1
|
Yu M, Yin N, Feng B, Gao P, Yu K, Liu H, Liu H, Li Y, Ginnard OZ, Conde KM, Wang M, Fang X, Tu L, Bean JC, Liu Q, Deng Y, Yang Y, Han J, Jossy SV, Burt ML, Wong HZ, Yang Y, Arenkiel BR, He Y, Guo S, Gourdy P, Arnal JF, Lenfant F, Wang Z, Wang C, He Y, Xu Y. Identification of an ionic mechanism for ERα-mediated rapid excitation in neurons. SCIENCE ADVANCES 2024; 10:eadp0696. [PMID: 39356770 PMCID: PMC11446276 DOI: 10.1126/sciadv.adp0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The major female ovarian hormone, 17β-estradiol (E2), can alter neuronal excitability within milliseconds to regulate a variety of physiological processes. Estrogen receptor-α (ERα), classically known as a nuclear receptor, exists as a membrane-bound receptor to mediate this rapid action of E2, but the ionic mechanisms remain unclear. Here, we show that a membrane channel protein, chloride intracellular channel protein-1 (Clic1), can physically interact with ERα with a preference to the membrane-bound ERα. Clic1-mediated currents can be enhanced by E2 and reduced by its depletion. In addition, Clic1 currents are required to mediate the E2-induced rapid excitations in multiple brain ERα populations. Further, genetic disruption of Clic1 in hypothalamic ERα neurons blunts the regulations of E2 on female body weight balance. In conclusion, we identified the Clic1 chloride channel as a key mediator for E2-induced rapid neuronal excitation, which may have a broad impact on multiple neurobiological processes regulated by E2.
Collapse
Affiliation(s)
- Meng Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bing Feng
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Peiyu Gao
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kaifan Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z. Ginnard
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kristine M. Conde
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C. Bean
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V. Jossy
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan L. Burt
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Huey Zhong Wong
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Pierre Gourdy
- I2MC, Inserm U1297, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Jean-Francois Arnal
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Francoise Lenfant
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Zhao Wang
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Graceli JB, Zomer HD, Medrano TI, Hess RA, Korach KS, Cooke PS. Role for Nongenomic Estrogen Signaling in Male Fertility. Endocrinology 2024; 165:bqad180. [PMID: 38066676 PMCID: PMC10797322 DOI: 10.1210/endocr/bqad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 01/22/2024]
Abstract
Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
- Department of Morphology, Federal University of Espirito Santo, Vitoria, 29040-090, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Harvey BJ, Harvey HM. Sex Differences in Colon Cancer: Genomic and Nongenomic Signalling of Oestrogen. Genes (Basel) 2023; 14:2225. [PMID: 38137047 PMCID: PMC10742859 DOI: 10.3390/genes14122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer (CRC) is a prevalent malignancy that exhibits distinct differences in incidence, prognosis, and treatment responses between males and females. These disparities have long been attributed to hormonal differences, particularly the influence of oestrogen signalling. This review aims to provide a comprehensive analysis of recent advances in our understanding of the molecular mechanisms underlying sex differences in colon cancer and the protective role of membrane and nuclear oestrogen signalling in CRC development, progression, and therapeutic interventions. We discuss the epidemiological and molecular evidence supporting sex differences in colon cancer, followed by an exploration of the impact of oestrogen in CRC through various genomic and nongenomic signalling pathways involving membrane and nuclear oestrogen receptors. Furthermore, we examine the interplay between oestrogen receptors and other signalling pathways, in particular the Wnt/β-catenin proliferative pathway and hypoxia in shaping biological sex differences and oestrogen protective actions in colon cancer. Lastly, we highlight the potential therapeutic implications of targeting oestrogen signalling in the management of colon cancer and propose future research directions to address the current gaps in our understanding of this complex phenomenon.
Collapse
Affiliation(s)
- Brian J. Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Harry M. Harvey
- Princess Margaret Cancer Centre, Toronto, ON M5G 1Z5, Canada;
| |
Collapse
|
4
|
Moors TE, Li S, McCaffery TD, Ho GP, Bechade PA, Pham LN, Ericsson M, Nuber S. Increased palmitoylation improves estrogen receptor alpha-dependent hippocampal synaptic deficits in a mouse model of synucleinopathy. SCIENCE ADVANCES 2023; 9:eadj1454. [PMID: 37976363 PMCID: PMC10957154 DOI: 10.1126/sciadv.adj1454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Parkinson's disease (PD) is characterized by conversion of soluble α-synuclein (αS) into intraneuronal aggregates and degeneration of neurons and neuronal processes. Indications that women with early-stage PD display milder neurodegenerative features suggest that female sex partially protects against αS pathology. We previously reported that female sex and estradiol improved αS homeostasis and PD-like phenotypes in E46K-amplified (3K) αS mice. Here, we aimed to further dissect mechanisms that drive this sex dimorphism early in disease. We observed that synaptic abnormalities were delayed in females and improved by estradiol, mediated by local estrogen receptor alpha (ERα). Aberrant ERα distribution in 3K compared to wild-type mice was paired with its decreased palmitoylation. Treatment with ML348, a de-palmitoylation inhibitor, increased ERα availability and soluble αS homeostasis, ameliorating synaptic plasticity and cognitive and motor phenotypes. Our finding that sex differences in early-disease αS-induced synaptic impairment in 3KL mice are in part mediated by palmitoylated ERα may have functional and pathogenic implications for clinical PD.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thomas D. McCaffery
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gary P. H. Ho
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pascal A. Bechade
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Luu N. Pham
- Laboratory for Drug Discovery in Neurodegeneration, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Fabre A, Tramunt B, Montagner A, Mouly C, Riant E, Calmy ML, Adlanmerini M, Fontaine C, Burcelin R, Lenfant F, Arnal JF, Gourdy P. Membrane estrogen receptor-α contributes to female protection against high-fat diet-induced metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1215947. [PMID: 37529599 PMCID: PMC10390233 DOI: 10.3389/fendo.2023.1215947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Background Estrogen Receptor α (ERα) is a significant modulator of energy balance and lipid/glucose metabolisms. Beyond the classical nuclear actions of the receptor, rapid activation of intracellular signaling pathways is mediated by a sub-fraction of ERα localized to the plasma membrane, known as Membrane Initiated Steroid Signaling (MISS). However, whether membrane ERα is involved in the protective metabolic actions of endogenous estrogens in conditions of nutritional challenge, and thus contributes to sex differences in the susceptibility to metabolic diseases, remains to be clarified. Methods Male and female C451A-ERα mice, harboring a point mutation which results in the abolition of membrane localization and MISS-related effects of the receptor, and their wild-type littermates (WT-ERα) were maintained on a normal chow diet (NCD) or fed a high-fat diet (HFD). Body weight gain, body composition and glucose tolerance were monitored. Insulin sensitivity and energy balance regulation were further investigated in HFD-fed female mice. Results C451A-ERα genotype had no influence on body weight gain, adipose tissue accumulation and glucose tolerance in NCD-fed mice of both sexes followed up to 7 months of age, nor male mice fed a HFD for 12 weeks. In contrast, compared to WT-ERα littermates, HFD-fed C451A-ERα female mice exhibited: 1) accelerated fat mass accumulation, liver steatosis and impaired glucose tolerance; 2) whole-body insulin resistance, assessed by hyperinsulinemic-euglycemic clamps, and altered insulin-induced signaling in skeletal muscle and liver; 3) significant decrease in energy expenditure associated with histological and functional abnormalities of brown adipose tissue and a defect in thermogenesis regulation in response to cold exposure. Conclusion Besides the well-characterized role of ERα nuclear actions, membrane-initiated ERα extra-nuclear signaling contributes to female, but not to male, protection against HFD-induced obesity and associated metabolic disorders in mouse.
Collapse
Affiliation(s)
- Aurélie Fabre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
- Service de Diabétologie, Maladies Métaboliques et Nutrition, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Céline Mouly
- Service d’Endocrinologie et Nutrition, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Elodie Riant
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Marie-Lou Calmy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Rémy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)/Université Paul Sabatier (UPS), Université Toulouse 3, Toulouse, France
- Service de Diabétologie, Maladies Métaboliques et Nutrition, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| |
Collapse
|
6
|
Kasarinaite A, Sinton M, Saunders PTK, Hay DC. The Influence of Sex Hormones in Liver Function and Disease. Cells 2023; 12:1604. [PMID: 37371074 PMCID: PMC10296738 DOI: 10.3390/cells12121604] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver performs a multitude of bodily functions, whilst retaining the ability to regenerate damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver physiology and the development of new model systems to improve our understanding of liver biology in health and disease. A major risk factor for the development of liver disease is hepatic fibrosis. Key drivers of this process are metabolic dysfunction and pathologic activation of the immune system. Although non-alcoholic fatty liver disease (NAFLD) is largely regarded as benign, it does progress to non-alcoholic steatohepatitis in a subset of patients, increasing their risk of developing cirrhosis and hepatocellular carcinoma. NAFLD susceptibility varies across the population, with obesity and insulin resistance playing a strong role in the disease development. Additionally, sex and age have been identified as important risk factors. In addition to the regulation of liver biochemistry, sex hormones also regulate the immune system, with sexual dimorphism described for both innate and adaptive immune responses. Therefore, sex differences in liver metabolism, immunity and their interplay are important factors to consider when designing, studying and developing therapeutic strategies to treat human liver disease. The purpose of this review is to provide the reader with a general overview of sex steroid biology and their regulation of mammalian liver physiology.
Collapse
Affiliation(s)
- Alvile Kasarinaite
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Matthew Sinton
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 9TA, UK
| | - Philippa T. K. Saunders
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
7
|
Mazid S, Waters EM, Lopez-Lee C, Poultan Kamakura R, Rubin BR, Levin ER, McEwen BS, Milner TA. Both Nuclear and Membrane Estrogen Receptor Alpha Impact the Expression of Estrogen Receptors and Plasticity Markers in the Mouse Hypothalamus and Hippocampus. BIOLOGY 2023; 12:632. [PMID: 37106832 PMCID: PMC10135777 DOI: 10.3390/biology12040632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Estrogens via estrogen receptor alpha (ERα) genomic and nongenomic signaling can influence plasticity processes in numerous brain regions. Using mice that express nuclear only ERα (NOER) or membrane only ERα (MOER), this study examined the effect of receptor compartmentalization on the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus. The absence of nuclear and membrane ERα expression impacted females but not males in these two brain areas. In the PVN, quantitative immunohistochemistry showed that the absence of nuclear ERα increased nuclear ERβ. Moreover, in the hippocampus CA1, immuno-electron microscopy revealed that the absence of either nuclear or membrane ERα decreased extranuclear ERα and pTrkB in synapses. In contrast, in the dentate gyrus, the absence of nuclear ERα increased pTrkB in synapses, whereas the absence of membrane ERα decreased pTrkB in axons. However, the absence of membrane only ERα decreased the sprouting of mossy fibers in CA3 as reflected by changes in zinc transporter immunolabeling. Altogether these findings support the idea that both membrane and nuclear ERα contribute overlapping and unique actions of estrogen that are tissue- and cellular-specific.
Collapse
Affiliation(s)
- Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Chloe Lopez-Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Renata Poultan Kamakura
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Batsheva R. Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Ellis R. Levin
- Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
8
|
Tokiwa H, Ueda K, Takimoto E. The emerging role of estrogen's non-nuclear signaling in the cardiovascular disease. Front Cardiovasc Med 2023; 10:1127340. [PMID: 37123472 PMCID: PMC10130590 DOI: 10.3389/fcvm.2023.1127340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexual dimorphism exists in the epidemiology of cardiovascular disease (CVD), which indicates the involvement of sexual hormones in the pathophysiology of CVD. In particular, ample evidence has demonstrated estrogen's protective effect on the cardiovascular system. While estrogen receptors, bound to estrogen, act as a transcription factor which regulates gene expressions by binding to the specific DNA sequence, a subpopulation of estrogen receptors localized at the plasma membrane induces activation of intracellular signaling, called "non-nuclear signaling" or "membrane-initiated steroid signaling of estrogen". Although the precise molecular mechanism of non-nuclear signaling as well as its physiological impact was unclear for a long time, recent development of genetically modified animal models and pathway-selective estrogen receptor stimulant bring new insights into this pathway. We review the published experimental studies on non-nuclear signaling of estrogen, and summarize its role in cardiovascular system, especially focusing on: (1) the molecular mechanism of non-nuclear signaling; (2) the design of genetically modified animals and pathway-selective stimulant of estrogen receptor.
Collapse
Affiliation(s)
- Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Artham S, Chang CY, McDonnell DP. Eosinophilia in cancer and its regulation by sex hormones. Trends Endocrinol Metab 2023; 34:5-20. [PMID: 36443206 PMCID: PMC10122120 DOI: 10.1016/j.tem.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Gender differences in the functionality of the immune system have been attributed, in part, to direct and indirect effects of sex steroids, especially estrogens, on immune cell repertoire and activity. Notable are studies that have defined roles for estrogens in the regulation of the biology of dendritic cells (DCs), macrophages, T cells and natural killer (NK) cells. Although estrogens can modulate eosinophil function, the mechanisms by which this occurs and how it contributes to the pathobiology of different diseases remains underexplored. Furthermore, although the importance of eosinophils in infection is well established, it remains unclear as to how these innate immune cells, which are present in different tumors, impact the biology of cancer cells and/or response to therapeutics. The observation that eosinophilia influences the efficacy of immune checkpoint blockers (ICBs) is significant considering the role of estrogens as regulators of eosinophil function and recent studies suggesting that response to ICBs is impacted by gender. Thus, in this review, we consider what is known about the roles of estrogen(s) in regulating tissue eosinophilia/eosinophil function and how this influences the pathobiology of breast cancer (in particular). This information provides the context for a discussion of how estrogens/the estrogen receptor (ER) signaling axis can be targeted in eosinophils and how this would be expected to influence the activity of standard-of-care interventions and contemporary immunotherapy regimens in cancer(s).
Collapse
Affiliation(s)
- Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Ahluwalia A, Hoa N, Moreira D, Aziz D, Singh K, Patel KN, Levin ER. Membrane Estrogen Receptor β Is Sufficient to Mitigate Cardiac Cell Pathology. Endocrinology 2022; 164:6867852. [PMID: 36461668 DOI: 10.1210/endocr/bqac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Estrogen acting through estrogen receptor β (ERβ) has been shown to oppose the stimulation of cardiac myocytes and cardiac fibroblasts that results in cardiac hypertrophy and fibrosis. Previous work has implicated signal transduction from ERβ as being important to the function of estrogen in this regard. Here we address whether membrane ERβ is sufficient to oppose key mechanisms by which angiotensin II (AngII) stimulates cardiac cell pathology. To do this we first defined essential structural elements within ERβ that are necessary for membrane or nuclear localization in cells. We previously determined that cysteine 418 is the site of palmitoylation of ERβ that is required and sufficient for cell membrane localization in mice and is the same site in humans. Here we determined in Chinese hamster ovarian (CHO) cells, and mouse and rat myocytes and cardiac fibroblasts, the effect on multiple aspects of signal transduction by expressing wild-type (WT ) or a C418A-mutant ERβ. To test the importance of the nuclear receptor, we determined a 4-amino acid deletion in the E domain of ERβ that strongly blocked nuclear localization. Using these tools, we expressed WT and mutant ERβ constructs into cardiomyocytes and cardiac fibroblasts from ERβ-deleted mice. We determined the ability of estrogen to mitigate cell pathology stimulated by AngII and whether the membrane ERβ is necessary and sufficient.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Debbie Moreira
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Daniel Aziz
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Karanvir Singh
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Khushin N Patel
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
- Department of Medicine, University of California, Irvine, Irvine, California 92717, USA
- Department of Biochemistry, University of California, Irvine, Irvine, California 92717, USA
| |
Collapse
|
11
|
Arao Y, Gruzdev A, Scott GJ, Ray MK, Donoghue LJ, Neufeld TI, Lierz SL, Stefkovich ML, Mathura E, Jefferson T, Foley JF, Mahler BW, Asghari A, Le C, McConnell BK, Stephen R, Berridge BR, Hamilton KJ, Hewitt SC, Umetani M, Korach KS. A Novel Mouse Model to Analyze Non-Genomic ERα Physiological Actions. J Endocr Soc 2022; 6:bvac109. [PMID: 37283844 PMCID: PMC9338395 DOI: 10.1210/jendso/bvac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Nongenomic effects of estrogen receptor α (ERα) signaling have been described for decades. Several distinct animal models have been generated previously to analyze the nongenomic ERα signaling (eg, membrane-only ER, and ERαC451A). However, the mechanisms and physiological processes resulting solely from nongenomic signaling are still poorly understood. Herein, we describe a novel mouse model for analyzing nongenomic ERα actions named H2NES knock-in (KI). H2NES ERα possesses a nuclear export signal (NES) in the hinge region of ERα protein resulting in exclusive cytoplasmic localization that involves only the nongenomic action but not nuclear genomic actions. We generated H2NESKI mice by homologous recombination method and have characterized the phenotypes. H2NESKI homozygote mice possess almost identical phenotypes with ERα null mice except for the vascular activity on reendothelialization. We conclude that ERα-mediated nongenomic estrogenic signaling alone is insufficient to control most estrogen-mediated endocrine physiological responses; however, there could be some physiological responses that are nongenomic action dominant. H2NESKI mice have been deposited in the repository at Jax (stock no. 032176). These mice should be useful for analyzing nongenomic estrogenic responses and could expand analysis along with other ERα mutant mice lacking membrane-bound ERα. We expect the H2NESKI mouse model to aid our understanding of ERα-mediated nongenomic physiological responses and serve as an in vivo model for evaluating the nongenomic action of various estrogenic agents.
Collapse
Affiliation(s)
- Yukitomo Arao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Artiom Gruzdev
- Knockout Mouse Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gregory J Scott
- Knockout Mouse Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Manas K Ray
- Knockout Mouse Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lauren J Donoghue
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Thomas I Neufeld
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sydney L Lierz
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Megan L Stefkovich
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Emilie Mathura
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Tanner Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Julie F Foley
- National Toxicology Program Division, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Beth W Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - Arvand Asghari
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Courtney Le
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Robert Stephen
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Brian R Berridge
- National Toxicology Program Division, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
- HEALTH Research Institute, University of Houston, Houston, TX, USA
- Apeximmune Therapeutics, South San Francisco, CA, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
13
|
Gustafsson KL, Movérare-Skrtic S, Farman HH, Engdahl C, Henning P, Nilsson KH, Scheffler JM, Sehic E, Islander U, Levin E, Ohlsson C, Lagerquist MK. A tissue-specific role of membrane-initiated ERα signaling for the effects of SERMs. J Endocrinol 2022; 253:75-84. [PMID: 35256537 PMCID: PMC9066589 DOI: 10.1530/joe-21-0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.
Collapse
Affiliation(s)
- Karin L Gustafsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Correspondence should be addressed to K L Gustafsson:
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Helen H Farman
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Julia M Scheffler
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Edina Sehic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Islander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ellis Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
15
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
16
|
Gallez A, Dias Da Silva I, Wuidar V, Foidart JM, Péqueux C. Estetrol and Mammary Gland: Friends or Foes? J Mammary Gland Biol Neoplasia 2021; 26:297-308. [PMID: 34463898 PMCID: PMC8566418 DOI: 10.1007/s10911-021-09497-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Estrogens have pleiotropic effects on many reproductive and non-reproductive tissues and organs including the mammary gland, uterus, ovaries, vagina, and endothelium. Estrogen receptor α functions as the principal mediator of estrogenic action in most of these tissues. Estetrol (E4) is a native fetal estrogen with selective tissue actions that is currently approved for use as the estrogen component in a combined oral contraceptive and is being developed as a menopause hormone therapy (MHT, also known as hormone replacement therapy). However, exogenous hormonal treatments, in particular MHTs, have been shown to promote the growth of preexisting breast cancers and are associated with a variable risk of breast cancer depending on the treatment modality. Therefore, evaluating the safety of E4-based formulations on the breast forms a crucial part of the clinical development process. This review highlights preclinical and clinical studies that have assessed the effects of E4 and E4-progestogen combinations on the mammary gland and breast cancer, focusing in particular on the estrogenic and anti-estrogenic properties of E4. We discuss the potential advantages of E4 over current available estrogen-formulations as a contraceptive and for the treatment of symptoms due to menopause. We also consider the potential of E4 for the treatment of endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Anne Gallez
- Laboratory of Biology, Tumors and Development, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Isabelle Dias Da Silva
- Laboratory of Biology, Tumors and Development, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Vincent Wuidar
- Laboratory of Biology, Tumors and Development, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jean-Michel Foidart
- Laboratory of Biology, Tumors and Development, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christel Péqueux
- Laboratory of Biology, Tumors and Development, GIGA-Cancer, University of Liège, Liège, Belgium.
| |
Collapse
|
17
|
Pereira MM, Mainigi M, Strauss JF. Secretory products of the corpus luteum and preeclampsia. Hum Reprod Update 2021; 27:651-672. [PMID: 33748839 PMCID: PMC8222764 DOI: 10.1093/humupd/dmab003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite significant advances in our understanding of the pathophysiology of preeclampsia (PE), there are still many unknowns and controversies in the field. Women undergoing frozen-thawed embryo transfer (FET) to a hormonally prepared endometrium have been found to have an unexpected increased risk of PE compared to women who receive embryos in a natural FET cycle. The differences in risk have been hypothesized to be related to the absence or presence of a functioning corpus luteum (CL). OBJECTIVE AND RATIONALE To evaluate the literature on secretory products of the CL that could be essential for a healthy pregnancy and could reduce the risk of PE in the setting of FET. SEARCH METHODS For this review, pertinent studies were searched in PubMed/Medline (updated June 2020) using common keywords applied in the field of assisted reproductive technologies, CL physiology and preeclampsia. We also screened the complete list of references in recent publications in English (both animal and human studies) on the topics investigated. Given the design of this work as a narrative review, no formal criteria for study selection or appraisal were utilized. OUTCOMES The CL is a major source of multiple factors regulating reproduction. Progesterone, estradiol, relaxin and vasoactive and angiogenic substances produced by the CL have important roles in regulating its functional lifespan and are also secreted into the circulation to act remotely during early stages of pregnancy. Beyond the known actions of progesterone and estradiol on the uterus in early pregnancy, their metabolites have angiogenic properties that may optimize implantation and placentation. Serum levels of relaxin are almost undetectable in pregnant women without a CL, which precludes some maternal cardiovascular and renal adaptations to early pregnancy. We suggest that an imbalance in steroid hormones and their metabolites and polypeptides influencing early physiologic processes such as decidualization, implantation, angiogenesis and maternal haemodynamics could contribute to the increased PE risk among women undergoing programmed FET cycles. WIDER IMPLICATIONS A better understanding of the critical roles of the secretory products of the CL during early pregnancy holds the promise of improving the efficacy and safety of ART based on programmed FET cycles.
Collapse
Affiliation(s)
- María M Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Centre for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA,19104 USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Centre for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA,19104 USA
| |
Collapse
|
18
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
19
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
20
|
Zheng S, Wu L, Fan C, Lin J, Zhang Y, Simoncini T, Fu X. The role of Gα protein signaling in the membrane estrogen receptor-mediated signaling. Gynecol Endocrinol 2021; 37:2-9. [PMID: 33412963 DOI: 10.1080/09513590.2020.1851674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Estrogens exert rapid, extranuclear effects by their action on the plasma membrane estrogen receptors (mERs). Gα protein associated with the cell membrane is involved in many important processes regulated by estrogens. However, the Gα's role in the mER-mediated signaling and the signaling pathways involved are poorly understood. This review aims to outline the Gα's role in the mER-mediated signaling. Immunoblotting, immunofluorescence, co-immunoprecipitation, and RNA interference were carried out using vascular endothelial cells (ECs) and human breast carcinoma cell lines as experimental models. Electrophysiology and immunocytochemistry were carried out using guinea pigs as animal models. Recent advances suggest that the signaling of mERα through Gα is required for vascular EC migration or endothelial H2S release, while Gα13 is involved in estrogen-induced breast cancer cell invasion. Besides, the Gαq-coupled PLC-PKC-PKA pathway is critical for the neural regulation of energy homeostasis. This review summarizes the contributions of Gα to mER-mediated signaling, including cardiovascular protection, breast cancer metastasis, neural regulation of homeostatic functions, and osteogenesis.
Collapse
Affiliation(s)
- Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Fan
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jingxia Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
21
|
Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual Dimorphism in Colon Cancer. Front Oncol 2020; 10:607909. [PMID: 33363037 PMCID: PMC7759153 DOI: 10.3389/fonc.2020.607909] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
A higher incidence of colorectal cancer (CRC) is found in males compared to females. Young women (18-44 years) with CRC have a better survival outcome compared to men of the same age or compared to older women (over 50 years), indicating a global incidence of sexual dimorphism in CRC rates and survival. This suggests a protective role for the sex steroid hormone estrogen in CRC development. Key proliferative pathways in CRC tumorigenesis exhibit sexual dimorphism, which confer better survival in females through estrogen regulated genes and cell signaling. Estrogen regulates the activity of a class of Kv channels (KCNQ1:KCNE3), which control fundamental ion transport functions of the colon and epithelial mesenchymal transition through bi-directional interactions with the Wnt/β-catenin signalling pathway. Estrogen also modulates CRC proliferative responses in hypoxia via the novel membrane estrogen receptor GPER and HIF1A and VEGF signaling. Here we critically review recent clinical and molecular insights into sexual dimorphism of CRC biology modulated by the tumor microenvironment, estrogen, Wnt/β-catenin signalling, ion channels, and X-linked genes.
Collapse
Affiliation(s)
- Maria Abancens
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Viviana Bustos
- Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Osorno, Chile
| | - Harry Harvey
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Jean McBryan
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Brian J. Harvey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Centro de Estudios Cientificos CECs, Valdivia, Chile
| |
Collapse
|
22
|
Ahluwalia A, Hoa N, Ge L, Blumberg B, Levin ER. Mechanisms by Which Membrane and Nuclear ER Alpha Inhibit Adipogenesis in Cells Isolated From Female Mice. Endocrinology 2020; 161:5911730. [PMID: 32976570 DOI: 10.1210/endocr/bqaa175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells can differentiate into mature chondrocytes, osteoblasts, and adipocytes. Excessive and dysfunctional visceral adipocytes increase upon menopause and importantly contribute to altered metabolism in postmenopausal women. We previously showed both plasma membrane and nuclear estrogen receptors alpha (ERα) with endogenous estrogen are required to suppress adipogenesis in vivo. Here we determined mechanisms by which these liganded ER pools collaborate to inhibit the peroxisome proliferator-activated gamma (PPARγ) gene and subsequent progenitor differentiation. In 3T3-L1 pre-adipocytes and adipose-derived stem cells (ADSC), membrane ERα signaled through phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) to enhance ERα nuclear localization, importantly at the PPARγ gene promoter. AKT also increased overall abundance and recruitment of co-repressors GATA3, β-catenin, and TCF4 to the PPARγ promoter. Membrane ERα signaling additionally enhanced wingless-integrated (Wnt)1 and 10b expression. The components of the repressor complex were required for estrogen to inhibit rosiglitazone-induced differentiation of ADSC and 3T3-L1 cells to mature adipocytes. These mechanisms whereby ER cellular pools collaborate to inhibit gene expression limit progenitor differentiation to mature adipocytes.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Lisheng Ge
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Bruce Blumberg
- Department of Developmental Biology, University of California, Irvine, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
- Department of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Biochemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
23
|
Moriyama T, Yoneda Y, Oka M, Yamada M. Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Sci Rep 2020; 10:18640. [PMID: 33122699 PMCID: PMC7596556 DOI: 10.1038/s41598-020-75631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oestrogen receptor-α (ERα) shuttles continuously between the nucleus and the cytoplasm, and functions as an oestrogen-dependent transcription factor in the nucleus and as an active mediator of signalling pathways, such as phosphatidylinositol 3-kinase (PI3K)/AKT, in the cytoplasm. However, little is known regarding the mechanism of ERα nucleocytoplasmic shuttling. In this study, we found that ERα is transported into the nucleus by importin-α/β1. Furthermore, we found that Transportin-2 (TNPO2) is involved in 17β-oestradiol (E2)-dependent cytoplasmic localisation of ERα. Interestingly, it was found that TNPO2 does not mediate nuclear export, but rather is involved in the cytoplasmic retention of ERα via the proline/tyrosine (PY) motifs. Moreover, we found that TNPO2 competitively binds to the basic nuclear localisation signal (NLS) of ERα with importin-α to inhibit importin-α/β-dependent ERα nuclear import. Finally, we confirmed that TNPO2 knockdown enhances the nuclear localisation of wild-type ERα and reduces PI3K/AKT phosphorylation in the presence of E2. These results reveal that TNPO2 regulates nucleocytoplasmic shuttling and cytoplasmic retention of ERα, so that ERα has precise functions depending on the stimulation.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshihiro Yoneda
- Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
24
|
Guercio G, Saraco N, Costanzo M, Marino R, Ramirez P, Berensztein E, Rivarola MA, Belgorosky A. Estrogens in Human Male Gonadotropin Secretion and Testicular Physiology From Infancy to Late Puberty. Front Endocrinol (Lausanne) 2020; 11:72. [PMID: 32158430 PMCID: PMC7051936 DOI: 10.3389/fendo.2020.00072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several reports in humans as well as transgenic mouse models have shown that estrogens play an important role in male reproduction and fertility. Estrogen receptor alpha (ERα) and beta (ERβ) are expressed in different male tissues including the brain. The estradiol-binding protein GPER1 also mediates estrogen action in target tissues. In human testes a minimal ERα expression during prepuberty along with a marked pubertal up-regulation in germ cells has been reported. ERβ expression was detected mostly in spermatogonia, primary spermatocytes, and immature spermatids. In Sertoli cells ERβ expression increases with age. The aromatase enzyme (cP450arom), which converts androgens to estrogens, is widely expressed in human tissues (including gonads and hypothalamus), even during fetal life, suggesting that estrogens are also involved in human fetal physiology. Moreover, cP450arom is expressed in the early postnatal testicular Leydig cells and spermatogonia. Even though the aromatase complex is required for estrogen synthesis, its biological relevance is also related to the regulation of the balance between androgens and estrogens in different tissues. Knockout mouse models of aromatase (ArKO) and estrogen receptors (ERKOα, ERKOβ, and ERKOαβ) provide an important tool to study the effects of estrogens on the male reproductive physiology including the gonadal axis. High basal serum FSH levels were reported in adult aromatase-deficient men, suggesting that estrogens are involved in the negative regulatory gonadotropin feedback. However, normal serum gonadotropin levels were observed in an aromatase-deficient boy, suggesting a maturational pattern role of estrogen in the regulation of gonadotropin secretion. Nevertheless, the role of estrogens in primate testis development and function is controversial and poorly understood. This review addresses the role of estrogens in gonadotropin secretion and testicular physiology in male humans especially during childhood and puberty.
Collapse
Affiliation(s)
- Gabriela Guercio
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Nora Saraco
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Mariana Costanzo
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Roxana Marino
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Pablo Ramirez
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Esperanza Berensztein
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Facultad de Medicina, Department of Cellular Biology and Histology, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marco A. Rivarola
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Alicia Belgorosky
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- *Correspondence: Alicia Belgorosky
| |
Collapse
|
25
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. J Steroid Biochem Mol Biol 2019; 187:106-117. [PMID: 30465854 PMCID: PMC6370520 DOI: 10.1016/j.jsbmb.2018.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Estrogen binding to estrogen receptors (ESR) triggers signaling cascades within cells. Historically, a major emphasis has been characterizing estrogen-induced genomic actions resulting from binding to nuclear estrogen receptor 1 (nESR1). However, recent evidence indicates the first receptors estrogens encounter as they enter a cell, membrane ESR1 (mESR1), also play crucial roles. Membrane and nuclear ESR are derived from the same transcripts but the former are directed to the membrane via palmitoylation. Binding and activation of mESR1 leads to rapid fluctuations in cAMP and Ca+2 and stimulation of protein kinase pathways. Endocrine disrupting chemicals (EDC) that mimic 17β-estradiol can signal through mESR1 and elicit non-genomic effects. Most current EDC studies have focused on genomic actions via nESR1. However, increasing number of studies have begun to examine potential EDC effects mediated through mESR1, and some EDC might have higher potency for signaling through mESR1 than nESR1. The notion that such chemicals might also affect mESR1 signaling via palmitoylation and depalmitoylation pathways has also begun to gain currency. Recent development of transgenic mice that lack either mESR1 or nESR1, while retaining functional ESR1 in the other compartment, will allow more precise in vivo approaches to determine EDC effects through nESR1 and/or mESR1. It is increasingly becoming apparent in this quickly evolving field that EDC directly affect mESR and estrogen signaling, but such chemicals can also affect proportion of ESR reaching the membrane. Future EDC studies should be designed to consider the full range of effects through mESR alone and in combination with nESR.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, 65211, USA.
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
27
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Allard C, Morford JJ, Xu B, Salwen B, Xu W, Desmoulins L, Zsombok A, Kim JK, Levin ER, Mauvais-Jarvis F. Loss of Nuclear and Membrane Estrogen Receptor-α Differentially Impairs Insulin Secretion and Action in Male and Female Mice. Diabetes 2019; 68:490-501. [PMID: 30305367 PMCID: PMC6385757 DOI: 10.2337/db18-0293] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
Estrogens favor glucose homeostasis primarily through the estrogen receptor-α (ERα), but the respective importance of nuclear ERα (NOER) and membrane ERα (MOER) pools to glucose homeostasis are unknown. We studied glucose homeostasis, insulin secretion, and insulin sensitivity in male and female mice expressing either the NOER or the MOER. Male and female MOER mice exhibited fasting and fed hyperglycemia and glucose intolerance. Female MOER mice displayed impaired central insulin signaling associated with hyperinsulinemia and insulin resistance due to unrestrained hepatic gluconeogenesis, without alterations in glucose-stimulated insulin secretion (GSIS). In contrast, male MOER mice did not exhibit detectable insulin resistance, but showed impaired GSIS associated with reduced brain glucose sensing. Female NOER mice exhibited milder hepatic insulin resistance and glucose intolerance. In conclusion, nuclear ERα signaling is predominant in maintaining glucose homeostasis in mice of both sexes. Lack of nuclear ERα alters the central control of insulin sensitivity in females and predominantly impairs the central regulation of insulin secretion in males.
Collapse
Affiliation(s)
- Camille Allard
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Jamie J Morford
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
- Neuroscience Program, Tulane University, New Orleans, LA
- Brain Institute, Tulane University, New Orleans, LA
| | - Beibei Xu
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Benjamin Salwen
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Weiwei Xu
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
| | - Lucie Desmoulins
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA
| | - Andrea Zsombok
- Brain Institute, Tulane University, New Orleans, LA
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA
| | - Jason K Kim
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Ellis R Levin
- Department of Medicine and Biochemistry, University of California, Irvine, CA
- Long Beach VA Medical Center, Long Beach, CA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA
- Neuroscience Program, Tulane University, New Orleans, LA
- Brain Institute, Tulane University, New Orleans, LA
- Southeast Louisiana Veterans Healthcare Medical Center, New Orleans, LA
| |
Collapse
|
29
|
Allard C, Bonnet F, Xu B, Coons L, Albarado D, Hill C, Fagherazzi G, Korach KS, Levin ER, Lefante J, Morrison C, Mauvais-Jarvis F. Activation of hepatic estrogen receptor-α increases energy expenditure by stimulating the production of fibroblast growth factor 21 in female mice. Mol Metab 2019; 22:62-70. [PMID: 30797705 PMCID: PMC6437689 DOI: 10.1016/j.molmet.2019.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The endogenous estrogen 17β-estradiol (E2) promotes metabolic homeostasis in premenopausal women. In a mouse model of post-menopausal metabolic syndrome, we reported that estrogens increased energy expenditure, thus preventing estrogen deficiency-induced adiposity. Estrogens' prevention of fat accumulation was associated with increased serum concentrations of fibroblast growth factor 21 (FGF21), suggesting that FGF21 participates in estrogens' promotion of energy expenditure. METHODS We studied the effect of E2 on FGF21 production and the role of FGF21 in E2 stimulation of energy expenditure and prevention of adiposity, using female estrogen receptor (ER)- and FGF21-deficient mice fed a normal chow and a cohort of ovariectomized women from the French E3N prospective cohort study. RESULTS E2 acting on the hepatocyte ERα increases hepatic expression and production of FGF21 in female mice. In vivo activation of ERα increases the transcription of Fgf21 via an estrogen response element outside the promoter of Fgf21. Treatment with E2 increases oxygen consumption and energy expenditure and prevents whole body fat accumulation in ovariectomized female WT mice. The effect of E2 on energy expenditure is not observed in FGF21-deficient mice. While E2 treatment still prevents fat accumulation in FGF21-deficient mice, this effect is decreased compared to WT mice. In an observational cohort of ovariectomized women, E2 treatment was associated with lower serum FGF21 concentrations, which may reflect a healthier metabolic profile. CONCLUSIONS In female mice, E2 action on the hepatocyte ERα increases Fgf21 transcription and FGF21 production, thus promoting energy expenditure and partially decreasing fat accumulation.
Collapse
Affiliation(s)
- Camille Allard
- Diabetes Discovery Research and Sex-Based Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, USA
| | - Fabrice Bonnet
- LACESP, INSERM U1018, Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, Villejuif Cedex, F-94805, France
| | - Beibei Xu
- Diabetes Discovery Research and Sex-Based Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, USA
| | - Laurel Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Diana Albarado
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70803, USA
| | - Cristal Hill
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70803, USA
| | - Guy Fagherazzi
- LACESP, INSERM U1018, Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, Villejuif Cedex, F-94805, France
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Ellis R Levin
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, CA 90822, USA; Department of Medicine and Biochemistry, University of California, Irvine, CA 92717, USA
| | - John Lefante
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Christopher Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70803, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery Research and Sex-Based Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, USA; Southeast Louisiana Veterans Healthcare System Medical Center, New Orleans, LA 70112, USA.
| |
Collapse
|
30
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
31
|
Hewitt SC, Korach KS. Estrogen Receptors: New Directions in the New Millennium. Endocr Rev 2018; 39:664-675. [PMID: 29901737 PMCID: PMC6173474 DOI: 10.1210/er.2018-00087] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
Nineteen years have passed since our previous review in this journal in 1999 regarding estrogen receptors. At that time, we described the current assessments of the physiological activities of estrogen and estrogen receptors. Since that time there has been an explosion of progress in our understanding of details of estrogen receptor-mediated processes from the molecular and cellular level to the whole organism. In this review we discuss the basic understanding of estrogen signaling and then elaborate on the progress and current understanding of estrogen receptor actions that have developed using new models and continuing clinical studies.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Endocrinology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Endocrinology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
32
|
Santos RS, Frank AP, Fátima LA, Palmer BF, Öz OK, Clegg DJ. Activation of estrogen receptor alpha induces beiging of adipocytes. Mol Metab 2018; 18:51-59. [PMID: 30270132 PMCID: PMC6309577 DOI: 10.1016/j.molmet.2018.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Objectives Brown adipose tissue (BAT) and BAT-like adipose tissues, referred to as ‘beige’ adipose tissues uncouple respiration from ATP synthesis via uncoupling protein one (UCP-1). There is a sexual dimorphism with respect to beige and BAT tissues; pre-menopausal women have more BAT and are more sensitive to BAT activation than men or postmenopausal women. We hypothesized selective activation of adipose tissue estrogen receptor alpha (ERα) induces beiging of WAT through induction of lipolysis mediated by adipose tissue triglyceride lipase (ATGL). Methods 3T3-L1 and primary adipocytes were treated with the selective ERα agonist pyrazole triol (PPT), and selection deletion of ERα (using siRNA) was used to determine if selective ERα activation, or inhibition, influences the adipose tissue expression of genes associated with beiging. In a second series of experiments, ERα was selectively added back to adipose tissue of mice lacking total body ERα (ERKO) to determine if add back of ERα changed the morphology of adipose tissue to resemble beige tissues. Additionally, WT and ERKO mice were exposed to cold and FDG labeled glucose uptake was measured to determine the ability of cold to induce UCP-1 in ERKO mice. To begin to mechanistically probe how activation of ERα facilitates beiging, we tested the influence of PPT to activate the lipolytic pathway through ATGL. Finally, since ERα exerts its effects both at the genomic and non-genomic level depending on its cellular location, we determined in vivo if beiging occurs in mice expressing ERα only at the plasma membrane (MOER mice) or only at nucleus (NOER mice). Results Selective ERα activation by PPT increased markers of beiging in vitro in 3T3-L1 and primary adipocytes, whereas, knockdown of ERα with siRNA reduced the ability of PPT to induce beiging in vitro. ERα add back to the adipose tissue of ERKO mice resulted in multilocular adipose tissue resembling a beige phenotype. Following cold exposure, FDG labeled glucose in BAT tissues of ERKO mice was reduced when compared to weight-matched controls. Glycerol release and ATGL expression were increased after PPT treatment, while pre-treatment with the ATGL inhibitor prevented PPT's ability to increase UCP-1 expression. Finally, MOER mice were more sensitive to beiging of adipose tissues when compared to NOER mice. Conclusion Our results demonstrate for the first time that selective-activation of ERα in adipocytes increases markers of beiging and this is likely through induction of AMPK and ATGL-mediated lipolysis providing FFAs as a fuel to activate UCP-1. Selective activation of estrogen receptor alpha (ERα) increases markers of beiging in white adipocytes. Selective ERα activation increases glycerol release, lipolysis, markers of beiging of adipose tissues. Mice lacking ERα are cold intolerant demonstrating the necessity of ERα to facilitate brown adipose tissue activation. Mice with ERα only in the membrane (MOER mice) are more sensitive to a β3-adrenergic receptor induced beiging when compared to mice that express nuclear only ERα (NOER).
Collapse
Affiliation(s)
- Roberta S Santos
- Department of Biomedical Sciences, Diabetes & Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron P Frank
- Department of Biomedical Sciences, Diabetes & Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Luciana A Fátima
- Department of Biomedical Sciences, Diabetes & Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orhan K Öz
- Department of Radiology, Parkland Health and Hospital System, 5323 Harry Hines Blvd., Dallas, TX, 75390-8542, USA
| | - Deborah J Clegg
- Department of Biomedical Sciences, Diabetes & Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav 2018; 104:130-137. [PMID: 29505763 PMCID: PMC6131090 DOI: 10.1016/j.yhbeh.2018.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Brian P Head
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Abstract
Estrogens coordinate and integrate cellular metabolism and mitochondrial activities by direct and indirect mechanisms mediated by differential expression and localization of estrogen receptors (ER) in a cell-specific manner. Estrogens regulate transcription and cell signaling pathways that converge to stimulate mitochondrial function- including mitochondrial bioenergetics, mitochondrial fusion and fission, calcium homeostasis, and antioxidant defense against free radicals. Estrogens regulate nuclear gene transcription by binding and activating the classical genomic estrogen receptors α and β (ERα and ERβ) and by activating plasma membrane-associated mERα, mERβ, and G-protein coupled ER (GPER, GPER1). Localization of ERα and ERβ within mitochondria and in the mitochondrial membrane provides additional mechanisms of regulation. Here we review the mechanisms of rapid and longer-term effects of estrogens and selective ER modulators (SERMs, e.g., tamoxifen (TAM)) on mitochondrial biogenesis, morphology, and function including regulation of Nuclear Respiratory Factor-1 (NRF-1, NRF1) transcription. NRF-1 is a nuclear transcription factor that promotes transcription of mitochondrial transcription factor TFAM (mtDNA maintenance factorFA) which then regulates mtDNA-encoded genes. The nuclear effects of estrogens on gene expression directly controlling mitochondrial biogenesis, oxygen consumption, mtDNA transcription, and apoptosis are reviewed.
Collapse
|
35
|
Xu B, Allard C, Alvarez-Mercado AI, Fuselier T, Kim JH, Coons LA, Hewitt SC, Urano F, Korach KS, Levin ER, Arvan P, Floyd ZE, Mauvais-Jarvis F. Estrogens Promote Misfolded Proinsulin Degradation to Protect Insulin Production and Delay Diabetes. Cell Rep 2018; 24:181-196. [PMID: 29972779 PMCID: PMC6092934 DOI: 10.1016/j.celrep.2018.06.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/11/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Conjugated estrogens (CE) delay the onset of type 2 diabetes (T2D) in postmenopausal women, but the mechanism is unclear. In T2D, the endoplasmic reticulum (ER) fails to promote proinsulin folding and, in failing to do so, promotes ER stress and β cell dysfunction. We show that CE prevent insulin-deficient diabetes in male and in female Akita mice using a model of misfolded proinsulin. CE stabilize the ER-associated protein degradation (ERAD) system and promote misfolded proinsulin proteasomal degradation. This involves activation of nuclear and membrane estrogen receptor-α (ERα), promoting transcriptional repression and proteasomal degradation of the ubiquitin-conjugating enzyme and ERAD degrader, UBC6e. The selective ERα modulator bazedoxifene mimics CE protection of β cells in females but not in males.
Collapse
Affiliation(s)
- Beibei Xu
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Camille Allard
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ana I Alvarez-Mercado
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Taylor Fuselier
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Healthcare System Medical Center, New Orleans, LA 70112, USA
| | - Jun Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, Gyeongsangbuk-do 36729, South Korea
| | - Laurel A Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA
| | - Ellis R Levin
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, CA 90822, USA; Departments of Medicine and Biochemistry, University of California, Irvine, Irvine, CA 92717, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Z Elizabeth Floyd
- Ubiquitin Lab, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70803, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Healthcare System Medical Center, New Orleans, LA 70112, USA.
| |
Collapse
|
36
|
Morselli E, Santos RDS, Gao S, Ávalos Y, Criollo A, Palmer BF, Clegg DJ. Impact of estrogens and estrogen receptor-α in brain lipid metabolism. Am J Physiol Endocrinol Metab 2018; 315:E7-E14. [PMID: 29509437 PMCID: PMC7717113 DOI: 10.1152/ajpendo.00473.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.
Collapse
Affiliation(s)
- Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberta de Souza Santos
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| | - Su Gao
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
- Department of Medicine, Columbia University Medical Center , New York, New York
| | - Yenniffer Ávalos
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell , Santiago , Chile
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile , Santiago , Chile
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Deborah J Clegg
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| |
Collapse
|
37
|
Xu Y, López M. Central regulation of energy metabolism by estrogens. Mol Metab 2018; 15:104-115. [PMID: 29886181 PMCID: PMC6066788 DOI: 10.1016/j.molmet.2018.05.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Estrogenic actions in the brain prevent obesity. Better understanding of the underlying mechanisms may facilitate development of new obesity therapies. SCOPE OF REVIEW This review focuses on the critical brain regions that mediate effects of estrogens on food intake and/or energy expenditure, the molecular signals that are involved, and the functional interactions between brain estrogens and other signals modulating metabolism. Body weight regulation by estrogens in male brains will also be discussed. MAJOR CONCLUSIONS 17β-estradiol acts in the brain to regulate energy homeostasis in both sexes. It can inhibit feeding and stimulate brown adipose tissue thermogenesis. A better understanding of the central actions of 17β-estradiol on energy balance would provide new insight for the development of therapies against obesity in both sexes.
Collapse
Affiliation(s)
- Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
38
|
Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF. Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 2018; 15:56-69. [PMID: 29807870 PMCID: PMC6066739 DOI: 10.1016/j.molmet.2018.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.
Collapse
Affiliation(s)
- Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| | - Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service d'Hépatologie et Gastro-Entérologie, CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| |
Collapse
|
39
|
Romano SN, Gorelick DA. Crosstalk between nuclear and G protein-coupled estrogen receptors. Gen Comp Endocrinol 2018; 261:190-197. [PMID: 28450143 PMCID: PMC5656538 DOI: 10.1016/j.ygcen.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/04/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
Abstract
In 2005, two groups independently discovered that the G protein-coupled receptor GPR30 binds estradiol in cultured cells and, in response, initiates intracellular signaling cascades Revankar et al. (2005), Thomas et al. (2005). GPR30 is now referred to as GPER, the G-protein coupled estrogen receptor Prossnitz and Arterburn (2015). While studies in animal models are illuminating GPER function, there is controversy as to whether GPER acts as an autonomous estrogen receptor in vivo, or whether GPER interacts with nuclear estrogen receptor signaling pathways in response to estrogens. Here, we review the evidence that GPER acts as an autonomous estrogen receptor in vivo and discuss experimental approaches to test this hypothesis directly. We propose that the degree to which GPER influences nuclear estrogen receptor signaling likely depends on cell type, developmental stage and pathology.
Collapse
Affiliation(s)
- Shannon N Romano
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, USA
| | - Daniel A Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, USA.
| |
Collapse
|
40
|
Boonyaratanakornkit V, Hamilton N, Márquez-Garbán DC, Pateetin P, McGowan EM, Pietras RJ. Extranuclear signaling by sex steroid receptors and clinical implications in breast cancer. Mol Cell Endocrinol 2018; 466:51-72. [PMID: 29146555 PMCID: PMC5878997 DOI: 10.1016/j.mce.2017.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Estrogen and progesterone play essential roles in the development and progression of breast cancer. Over 70% of breast cancers express estrogen receptors (ER) and progesterone receptors (PR), emphasizing the need for better understanding of ER and PR signaling. ER and PR are traditionally viewed as transcription factors that directly bind DNA to regulate gene networks. In addition to nuclear signaling, ER and PR mediate hormone-induced, rapid extranuclear signaling at the cell membrane or in the cytoplasm which triggers downstream signaling to regulate rapid or extended cellular responses. Specialized membrane and cytoplasmic proteins may also initiate hormone-induced extranuclear signaling. Rapid extranuclear signaling converges with its nuclear counterpart to amplify ER/PR transcription and specify gene regulatory networks. This review summarizes current understanding and updates on ER and PR extranuclear signaling. Further investigation of ER/PR extranuclear signaling may lead to development of novel targeted therapeutics for breast cancer management.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Clinical Chemistry Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Diana C Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Prangwan Pateetin
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Sciences, University of Technology Sydney, Ultimo, 2007, Sydney, Australia
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Stefkovich ML, Arao Y, Hamilton KJ, Korach KS. Experimental models for evaluating non-genomic estrogen signaling. Steroids 2018; 133:34-37. [PMID: 29122548 PMCID: PMC5864539 DOI: 10.1016/j.steroids.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Non-genomic effects of estrogen receptor α (ERα) signaling have been described for decades. However, the mechanisms and physiological processes resulting solely from non-genomic signaling are poorly understood. Challenges in studying these effects arise from the strongly nucleophilic tendencies of estrogen receptor, and many approaches to excluding ERα from the nucleus have been explored over the years. In this review, we discuss past strategies for studying ERα's non-genomic action and current models, specifically H2NES ERα, first described by Burns et al. (2011). In vitro and preliminary in vivo data from H2NES ERα and H2NES mice suggest a promising avenue for pinpointing specific non-genomic ERα action.
Collapse
Affiliation(s)
- Megan L Stefkovich
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institutes of Health, NIEHS, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Yukitomo Arao
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institutes of Health, NIEHS, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Katherine J Hamilton
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institutes of Health, NIEHS, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institutes of Health, NIEHS, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
42
|
Abstract
Due to declining estrogen levels during menopause, NAFLD prevalence is higher in postmenopausal women compared to in premenopausal women or in men. Postmenopausal women are more susceptible to weight gain, fat redistribution and dyslipidemia, all major hallmarks of metabolic syndrome associated with increased NAFLD risk. Gut microbiota plays important roles in development of gastrointestinal tract, metabolism and immunity. Host-microbe interactions allows regulation of a wide range of pathways that affect healthy and diseased physiology. Recent advances in - omics technologies, such as microbiome, transcriptome and metabolome analysis, provided evidence that estrogens and intestinal microbiota (IM) can collectively influence obesity, inflammatory disease, diabetes, and cancers. By understanding underlying mechanisms of estrogens and microbiota crosstalk, we might design dietary and pharmacological interventions to alleviate the metabolic syndrome and NAFLD.
Collapse
Affiliation(s)
- Karen L Chen
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
43
|
Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids 2018; 133:2-7. [PMID: 29155216 PMCID: PMC5864526 DOI: 10.1016/j.steroids.2017.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/30/2023]
Abstract
Steroid hormones are lipophilic molecules produced in one cell that can travel great distances within the body to elicit biological effects in another cell. In the canonical pathway, steroid hormone binding to a nuclear receptor (NR), often in the cytoplasm, causes the receptor to undergo a conformational change and translocate to the nucleus, where it interacts with specific sequences of DNA to regulate transcription. In addition to the classical genomic mechanism of action, alternate mechanisms of steroid activity have emerged that involve rapid, non-genomic signaling. The distinction between these two major mechanisms of action lies in the subcellular location of the initiating steroid hormone action. Importantly, the mechanisms of action are not exclusive, in that each can affect the activity of the other. Here, we describe the different types of genomic and non-genomic steroid hormone signaling mechanisms and how they can influence one another to ultimately regulate biology. Further, we discuss the approaches being used to study the non-genomic signaling events and address important caveats to be considered when designing new experiments. Thus, this minireview can serve as an introduction to the diverse signaling mechanisms of steroid hormones and offers initial, experimental guidance to those entering the field.
Collapse
Affiliation(s)
- Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Chenchu Lin
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
44
|
MacKay H, Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm Behav 2018; 101:59-67. [PMID: 29104009 DOI: 10.1016/j.yhbeh.2017.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
Bisphenol-A (BPA) is a well-known endocrine disrupting compound (EDC), capable of affecting the normal function and development of the reproductive system, brain, adipose tissue, and more. In spite of these diverse and well characterized effects, there is often comparatively little known about the molecular mechanisms which bring them about. BPA has traditionally been regarded as a primarily estrogenic EDC, and this perspective is often what guides research into the effects of BPA. However, emerging data from in-vitro and in-silico models show that BPA binds with a significant number of hormone receptors, including a number of nuclear and membrane-bound estrogen receptors, androgen receptors, as well as the thyroid hormone receptor, glucocorticoid receptor, and PPARγ. With this increased diversity of receptor targets, it may be possible to explain some of the more puzzling aspects of BPA pharmacology, including its non-monotonic dose-response curve, as well as experimental results which disagree with estrogenic positive controls. This paper reviews the receptors for which BPA has a known interaction, and discusses the implications of taking these receptors into account when studying the disruptive effects of BPA on growth and development.
Collapse
Affiliation(s)
- Harry MacKay
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Childrens Nutrition Research Center, Houston, TX, USA.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
45
|
Tonn Eisinger KR, Larson EB, Boulware MI, Thomas MJ, Mermelstein PG. Membrane estrogen receptor signaling impacts the reward circuitry of the female brain to influence motivated behaviors. Steroids 2018; 133:53-59. [PMID: 29195840 PMCID: PMC5864533 DOI: 10.1016/j.steroids.2017.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
Within the adult female, estrogen signaling is well-described as an integral component of the physiologically significant hypothalamic-pituitary-gonadal axis. In rodents, the timing of ovulation is intrinsically entwined with the display of sexual receptivity. For decades, the importance of estradiol activating intracellular estrogen receptors within the hypothalamus and midbrain/spinal cord lordosis circuits has been appreciated. These signaling pathways primarily account for the ability of the female to reproduce. Yet, often overlooked is that the desire to reproduce is also tightly regulated by estrogen receptor signaling. This lack of emphasis can be attributed to an absence of nuclear estrogen receptors in brain regions associated with reward, such as the nucleus accumbens, which are associated with motivated behaviors. This review outlines how membrane-localized estrogen receptors affect metabotropic glutamate receptor signaling within the rodent nucleus accumbens. In addition, we discuss how, as estrogens drive increased motivation for reproduction, they also produce the untoward side effect of heightening female vulnerability to drug addiction.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin B Larson
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marissa I Boulware
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark J Thomas
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
46
|
Tecalco-Cruz AC. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J Steroid Biochem Mol Biol 2018; 178:36-44. [PMID: 29107180 DOI: 10.1016/j.jsbmb.2017.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Nuclear receptors (NRs) are transcription regulators that direct the expression of many genes linked to cellular processes, such as proliferation, differentiation, and apoptosis. Additionally, some cellular events are also modulated by signaling pathways induced by NRs outside of the nucleus. Hence, the subcellular transport of NRs is dynamic and is modulated by several signals, protein-protein interactions, and posttranslational modifications. Particularly, the exit of NRs from the nucleus to cytoplasm and/or other compartments is transcendental, as it is this export event, which determines their abundance in the cells' compartments, the activation or attenuation of nuclear or extranuclear pathways, and the magnitude and duration of their effects inside or outside of the nucleus. Consequently, an adequate control of the distribution of NRs is critical for homeostasis, because a deregulation in the nucleo-cytoplasmic transport of NRs could be involved in diseases including cancer as well as metabolic and vascular alterations. In this review, we investigated the pathways and molecular and biological aspects that have been described for the nuclear export of NRs so far and their functional relevance in some diseases. This information suggests that the transport of NRs out of the nucleus is a key mechanism for the identification of new therapeutic targets for alterations associated with the deregulation of the function of NRs.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, D.F. 04510, Mexico.
| |
Collapse
|
47
|
Levin ER. Membrane estrogen receptors signal to determine transcription factor function. Steroids 2018; 132:1-4. [PMID: 29155215 DOI: 10.1016/j.steroids.2017.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022]
Abstract
Estrogen receptors (ER) alpha and beta as well as many other steroid receptors are found both within the nucleus and outside the nucleus. This includes extra-nuclear receptors in many organelles, including mitochondria, endoplasmic reticulum, cytosolic endosomes, and membrane lipid rafts, such as caveolae. The functions of these receptors in the various extra-nuclear cell organelles are not well described, but progress for understanding steroid receptor signaling from the membrane has advanced. In this Review I will discuss the enlarging role of membrane ER signaling to the expression, cell localization, and function of transcription factors that are essential to mediate cell physiology or pathophysiology in many organs.
Collapse
Affiliation(s)
- Ellis R Levin
- Division of Endocrinology, University of California, Irvine, Irvine, CA 92717, USA; Tibor Rubin VAMC, Long Beach, Long Beach, CA 90822, USA; Departments of Medicine and Biological Chemistry, University of California, Irvine, Irvine, CA 92717, USA.
| |
Collapse
|
48
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
49
|
Paine IS, Lewis MT. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol Neoplasia 2017; 22:93-108. [PMID: 28168376 PMCID: PMC5488158 DOI: 10.1007/s10911-017-9372-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The mammary gland is one of the most regenerative organs in the body, with the majority of development occurring postnatally and in the adult mammal. Formation of the ductal tree is orchestrated by a specialized structure called the terminal end bud (TEB). The TEB is responsible for the production of mature cell types leading to the elongation of the subtending duct. The TEB is also the regulatory control point for basement membrane deposition, branching, angiogenesis, and pattern formation. While the hormonal control of TEB growth is well characterized, the local regulatory factors are less well understood. Recent studies of pubertal outgrowth and ductal elongation have yielded surprising details in regards to ongoing processes in the TEB. Here we summarize the current understanding of TEB biology, discuss areas of future study, and discuss the use of the TEB as a model for the study of breast cancer.
Collapse
Affiliation(s)
- Ingrid S Paine
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Abstract
The hormone estrogen is involved in both female and male reproduction, as well as numerous other biological systems including the neuroendocrine, vascular, skeletal, and immune systems. Therefore, it is also implicated in many different diseases and conditions such as infertility, obesity, osteoporosis, endometriosis, and a variety of cancers. Estrogen works through its two distinct nuclear receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Various transcriptional regulation mechanisms have been identified as the mode of action for estrogen, mainly the classical mechanism with direct DNA binding but also a nongenomic mode of action and one using tethered or indirect binding. The expression profiles of ERα and ERβ are unique with the primary sites of ERα expression being the uterus and pituitary gland and the main site of ERβ expression being the granulosa cells of the ovary. Mouse models with knockout or mutation of Esr1 and Esr2 have furthered our understanding of the role of each individual receptor plays in physiology. From these studies, it is known that the primary roles for ERα are in the uterus and neuroendocrine system, as female mice lacking ERα are infertile due to impaired ovarian and uterine function, whereas female mice lacking ERβ are subfertile due to ovarian defects. The development of effective therapies for estrogen-related diseases has relied on an understanding of the physiological roles and mechanistic functionalities of ERα and ERβ in human health and disease.
Collapse
Affiliation(s)
- Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Yukitomo Arao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States.
| |
Collapse
|