm), to design and synthesize a derived immunogenic peptide (residues 88 to 103), to prepare a specific rabbit polyclonal antibody, and to examine the effects of FCF at different concentrations and exposure times on an in vitro culture of T. crassiceps cysticerci. In vitro, FCF altered the morphology and motility of T. crassiceps cysticerci, and its effects were reversible under specific concentrations. In addition, we observed by ultrastructural observation that FCF alters the cellular subunit of the protonephridial system of cestodes, where disruption of the axoneme pattern of flame cells was observed. The rabbit polyclonal antibody prepared against the synthetic peptide recognized a major band of 41 kDa in both parasites. Our results establish the importance of SEPT4_Tsm in the dynamics and survival of taeniid cysticerci, as well as their susceptibility to FCF. This is also the first report that a septin is present in the cytoskeleton of taeniids.
Collapse
|