1
|
Roh YJ, Kim H, Choi DW. Metabolic Sparks in the Liver: Metabolic and Epigenetic Reprogramming in Hepatic Stellate Cells Activation and Its Implications for Human Metabolic Diseases. Diabetes Metab J 2025; 49:368-385. [PMID: 40367987 PMCID: PMC12086559 DOI: 10.4093/dmj.2025.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
The liver plays a fundamental role in metabolic homeostasis, integrating systemic fuel utilization with the progression of various metabolic diseases. Hepatic stellate cells (HSCs) are a key nonparenchymal cell type in the liver, which is essential for maintaining hepatic architecture in their quiescent state. However, upon chronic liver injury or metabolic stress, HSCs become activated, leading to excessive extracellular matrix deposition and pro-fibrotic signaling, ultimately positioning them as key players in liver pathology. Emerging evidence highlights the critical roles of metabolic reprogramming and epigenetic regulation in HSCs activation. HSCs activation is driven by both intrinsic fuel metabolism reprogramming and extrinsic metabolic cues from the microenvironment, while the metabolic intermediates actively reshape the epigenetic landscape, reinforcing fibrogenic transcriptional programs. In this review, we summarize recent advances in understanding how metabolic and epigenetic alterations drive HSCs activation, thereby shaping transcriptional programs that sustain fibrosis, and discuss potential therapeutic strategies to target these interconnected pathways in human metabolic diseases.
Collapse
Affiliation(s)
- Yeon Jin Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyeonki Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Dong Wook Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
2
|
Peña de la Sancha P, Wieser BI, Schauer S, Reicher H, Sattler W, Breinbauer R, Schweiger M, Lechleitner M, Frank S, Zechner R, Kratky D, Espenshade PJ, Hoefler G, Vesely PW. Lipolysis-derived fatty acids are needed for homeostatic control of sterol element-binding protein-1c driven hepatic lipogenesis. Commun Biol 2025; 8:588. [PMID: 40205023 PMCID: PMC11982389 DOI: 10.1038/s42003-025-08002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Sterol Regulatory Element-Binding Protein-1c (SREBP-1c) is translated as an inactive precursor (P-SREBP-1c) postprandially. Low levels of unsaturated fatty acids (uFAs) and high insulin promote its proteolytic activation, yielding N-SREBP-1c that drives fatty acid (FA) biosynthesis. During fasting, however, lipogenesis is low, and adipose tissue lipolysis supplies the organism with FAs. Adipose Triglyceride Lipase (ATGL) is the rate-limiting enzyme for adipose tissue lipolysis, and it preferentially releases uFAs. Therefore, we hypothesized that adipose ATGL-derived uFAs suppress P-SREBP-1c activation in the liver. In this study, we show that (I) N-SREBP-1c is transiently higher in livers of fasted and refed adipose specific Atgl knockout mice than in control livers. (II) This effect is reversed by injection of uFAs. (III) uFAs inhibit endoplasmic reticulum to Golgi-apparatus transport of SREBP Cleavage-Activating Protein (SCAP) in hepatocytes, which is essential for SREBP activation. Our findings demonstrate that adipose tissue ATGL derived uFAs attenuate P-SREBP-1c activation in the liver mainly after refeeding. We propose that this ATGL/SREBP-1c axis adds an additional layer of coordination between lipogenesis and lipolysis.
Collapse
Affiliation(s)
- Paola Peña de la Sancha
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beatrix Irene Wieser
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- BioTechMed-Graz, Graz, Austria
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Rolf Breinbauer
- BioTechMed-Graz, Graz, Austria
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Martina Schweiger
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margarete Lechleitner
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Rudolf Zechner
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dagmar Kratky
- BioTechMed-Graz, Graz, Austria
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Peter John Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Paul Willibald Vesely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- Otto Loewi Research Center, Lung Research Group, Graz, Austria.
| |
Collapse
|
3
|
Pretto S, Yu Q, Bourdely P, Trusso Cafarello S, Van Acker HH, Verelst J, Richiardone E, Vanheer L, Roshanzadeh A, Schneppenheim F, Cresens C, Sassano ML, Dehairs J, Carion M, Ismail S, Agostinis P, Rocha S, Bald T, Swinnen J, Corbet C, Lunt SY, Thienpont B, Di Matteo M, Mazzone M. A functional single-cell metabolic survey identifies Elovl1 as a target to enhance CD8 + T cell fitness in solid tumours. Nat Metab 2025; 7:508-530. [PMID: 40065102 PMCID: PMC11946891 DOI: 10.1038/s42255-025-01233-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/04/2025] [Indexed: 03/28/2025]
Abstract
Reprogramming T cell metabolism can improve intratumoural fitness. By performing a CRISPR/Cas9 metabolic survey in CD8+ T cells, we identified 83 targets and we applied single-cell RNA sequencing to disclose transcriptome changes associated with each metabolic perturbation in the context of pancreatic cancer. This revealed elongation of very long-chain fatty acids protein 1 (Elovl1) as a metabolic target to sustain effector functions and memory phenotypes in CD8+ T cells. Accordingly, Elovl1 inactivation in adoptively transferred T cells combined with anti-PD-1 showed therapeutic efficacy in resistant pancreatic and melanoma tumours. The accumulation of saturated long-chain fatty acids in Elovl1-deficient T cells destabilized INSIG1, leading to SREBP2 activation, increased plasma membrane cholesterol and stronger T cell receptor signalling. Elovl1-deficient T cells increased mitochondrial fitness and fatty acid oxidation, thus withstanding the metabolic stress imposed by the tumour microenvironment. Finally, ELOVL1 in CD8+ T cells correlated with anti-PD-1 response in patients with melanoma. Altogether, Elovl1 targeting synergizes with anti-PD-1 to promote effective T cell responses.
Collapse
Affiliation(s)
- Samantha Pretto
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Qian Yu
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Pierre Bourdely
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joren Verelst
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Lotte Vanheer
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Amir Roshanzadeh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Franziska Schneppenheim
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Charlotte Cresens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Heverlee, Belgium
- VIB BioImaging Core, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Martin Carion
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Shehab Ismail
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Heverlee, Belgium
| | - Tobias Bald
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johan Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Huda N, Kusumanchi P, Jiang Y, Gao H, Thoudam T, Zeng G, Skill NJ, Sun Z, Liangpunsakul S, Ma J, Yang Z. Silencing FAF2 mitigates alcohol-induced hepatic steatosis by modulating lipolysis and PCSK9 pathway. Hepatol Commun 2025; 9:e0641. [PMID: 39969435 PMCID: PMC11841855 DOI: 10.1097/hc9.0000000000000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Chronic alcohol consumption leads to lipid accumulation, oxidative stress, cellular damage, and inflammation in the liver, collectively referred to as alcohol-associated liver disease (ALD). FAF2/UBXD8/ETEA (Fas-associated factor 2) is a ubiquitin ligase adaptor protein that plays a crucial role in the ubiquitin-mediated degradation of misfolded proteins in the endoplasmic reticulum. A recent genome-wide association study indicated an association between FAF2 and ALD; however, the exact contribution of FAF2 to ALD pathogenesis remains unclear. METHODS FAF2 was knocked down using AAV-delivered shRNA in C57/BL6 mice. Mice were subjected to a chronic-plus-single binge ethanol feeding (NIAAA) model. Nine hours after gavage, liver, blood, and other organs of interest were collected for gene expression and biochemical analyses. RESULTS We first observed a significant elevation in hepatic FAF2 protein expression in individuals with ALD and in mice subjected to an ethanol-binge model. Interestingly, knocking down FAF2 in the liver using adeno-associated virus serotype 8-delivered short hairpin RNA conferred a protective effect against alcohol-induced liver steatosis in ethanol-binged mice. Transcriptomic analysis revealed that differentially expressed genes were enriched in multiple lipid metabolism regulation pathways. Further analysis of transcription factors regulating these differentially expressed genes suggested potential regulation by SREBP1. Several SREBP1 target genes, including Fasn, Scd1, Lpin1, and Pcsk9 (proprotein convertase subtilisin/kexin type 9), were dysregulated in the livers of ethanol-fed FAF2 knockdown mice. Additionally, Pcsk9 could be regulated through the FOXO3-SIRT6 pathway in the livers of ethanol-fed FAF2 knockdown mice, leading to increased liver low-density lipoprotein receptor expression and reduced plasma LDL cholesterol levels. Furthermore, FAF2 knockdown in mouse liver enhanced adipose triglyceride lipase lipolytic activity by upregulating the adipose triglyceride lipase activator, comparative gene identification-58, and downregulating the adipose triglyceridelipase transport inhibitor, Elmod2, contributing to the alleviation of liver steatosis. CONCLUSIONS Our study uncovers a novel mechanism involving FAF2 in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hui Gao
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nicholas J. Skill
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Zhaoli Sun
- Department of Surgery, John Hopkins University, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Ran Z, Xie H, Tian X, Kong F, Liao K, Yan X, Xu J. Sensing and regulation of long-chain polyunsaturated fatty acids pool in marine mollusks: Characterization of UBXD8 from the razor clam Sinonovacula constricta. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159448. [PMID: 38181884 DOI: 10.1016/j.bbalip.2023.159448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
The razor clam Sinonovacula constricta is known for its richness in long-chain polyunsaturated fatty acids (LC-PUFA, C ≥ 20). Previously, we demonstrated that it possesses a complete LC-PUFA biosynthetic pathway. However, the mechanisms by which it senses the LC-PUFA pool to regulate their biosynthesis remain unclear. Here, we presented the LC-PUFA sensor UBXD8 as a critical molecule in this intriguing process. The S. constricta UBXD8 (ScUBXD8) shared all characteristic features of its mammalian counterpart and exhibited high mRNA levels in digestive tissues, suggesting its functional role in this bivalve species. By purification of ScUBXD8 protein in vitro, we discovered its ability to sense unsaturated fatty acids (UFA, C ≥ 14) but not saturated ones, as evidenced by polymerization detection. Furthermore, the intensity of ScUBXD8 polymerization increased progressively with longer acyl chain lengths, greater unsaturation degrees, and higher UFA concentrations. Exceptionally, for those located at the same node in LC-PUFA biosynthetic pathway, ScUBXD8 displayed a stronger sensitivity to n-6 UFA compared to n-3 UFA. These results suggested a critical role for ScUBXD8 in balancing fatty acids composition and ratio of n-6/n-3 UFA in S. constricta. Moreover, the UAS domain was confirmed essential for ScUBXD8 polymerization. Through knockdown of ScUbxd8 gene in vivo, there were significant shifts in expression patterns of genes related to LC-PUFA biosynthesis, concurrently influencing fatty acids compositions. These results suggested that ScUBXD8 likely plays a regulatory role in LC-PUFA biosynthesis, possibly through the INSIG-SREBP pathway. Collectively, this study proposed that S. constricta might maintain LC-PUFA homeostasis through UBXD8 to regulate their biosynthesis.
Collapse
Affiliation(s)
- Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo, Zhejiang 315211, China; Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| | - Haixuan Xie
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xuxu Tian
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fei Kong
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kai Liao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo, Zhejiang 315211, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo, Zhejiang 315211, China; Fujian Dalai Seedling Technology Co., Ltd., Luoyuan, Fujian 350600, China.
| |
Collapse
|
6
|
Han SI, Nakakuki M, Nakagawa Y, Wang Y, Araki M, Yamamoto Y, Tokiwa H, Takeda H, Mizunoe Y, Motomura K, Ohno H, Kainoh K, Murayama Y, Aita Y, Takeuchi Y, Osaki Y, Miyamoto T, Sekiya M, Matsuzaka T, Yahagi N, Sone H, Daitoku H, Sato R, Kawano H, Shimano H. Rhomboid protease RHBDL4/RHBDD1 cleaves SREBP-1c at endoplasmic reticulum monitoring and regulating fatty acids. PNAS NEXUS 2023; 2:pgad351. [PMID: 37954160 PMCID: PMC10637267 DOI: 10.1093/pnasnexus/pgad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023]
Abstract
The endoplasmic reticulum (ER)-embedded transcription factors, sterol regulatory element-binding proteins (SREBPs), master regulators of lipid biosynthesis, are transported to the Golgi for proteolytic activation to tune cellular cholesterol levels and regulate lipogenesis. However, mechanisms by which the cell responds to the levels of saturated or unsaturated fatty acids remain underexplored. Here, we show that RHBDL4/RHBDD1, a rhomboid family protease, directly cleaves SREBP-1c at the ER. The p97/VCP, AAA-ATPase complex then acts as an auxiliary segregase to extract the remaining ER-embedded fragment of SREBP-1c. Importantly, the enzymatic activity of RHBDL4 is enhanced by saturated fatty acids (SFAs) but inhibited by polyunsaturated fatty acids (PUFAs). Genetic deletion of RHBDL4 in mice fed on a Western diet enriched in SFAs and cholesterol prevented SREBP-1c from inducing genes for lipogenesis, particularly for synthesis and incorporation of PUFAs, and secretion of lipoproteins. The RHBDL4-SREBP-1c pathway reveals a regulatory system for monitoring fatty acid composition and maintaining cellular lipid homeostasis.
Collapse
Affiliation(s)
- Song-Iee Han
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanori Nakakuki
- Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd., Gotemba, Shizuoka 412-8524, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yunong Wang
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiroaki Tokiwa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501-1196, Japan
| | - Hiroyuki Takeda
- Division of Proteo Drug Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kenta Kainoh
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, Nutri-Life Science Laboratory, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroyuki Kawano
- Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd., Gotemba, Shizuoka 412-8524, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
7
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BMC Genomics 2023; 24:651. [PMID: 37904134 PMCID: PMC10614335 DOI: 10.1186/s12864-023-09754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute Freeman Hrabowski Scholar, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
8
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525086. [PMID: 36711738 PMCID: PMC9882262 DOI: 10.1101/2023.01.22.525086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA,02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Guo Z, Liang J. Role of ubiquitin regulatory X domain‑containing protein 3B in the development of hepatocellular carcinoma (Review). Oncol Rep 2023; 49:57. [PMID: 36799187 PMCID: PMC9942258 DOI: 10.3892/or.2023.8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
The majority of new cases and fatalities from hepatocellular carcinoma (HCC) occur in China; however, the overall morbidity and mortality rates are decreasing. A major risk factor due to the evolving epidemiology is improper lipid metabolism. Although investigations on aberrant lipid metabolism are numerous, there are only a limited number of studies available on proteasomal degradation processes. The degradation process is mainly involved in endoplasmic reticulum stabilization, the balance of lipid metabolism, and physiological functions of Golgi apparatus, endoplasmic reticulum, lysosomes and other organelles, however, this process has been little studied in the development of tumorigenesis. In order to provide some theoretical support for future research on ubiquitin regulatory X domain‑containing protein 3B (UBXN3B), the present review focuses on the role of UBXN3B, which is involved in the stabilization of the endoplasmic reticulum and the maintenance of lipid homeostasis, as well as in the promotion and development of non‑alcoholic fatty liver disease and HCC.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Jun Liang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China,Correspondence to: Professor Jun Liang, Department of Medical Oncology, Peking University International Hospital, Life Park Road, Life Science Park of Zhong Guancun Chang Ping, Beijing 102206, P.R. China, E-mail:
| |
Collapse
|
10
|
Zheng J, Cao Y, Yang J, Jiang H. UBXD8 mediates mitochondria-associated degradation to restrain apoptosis and mitophagy. EMBO Rep 2022; 23:e54859. [PMID: 35979733 PMCID: PMC9535754 DOI: 10.15252/embr.202254859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 08/08/2023] Open
Abstract
The hexameric AAA-ATPase valosin-containing protein (VCP) is essential for mitochondrial protein quality control. How VCP is recruited to mammalian mitochondria remains obscure. Here we report that UBXD8, an ER- and lipid droplet-localized VCP adaptor, also localizes to mitochondria and locally recruits VCP. UBXD8 associates with mitochondrial and ER ubiquitin E3 ligases and targets their substrates for degradation. Remarkably, both mitochondria- and ER-localized UBXD8 can degrade mitochondrial and ER substrates in cis and in trans. UBXD8 also associates with the TOM complex but is dispensable for translocation-associated degradation. UBXD8 knockout impairs the degradation of the pro-survival protein Mcl1 but surprisingly sensitizes cells to apoptosis and mitochondrial stresses. UBXD8 knockout also hyperactivates mitophagy. We identify pro-apoptotic BH3-only proteins Noxa, Bik, and Bnip3 as novel UBXD8 substrates and determine that UBXD8 inhibits apoptosis via degrading Noxa and restrains mitophagy via degrading Bnip3. Collectively, our characterizations reveal UBXD8 as the major mitochondrial adaptor of VCP and unveil its role in apoptosis and mitophagy regulation.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life SciencesPeking UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
| | - Yu Cao
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Jun Yang
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Hui Jiang
- School of Life SciencesPeking UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| |
Collapse
|
11
|
Volkmar N, Gawden‐Bone CM, Williamson JC, Nixon‐Abell J, West JA, St George‐Hyslop PH, Kaser A, Lehner PJ. Regulation of membrane fluidity by RNF145-triggered degradation of the lipid hydrolase ADIPOR2. EMBO J 2022; 41:e110777. [PMID: 35993436 PMCID: PMC9531299 DOI: 10.15252/embj.2022110777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/19/2022] Open
Abstract
The regulation of membrane lipid composition is critical for cellular homeostasis. Cells are particularly sensitive to phospholipid saturation, with increased saturation causing membrane rigidification and lipotoxicity. How mammalian cells sense membrane lipid composition and reverse fatty acid (FA)-induced membrane rigidification is poorly understood. Here we systematically identify proteins that differ between mammalian cells fed saturated versus unsaturated FAs. The most differentially expressed proteins were two ER-resident polytopic membrane proteins: the E3 ubiquitin ligase RNF145 and the lipid hydrolase ADIPOR2. In unsaturated lipid membranes, RNF145 is stable, promoting its lipid-sensitive interaction, ubiquitination and degradation of ADIPOR2. When membranes become enriched in saturated FAs, RNF145 is rapidly auto-ubiquitinated and degraded, stabilising ADIPOR2, whose hydrolase activity restores lipid homeostasis and prevents lipotoxicity. We therefore identify RNF145 as a FA-responsive ubiquitin ligase which, together with ADIPOR2, defines an autoregulatory pathway that controls cellular membrane lipid homeostasis and prevents acute lipotoxic stress.
Collapse
Affiliation(s)
- Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
- Present address:
Institute for Molecular Systems Biology (IMSB)ETH ZürichZürichSwitzerland
| | - Christian M Gawden‐Bone
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | | | - James A West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | | | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Liu F, Tian T, Zhang Z, Xie S, Yang J, Zhu L, Wang W, Shi C, Sang L, Guo K, Yang Z, Qu L, Liu X, Liu J, Yan Q, Ju HQ, Wang W, Piao HL, Shao J, Zhou T, Lin A. Long non-coding RNA SNHG6 couples cholesterol sensing with mTORC1 activation in hepatocellular carcinoma. Nat Metab 2022; 4:1022-1040. [PMID: 35995997 DOI: 10.1038/s42255-022-00616-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Cholesterol contributes to the structural basis of biological membranes and functions as a signaling molecule, whose dysregulation has been associated with various human diseases. Here, we report that the long non-coding RNA (lncRNA) SNHG6 increases progression from non-alcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) by modulating cholesterol-induced mTORC1 activation. Mechanistically, cholesterol binds ER-anchored FAF2 protein to promote the formation of a SNHG6-FAF2-mTOR complex. As a putative cholesterol effector, SNHG6 enhances cholesterol-dependent mTORC1 lysosomal recruitment and activation via enhancing FAF2-mTOR interaction at ER-lysosome contacts, thereby coordinating mTORC1 kinase cascade activation with cellular cholesterol biosynthesis in a self-amplified cycle to accelerate cholesterol-driven NAFLD-HCC development. Notably, loss of SNHG6 inhibits mTORC1 signaling and impairs growth of patient-derived xenograft liver cancer tumors, identifyifng SNHG6 as a potential target for liver cancer treatment. Together, our findings illustrate the crucial role of organelle-associated lncRNA in organelle communication, nutrient sensing, and kinase cascades.
Collapse
Affiliation(s)
- Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Tian Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Shanshan Xie
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Linyu Zhu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiangrui Liu
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou, China.
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
13
|
Sun Z, Guerriero CJ, Brodsky JL. Substrate ubiquitination retains misfolded membrane proteins in the endoplasmic reticulum for degradation. Cell Rep 2021; 36:109717. [PMID: 34551305 PMCID: PMC8503845 DOI: 10.1016/j.celrep.2021.109717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
To maintain secretory pathway fidelity, misfolded proteins are commonly retained in the endoplasmic reticulum (ER) and selected for ER-associated degradation (ERAD). Soluble misfolded proteins use ER chaperones for retention, but the machinery that restricts aberrant membrane proteins to the ER is unclear. In fact, some misfolded membrane proteins escape the ER and traffic to the lysosome/vacuole. To this end, we describe a model substrate, SZ*, that contains an ER export signal but is also targeted for ERAD. We observe decreased ER retention when chaperone-dependent SZ* ubiquitination is compromised. In addition, appending a linear tetra-ubiquitin motif onto SZ* overrides ER export. By screening known ubiquitin-binding proteins, we then positively correlate SZ* retention with Ubx2 binding. Deletion of Ubx2 also inhibits the retention of another misfolded membrane protein. Our results indicate that polyubiquitination is sufficient to retain misfolded membrane proteins in the ER prior to ERAD. Sun et al. characterize how misfolded membrane proteins are delivered for either ERAD or post-ER degradation in the secretory pathway. By using a model substrate that can access both pathways, they show that substrate retention requires chaperone-dependent substrate ubiquitination and interaction with a conserved ER membrane protein, Ubx2.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
14
|
Chen L, Lengi AJ, Corl BA. The inhibitory effect of trans-10,cis-12 conjugated linoleic acid on sterol regulatory element binding protein-1 activation in bovine mammary epithelial cells involved reduced proteasomal degradation of insulin-induced gene-1. J Dairy Sci 2021; 104:11306-11316. [PMID: 34275626 DOI: 10.3168/jds.2021-20544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
Trans 10,cis-12 conjugated linoleic acid (t10,c12 CLA) is well recognized as a key CLA isomer responsible for the reduction in milk fat synthesis that leads to milk fat depression in dairy cows. Sterol regulatory element binding protein-1 (SREBP1) is a key transcription factor in bovine mammary gland coordinating transcription of the genes for fatty acid synthesis. SREBP1 activation requires the removal of insulin-induced gene-1 (Insig1) that serves as a repressor of SREBP1 in the endoplasmic reticulum (ER). We hypothesized that t10,c12 CLA reduced SREBP1 activation by delaying Insig1 degradation. In the present study, we used undifferentiated bovine mammary epithelial cells (MAC-T cells) and treated them with t10,c12 CLA for 6 h. We found that SREBP1 protein expression declined over 56% when cells were treated with 60 µM or greater concentration of t10,c12 CLA. Such inhibitory effects were also observed in the mRNA expression of SREBP1-regulated genes including SREBP1, fatty acid synthetase, stearoyl-CoA desaturase, and Insig1. Compared with no CLA group, 60 µM or higher concentration of t10,c12 CLA increased Insig1 protein expression over 2-fold in cells transfected with FLAG-tagged Insig1. This stimulatory effect was not specific to t10,c12 CLA but also other polyunsaturated fatty acids including cis-9,trans-11 CLA and linoleic acid. Oleic acid had no effect on Insig1 protein expression, whereas palmitic acid decreased Insig1 protein expression. Further investigation revealed that increased abundance of FLAG-Insig1 with t10,c12 CLA was due to the inhibition of the proteasomal degradation of Insig1. The t10,c12 CLA delayed the Insig1 decay when protein synthesis was blocked. Immunoprecipitation also confirmed that the interaction between ubiquitin-like domain-containing protein 8 and Insig1, the key step of removing Insig1 from ER and freeing SREBP1 for proteolytic processing, was inhibited by t10,c12 CLA, but not palmitic acid. These findings suggested that t10,c12 CLA played a role in regulating SREBP1 activation by reducing proteasomal degradation of Insig1. We concluded that stabilized Insig1 retained SREBP1 in the ER from activation, thus reducing lipogenic gene transcription.
Collapse
Affiliation(s)
- Liang Chen
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - Andrea J Lengi
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - Benjamin A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg 24061.
| |
Collapse
|
15
|
Zhong S, Li L, Liang N, Zhang L, Xu X, Chen S, Yin H. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol 2021; 41:101919. [PMID: 33740503 PMCID: PMC7995661 DOI: 10.1016/j.redox.2021.101919] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
HMG-CoA reductase (HMGCR) is the rate-limiting enzyme in cholesterol biosynthesis and the target for cholesterol-lowering therapy. Acetaldehyde dehydrogenase 2 (ALDH2) is primarily responsible for detoxifying ethanol-derived acetaldehyde and endogenous lipid aldehydes derived from lipid peroxidation. Epidemiological and Genome Wide Association Studies (GWAS) have linked an inactive ALDH2 rs671 variant, responsible for alcohol flush in nearly 8% world population and 40% of Asians, with cholesterol levels and higher risk of cardiovascular disease (CVD) but the underlying mechanism remains elusive. Here we find that the cholesterol levels in the serum and liver of ALDH2 knockout (AKO) and ALDH2 rs671 knock-in (AKI) mice are significantly increased, consistent with the increase of intermediates in the cholesterol biosynthetic pathways. Mechanistically, mitochondrial ALDH2 translocates to the endoplasmic reticulum to promote the formation of GP78/Insig1/HMGCR complex to increase HMGCR degradation through ubiquitination. Conversely, ALDH2 mutant or ALDH2 deficiency in AKI or AKO mice stabilizes HMGCR, resulting in enhanced cholesterol synthesis, which can be reversed by Lovastatin. Moreover, ALDH2-regulated cholesterol synthesis is linked to the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs). Together, our study has identified that ALDH2 is a novel regulator of cholesterol synthesis, which may play an important role in CVD.
Collapse
Affiliation(s)
- Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
16
|
Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med 2021; 218:e20201606. [PMID: 33601415 PMCID: PMC7754673 DOI: 10.1084/jem.20201606] [Citation(s) in RCA: 536] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Cancer cells harness lipid metabolism to obtain energy, components for biological membranes, and signaling molecules needed for proliferation, survival, invasion, metastasis, and response to the tumor microenvironment impact and cancer therapy. Here, we summarize and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in cancer cells and introduce different approaches that have been clinically used to disrupt lipid metabolism in cancer therapy.
Collapse
Affiliation(s)
- Xueli Bian
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
17
|
Dipyridamole Inhibits Lipogenic Gene Expression by Retaining SCAP-SREBP in the Endoplasmic Reticulum. Cell Chem Biol 2020; 28:169-179.e7. [PMID: 33096051 DOI: 10.1016/j.chembiol.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are master transcriptional regulators of the mevalonate pathway and lipid metabolism and represent an attractive therapeutic target for lipid metabolic disorders. SREBPs are maintained in the endoplasmic reticulum (ER) in a tripartite complex with SREBP cleavage-activating protein (SCAP) and insulin-induced gene protein (INSIG). When new lipid synthesis is required, the SCAP-SREBP complex dissociates from INSIG and undergoes ER-to-Golgi transport where the N-terminal transcription factor domain is released by proteolysis. The mature transcription factor translocates to the nucleus and stimulates expression of the SREBP gene program. Previous studies showed that dipyridamole, a clinically prescribed phosphodiesterase (PDE) inhibitor, potentiated statin-induced tumor growth inhibition. Dipyridamole limited nuclear accumulation of SREBP, but the mechanism was not well resolved. In this study, we show that dipyridamole selectively blocks ER-to-Golgi movement of the SCAP-SREBP complex and that this is independent of its PDE inhibitory activity.
Collapse
|
18
|
Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A 2020; 117:23617-23625. [PMID: 32879008 PMCID: PMC7519326 DOI: 10.1073/pnas.2008980117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mTORC1 complex provides a critical role in cell function, regulating a variety of processes including growth and autophagy. mTORC1 signaling is hyperactivated in a range of common diseases including cancer, epilepsy, and neurodegenerative disorders. Hence, mTORC1 signaling provides an important target for regulation in many contexts. Here, we show that decanoic acid, a key component of a widely used medicinal diet, reduces mTORC1 activity. We identify this in a tractable model system, and validate it in ex vivo rat brain tissue and in human iPSC-derived astrocytes from patients with a clinically relevant disease. Thus, we provide insight into an easily accessible therapeutic approach for a range of diseases. Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.
Collapse
|
19
|
Ye J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J Biol Chem 2020; 295:10271-10280. [PMID: 32487748 DOI: 10.1074/jbc.rev120.012669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Transmembrane proteins are membrane-anchored proteins whose topologies are important for their functions. These properties enable regulation of certain transmembrane proteins by regulated intramembrane proteolysis (RIP) and regulated alternative translocation (RAT). RIP enables a protein fragment of a transmembrane precursor to function at a new location, and RAT leads to an inverted topology of a transmembrane protein by altering the direction of its translocation across membranes during translation. RIP mediated by site-1 protease (S1P) and site-2 protease (S2P) is involved in proteolytic activation of membrane-bound transcription factors. In resting cells, these transcription factors remain in the endoplasmic reticulum (ER) as inactive transmembrane precursors. Upon stimulation by signals within the ER, they are translocated from the ER to the Golgi. There, they are cleaved first by S1P and then by S2P, liberating their N-terminal domains from membranes and enabling them to activate genes in the nucleus. This signaling pathway regulates lipid metabolism, unfolded protein responses, secretion of extracellular matrix proteins, and cell proliferation. Remarkably, ceramide-induced RIP of cAMP response element-binding protein 3-like 1 (CREB3L1) also involves RAT. In resting cells, RIP of CREB3L1 is blocked by transmembrane 4 L6 family member 20 (TM4SF20). Ceramide inverts the orientation of newly synthesized TM4SF20 in membranes through RAT, converting TM4SF20 from an inhibitor to an activator of RIP of CREB3L1. Here, I review recent insights into RIP of membrane-bound transcription factors, focusing on CREB3L1 activation through both RIP and RAT, and discuss current open questions about these two signaling pathways.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Maharjan Y, Lee JN, Kwak SA, Dutta RK, Park C, Choe SK, Park R. TMEM135 regulates primary ciliogenesis through modulation of intracellular cholesterol distribution. EMBO Rep 2020; 21:e48901. [PMID: 32157776 PMCID: PMC7202201 DOI: 10.15252/embr.201948901] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
Recent evidence has linked the lysosomal cholesterol accumulation in Niemann–Pick type C1 with anomalies associated with primary ciliogenesis. Here, we report that perturbed intracellular cholesterol distribution imposed by lysosomal cholesterol accumulation during TMEM135 depletion is closely associated with impaired ciliogenesis. TMEM135 depletion does not affect the formation of the basal body and the ciliary transition zone. TMEM135 depletion severely blunts Rab8 trafficking to the centrioles without affecting the centriolar localization of Rab11 and Rabin8, the upstream regulators of Rab8 activation. Although TMEM135 depletion prevents enhanced IFT20 localization at the centrioles, ciliary vesicle formation is not affected. Furthermore, enhanced IFT20 localization at the centrioles is dependent on Rab8 activation. Supplementation of cholesterol in complex with cyclodextrin rescues Rab8 trafficking to the centrioles and Rab8 activation, thereby recovering primary ciliogenesis in TMEM135‐depleted cells. Taken together, our data suggest that TMEM135 depletion prevents ciliary vesicle elongation, a characteristic of impaired Rab8 function. Our study thus reveals a previously uncharacterized effect of erroneous intracellular cholesterol distribution on impairing Rab8 function and primary ciliogenesis.
Collapse
Affiliation(s)
- Yunash Maharjan
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Korea
| | - Joon No Lee
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Korea
| | - Seong Ae Kwak
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Raghbendra Kumar Dutta
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Korea
| | - Channy Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Raekil Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Korea
| |
Collapse
|
21
|
Zhou ZS, Li MX, Liu J, Jiao H, Xia JM, Shi XJ, Zhao H, Chu L, Liu J, Qi W, Luo J, Song BL. Competitive oxidation and ubiquitylation on the evolutionarily conserved cysteine confer tissue-specific stabilization of Insig-2. Nat Commun 2020; 11:379. [PMID: 31953408 PMCID: PMC6969111 DOI: 10.1038/s41467-019-14231-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Insig-2 is an ER membrane protein negatively controlling lipid biosynthesis. Here, we find that Insig-2 is increased in the tissues, including liver, but unaltered in the muscle of gp78-deficient mice. In hepatocytes and undifferentiated C2C12 myoblasts, Insig-2 is ubiquitylated on Cys215 by gp78 and degraded. However, the C215 residue is oxidized by elevated reactive oxygen species (ROS) during C2C12 myoblasts differentiating into myotubes, preventing Insig-2 from ubiquitylation and degradation. The stabilized Insig-2 downregulates lipogenesis through inhibiting the SREBP pathway, helping to channel the carbon flux to ATP generation and protecting myotubes from lipid over-accumulation. Evolutionary analysis shows that the YECK (in which C represents Cys215 in human Insig-2) tetrapeptide sequence in Insig-2 is highly conserved in amniotes but not in aquatic amphibians and fishes, suggesting it may have been shaped by differential selection. Together, this study suggests that competitive oxidation-ubiquitylation on Cys215 of Insig-2 senses ROS and prevents muscle cells from lipid accumulation.
Collapse
Affiliation(s)
- Zhang-Sen Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengwu Jiao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Ming Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huabin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liping Chu
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Jingrong Liu
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
22
|
Goder V, Alanis-Dominguez E, Bustamante-Sequeiros M. Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158488. [PMID: 31233887 DOI: 10.1016/j.bbalip.2019.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/09/2023]
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a conserved cellular process that apart from protein quality control and maintenance of ER membrane identity has pivotal functions in regulating the lipid composition of the ER membrane. A general trigger for ERAD activation is the exposure of normally buried protein domains due to protein misfolding, absence of binding partners or conformational changes. Several feedback loops for ER lipid homeostasis exploit the induction of conformational changes in key enzymes of lipid biosynthesis or in ER membrane-embedded transcription factors upon shortage or abundance of specific lipids, leading to enzyme degradation or mobilization of transcription factors. Similarly, an insufficient amount of lipids triggers ERAD of apolipoproteins during lipoprotein formation. Lipids might even have a role in ER protein quality control: when proteins destined for ER export are covalently modified with lipids their ER residence time and their susceptibility to ERAD is reduced. Here we summarize and compare the various interconnections of lipids with ER membrane proteins and ERAD. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Veit Goder
- Department of Genetics, University of Seville, 6, Ave Reina Mercedes, 41012 Seville, Spain.
| | | | | |
Collapse
|
23
|
Han Y, Hu Z, Cui A, Liu Z, Ma F, Xue Y, Liu Y, Zhang F, Zhao Z, Yu Y, Gao J, Wei C, Li J, Fang J, Li J, Fan JG, Song BL, Li Y. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat Commun 2019; 10:623. [PMID: 30733434 PMCID: PMC6367348 DOI: 10.1038/s41467-019-08585-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin-induced gene (Insig) negatively regulates SREBP-mediated de novo fatty acid synthesis in the liver. However, the upstream regulation of Insig is incompletely understood. Here we report that AMPK interacts with and mediates phosphorylation of Insig. Thr222 phosphorylation following AMPK activation is required for protein stabilization of Insig-1, inhibition of cleavage and processing of SREBP-1, and lipogenic gene expression in response to metformin or A769662. AMPK-dependent phosphorylation ablates Insig's interaction with E3 ubiquitin ligase gp78 and represses its ubiquitination and degradation, whereas AMPK deficiency shows opposite effects. Interestingly, activation of AMPK by metformin causes an augmentation of Insig stability and reduction of lipogenic gene expression, and leads to the attenuation of hepatic steatosis in HFHS diet-fed mice. Moreover, hepatic overexpression of Insig-1 rescues hepatic steatosis in liver-specific AMPKα2 knockout mice fed with HFHS diet. These findings uncover a novel effector of AMPK. Targeting Insig may have the therapeutic potential for treating fatty liver disease and related disorders.
Collapse
Affiliation(s)
- Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zehua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Yanyan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Chun Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
24
|
Chan JP, Wong BH, Chin CF, Galam DLA, Foo JC, Wong LC, Ghosh S, Wenk MR, Cazenave-Gassiot A, Silver DL. The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain. PLoS Biol 2018; 16:e2006443. [PMID: 30074985 PMCID: PMC6093704 DOI: 10.1371/journal.pbio.2006443] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/15/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
Brain development requires a massive increase in brain lipogenesis and accretion of the essential omega-3 fatty acid docosahexaenoic acid (DHA). Brain acquisition of DHA is primarily mediated by the transporter Major Facilitator Superfamily Domain containing 2a (Mfsd2a) expressed in the endothelium of the blood-brain barrier (BBB) and other abundant cell types within the brain. Mfsd2a transports DHA and other polyunsaturated fatty acids (PUFAs) esterified to lysophosphatidylcholine (LPC-DHA). However, the function of Mfsd2a and DHA in brain development is incompletely understood. Here, we demonstrate, using vascular endothelial-specific and inducible vascular endothelial-specific deletion of Mfsd2a in mice, that Mfsd2a is uniquely required postnatally at the BBB for normal brain growth and DHA accretion, with DHA deficiency preceding the onset of microcephaly. In Mfsd2a-deficient mouse models, a lipidomic signature was identified that is indicative of increased de novo lipogenesis of PUFAs. Gene expression profiling analysis of these DHA-deficient brains indicated that sterol regulatory-element binding protein (Srebp)-1 and Srebp-2 pathways were highly elevated. Mechanistically, LPC-DHA treatment of primary neural stem cells down-regulated Srebp processing and activation in a Mfsd2a-dependent fashion, resulting in profound effects on phospholipid membrane saturation. In addition, Srebp regulated the expression of Mfsd2a. These data identify LPC-DHA transported by Mfsd2a as a physiological regulator of membrane phospholipid saturation acting in a feedback loop on Srebp activity during brain development. The brain is the most lipid-rich organ in the body. Brain development involves a tremendous increase in the synthesis and accretion of fatty acids. De novo synthesis of fatty acids is mediated by Srebp transcription factors, whereas acquisition of essential fatty acids via uptake of plasma-derived lysophosphatidylcholine containing the essential omega-3 fatty acid docosahexaenoic acid (LPC-DHA) is mediated by the transporter Mfsd2a in the cells that line the blood vessels in the brain. The function of Mfsd2a and DHA in brain development is incompletely understood. Our study determined that Mfsd2a is required at the blood-brain barrier for brain development and accretion of DHA after birth in mice. Moreover, we determined that a major function of DHA in the brain is to negatively regulate Srebp activation, resulting in profound effects on membrane phospholipid composition. These findings reveal that LPC-DHA transported by Mfsd2a plays a physiological role in both brain growth and in maintaining plasma membrane phospholipid composition during brain development.
Collapse
Affiliation(s)
- Jia Pei Chan
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Bernice H. Wong
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Cheen Fei Chin
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Dwight L. A. Galam
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Juat Chin Foo
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Loo Chin Wong
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Markus R. Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | | | - David L. Silver
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
25
|
Cheng X, Li J, Guo D. SCAP/SREBPs are Central Players in Lipid Metabolism and Novel Metabolic Targets in Cancer Therapy. Curr Top Med Chem 2018; 18:484-493. [PMID: 29788888 DOI: 10.2174/1568026618666180523104541] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023]
Abstract
Lipid metabolism reprogramming emerges as a new hallmark of malignancies. Sterol regulatory element-binding proteins (SREBPs), which are central players in lipid metabolism, are endoplasmic reticulum (ER)-bound transcription factors that control the expression of genes important for lipid synthesis and uptake. Their transcriptional activation requires binding to SREBP cleavageactivating protein (SCAP) to translocate their inactive precursors from the ER to the Golgi to undergo cleavage and subsequent nucleus translocation of their NH2-terminal forms. Recent studies have revealed that SREBPs are markedly upregulated in human cancers, providing the mechanistic link between lipid metabolism alterations and malignancies. Pharmacological or genetic inhibition of SCAP or SREBPs significantly suppresses tumor growth in various cancer models, demonstrating that SCAP/SREBPs could serve as promising metabolic targets for cancer therapy. In this review, we will summarize recent progress in our understanding of the underlying molecular mechanisms regulating SCAP/SREBPs and lipid metabolism in malignancies, discuss new findings about SREBP trafficking, which requires SCAP N-glycosylation, and introduce a newly identified microRNA-29-mediated negative feedback regulation of the SCAP/SREBP pathway. Moreover, we will review recently developed inhibitors targeting the SCAP/SREBP pathway for cancer treatment.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, United States
| | - Jianying Li
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, United States
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, United States
| |
Collapse
|
26
|
Czumaj A, Mika A, Chmielewski M, Sledzinski T. Cyclopropaneoctanoic Acid 2-Hexyl Upregulates the Expression of Genes Responsible for Lipid Synthesis and Release in Human Hepatic HepG2 Cells. Lipids 2018; 53:345-351. [PMID: 29701265 DOI: 10.1002/lipd.12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 01/09/2023]
Abstract
Recently we have found cyclopropaneoctanoic acid 2-hexyl (CPOA2H) in humans and demonstrated its elevated levels in patients with metabolic diseases associated with hypertriglyceridemia. However, it is still unclear whether CPOA2H may influence lipid metabolism in lipogenic tissues. To verify this, HepG2 hepatocytes and 3T3-L1 adipocytes were cultured with various concentrations of CPOA2H, and then the expressions of genes associated with lipid metabolism were determined. Incubation with CPOA2H at concentrations found in patients with metabolic diseases enhanced the expression of hepatocyte genes associated with lipid synthesis and release, in particular, the fatty acid synthase gene (nearly 20-fold increase in the mRNA level). In contrast, incubation with CPOA2H caused the downregulation of most adipocyte genes associated with lipid synthesis, whereas the level of leptin mRNA was increased. These findings suggest that CPOA2H may contribute to hypertriglyceridemia in patients with metabolic diseases, upregulating the expression of hepatocyte genes responsible for lipid synthesis and release.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80-211, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80-211, Poland
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Michał Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Debinki 7, 80-211, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80-211, Poland
| |
Collapse
|
27
|
DeBose-Boyd RA, Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem Sci 2018; 43:358-368. [PMID: 29500098 DOI: 10.1016/j.tibs.2018.01.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that activate genes encoding enzymes required for synthesis of cholesterol and unsaturated fatty acids. SREBPs are controlled by multiple mechanisms at the level of mRNA synthesis, proteolytic activation, and transcriptional activity. In this review, we summarize the recent findings that contribute to the current understanding of the regulation of SREBPs and their physiologic roles in maintenance of lipid homeostasis, insulin signaling, innate immunity, and cancer development.
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| |
Collapse
|
28
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
29
|
Howie D, Ten Bokum A, Necula AS, Cobbold SP, Waldmann H. The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Front Immunol 2018; 8:1949. [PMID: 29375572 PMCID: PMC5770376 DOI: 10.3389/fimmu.2017.01949] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
The differentiation and effector functions of both the innate and adaptive immune system are inextricably linked to cellular metabolism. The features of metabolism which affect both arms of the immune system include metabolic substrate availability, expression of enzymes, transport proteins, and transcription factors which control catabolism of these substrates, and the ability to perform anabolic metabolism. The control of lipid metabolism is central to the appropriate differentiation and functions of T lymphocytes, and ultimately to the maintenance of immune tolerance. This review will focus on the role of fatty acid (FA) metabolism in T cell differentiation, effector function, and survival. FAs are important sources of cellular energy, stored as triglycerides. They are also used as precursors to produce complex lipids such as cholesterol and membrane phospholipids. FA residues also become incorporated into hormones and signaling moieties. FAs signal via nuclear receptors and their channeling, between storage as triacyl glycerides or oxidation as fuel, may play a role in survival or death of the cell. In recent years, progress in the field of immunometabolism has highlighted diverse roles for FA metabolism in CD4 and CD8 T cell differentiation and function. This review will firstly describe the sensing and modulation of the environmental FAs and lipid intracellular signaling and will then explore the key role of lipid metabolism in regulating the balance between potentially damaging pro-inflammatory and anti-inflammatory regulatory responses. Finally the complex role of extracellular FAs in determining cell survival will be discussed.
Collapse
Affiliation(s)
- Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Annemieke Ten Bokum
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Stephen Paul Cobbold
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Loregger A, Raaben M, Tan J, Scheij S, Moeton M, van den Berg M, Gelberg-Etel H, Stickel E, Roitelman J, Brummelkamp T, Zelcer N. Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis. Arterioscler Thromb Vasc Biol 2017; 37:2064-2074. [PMID: 28882874 PMCID: PMC5671778 DOI: 10.1161/atvbaha.117.310002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— The cellular demand for cholesterol requires control of its biosynthesis by the mevalonate pathway. Regulation of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), a rate-limiting enzyme in this pathway and the target of statins, is a key control point herein. Accordingly, HMGCR is subject to negative and positive regulation. In particular, the ability of oxysterols and intermediates of the mevalonate pathway to stimulate its proteasomal degradation is an exquisite example of metabolically controlled feedback regulation. To define the genetic determinants that govern this process, we conducted an unbiased haploid mammalian genetic screen. Approach and Results— We generated human haploid cells with mNeon fused to endogenous HMGCR using CRISPR/Cas9 and used these cells to interrogate regulation of HMGCR abundance in live cells. This resulted in identification of known and new regulators of HMGCR, and among the latter, UBXD8 (ubiquitin regulatory X domain-containing protein 8), a gene that has not been previously implicated in this process. We demonstrate that UBXD8 is an essential determinant of metabolically stimulated degradation of HMGCR and of cholesterol biosynthesis in multiple cell types. Accordingly, UBXD8 ablation leads to aberrant cholesterol synthesis due to loss of feedback control. Mechanistically, we show that UBXD8 is necessary for sterol-stimulated dislocation of ubiquitylated HMGCR from the endoplasmic reticulum membrane en route to proteasomal degradation, a function dependent on its UBX domain. Conclusions— We establish UBXD8 as a previously unrecognized determinant that couples flux across the mevalonate pathway to control of cholesterol synthesis and demonstrate the feasibility of applying mammalian haploid genetics to study metabolic traits.
Collapse
Affiliation(s)
- Anke Loregger
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Matthijs Raaben
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Josephine Tan
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Saskia Scheij
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Martina Moeton
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Marlene van den Berg
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Hila Gelberg-Etel
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Elmer Stickel
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Joseph Roitelman
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Thijn Brummelkamp
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.).
| |
Collapse
|
32
|
Burr R, Ribbens D, Raychaudhuri S, Stewart EV, Ho J, Espenshade PJ. Dsc E3 ligase localization to the Golgi requires the ATPase Cdc48 and cofactor Ufd1 for activation of sterol regulatory element-binding protein in fission yeast. J Biol Chem 2017; 292:16333-16350. [PMID: 28821619 DOI: 10.1074/jbc.m117.802025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/08/2017] [Indexed: 11/06/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) in the fission yeast Schizosaccharomyces pombe regulate lipid homeostasis and the hypoxic response under conditions of low sterol or oxygen availability. SREBPs are cleaved in the Golgi through the combined action of the Dsc E3 ligase complex, the rhomboid protease Rbd2, and the essential ATPases associated with diverse cellular activities (AAA+) ATPase Cdc48. The soluble SREBP N-terminal transcription factor domain is then released into the cytosol to enter the nucleus and regulate gene expression. Previously, we reported that Cdc48 binding to Rbd2 is required for Rbd2-mediated SREBP cleavage. Here, using affinity chromatography and mass spectrometry experiments, we identified Cdc48-binding proteins in S. pombe, generating a list of many previously unknown potential Cdc48-binding partners. We show that the established Cdc48 cofactor Ufd1 is required for SREBP cleavage but does not interact with the Cdc48-Rbd2 complex. Cdc48-Ufd1 is instead required at a step prior to Rbd2 function, during Golgi localization of the Dsc E3 ligase complex. Together, these findings demonstrate that two distinct Cdc48 complexes, Cdc48-Ufd1 and Cdc48-Rbd2, are required for SREBP activation and low-oxygen adaptation in S. pombe.
Collapse
Affiliation(s)
- Risa Burr
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Diedre Ribbens
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sumana Raychaudhuri
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Emerson V Stewart
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jason Ho
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter J Espenshade
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
33
|
Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2017; 9:178-195. [PMID: 28677105 PMCID: PMC5818367 DOI: 10.1007/s13238-017-0437-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
35
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
36
|
Burr R, Stewart EV, Espenshade PJ. Coordinate Regulation of Yeast Sterol Regulatory Element-binding Protein (SREBP) and Mga2 Transcription Factors. J Biol Chem 2017; 292:5311-5324. [PMID: 28202541 DOI: 10.1074/jbc.m117.778209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis.
Collapse
Affiliation(s)
- Risa Burr
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Emerson V Stewart
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter J Espenshade
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
37
|
Wang J, Long C, Zhang H, Zhang Y, Wang H, Yue H, Wang X, Wu S, Qi G. Genetic Variant in Flavin-Containing Monooxygenase 3 Alters Lipid Metabolism in Laying Hens in a Diet-Specific Manner. Int J Biol Sci 2016; 12:1382-1393. [PMID: 27877090 PMCID: PMC5118784 DOI: 10.7150/ijbs.16472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/04/2016] [Indexed: 11/09/2022] Open
Abstract
Genetic variant T329S in flavin-containing monooxygenase 3 (FMO3) impairs trimethylamine (TMA) metabolism in birds. The TMA metabolism that under complex genetic and dietary regulation, closely linked to cardiovascular disease risk. We determined whether the genetic defects in TMA metabolism may change other metabolic traits in birds, determined whether the genetic effects depend on diets, and to identify genes or gene pathways that underlie the metabolic alteration induced by genetic and diet factors. We used hens genotyped as FMO3 c.984 A>T as well as those with the homozygous normal genotype. For each genotype, hens were provided with either a corn-soybean meal basal diets (SM), which contains lower levels of TMA precursor, or the basal diets supplemented with 21% of rapeseed meal (RM), which contains higher levels of TMA precursor. An integrative analysis of metabolomic and transcriptomic was used to explore the metabolic patterns of FMO3 genetic variant in hens that were fed the two defined diets. In birds that consumed SM diets, the T329S mutation increased levels of plasma TMA and lipids, FMO3 mRNA levels, and the expression of genes involved in long chain polyunsaturated fatty acid biosynthesis. In birds that consumed RM diets, the T329S mutation induced fishy odor syndrome, a repression in LXR pathway and a reciprocal change in lipid metabolism. Variations in TMA and lipid metabolism were linked to the genetic variant in FMO3 in a diet-specific manner, which suggest FMO3 functions in TMA metabolism and lipid homeostasis. LXR pathway and polyunsaturated fatty acid metabolism are two possible mechanisms of FMO3 action in response to dietary TMA precursor.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Long
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanan Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyuan Yue
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaocui Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
38
|
Libby AE, Bales E, Orlicky DJ, McManaman JL. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome. J Biol Chem 2016; 291:24231-24246. [PMID: 27679530 DOI: 10.1074/jbc.m116.759795] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Andrew E Libby
- From the Integrated Physiology Graduate Program.,Division of Reproductive Sciences, and
| | | | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - James L McManaman
- From the Integrated Physiology Graduate Program, .,Division of Reproductive Sciences, and
| |
Collapse
|
39
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
40
|
Bahitham W, Watts R, Nelson R, Lian J, Lehner R. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:482-90. [PMID: 26976727 DOI: 10.1016/j.bbalip.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity.
Collapse
Affiliation(s)
- Wesam Bahitham
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
41
|
Kim C, Lee H, Kang H, Shin JJ, Tak H, Kim W, Gorospe M, Lee EK. RNA-binding protein HuD reduces triglyceride production in pancreatic β cells by enhancing the expression of insulin-induced gene 1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:675-85. [PMID: 26945853 DOI: 10.1016/j.bbagrm.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
Although triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic β cells.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jung Jae Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
42
|
Kim H, Rodriguez-Navas C, Kollipara RK, Kapur P, Pedrosa I, Brugarolas J, Kittler R, Ye J. Unsaturated Fatty Acids Stimulate Tumor Growth through Stabilization of β-Catenin. Cell Rep 2015; 13:495-503. [PMID: 26456834 DOI: 10.1016/j.celrep.2015.09.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022] Open
Abstract
Some cancer cells exhibit elevated levels of free fatty acids (FAs) as well as high levels of β-catenin, a transcriptional co-activator that promotes their growth. Here, we link these two phenomena by showing that unsaturated FAs inhibit degradation of β-catenin. Unsaturated FAs bind to the UAS domain of Fas-associated factor 1 (FAF1), a protein known to bind β-catenin, accelerating its degradation. FA binding disrupts the FAF1/β-catenin complex, preventing proteasomal degradation of ubiquitinated β-catenin. This mechanism for stabilization of β-catenin differs from that of Wnt signaling, which blocks ubiquitination of β-catenin. In clear cell renal cell carcinoma (ccRCC) cells, unsaturated FAs stimulated cell proliferation through stabilization of β-catenin. In tissues from biopsies of human ccRCC, elevated levels of unsaturated FAs correlated with increased levels of β-catenin. Thus, targeting FAF1 may be an effective approach to treat cancers that exhibit elevated FAs and β-catenin.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos Rodriguez-Navas
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Payal Kapur
- Kidney Cancer Program in Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ivan Pedrosa
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program in Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
43
|
Zhang T, Xu Y, Liu Y, Ye Y. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum. Mol Biol Cell 2015; 26:4438-50. [PMID: 26424800 PMCID: PMC4666138 DOI: 10.1091/mbc.e15-06-0354] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022] Open
Abstract
The functional relationship between mammalian ubiquitin ligase gp78 and Hrd1 was studied. Hrd1 is one of the essential retrotranslocation regulators conserved in yeast and mammalian cells, whereas gp78 serves an assisting role downstream of Hrd1 and possibly other ubiquitin ligases in mammalian cells. Eukaryotic cells eliminate misfolded proteins from the endoplasmic reticulum (ER) via a conserved process termed ER-associated degradation (ERAD). Central regulators of the ERAD system are membrane-bound ubiquitin ligases, which are thought to channel misfolded proteins through the ER membrane during retrotranslocation. Hrd1 and gp78 are mammalian ubiquitin ligases homologous to Hrd1p, an ubiquitin ligase essential for ERAD in Saccharomyces cerevisiae. However, the functional relevance of these proteins to Hrd1p is unclear. In this paper, we characterize the gp78-containing ubiquitin ligase complex and define its functional interplay with Hrd1 using biochemical and recently developed CRISPR-based genetic tools. Our data show that transient inactivation of the gp78 complex by short hairpin RNA–mediated gene silencing causes significant stabilization of both luminal and membrane ERAD substrates, but unlike Hrd1, which plays an essential role in retrotranslocation and ubiquitination of these ERAD substrates, knockdown of gp78 does not affect either of these processes. Instead, gp78 appears to act downstream of Hrd1 to promote ERAD via cooperation with the BAG6 chaperone complex. We conclude that the Hrd1 complex forms an essential retrotranslocation module that is evolutionarily conserved, but the mammalian ERAD system uses additional ubiquitin ligases to assist Hrd1 during retrotranslocation.
Collapse
Affiliation(s)
- Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Deng X, Dong Q, Bridges D, Raghow R, Park EA, Elam MB. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1521-9. [PMID: 26327595 DOI: 10.1016/j.bbalip.2015.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 11/27/2022]
Abstract
In hyperinsulinemic states including obesity and T2DM, overproduction of fatty acid and triglyceride contributes to steatosis of the liver, hyperlipidemia and hepatic insulin resistance. This effect is mediated in part by the transcriptional regulator sterol responsive element binding protein-1c (SREBP-1c), which stimulates the expression of genes involved in hepatic fatty acid and triglyceride synthesis. SREBP-1c is up regulated by insulin both via increased transcription of nascent full-length SREBP-1c and by enhanced proteolytic processing of the endoplasmic reticulum (ER)-bound precursor to yield the transcriptionally active n-terminal form, nSREBP-1c. Polyunsaturated fatty acids of marine origin (n-3 PUFA) prevent induction of SREBP-1c by insulin thereby reducing plasma and hepatic triglycerides. Despite widespread use of n-3 PUFA supplements to reduce triglycerides in clinical practice, the exact mechanisms underlying their hypotriglyceridemic effect remain elusive. Here we demonstrate that the n-3 PUFA docosahexaenoic acid (DHA; 22:5 n-3) reduces nSREBP-1c by inhibiting regulated intramembrane proteolysis (RIP) of the nascent SREBP-1c. We further show that this effect of DHA is mediated both via activation of AMP-activated protein kinase (AMPK) and by inhibition of mechanistic target of rapamycin complex 1 (mTORC1). The inhibitory effect of AMPK on SREBP-1c processing is linked to phosphorylation of serine 365 of SREBP-1c in the rat. We have defined a novel regulatory mechanism by which n-3 PUFA inhibit induction of SREBP-1c by insulin. These findings identify AMPK as an important negative regulator of hepatic lipid synthesis and as a potential therapeutic target for hyperlipidemia in obesity and T2DM.
Collapse
Affiliation(s)
- Xiong Deng
- Department of Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis TN 38104, United States; Department of Pharmacology, 874 Union Avenue, Memphis, TN 38163, United States.
| | - Qingming Dong
- Department of Pharmacology, 874 Union Avenue, Memphis, TN 38163, United States
| | - Dave Bridges
- Department of Physiology, 894 Union Avenue, Memphis TN 38163, United States; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, 50 North Dunlap, Memphis TN 38103, United States
| | - Rajendra Raghow
- Department of Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis TN 38104, United States; Department of Pharmacology, 874 Union Avenue, Memphis, TN 38163, United States
| | - Edwards A Park
- Department of Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis TN 38104, United States; Department of Pharmacology, 874 Union Avenue, Memphis, TN 38163, United States
| | - Marshall B Elam
- Department of Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis TN 38104, United States; Department of Pharmacology, 874 Union Avenue, Memphis, TN 38163, United States
| |
Collapse
|
45
|
Miyata S, Inoue J, Shimizu M, Sato R. Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation. J Biol Chem 2015; 290:20565-79. [PMID: 26140926 DOI: 10.1074/jbc.m115.656975] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 02/02/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome.
Collapse
Affiliation(s)
- Shingo Miyata
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun Inoue
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
46
|
McFarlane MR, Cantoria MJ, Linden AG, January BA, Liang G, Engelking LJ. Scap is required for sterol synthesis and crypt growth in intestinal mucosa. J Lipid Res 2015; 56:1560-71. [PMID: 25896350 DOI: 10.1194/jlr.m059709] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap(-)) in which tamoxifen-inducible Cre-ER(T2), a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap(-) mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap(-) mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts.
Collapse
Affiliation(s)
- Matthew R McFarlane
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Mary Jo Cantoria
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Albert G Linden
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Brandon A January
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Guosheng Liang
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Luke J Engelking
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|
47
|
Squalene mono-oxygenase, a key enzyme in cholesterol synthesis, is stabilized by unsaturated fatty acids. Biochem J 2014; 461:435-42. [PMID: 24840124 DOI: 10.1042/bj20131404] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SM (squalene mono-oxygenase) catalyses the first oxygenation step in cholesterol synthesis, immediately before the formation of the steroid backbone at lanosterol. SM is an important control point in the pathway, and is regulated at the post-translational level by accelerated cholesterol-dependent ubiquitination and proteasomal degradation, which is associated with the accumulation of squalene. Using model cell systems, we report that SM is stabilized by unsaturated fatty acids. Treatment with unsaturated fatty acids such as oleate, but not saturated fatty acids, increased protein levels of SM or SM-N100-GFP (the first 100 amino acids of SM fused to GFP) at the post-translational level and partially overcame cholesterol-dependent degradation, as well as reversing cholesterol-dependent squalene accumulation. Maximum stabilization required activation of fatty acids, but not triacylglycerol or phosphatidylcholine synthesis. The mechanism of oleate-mediated stabilization appeared to occur through reduced ubiquitination by the E3 ubiquitin ligase MARCH6. Stabilization of a cholesterol biosynthetic enzyme by unsaturated fatty acids may help maintain a constant cholesterol/phospholipid ratio.
Collapse
|
48
|
Kim H, Ye J. Cellular responses to excess fatty acids: focus on ubiquitin regulatory X domain-containing protein 8. Curr Opin Lipidol 2014; 25:118-24. [PMID: 24378746 DOI: 10.1097/mol.0000000000000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Although fatty acids are crucial for cell survival, their overaccumulation triggers lipotoxicity that leads to metabolic syndrome. Thus, cells maintain their homeostasis by multiple feedback regulatory systems. This review focuses on how cells regulate the level of fatty acids by these systems. RECENT FINDINGS Ubiquitin regulatory X domain-containing protein 8 has been identified as a specific sensor for unsaturated fatty acids that regulates lipogenic activity. SUMMARY Together with the previously identified peroxisome proliferator-activated receptors and liver X receptor, these proteins sense the presence of unsaturated fatty acids and initiate reactions preventing their overaccumulation. Understanding the mechanism of the signal transduction pathways mediated by these proteins may offer new strategies to treat metabolic syndrome.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
49
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, Abia R, Muriana FJG. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1638-56. [PMID: 24440426 DOI: 10.1016/j.bbamem.2014.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/26/2022]
Abstract
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | | | - Sara Jaramillo
- Laboratory of Phytochemicals and Food Quality, Instituto de la Grasa, CSIC, 41014 Seville, Spain
| | - Lourdes M Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain.
| |
Collapse
|
50
|
Xia Y, Yan LH, Huang B, Liu M, Liu X, Huang C. Pathogenic mutation of UBQLN2 impairs its interaction with UBXD8 and disrupts endoplasmic reticulum-associated protein degradation. J Neurochem 2013; 129:99-106. [PMID: 24215460 DOI: 10.1111/jnc.12606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 12/14/2022]
Abstract
Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS-linked UBQLN2 mutation on endoplasmic reticulum-associated protein degradation (ERAD). Compared to its wild-type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α-1-antitrypsin, although ERAD was disturbed by both UBQLN2 over-expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain-containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell-protective function is disturbed by pathogenic mutation of UBQLN2.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|