1
|
Zhao L, Zhao BH, Ruze A, Li QL, Deng AX, Gao XM. Distinct roles of MIF in the pathogenesis of ischemic heart disease. Cytokine Growth Factor Rev 2024; 80:121-137. [PMID: 39438226 DOI: 10.1016/j.cytogfr.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The role of macrophage migration inhibitory factor (MIF) as a multifunctional cytokine in immunomodulation and inflammatory response is increasingly appreciated. Ischemic heart disease (IHD), the leading cause of global mortality, remains a focal point of research owing to its intricate pathophysiology. MIF has been identified as a critical player in IHD, where it exerts distinct roles. On one hand, MIF plays a protective role by enhancing energy metabolism through activation of AMPK, resisting oxidative stress, inhibiting activation of the JNK pathway, and maintaining intracellular calcium ion homeostasis. Additionally, MIF exerts protective effects through mesenchymal stem cells and exosomes. On the other hand, MIF can assume a pro-inflammatory role, which contributes to the exacerbation of IHD's development and progression. Furthermore, MIF levels significantly increase in IHD patients, and its genetic polymorphisms are positively correlated with prevalence and severity. These findings position MIF as a potential biomarker and therapeutic target in the management of IHD. This review summarizes the structure, source, signaling pathways and biological functions of MIF and focuses on its roles and clinical characteristics in IHD. The genetic variants of MIF associated with IHD is also discussed, providing more understandings of its complex interplay in the disease's pathology.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, China.
| |
Collapse
|
2
|
Sarry M, Vitour D, Zientara S, Bakkali Kassimi L, Blaise-Boisseau S. Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Viruses 2022; 14:v14102129. [PMID: 36298684 PMCID: PMC9610432 DOI: 10.3390/v14102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals with a significant socioeconomic impact. One of the issues related to this disease is the ability of its etiological agent, foot-and-mouth disease virus (FMDV), to persist in the organism of its hosts via underlying mechanisms that remain to be elucidated. The establishment of a virus–host equilibrium via protein–protein interactions could contribute to explaining these phenomena. FMDV has indeed developed numerous strategies to evade the immune response, especially the type I interferon response. Viral proteins target this innate antiviral response at different levels, ranging from blocking the detection of viral RNAs to inhibiting the expression of ISGs. The large diversity of impacts of these interactions must be considered in the light of the in vitro models that have been used to demonstrate them, some being sometimes far from biological systems. In this review, we have therefore listed the interactions between FMDV and the interferon response as exhaustively as possible, focusing on both their biological effect and the study models used.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- AgroParisTech, 75005 Paris, France
- Correspondence: (M.S.); (S.B.-B.)
| | - Damien Vitour
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- Correspondence: (M.S.); (S.B.-B.)
| |
Collapse
|
3
|
Du Y, Hao H, Ma H, Liu H. Macrophage migration inhibitory factor in acute kidneyinjury. Front Physiol 2022; 13:945827. [PMID: 36117692 PMCID: PMC9478040 DOI: 10.3389/fphys.2022.945827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with multiple etiologies and pathogenesis, which lacks early biomarkers and targeted therapy. Recently, macrophage migration inhibitory factor (MIF) family protein have received increasing attention owing to its pleiotropic protein molecule character in acute kidney injury, where it performed a dual role in the pathological process. macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 are released into the peripheral circulation when Acute kidney injury occurs and interact with various cellular pathways. On the one hand, macrophage migration inhibitory factor exerts a protective effect in anti-oxidation and macrophage migration inhibitory factor-2 promotes cell proliferation and ameliorates renal fibrosis. On the other hand, macrophage migration inhibitory factor aggravates renal injury as an upstream inflammation factor. Herein, we provide an overview on the biological role and possible mechanisms of macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 in the process of Acute kidney injury and the clinical application prospects of macrophage migration inhibitory factor family proteins as a potential therapeutic target.
Collapse
Affiliation(s)
- Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Hao Hao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| |
Collapse
|
4
|
Long Non-coding RNA ZFPM2-AS1: A Novel Biomarker in the Pathogenesis of Human Cancers. Mol Biotechnol 2022; 64:725-742. [DOI: 10.1007/s12033-021-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
|
5
|
Activation of Nm23-H1 to suppress breast cancer metastasis via redox regulation. Exp Mol Med 2021; 53:346-357. [PMID: 33753879 PMCID: PMC8080780 DOI: 10.1038/s12276-021-00575-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Non-metastatic protein 23 H1 (Nm23-H1), a housekeeping enzyme, is a nucleoside diphosphate kinase-A (NDPK-A). It was the first identified metastasis suppressor protein. Nm23-H1 prolongs disease-free survival and is associated with a good prognosis in breast cancer patients. However, the molecular mechanisms underlying the role of Nm23-H1 in biological processes are still not well understood. This is a review of recent studies focusing on controlling NDPK activity based on the redox regulation of Nm23-H1, structural, and functional changes associated with the oxidation of cysteine residues, and the relationship between NDPK activity and cancer metastasis. Further understanding of the redox regulation of the NDPK function will likely provide a new perspective for developing new strategies for the activation of NDPK-A in suppressing cancer metastasis.
Collapse
|
6
|
Szczęśniak P, Henke T, Fröhlich S, Plessmann U, Urlaub H, Leng L, Bucala R, Grosse R, Meinhardt A, Klug J. Extracellular MIF, but not its homologue D-DT, promotes fibroblast motility independently of its receptor complex CD74/CD44. J Cell Sci 2021; 134:jcs.217356. [PMID: 33328325 DOI: 10.1242/jcs.217356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (D-DT) are widely expressed pro-inflammatory cytokines with chemokine-like functions that coordinate a wide spectrum of biological activities, such as migration. Here, we biotin-tagged intracellular MIF/D-DT in vivo to identify important cytosolic interactors and found a plethora of actin cytoskeleton-associated proteins. Although the receptor complex between CD74 and CD44 (CD74/CD44) is essential for signalling transduction in fibroblasts via extracellular MIF/D-DT, our interactome data suggested direct effects. We, thus, investigated whether MIF/D-DT can modulate cell migration independently of CD74/CD44. To distinguish between receptor- and non-receptor-mediated motility, we used fibroblasts that are either deficient or that express CD74/CD44 proteins, and treated them with recombinant MIF/D-DT. Interestingly, only MIF could stimulate chemokinesis in the presence or absence of CD74/CD44. The pro-migratory effects of MIF depended on lipid raft/caveolae-mediated but not clathrin-mediated endocytosis, on its tautomerase activity and, probably, on its thiol protein oxidoreductase activity. As MIF treatment restrained actin polymerisation in vitro, our findings establish a new intracellular role for MIF/D-DT in driving cell motility through modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Paweł Szczęśniak
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Tamara Henke
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Uwe Plessmann
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany.,Institute for Clinical Chemistry, Research Group 'Bioanalytics', University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Medical Faculty, Albertstraße 25, 79104 Freiburg, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| |
Collapse
|
7
|
Illescas O, Pacheco-Fernández T, Laclette JP, Rodriguez T, Rodriguez-Sosa M. Immune modulation by the macrophage migration inhibitory factor (MIF) family: D-dopachrome tautomerase (DDT) is not (always) a backup system. Cytokine 2020; 133:155121. [PMID: 32417648 DOI: 10.1016/j.cyto.2020.155121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
Human macrophage migration inhibition factor (MIF) is a protein with cytokine and chemokine properties that regulates a diverse range of physiological functions related to innate immunity and inflammation. Most research has focused on the role of MIF in different inflammatory diseases. D-dopachrome tautomerase (DDT), a different molecule with structural similarities to MIF, which shares receptors and biological functions, has recently been reported, but little is known about its roles and mechanisms. In this review, we sought to understand the similarities and differences between these molecules by summarizing what is known about their different structures, receptors and mechanisms regulating their expression and biological activities with an emphasis on immunological aspects.
Collapse
Affiliation(s)
- Oscar Illescas
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Thalia Pacheco-Fernández
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Juan P Laclette
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 04510, Mexico
| | - Tonathiu Rodriguez
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Miriam Rodriguez-Sosa
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico.
| |
Collapse
|
8
|
Radić M, Šoštar M, Weber I, Ćetković H, Slade N, Herak Bosnar M. The Subcellular Localization and Oligomerization Preferences of NME1/NME2 upon Radiation-Induced DNA Damage. Int J Mol Sci 2020; 21:ijms21072363. [PMID: 32235358 PMCID: PMC7177722 DOI: 10.3390/ijms21072363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleoside diphosphate kinases (NDPK/NME/Nm23) are enzymes composed of subunits NME1/NDPK A and NME2/NDPK B, responsible for the maintenance of the cellular (d)NTP pool and involved in other cellular processes, such as metastasis suppression and DNA damage repair. Although eukaryotic NDPKs are active only as hexamers, it is unclear whether other NME functions require the hexameric form, and how the isoenzyme composition varies in different cellular compartments. To examine the effect of DNA damage on intracellular localization of NME1 and NME2 and the composition of NME oligomers in the nucleus and the cytoplasm, we used live-cell imaging and the FRET/FLIM technique. We showed that exogenous NME1 and NME2 proteins co-localize in the cytoplasm of non-irradiated cells, and move simultaneously to the nucleus after gamma irradiation. The FRET/FLIM experiments imply that, after DNA damage, there is a slight shift in the homomer/heteromer balance between the nucleus and the cytoplasm. Collectively, our results indicate that, after irradiation, NME1 and NME2 engage in mutual functions in the nucleus, possibly performing specific functions in their homomeric states. Finally, we demonstrated that fluorophores fused to the N-termini of NME polypeptides produce the largest FRET effect and thus recommend this orientation for use in similar studies.
Collapse
Affiliation(s)
- Martina Radić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.R.); (N.S.)
| | - Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.Š.); (I.W.); (H.Ć.)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.Š.); (I.W.); (H.Ć.)
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.Š.); (I.W.); (H.Ć.)
| | - Neda Slade
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.R.); (N.S.)
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.R.); (N.S.)
- Correspondence: ; Tel.: +385-1-456-0996
| |
Collapse
|
9
|
Role of Host and Parasite MIF Cytokines during Leishmania Infection. Trop Med Infect Dis 2020; 5:tropicalmed5010046. [PMID: 32244916 PMCID: PMC7157535 DOI: 10.3390/tropicalmed5010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that has been extensively characterized in human disease and in mouse models. Its pro-inflammatory functions in mammals includes the retention of tissue macrophages and a unique ability to counteract the immunosuppressive activity of glucocorticoids. MIF also acts as a survival factor by preventing activation-induced apoptosis and by promoting sustained expression of inflammatory factors such as TNF-α and nitric oxide. The pro-inflammatory activity of MIF has been shown to be protective against Leishmania major infection in mouse models of cutaneous disease, however the precise role of this cytokine in human infections is less clear. Moreover, various species of Leishmania produce their own MIF orthologs, and there is evidence that these may drive an inflammatory environment that is detrimental to the host response. Herein the immune response to Leishmania in mouse models and humans will be reviewed, and the properties and activities of mammalian and Leishmania MIF will be integrated into the current understandings in this field. Furthermore, the prospect of targeting Leishmania MIF for therapeutic purposes will be discussed.
Collapse
|
10
|
Harris J, VanPatten S, Deen NS, Al-Abed Y, Morand EF. Rediscovering MIF: New Tricks for an Old Cytokine. Trends Immunol 2019; 40:447-462. [DOI: 10.1016/j.it.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
|
11
|
Jankauskas SS, Wong DW, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57:76-88. [DOI: 10.1016/j.cellsig.2019.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/27/2023]
|
12
|
Feng HH, Zhu ZX, Cao WJ, Yang F, Zhang XL, Du XL, Zhang KS, Liu XT, Zheng HX. Foot-and-mouth disease virus induces lysosomal degradation of NME1 to impair p53-regulated interferon-inducible antiviral genes expression. Cell Death Dis 2018; 9:885. [PMID: 30158514 PMCID: PMC6115381 DOI: 10.1038/s41419-018-0940-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Nucleoside diphosphate kinase 1 (NME1) is well-known as a tumor suppressor that regulates p53 function to prevent cancer metastasis and progression. However, the role of NME1 in virus-infected cells remains unknown. Here, we showed that NME1 suppresses viral replication in foot-and-mouth disease virus (FMDV)-infected cells. NME1-enhanced p53-mediated transcriptional activity and induction of interferon-inducible antiviral genes expression. FMDV infection decreased NME1 protein expression. The 2B and VP4 proteins were identified as the viral factors that induced reduction of NME1. FMDV 2B protein has a suppressive effect on host protein expression. We measured, for the first time, VP4-induced lysosomal degradation of host protein; VP4-induced degradation of NME1 through the macroautophagy pathway, and impaired p53-mediated signaling. p53 plays significant roles in antiviral innate immunity by inducing several interferon-inducible antiviral genes expression, such as, ISG20, IRF9, RIG-I, and ISG15. VP4 promoted interaction of p53 with murine double minute 2 (MDM2) through downregulation of NME1 resulting in destabilization of p53. Therefore, 5-flurouracil-induced upregulation of ISG20, IRF9, RIG-I, and ISG15 were suppressed by VP4. VP4-induced reduction of NME1 was not related to the well-characterized blocking effect of FMDV on cellular translation, and no direct interaction was detected between NME1 and VP4. The 15-30 and 75-85 regions of VP4 were determined to be crucial for VP4-induced reduction of NME1. Deletion of these VP4 regions also inhibited the suppressive effect of VP4 on NME1-enhanced p53 signaling. In conclusion, these data suggest an antiviral role of NME1 by regulation of p53-mediated antiviral innate immunity in virus-infected cells, and reveal an antagonistic mechanism of FMDV that is mediated by VP4 to block host innate immune antiviral response.
Collapse
Affiliation(s)
- Huan-Huan Feng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zi-Xiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Wei-Jun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiang-Le Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiao-Li Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Ke-Shan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiang-Tao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.
| |
Collapse
|
13
|
Kong F, Deng X, Kong X, Du Y, Li L, Zhu H, Wang Y, Xie D, Guha S, Li Z, Guan M, Xie K. ZFPM2-AS1, a novel lncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF. Oncogene 2018; 37:5982-5996. [PMID: 29985481 PMCID: PMC6226322 DOI: 10.1038/s41388-018-0387-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 05/05/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are implicated to be involved in the pathogenesis of many cancers. Herein we report on our discovery of a novel lncRNA, ZFPM2 antisense RNA 1 (ZFPM2-AS1), and its critical role in gastric carcinogenesis. ZFPM2-AS1 expression in gastric cancer specimens was analyzed using Gene Expression Omnibus data set and validated in 73 paired gastric tumor and normal adjacent gastric tissue specimens using qRT-PCR. The effect of ZFPM2-AS1 expression on proliferation and apoptosis in gastric cancer cells was assessed by altering its expression in vitro and in vivo. Mechanistic investigation was carried out using cell and molecular biological approaches. ZFPM2-AS1 expression was higher in gastric tumors than in normal gastric tissue. Also, increased ZFPM2-AS1 expression in gastric cancer specimens was associated with tumor size, depth of tumor invasion, differentiation grade, and TNM stage. High ZFPM2-AS1 expression predicted markedly reduced overall and disease-free survival in gastric cancer patients. Functional experiments demonstrated that ZFPM2-AS1 expression promoted proliferation and suppressed apoptosis of gastric cancer cells in vitro and promoted tumor growth in vivo. This effect is associated with attenuated nuclear translocation of p53. Mechanistic experiments demonstrated that tumor-activated ZFPM2-AS1 could bind to and protect the degradation of macrophage migration inhibitory factor (MIF), a potent destabilizer of p53. Knockdown of MIF expression diminished ZFPM2-AS1's impact on p53 expression in gastric cancer cells. Our findings demonstrated that ZFPM2-AS1 regulates gastric cancer progression and revealed a novel ZFPM2-AS1/MIF/p53 signaling axis, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant gastric cells.
Collapse
Affiliation(s)
- Fanyang Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.,Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.,Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Huiyun Zhu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuxin Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Dacheng Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shivani Guha
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
14
|
Mangano K, Mazzon E, Basile MS, Di Marco R, Bramanti P, Mammana S, Petralia MC, Fagone P, Nicoletti F. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach. Oncotarget 2018; 9:17951-17970. [PMID: 29707160 PMCID: PMC5915168 DOI: 10.18632/oncotarget.24885] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Santa Mammana
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Formative Processes, University of Catania, Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Oncogenic Epstein-Barr virus recruits Nm23-H1 to regulate chromatin modifiers. J Transl Med 2018; 98:258-268. [PMID: 29035376 PMCID: PMC6053075 DOI: 10.1038/labinvest.2017.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022] Open
Abstract
In cancer progression, metastasis is a major cause of poor survival of patients and can be targeted for therapeutic interventions. The first discovered metastatic-suppressor Nm23-H1 possesses nucleoside diphosphate kinase, histidine kinase, and DNase activity as a broad-spectrum enzyme. Recent advances in cancer metastasis have opened new ways for the development of therapeutic molecular approaches. In this review, we provide a summary of the current understanding of Nm23/NDPKs in the context of viral oncogenesis. We also focused on Nm23-H1-mediated cellular events with an emphasis on chromatin modifications. How Nm23-H1 modulates the activities of chromatin modifiers through interaction with Epstein-Barr virus-encoded oncogenic antigens and related crosstalks are discussed in the context of other oncogenic viruses. We also described the current understanding of the cellular and viral interactions of Nm23-H1 and their reference to transcription regulation and metastasis. Further, we summarized the recent therapeutic approaches targeting Nm23 and its potential links to pathways that can be exploited by oncogenic viruses.
Collapse
|
16
|
Lechien JR, Nassri A, Kindt N, Brown DN, Journe F, Saussez S. Role of macrophage migration inhibitory factor in head and neck cancer and novel therapeutic targets: A systematic review. Head Neck 2017; 39:2573-2584. [PMID: 28963807 DOI: 10.1002/hed.24939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 06/22/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in systemic, autoimmune, and inflammatory diseases, such as obesity, rheumatoid arthritis, and systemic lupus erythematosus. For the 2 past decades, MIF has been reported to participate in carcinogenesis, disease prognosis, tumor cell proliferation, invasion, and tumor-induced angiogenesis in many cancers. The purpose of this article is to review published experimental and clinical data for MIF and its involvement in upper aerodigestive tract cancers. Based on the current literature, we propose a biomolecular model describing the mechanisms underlying the involvement of MIF in the initiation, progression, apoptosis, and proliferation of head and neck tumor cells. In reference to this model, potential therapeutic approaches based on the use of MIF antagonists and neutralizing antibodies are described. It is concluded that MIF is a promising target for future therapeutic strategies, both with and without chemoradiation strategies.
Collapse
Affiliation(s)
- Jérôme R Lechien
- Department of Otolaryngology and Head and Neck Surgery, RHMS Baudour, EpiCURA Hospital, Baudour, Belgium.,Laboratory of Phonetics, Faculty of Psychology, Research Institute for Language sciences and Technology, University of Mons (UMONS), Mons, Belgium.,Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Amir Nassri
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Nadege Kindt
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - David N Brown
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium.,Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sven Saussez
- Department of Otolaryngology and Head and Neck Surgery, RHMS Baudour, EpiCURA Hospital, Baudour, Belgium.,Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
17
|
Gabrielyan A, Neumann E, Gelinsky M, Rösen-Wolff A. Metabolically conditioned media derived from bone marrow stromal cells or human skin fibroblasts act as effective chemoattractants for mesenchymal stem cells. Stem Cell Res Ther 2017; 8:212. [PMID: 28969687 PMCID: PMC5623977 DOI: 10.1186/s13287-017-0664-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/10/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background The main goal of bone tissue engineering has been the generation of healthy bone in order to replace affected tissue. Therefore, optimized biomaterials are needed which allow the survival and growth of mesenchymal stem cells. Until now the key challenge in the clinical application of cell-based tissue engineering bone implants was poor diffusion of oxygen into the tissue, making functional blood vessel networks a necessity. With their ability to evolve into different cell types, to expand extensively in vitro, and to release paracrine soluble factors, bone marrow stromal cells (BMSC) are highly attractive for tissue engineering. During the last years hypoxia became a proven method to control proliferation, differentiation, and pluripotency of BMSC. Here we applied different methods to characterize metabolically conditioned media (MCM) in comparison to hypoxia conditioned media (HCM) and evaluated their ability to attract BMSC in 2-D migration assays. Methods BMSC and fibroblasts of human origin were isolated and cultivated to obtain HCM and MCM. Both media were characterized by angiogenesis arrays, cytokine arrays, and ELISA for selected factors. 2-D migration tests were performed with Corning Transwell®-96 permeable support chambers with porous polyester membranes with a pore size of 8.0 μm. Results Characterization of HCM and MCM revealed that the concentration of angiogenic factors was higher in MCM than in HCM. However, the chemoattractive capacity of MCM for BMSC was equivalent to that of HCM. HCM and MCM produced by human skin fibroblasts attracted human BMSC as efficiently as HCM and MCM produced by human BMSC. Conclusions HCM and MCM have a high chemoattractive capacity for BMSC. Both conditioned media harbor high concentrations of angiogenic factors which are important for angiogenesis and cell migration. Both chemoattracting conditioned media can also be derived from skin fibroblasts which can easily be obtained from patients in individualized therapy approaches.
Collapse
Affiliation(s)
- Anastasia Gabrielyan
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Gießen and Kerckhoff-Klinik Bad Nauheim, Benekestraße 2-8, 61231, Bad Nauheim, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
18
|
Kim MJ, Kim WS, Kim DO, Byun JE, Huy H, Lee SY, Song HY, Park YJ, Kim TD, Yoon SR, Choi EJ, Ha H, Jung H, Choi I. Macrophage migration inhibitory factor interacts with thioredoxin-interacting protein and induces NF-κB activity. Cell Signal 2017; 34:110-120. [PMID: 28323005 DOI: 10.1016/j.cellsig.2017.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 12/27/2022]
Abstract
The nuclear factor kappa B (NF-κB) pathway is pivotal in controlling survival and apoptosis of cancer cells. Macrophage migration inhibitory factor (MIF), a cytokine that regulates the immune response and tumorigenesis under inflammatory conditions, is upregulated in various tumors. However, the intracellular functions of MIF are unclear. In this study, we found that MIF directly interacted with thioredoxin-interacting protein (TXNIP), a tumor suppressor and known inhibitor of NF-κB activity, and MIF significantly induced NF-κB activation. MIF competed with TXNIP for NF-κB activation, and the intracellular MIF induced NF-κB target genes, including c-IAP2, Bcl-xL, ICAM-1, MMP2 and uPA, by inhibiting the interactions between TXNIP and HDACs or p65. Furthermore, we identified the interaction motifs between MIF and TXNIP via site-directed mutagenesis of their cysteine (Cys) residues. Cys57 and Cys81 of MIF and Cys36 and Cys120 of TXNIP were responsible for the interaction. MIF reversed the TXNIP-induced suppression of cell proliferation and migration. Overall, we suggest that MIF induces NF-κB activity by counter acting the inhibitory effect of TXNIP on the NF-κB pathway via direct interaction with TXNIP. These findings reveal a novel intracellular function of MIF in the progression of cancer.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Won Sam Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong Oh Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Eun Byun
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hangsak Huy
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hae Young Song
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
19
|
Guo D, Guo J, Yao J, Jiang K, Hu J, Wang B, Liu H, Lin L, Sun W, Jiang X. D-dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth. Int J Cancer 2016; 139:2056-67. [PMID: 27434219 DOI: 10.1002/ijc.30278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/25/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
Abstract
Previous studies have established the important role of MIF in the development of pancreatic ductal adenocarcinoma (PDAC) for both therapeutic and diagnostic perspectives, but little is known about the expression and function of D-dopachrome tautomerase (DDT), a functional homolog of MIF, in PDAC. In the present study, we demonstrated that DDT was over-expressed in PDAC tissues in a pattern correlated with MIF. In the pancreatic cancer cell lines, PANC-1, BXPC-3 and ASPC-1, both DDT and MIF were expressed and co-localized with each other in the endosomal compartments and plasma membrane. Knockdown of DDT and MIF in PANC-1 cells cooperatively inhibited ERK1/2 and AKT phosphorylation, increased p53 expression, and reduced cell proliferation, invasion and tumor formation. These effects were rescued by the re-expression of MIF or DDT, but not by the forced expression of the tautomerase-deficient mutants of DDT and MIF, P1G-DDT and P1G-MIF. Finally, we observed that 4-iodo-6-phenylpyrimidine (4-IPP), a covalent tautomerase inhibitor of both DDT and MIF, attenuated PANC-1 cell proliferation and colony formation in vitro and tumor growth in vivo. Thus, targeting the tautomerase sites of both MIF and DDT may offer more efficient therapeutic benefits to PDAC patients.
Collapse
Affiliation(s)
- Dawei Guo
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Junchao Yao
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Kun Jiang
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jianhua Hu
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Wang
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Haiyang Liu
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Lin Lin
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Wenyu Sun
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaofeng Jiang
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Youn H, Son B, Kim W, Jun SY, Lee JS, Lee J, Kang C, Kim J, Youn B. Dissociation of MIF‐rpS3 Complex and Sequential NF‐κB Activation Is Involved in IR‐Induced Metastatic Conversion of NSCLC. J Cell Biochem 2015; 116:2504-16. [DOI: 10.1002/jcb.25195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/14/2015] [Indexed: 12/25/2022]
Affiliation(s)
- HyeSook Youn
- Department of Biological SciencesPusan National UniversityBusan609‐735Republic of Korea
- Nuclear Science Research InstitutePusan National UniversityBusan609‐735Republic of Korea
| | - Beomseok Son
- Department of Integrated Biological SciencePusan National UniversityBusan609‐735Republic of Korea
| | - Wanyeon Kim
- Department of Biological SciencesPusan National UniversityBusan609‐735Republic of Korea
- Nuclear Science Research InstitutePusan National UniversityBusan609‐735Republic of Korea
| | - Se Young Jun
- Department of ChemistryWashington State UniversityPullmanWA 99164USA
| | - Jung Sub Lee
- Department of Orthopaedic SurgeryMedical Research InstitutePusan National University School of MedicineBusan602‐739Republic of Korea
| | - Jae‐Myung Lee
- Department of Naval Architecture and Ocean EngineeringPusan National UniversityBusan609‐735Republic of Korea
| | - ChulHee Kang
- Department of ChemistryWashington State UniversityPullmanWA 99164USA
| | - Joon Kim
- Laboratory of BiochemistrySchool of Life Sciences & BiotechnologyKorea UniversitySeoul136‐701Republic of Korea
| | - BuHyun Youn
- Department of Biological SciencesPusan National UniversityBusan609‐735Republic of Korea
- Nuclear Science Research InstitutePusan National UniversityBusan609‐735Republic of Korea
- Department of Integrated Biological SciencePusan National UniversityBusan609‐735Republic of Korea
| |
Collapse
|
21
|
Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI, Abraham T. Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS One 2015; 10:e0134320. [PMID: 26267609 PMCID: PMC4534457 DOI: 10.1371/journal.pone.0134320] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 06/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background While the morbidity and mortality from cancer are largely attributable to its metastatic dissemination, the integral features of the cascade are not well understood. The widely accepted hypothesis is that the primary tumor microenvironment induces the epithelial-to-mesenchymal transition in cancer cells, facilitating their escape into the bloodstream, possibly accompanied by cancer stem cells. An alternative theory for metastasis involves fusion of macrophages with tumor cells (MTFs). Here we culture and characterize apparent MTFs from blood of melanoma patients. Methods We isolated enriched CTC populations from peripheral blood samples from melanoma patients, and cultured them. We interrogated these cultured cells for characteristic BRAF mutations, and used confocal microscopy for immunophenotyping, motility, DNA content and chromatin texture analyses, and then conducted xenograft studies using nude mice. Findings Morphologically, the cultured MTFs were generally large with many pseudopod extensions and lamellipodia. Ultrastructurally, the cultured MTFs appeared to be macrophages. They were rich in mitochondria and lysosomes, as well as apparent melanosomes. The cultured MTF populations were all heterogeneous with regard to DNA content, containing aneuploid and/or high-ploidy cells, and they typically showed large sheets (and/or clumps) of cytoplasmic chromatin. This cytoplasmic DNA was found within heterogeneously-sized autophagic vacuoles, which prominently contained chromatin and micronuclei. Cultured MTFs uniformly expressed pan-macrophage markers (CD14, CD68) and macrophage markers indicative of M2 polarization (CD163, CD204, CD206). They also expressed melanocyte-specific markers (ALCAM, MLANA), epithelial biomarkers (KRT, EpCAM), as well as the pro-carcinogenic cytokine MIF along with functionally related stem cell markers (CXCR4, CD44). MTF cultures from individual patients (5 of 8) contained melanoma-specific BRAF activating mutations. Chromatin texture analysis of deconvoluted images showed condensed DNA (DAPI-intense) regions similar to focal regions described in stem cell fusions. MTFs were readily apparent in vivo in all human melanomas examined, often exhibiting even higher DNA content than the cultured MTFs. When cultured MTFs were transplanted subcutaneously in nude mice, they disseminated and produced metastatic lesions at distant sites. Conclusions and Hypothesis Apparent MTFs are present in peripheral blood of patients with cutaneous melanomas, and they possess the ability to form metastatic lesions when transplanted into mice. We hypothesize that these MTFs arise at the periphery of primary tumors in vivo, that they readily enter the bloodstream and invade distant tissues, secreting cytokines (such as MIF) to prepare “niches” for colonization by metastasis initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Ping Xin
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology and the Institute for Personalized Medicine, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Zhen Du
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Diane M. Thiboutot
- Department of Dermatology, Division of Health Science Research, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Klaus F. Helm
- Department of Dermatopathology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Rogerio I. Neves
- Department of Surgery and the Melanoma Center, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Thomas Abraham
- Department of Neural and Behavioral Science and the Microscopy Imaging Facility, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
22
|
Sauler M, Bucala R, Lee PJ. Role of macrophage migration inhibitory factor in age-related lung disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1-10. [PMID: 25957294 DOI: 10.1152/ajplung.00339.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/05/2015] [Indexed: 12/25/2022] Open
Abstract
The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease.
Collapse
Affiliation(s)
- Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard Bucala
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
23
|
Tong Y, Yung LY, Wong YH. Metastasis suppressors Nm23H1 and Nm23H2 differentially regulate neoplastic transformation and tumorigenesis. Cancer Lett 2015; 361:207-17. [PMID: 25748386 DOI: 10.1016/j.canlet.2015.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/30/2022]
Abstract
Nm23H1 and H2 are prototypical metastasis suppressors with diverse functions, but recent studies suggest that they may also regulate tumorigenesis. Here, we employed both cellular and in vivo assays to examine the effect of Nm23H1 and H2 on tumorigenesis induced by oncogenic Ras and/or p53 deficiency. Co-expression of Nm23H1 but not H2 in NIH3T3 cells effectively suppressed neoplastic transformation and tumorigenesis induced by the oncogenic H-Ras G12V mutant. Overexpression of Nm23H1 but not H2 also inhibited tumorigenesis by human cervical cancer HeLa cells with p53 deficiency. However, in human non-small-cell lung carcinoma H1299 cells harboring N-Ras Q61K oncogenic mutation and p53 deletion, overexpression of Nm23H1 did not affect tumorigenesis in nude mice assays, while overexpression of Nm23H2 enhanced tumor growth with elevated expression of the c-Myc proto-oncogene. Collectively, these results suggest that Nm23H1 and H2 have differential abilities to modulate tumorigenesis.
Collapse
Affiliation(s)
- Yao Tong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lisa Y Yung
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
24
|
Xia W, Xie C, Jiang M, Hou M. Improved survival of mesenchymal stem cells by macrophage migration inhibitory factor. Mol Cell Biochem 2015; 404:11-24. [PMID: 25701358 PMCID: PMC4544672 DOI: 10.1007/s11010-015-2361-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/14/2015] [Indexed: 12/22/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a critical inflammatory cytokine that was recently associated with progenitor cell survival and potently inhibits apoptosis. We examined the protective effect of MIF on hypoxia/serum deprivation (SD)-induced apoptosis of mesenchymal stem cells (MSCs), as well as the possible mechanisms. MSCs were obtained from rat bone marrow and cultured in vitro. Apoptosis was induced by culturing MSCs under hypoxia/SD conditions for up to 24 h and assessed by flow cytometry. Expression levels of c-Met, Akt, and FOXO3a were detected by Western blotting. CD74 expression was detected by qRT-PCR, Western blot, and immunofluorescence. Oxidative stress under hypoxia/SD was examined by detection of reactive oxygen species (ROS) and activity of superoxide dismutase (SOD) and malondialdehyde (MDA). Hypoxia/SD-induced apoptosis was significantly attenuated by recombinant rat MIF in a concentration-dependent manner. MIF induced CD74-asssociated c-Met activation, which was blocked by knocking down CD74 expression using siRNA. MIF also induced Akt and associated FOXO3a phosphorylation, and this effect was abolished by knocking down either CD74 or Akt. In addition, MIF decreased oxidative stress in MSCs, as shown by decreased ROS and MDA, and increased the activity of SOD. Knockdown of CD74, Akt, or FOXO3a largely attenuated the anti-apoptotic effect of MIF and its ability to protect against oxidative stress. MIF protected MSCs from hypoxia/SD-induced apoptosis by interacting with CD74 to stimulate c-Met, leading to downstream PI3K/Akt-FOXO3a signaling and decreased oxidative stress.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | |
Collapse
|
25
|
Banerjee S, Jha HC, Robertson ES. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:207-24. [PMID: 25199839 DOI: 10.1007/s00210-014-1043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022]
Abstract
Metastasis is the most common cause of cancer mortality. To increase the survival of patients, it is necessary to develop more effective methods for treating as well as preventing metastatic diseases. Recent advancement of knowledge in cancer metastasis provides the basis for development of targeted molecular therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Metastasis suppressor genes (MSGs) are promising targets for inhibition of the metastasis process. During the past decade, functional significance of these genes, their regulatory pathways, and related downstream effector molecules have become a major focus of cancer research. Nm23-H1, first in the family of Nm23 human homologues, is a well-characterized, anti-metastatic factor linked with a large number of human malignancies. Mounting evidence to date suggests an important role for Nm23-H1 in reducing virus-induced tumor cell motility and migration. A detailed understanding of the molecular association between oncogenic viral antigens with Nm23-H1 may reveal the underlying mechanisms for tumor virus-associated malignancies. In this review, we will focus on the recent advances to our understanding of the molecular basis of oncogenic virus-induced progression of tumor metastasis by deregulation of Nm23-H1.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
26
|
Brock SE, Rendon BE, Xin D, Yaddanapudi K, Mitchell RA. MIF family members cooperatively inhibit p53 expression and activity. PLoS One 2014; 9:e99795. [PMID: 24932684 PMCID: PMC4059697 DOI: 10.1371/journal.pone.0099795] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/19/2014] [Indexed: 12/29/2022] Open
Abstract
The tumor suppressor p53 is induced by genotoxic stress in both normal and transformed cells and serves to transcriptionally coordinate cell cycle checkpoint control and programmed cell death responses. Macrophage migration inhibitory factor (MIF) is an autocrine and paracrine acting cytokine/growth factor that promotes lung adenocarcinoma cell motility, anchorage-independence and neo-angiogenic potential. Several recent studies indicate that the only known homolog of MIF, D-dopachrome tautomerase (D-DT - also referred to as MIF-2), has functionally redundant activities with MIF and cooperatively promotes MIF-dependent pro-tumorigenic phenotypes. We now report that MIF and D-DT synergistically inhibit steady state p53 phosphorylation, stabilization and transcriptional activity in human lung adenocarcinoma cell lines. The combined loss of MIF and D-DT by siRNA leads to dramatically reduced cell cycle progression, anchorage independence, focus formation and increased programmed cell death when compared to individual loss of MIF or D-DT. Importantly, p53 mutant and p53 null lung adenocarcinoma cell lines were only nominally rescued from the cell growth effects of MIF/D-DT combined deficiency suggesting only a minor role for p53 in these transformed cell growth phenotypes. Finally, increased p53 activation was found to be independent of aberrantly activated AMP-activated protein kinase (AMPK) that occurs in response to MIF/D-DT-deficiency but is dependent on reactive oxygen species (ROS) that mediate aberrant AMPK activation in these cells. Combined, these findings suggest that both p53 wildtype and mutant human lung adenocarcinoma tumors rely on MIF family members for maximal cell growth and survival.
Collapse
Affiliation(s)
- Stephanie E. Brock
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Beatriz E. Rendon
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Dan Xin
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Kavitha Yaddanapudi
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert A. Mitchell
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
27
|
Nagarajan P, Tober KL, Riggenbach JA, Kusewitt DF, Lehman AM, Sielecki T, Pruitt J, Satoskar AR, Oberyszyn TM. MIF antagonist (CPSI-1306) protects against UVB-induced squamous cell carcinoma. Mol Cancer Res 2014; 12:1292-302. [PMID: 24850900 DOI: 10.1158/1541-7786.mcr-14-0255-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Macrophage migration inhibitory factor (MIF) is a homotrimeric proinflammatory cytokine implicated in chronic inflammatory diseases and malignancies, including cutaneous squamous cell carcinomas (SCC). To determine whether MIF inhibition could reduce UVB light-induced inflammation and squamous carcinogenesis, a small-molecule MIF inhibitor (CPSI-1306) was utilized that disrupts homotrimerization. To examine the effect of CPSI-1306 on acute UVB-induced skin changes, Skh-1 hairless mice were systemically treated with CPSI-1306 for 5 days before UVB exposure. In addition to decreasing skin thickness and myeloperoxidase (MPO) activity, CPSI-1306 pretreatment increased keratinocyte apoptosis and p53 expression, decreased proliferation and phosphohistone variant H2AX (γ-H2AX), and enhanced repair of cyclobutane pyrimidine dimers. To examine the effect of CPSI-1306 on squamous carcinogenesis, mice were exposed to UVB for 10 weeks, followed by CPSI-1306 treatment for 8 weeks. CPSI-1306 dramatically decreased the density of UVB-associated p53 foci in non-tumor-bearing skin while simultaneously decreasing the epidermal Ki67 proliferation index. In addition to slowing the rate of tumor development, CPSI-1306 decreased the average tumor burden per mouse. Although CPSI-1306-treated mice developed only papillomas, nearly a third of papillomas in vehicle-treated mice progressed to microinvasive SCC. Thus, MIF inhibition is a promising strategy for prevention of the deleterious cutaneous effects of acute and chronic UVB exposure. IMPLICATIONS Macrophage migration inhibitory factor is a viable target for the prevention of UVB-induced cutaneous SSCs.
Collapse
Affiliation(s)
| | - Kathleen L Tober
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Judith A Riggenbach
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Donna F Kusewitt
- Department of Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - James Pruitt
- Cytokine PharmaSciences, King of Prussia, Pennsylvania
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tatiana M Oberyszyn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
28
|
Lo Sardo A, Altamura S, Pegoraro S, Maurizio E, Sgarra R, Manfioletti G. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6). PLoS One 2013; 8:e53750. [PMID: 23326497 PMCID: PMC3542376 DOI: 10.1371/journal.pone.0053750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022] Open
Abstract
PRMT6 is a protein arginine methyltransferase that has been implicated in transcriptional regulation, DNA repair, and human immunodeficiency virus pathogenesis. Only few substrates of this enzyme are known and therefore its cellular role is not well understood. To identify in an unbiased manner substrates and potential regulators of PRMT6 we have used a yeast two-hybrid approach. We identified 36 new putative partners for PRMT6 and we validated the interaction in vivo for 7 of them. In addition, using invitro methylation assay we identified 4 new substrates for PRMT6, extending the involvement of this enzyme to other cellular processes beyond its well-established role in gene expression regulation. Holistic approaches create molecular connections that allow to test functional hypotheses. The assembly of PRMT6 protein network allowed us to formulate functional hypotheses which led to the discovery of new molecular partners for the architectural transcription factor HMGA1a, a known substrate for PRMT6, and to provide evidences for a modulatory role of HMGA1a on the methyltransferase activity of PRMT6.
Collapse
Affiliation(s)
| | - Sandro Altamura
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elisa Maurizio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
29
|
Luedike P, Hendgen-Cotta UB, Sobierajski J, Totzeck M, Reeh M, Dewor M, Lue H, Krisp C, Wolters D, Kelm M, Bernhagen J, Rassaf T. Cardioprotection through S-nitros(yl)ation of macrophage migration inhibitory factor. Circulation 2012; 125:1880-9. [PMID: 22415145 DOI: 10.1161/circulationaha.111.069104] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a structurally unique inflammatory cytokine that controls cellular signaling in human physiology and disease through extra- and intracellular processes. Macrophage migration inhibitory factor has been shown to mediate both disease-exacerbating and beneficial effects, but the underlying mechanism(s) controlling these diverse functions are poorly understood. METHODS AND RESULTS Here, we have identified an S-nitros(yl)ation modification of MIF that regulates the protective functional phenotype of MIF in myocardial reperfusion injury. Macrophage migration inhibitory factor contains 3 cysteine (Cys) residues; using recombinant wtMIF and site-specific MIF mutants, we have identified that Cys-81 is modified by S-nitros(yl)ation whereas the CXXC-derived Cys residues of MIF remained unaffected. The selective S-nitrosothiol formation at Cys-81 led to a doubling of the oxidoreductase activity of MIF. Importantly, S-nitrosothiol-MIF formation was measured both in vitro and in vivo and led to a decrease in cardiomyocyte apoptosis in the reperfused heart. This decrease was paralleled by a S-nitrosothiol-MIF- but not Cys81 serine (Ser)-MIF mutant-dependent reduction of infarct size in an in vivo model of myocardial ischemia/reperfusion injury. CONCLUSIONS S-nitros(yl)ation of MIF is a pivotal novel regulatory mechanism, providing enhanced activity resulting in increased cytoprotection in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Peter Luedike
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology, and Vascular Medicine, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lim J, Jang G, Kang S, Lee G, Nga DTT, Phuong DTL, Kim H, El-Rifai W, Ruley HE, Jo D. RETRACTED: Cell-permeable NM23 blocks the maintenance and progression of established pulmonary metastasis. Cancer Res 2011; 71:7216-25. [PMID: 21987726 DOI: 10.1158/0008-5472.can-11-2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Occult metastases are a major cause of cancer mortality, even among patients undergoing curative resection. Therefore, practical strategies to target the growth and persistence of already established metastases would provide an important advance in cancer treatment. Here, we assessed the potential of protein therapy using a cell permeable NM23-H1 metastasis suppressor protein. Hydrophobic transduction domains developed from a screen of 1,500 signaling peptide sequences enhanced the uptake of the NM23 protein by cultured cells and systemic delivery to animal tissues. The cell-permeable (CP)-NM23 inhibited metastasis-associated phenotypes in tumor cell lines, blocked the establishment of lung metastases, and cleared already established pulmonary metastases, significantly prolonging the survival of tumor-bearing animals. Therefore, these results establish the potential use of cell-permeable metastasis suppressors as adjuvant therapy against disseminated cancers.
Collapse
Affiliation(s)
- Junghee Lim
- ProCell R&D Institute, ProCell Therapeutics, Inc., Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mittelbronn M, Platten M, Zeiner P, Dombrowski Y, Frank B, Zachskorn C, Harter PN, Weller M, Wischhusen J. Macrophage migration inhibitory factor (MIF) expression in human malignant gliomas contributes to immune escape and tumour progression. Acta Neuropathol 2011; 122:353-65. [PMID: 21773885 DOI: 10.1007/s00401-011-0858-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/28/2011] [Accepted: 07/04/2011] [Indexed: 01/02/2023]
Abstract
Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Brain Neoplasms/cerebrospinal fluid
- Brain Neoplasms/metabolism
- Cell Line, Tumor/drug effects
- Disease Progression
- Enzyme-Linked Immunosorbent Assay/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/cerebrospinal fluid
- Glioma/metabolism
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/metabolism
- Microarray Analysis/methods
- Microtubule-Associated Proteins/metabolism
- Mutation/genetics
- NK Cell Lectin-Like Receptor Subfamily K
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA, Messenger/metabolism
- Tumor Escape
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, Heinrich-Hoffmann-Strasse 7, 60528, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boissan M, Lacombe ML. Learning about the functions of NME/NM23: lessons from knockout mice to silencing strategies. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:421-31. [PMID: 21562815 DOI: 10.1007/s00210-011-0649-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
The human NME gene family (also known as NM23) comprises ten genes that are involved in diverse physiological and pathological processes including proliferation, differentiation, development, ciliary functions, and metastasis. For the moment, only the NME1, NME2, and NME7 genes have been inactivated in transgenic knockout mice, as well as a double NME1-NME2 gene knockout. Mice lacking NME1 or NME2 grow to adulthood without health problems, although NME1 (-/-) mice have modest growth retardation. Double knockout NME1 (-/-)-NME2 (-/-) mice, by contrast, are highly hypotrophic and die at birth from profound anemia due to impaired erythroblast development. Evidence for a metastasis suppressor function of NME1 in vivo comes from crossing NME1 (-/-) mice with mice prone to develop hepatocellular carcinoma; the double transgenic mice present a higher incidence of lung metastases. Silencing of NME1 by siRNA interference has confirmed this function by conferring a "metastatic phenotype" on non-invasive human epithelial cancer cell lines. This function is specific to NME1 and is not observed when the NME2 is silenced. The data indicate that NME1 loss is causally involved at the early stages of the metastatic cascade. NME2 (-/-) mice and NME2 silencing experiments reveal a specific role of NME2 in activation of heterotrimeric G proteins and of KCa3.1 channel in T cells, pointing to a role of NME2 as a histidine phosphotransferase. Regarding NME7, consistent with its expression in axonemal structures, NME7 (-/-) mice present lesions similar to primary ciliary dyskinesia. This review summarizes the recent data obtained by knockout and silencing of NME/NM23 genes that provide mechanistic insights into their respective roles in physiology and pathology.
Collapse
|
33
|
Proteomic analysis of NME1/NDPK A null mouse liver: evidence for a post-translational regulation of annexin IV and EF-1Bα. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:407-19. [DOI: 10.1007/s00210-011-0639-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
|
34
|
Deplagne C, Peuchant E, Moranvillier I, Dubus P, Dabernat S. The anti-metastatic nm23-1 gene is needed for the final step of mammary duct maturation of the mouse nipple. PLoS One 2011; 6:e18645. [PMID: 21490937 PMCID: PMC3072419 DOI: 10.1371/journal.pone.0018645] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 03/11/2011] [Indexed: 11/19/2022] Open
Abstract
Nm23/NDP kinases are multifunctional enzymes involved in the general homeostasis of triphosphate nucleosides. Numerous studies have shown that NDPKs also serve as regulatory factors of various cell activities, not always connected to nucleotide phosphorylation. In particular, the nme-1 gene, encoding the NM23-1/NDPKA protein, has been reported as a metastasis suppressor gene. This activity was validated in hepatocellular tumors induced in nm23-1 deficient mice. Yet, data describing the primary physiological functions of nm23-1/NDPKA is still scarce. We have characterized in depth the phenotype of nm23-1 deletion in the mammary gland in mice carrying whole body nm23-M1 invalidation. We also asked why the nm23-M1−/− mutant females displayed severe nursing disability. We found that the growth retardation of mutant virgin glands was due to reduced proliferation and apoptosis of the epithelial cells within the terminal end buds. The balance of pro/anti-apoptotic factors was impaired in comparison with wild type glands. In the lactating glands, the reduced proliferation rate persisted, but the apoptotic factors were unchanged. However, those defects did not seem to affect the gland maturation since the glands lacking nm23-1/NDPKA appeared morphologically normal. Thorough examination of all the functional aspects of the mammary glands revealed that lack of nm23-1/NDPKA does not impact the production or the ejection of milk in the lumen of lobuloalveolae. Interestingly, an epithelial plug was found to obstruct the extremity of the unique lactiferous duct delivering the milk out of the nipple. These cells, normally disappearing after lactation takes place, persisted in the mutant nipples. This work provides a rare instance of nm23-1/NDPKA physiological functions in the mammary glands and reveals its implication as a modulator factor of proliferation and apoptosis in this tissue.
Collapse
Affiliation(s)
- Camille Deplagne
- Unité U1035, INSERM, Bordeaux, France
- Biothérapies des maladies génétiques et cancers, Univ. Segalen Bordeaux, Bordeaux, France
| | - Evelyne Peuchant
- Unité U1035, INSERM, Bordeaux, France
- Biothérapies des maladies génétiques et cancers, Univ. Segalen Bordeaux, Bordeaux, France
| | - Isabelle Moranvillier
- Unité U1035, INSERM, Bordeaux, France
- Biothérapies des maladies génétiques et cancers, Univ. Segalen Bordeaux, Bordeaux, France
| | - Pierre Dubus
- Équipe 2406 Histologie et pathologie moléculaire des tumeurs, Univ. Segalen Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Unité U1035, INSERM, Bordeaux, France
- Biothérapies des maladies génétiques et cancers, Univ. Segalen Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
35
|
Welford SM, Giaccia AJ. Hypoxia and senescence: the impact of oxygenation on tumor suppression. Mol Cancer Res 2011; 9:538-44. [PMID: 21385881 DOI: 10.1158/1541-7786.mcr-11-0065] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cellular senescence has emerged as a biological response to two major pathophysiological states of our being: cancer and aging. In the course of the transformation of a normal cell to a cancerous cell, senescence is frequently induced to suppress tumor development. In aged individuals, senescence is found in cells that have exhausted their replication potential. The similarity in these responses suggests that understanding how senescence is mediated can provide insight into both cancer and aging. One environmental factor that is implicated in both of these states is tissue hypoxia, which increases with aging and can inhibit senescence. Hypoxia is particularly important in normal physiology to maintain the stem cell niche; but at the same time, hypoxic inhibition of an essential tumor suppressor response can theoretically contribute to cancer initiation.
Collapse
Affiliation(s)
- Scott M Welford
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 325, Cleveland, OH 44106, USA.
| | | |
Collapse
|
36
|
Röwer C, Koy C, Hecker M, Reimer T, Gerber B, Thiesen HJ, Glocker MO. Mass spectrometric characterization of protein structure details refines the proteome signature for invasive ductal breast carcinoma. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:440-456. [PMID: 21472563 DOI: 10.1007/s13361-010-0031-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/30/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
Early diagnosis as well as individualized therapies are necessary to reduce the mortality of breast cancer, and personalized patient care strategies rely on novel prognostic or predictive factors. In this study, with six breast cancer patients, 2D gel analysis was applied for studying protein expression differences in order to distinguish invasive ductal breast carcinoma, the most frequent breast tumor subtype, from control samples. In total, 1203 protein spots were assembled in a 2D reference gel. Differentially abundant spots were subjected to peptide mass fingerprinting for protein identification. Twenty proteins with their corresponding 38 differentially expressed 2D gel spots were contained in our previously reported proteome signature, suggesting that distinct protein forms were contributing. In-depth MS/MS measurements enabled analyses of protein structure details of selected proteins. In protein spots that significantly contributed to our signature, we found that glyceraldehyde-3-phosphate dehydrogenase was N-terminally truncated, pyruvate kinase M2 and nucleoside diphosphate kinase A but not other isoforms of these proteins were of importance, and nucleophosmin phosphorylation at serine residues 106 and 125 were clearly identified. Principle component analysis and hierarchical clustering with normalized quantitative data from the 38 spots resulted in accurate separation of tumor from control samples. Thus, separation of tissue samples as in our initial proteome signature could be confirmed even with a different proteome analysis platform. In addition, detailed protein structure investigations enabled refining our proteome signature for invasive ductal breast carcinoma, opening the way to structure-/function studies with respect to disease processes and/or therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Röwer
- Proteome Center Rostock, Department for Proteome Research, Institute of Immunology, Medical Faculty, University of Rostock, Schillingallee 69, P.O. Box 100 888, Rostock 18055, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
The Role of Lipocalin 2 and its Concernment With Human Nonmetastatic Clone 23 Type 1 and p53 in Carcinogenesis of Uterine Cervix. Reprod Sci 2011; 18:447-55. [DOI: 10.1177/1933719110395407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Desvignes T, Pontarotti P, Bobe J. Nme gene family evolutionary history reveals pre-metazoan origins and high conservation between humans and the sea anemone, Nematostella vectensis. PLoS One 2010; 5:e15506. [PMID: 21085602 PMCID: PMC2978717 DOI: 10.1371/journal.pone.0015506] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Nme gene family is involved in multiple physiological and pathological processes such as cellular differentiation, development, metastatic dissemination, and cilia functions. Despite the known importance of Nme genes and their use as clinical markers of tumor aggressiveness, the associated cellular mechanisms remain poorly understood. Over the last 20 years, several non-vertebrate model species have been used to investigate Nme functions. However, the evolutionary history of the family remains poorly understood outside the vertebrate lineage. The aim of the study was thus to elucidate the evolutionary history of the Nme gene family in Metazoans. Methodology/Principal Findings Using a total of 21 eukaryote species including 14 metazoans, the evolutionary history of Nme genes was reconstructed in the metazoan lineage. We demonstrated that the complexity of the Nme gene family, initially thought to be restricted to chordates, was also shared by the metazoan ancestor. We also provide evidence suggesting that the complexity of the family is mainly a eukaryotic innovation, with the exception of Nme8 that is likely to be a choanoflagellate/metazoan innovation. Highly conserved gene structure, genomic linkage, and protein domains were identified among metazoans, some features being also conserved in eukaryotes. When considering the entire Nme family, the starlet sea anemone is the studied metazoan species exhibiting the most conserved gene and protein sequence features with humans. In addition, we were able to show that most of the proteins known to interact with human NME proteins were also found in starlet sea anemone. Conclusion/Significance Together, our observations further support the association of Nme genes with key cellular functions that have been conserved throughout metazoan evolution. Future investigations of evolutionarily conserved Nme gene functions using the starlet sea anemone could shed new light on a wide variety of key developmental and cellular processes.
Collapse
Affiliation(s)
- Thomas Desvignes
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
- IFREMER, LALR, F-34250, Palavas les flots, France
| | - Pierre Pontarotti
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
| | - Julien Bobe
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
- * E-mail:
| |
Collapse
|
39
|
Han B, Stockwin LH, Hancock C, Yu SX, Hollingshead MG, Newton DL. Proteomic analysis of nuclei isolated from cancer cell lines treated with indenoisoquinoline NSC 724998, a novel topoisomerase I inhibitor. J Proteome Res 2010; 9:4016-27. [PMID: 20515076 PMCID: PMC2917484 DOI: 10.1021/pr100194d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The indenoisoquinoline NSC724998 is a novel topoisomerase I (Top1) inhibitor entering Phase I clinical trials at the National Cancer Institute, USA. In this study, 2-D PAGE analysis was performed on nuclear lysates prepared from HCT-116 and A375 cells treated with 1 microM NSC724998 for 24 h and the differentially regulated spots identified by LC-MS/MS. One-hundred fourteen protein spot differentials were identified, 66 from A375 cells and 48 from HCT-116 cells. Proteins related to apoptosis changed specifically in A375 cells, whereas proteins involved in the ubiquitin-proteasome system were highly enriched in treated HCT-116 cells. Importantly, 12 differentially expressed proteins (ETFA, HCC1, HNRCL, KAP1, NPM, NUCL, PRDX1, PRP19, PSB6, RAE1L, RU2A, and SFRS9) were common to both cell lines. Western blotting and immunocytochemistry confirmed significant nuclear upregulation of both the proteasome subunit PSB6 and the transcriptional repressor KAP1. Interestingly, increased KAP1 polypeptide was accompanied by enhanced phosphorylation at Ser824. Similar to gammaH2AX, KAP1 phosphorylation was consistently enhanced in a panel of 12 cell lines and in A375 xenografts following NSC 724998 treatment. In summary, these data enhance our understanding of protein dynamics in the nucleus following DNA damage and provide an alternate marker (pKAP1) with potential for monitoring clinical responses to Top1 poisons.
Collapse
Affiliation(s)
- Bingnan Han
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Luke H. Stockwin
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Chad Hancock
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Sherry X. Yu
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Melinda G. Hollingshead
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI- Frederick, Frederick, Maryland 21702, USA
| | - Dianne L. Newton
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| |
Collapse
|
40
|
Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc Natl Acad Sci U S A 2010; 107:11313-8. [PMID: 20534506 DOI: 10.1073/pnas.1002716107] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.
Collapse
|
41
|
Severino V, Chambery A, Vitiello M, Cantisani M, Galdiero S, Galdiero M, Malorni L, Di Maro A, Parente A. Proteomic Analysis of Human U937 Cell Line Activation Mediated by Haemophilus influenzae Type b P2 Porin and Its Surface-Exposed Loop 7. J Proteome Res 2010; 9:1050-62. [DOI: 10.1021/pr900931n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Valeria Severino
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Angela Chambery
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Mariateresa Vitiello
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Marco Cantisani
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Stefania Galdiero
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Massimiliano Galdiero
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Livia Malorni
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Antimo Di Maro
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| | - Augusto Parente
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy, Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, I-80138 Napoli, Italy, Department of Biological Sciences, University of Naples “Federico II”, Via Mezzocannone 16, I-80134, Napoli, Italy, Institute of Biostructure and Bioimaging, C.N.R., Via Mezzocannone 16, I-80134, Napoli, Italy, and Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and
| |
Collapse
|
42
|
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
|
43
|
Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML. The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 2009; 329:51-62. [PMID: 19387795 DOI: 10.1007/s11010-009-0120-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 01/12/2023]
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
Affiliation(s)
- Mathieu Boissan
- INSERM UMRS_938, UMPC Université Paris 06, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Filip AM, Klug J, Cayli S, Fröhlich S, Henke T, Lacher P, Eickhoff R, Bulau P, Linder M, Carlsson-Skwirut C, Leng L, Bucala R, Kraemer S, Bernhagen J, Meinhardt A. Ribosomal protein S19 interacts with macrophage migration inhibitory factor and attenuates its pro-inflammatory function. J Biol Chem 2009; 284:7977-85. [PMID: 19155217 PMCID: PMC2658091 DOI: 10.1074/jbc.m808620200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/24/2008] [Indexed: 01/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in the pathogenesis of inflammatory disorders such as infection, sepsis, and autoimmune disease. MIF exists preformed in cytoplasmic pools and exhibits an intrinsic tautomerase and oxidoreductase activity. MIF levels are elevated in the serum of animals and patients with infection or different inflammatory disorders. To elucidate how MIF actions are controlled, we searched for endogenous MIF-interacting proteins with the potential to interfere with key MIF functions. Using in vivo biotin-tagging and endogenous co-immunoprecipitation, the ribosomal protein S19 (RPS19) was identified as a novel MIF binding partner. Surface plasmon resonance and pulldown experiments with wild type and mutant MIF revealed a direct physical interaction of the two proteins (K(D) = 1.3 x 10(-6) m). As RPS19 is released in inflammatory lesions by apoptotic cells, we explored whether it affects MIF function and inhibits its binding to receptors CD74 and CXCR2. Low doses of RPS19 were found to strongly inhibit MIF-CD74 interaction. Furthermore, RPS19 significantly compromised CXCR2-dependent MIF-triggered adhesion of monocytes to endothelial cells under flow conditions. We, therefore, propose that RPS19 acts as an extracellular negative regulator of MIF.
Collapse
Affiliation(s)
- Ana-Maria Filip
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Medical Clinic II, and Department of Biochemistry, Justus-Liebig-University of Giessen, Giessen D-35385, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|